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We use holography to study a (1þ 1)-dimensional conformal field theory (CFT) coupled to an impurity.
The CFT is an SUðNÞ gauge theory at large N, with strong gauge interactions. The impurity is an SUðNÞ
spin. We trigger an impurity renormalization group (RG) flow via a Kondo coupling. The Kondo effect
occurs only below the critical temperature of a large-N mean-field transition. We show that at all
temperatures T, impurity spectral functions exhibit a Fano resonance, which in the low-T phase is a large-N
manifestation of the Kondo resonance. We thus provide an example in which the Kondo resonance survives
strong correlations, and uncover a novel mechanism for generating Fano resonances, via RG flows between
(0þ 1)-dimensional fixed points.
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I. INTRODUCTION

The Kondo effect is the screening of an impurity spin by
a Landau Fermi liquid (LFL) at low T [1,2]. A variety of
techniques, such as Wilson’s RG, large-N, CFT, and more
[3], have captured many characteristic Kondo phenomena.
Nevertheless, many questions resist solution, for example
about inter-impurity interactions, subsystem entanglement
entropy (EE), nonequilibrium processes like quantum
quenches, and more.
In particular, what happens when the LFL is replaced

with strongly correlated electrons? For example, how does
the Kondo effect change in a Luttinger liquid [4–8] or the
Hubbard model [9,10]? In the latter case, experiments
reveal dramatic effects of strong correlations, such as
enhancement of the Kondo temperature, TK [53]. On the
theory side, although special tools like bosonization [4–8]
and uncontrolled mean-field approximations [9,11–17]
have provided insight, in general, reliable techniques do
not yet exist to answer questions about Kondo phenomena
in strongly-correlated systems.
To address all of the above, we have developed an

alternative Kondo model, based on holographic duality

[18–21]. Our model replaces the LFL by a (1þ 1)-
dimensional CFT in which spin SUð2Þ is replaced by
gauged SUðNÞ, with large N and strong gauge interactions.
Our model has already revealed novel strong-coupling
phenomena in RG [18,19], interimpurity interactions
[19] and EE [20].
Here we initiate the study of nonequilibrium phenomena

in our model: we compute linear response (Green’s)
functions of a charged bosonic impurity operator, O, in
our model. We have two main results.
First, we find a large-N manifestation of the Kondo

resonance [2,22,23], a signature of the Kondo effect. As
expected, our Kondo resonance appears only at T below the
critical temperature Tc of a mean-field transition that is
common to large-N Kondo models [23–27]: hOi becomes
non-zero when T ≤ Tc. We thus prove unequivocally that
our holographic model realizes a genuine Kondo effect, as
opposed to some other impurity physics, and furthermore
show that a large-N Kondo resonance can survive strong
correlations essentially intact.
Second, at all T, O’s spectral function exhibits a Fano

resonance [28,29], which occurs when a Lorentzian res-
onance is immersed in a continuum of states (in energy).
A Fano resonance is characterized not only by its position,
width, and height, like a Lorentzian, but also by an
asymmetry parameter, q, which measures the relative
strength of resonant versus non-resonant scattering. Our
q increases as T → Tþ

c . When T ≤ Tc, the Fano line-
shape arises from our Kondo resonance, which must be
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antisymmetric due to particle-hole symmetry (PHS), and
hence has the special value q ¼ 1.
Although Fano resonances have been observed in many

impurity systems in one spatial dimension [29–32], ours
arise from a qualitatively different mechanism. For in-
stance, in side-coupled quantum dots (QDs) [29,31,32] the
Lorentzian resonances are the discrete states on the QD,
and the continuum comes from electronic scattering states
in the leads. Coupling the two, for example by a Kondo
coupling, can then produce Fano resonances.
Our model also has an impurity coupled to a continuum

in one spatial dimension, i.e. the CFT. However, our model
has two couplings: the CFT’s SUðNÞ gauge coupling and
the Kondo coupling. The spectral function of O inherits
(0þ 1)-dimensional scale invariance from the former, and
so exhibits a continuum of states, in contrast to a QD’s
discrete states. The Kondo coupling then triggers an RG
flow from that (0þ 1)-dimensional fixed point, and creates
a resonance that cannot escape the continuum, hence
producing a Fano line shape.
To our knowledge, such a mechanism for producing

Fano resonances is novel, and moreover is easy to general-
ize to any RG flow between (0þ 1)-dimensional fixed
points, as follows. Scale invariance implies that any spectral
function will be a featureless continuum, which in (0þ 1)
dimensions means a power law (or logarithm) in frequency.
A relevant deformation can then explicitly break scale
invariance, trigger an RG flow to an IR fixed point—in
which case we expect the continuum to survive—and may
also produce resonances. In higher dimensions, the reso-
nances would not have to be within the continuum, for
example the two could be separated in momentum space.
However, in (0þ 1) dimensions the resonances have no
place to escape the continuum, and hence must produce
Fano line shapes.
In fact, such a mechanism was at work in some previous

cases, such as the large-N Kondo model at sufficiently low
T [33], and holographic duals of T ¼ 0 charged black
branes [34–36]. However, the resulting Fano resonances
went unidentified, leaving crucial physics overlooked,
namely the relative strength of resonant versus non-
resonant scattering, as measured by q. Our results not only
provide a novel perspective on these cases, but also predict
Fano resonances in RG flows between other (0þ 1)-
dimensional fixed points, such as Sachdev-Ye-Kitaev fixed
points [36–43].
Further results of our model, including details of holo-

graphic renormalization useful for holographic impurity
models in general, will appear in [44].

II. HOLOGRAPHIC KONDO MODEL

We first briefly review some essential features of the
CFT and large-N approaches to the Kondo model, and how
our model builds upon and extends them.

The CFT approach [45] is based on s-wave reduction
of LFL fermions about the impurity, plus linearization
of the dispersion relation. In/out-going s-waves become
relativistic left/right-moving fermions, ψL and ψR, in the
radial direction, r. Reflecting ψR to r < 0 and relabeling
ψR → ψL leads to ψL alone on the entire r axis, with
impurity at r ¼ 0. The ψL form a (1þ 1)-dimensional
chiral CFT with SUð2Þ1 ×Uð1Þ spin and charge Kac-
Moody currents, respectively. In the Hamiltonian, the
Kondo interaction is δðrÞgKSAJA, with coupling constant
gK , impurity spin SA, and spin current JA, A ¼ 1, 2, 3.
An antiferromagnetic coupling, gK > 0, is marginally
relevant, and triggers an RG flow to an IR chiral CFT
characterized by a phase shift of ψL and impurity
screening [45].
The large-N approach begins by replacing spin

SUð2Þ → SUðNÞ, followed by N → ∞ with λK ≡
NgK fixed [3,23,46,47]. We will only consider SA in
totally antisymmetric SUðNÞ representations of rank Q,
and introduce Abrikosov pseudofermions χ via SA ¼
χ†TAχ, with SUðNÞ generators TA, A ¼ 1;…; N2 − 1.
Doing so introduces an auxiliary Uð1Þ acting only on
χ, but with charge fixed by projecting onto states with
χ†χ ¼ Q. At large N, SAJA ¼ −O†O=2 with O≡ ψ†

Lχ
[19], which is charged under both the charge and
auxiliary Uð1Þ’s.
Our holographic model [18] begins by gauging

SUðNÞ, thus introducing the ’t Hooft coupling, λ. We
then add degrees of freedom to make the gauge theory a
(1þ 1)-dimensional CFT with sparse operator spectrum
when N and λ both → ∞, but whose details otherwise
are irrelevant. The theory is then holographically dual to
Einstein-Hilbert gravity in (2þ 1)-dimensional anti-de
Sitter space, AdS3 [48]. The charge Uð1Þ Kac-Moody
current is dual to a Uð1Þ Chern-Simons gauge field, A,
the auxiliary Uð1Þ is dual to a Maxwell field a on an
AdS2 defect at r ¼ 0, and O is dual to a complex scalar
field Φ also in AdS2, charged under both A and a. As
long as the stress-energy tensor is finite, at large N we
can neglect backreaction of A, a, Φ (dual to fundamental
fields) on the geometry (dual to adjoint fields). When
T > 0, the bulk metric is thus the BTZ black brane,

ds2 ¼ 1

z2
ðh−1ðzÞdz2 − hðzÞdt2 þ dr2Þ;

with hðzÞ ¼ 1 − z2=z2H where zH ¼ 1=2πT, and unit AdS
radius. The fields a and Φ are localised to the asymp-
totically AdS2 subspace at r ¼ 0, with induced metric
gmn (m; n ¼ z, t). We describe the dynamics of A, a, and
Φ by the simple quadratic action [18],

S ¼ −
N
4π

Z
BTZ

A ∧ dAþ SAdS2 ; ð1aÞ
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SAdS2 ¼ −N
Z
x¼0

dzdt
ffiffiffiffiffiffi
−g

p �
1

4
fmnfmn

þ ðDmΦÞ†ðDmΦÞ þM2Φ†Φ
�
; ð1bÞ

with field strength f ¼ da, covariant derivative DmΦ ¼
ð∂m þ iAm − iamÞΦ, and mass-squared M2. At the hori-
zon z ¼ zH we require regularity of all fields. At the
boundary z ¼ 0, a’s leading mode, a ∼Q=z, is related to
Q: Q ≠ 0 breaks χ’s PHS, so the PHS value Q ¼ 0 is
dual to the PHS value Q ¼ N=2, and increasing jQj
corresponds to increasing jQ − N=2j.
The large-N Kondo interaction −λKO†O=2 is classically

marginal, hence O has UV dimension Δ ¼ 1=2, which
fixes M2 and hence Φ’s near-boundary expansion,
Φ ∼

ffiffiffi
z

p ðα log zþ βÞ. Introducing the Kondo interaction
amounts to adding a boundary term ∝ −λKO†O=2 to S,
which changes Φ’s boundary condition from α ¼ 0 to α ¼
−λKβ [18,49,50]. For more details about the boundary
terms, see [19,44]. A holographic scaling analysis reveals
that λK runs logarithmically, λK ¼ 1= log ðT=TKÞ, diverg-
ing at the dynamically-generated Kondo temperature,
TK ≡ Λe−1=λK=ð2πÞ, with λK evaluated at the UV cutoff,
Λ. A holographic antiferromagnetic UV Kondo coupling,
λK > 0, is thus marginally relevant, breaks conformal
invariance, and triggers an RG flow.
As mentioned above, our model has a mean-field phase

transition [18]: hOi¼0 (Φ ¼ 0) when T > Tc and hOi ≠ 0
(Φ ≠ 0) when T ≤ Tc. Condensate formation hOi ≠ 0
breaks the charge and auxiliary Uð1Þ’s to the diagonal,
and signals the Kondo effect, including a phase shift of ψL,
dual to a Wilson line of A, and impurity screening, dual to
reduction of f flux between z ¼ 0 and z ¼ zH. We refer
to the T > Tc and T ≤ Tc phases as “unscreened” and
“screened,” respectively. In [18–21] we computed Tc
numerically. Below we obtain an exact formula for Tc.

III. FANO RESONANCES

If a retarded Green’s function of complex frequency ω,
GðωÞ, has a pole at ωp, GðωÞ ∼ Z

ω−ωp
, with complex residue

Z ¼ ZR þ iZI, then near the pole the spectral function
ρðωÞ≡ −2ImðGðωÞÞ will have a Fano resonance [28,29]
(setting ImðωÞ ¼ 0),

ρFanoðωÞ ¼
ðω − ω0 þ qΓ=2Þ2
ðω − ω0Þ2 þ ðΓ=2Þ2 ; ð2Þ

with position ω0 ¼ ReðωpÞ, width Γ ¼ 2jImðωpÞj, and

asymmetry parameter q¼−ZR=ZI þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þZ2

R=Z
2
I

p
. Fano

resonances are antisymmetric when q ¼ 1, meaning ρðωÞ
is odd under PHS, and symmetric when q ¼ 0 (an anti-
resonance) or ∞ (a Lorentzian), meaning ρðωÞ is even.
Fano resonances arise when a Lorentzian resonance is

immersed in a continuum (in energy), due to interference
between the two. The asymmetry parameter q contains
key dynamical information, specifically, q2 ∝ the ratio of
probabilities of resonant and non-resonant scattering.
In our model, the AdS2 subspace inherits scale invari-

ance from AdS3, or in dual field theory language, the
impurity inherits scale invariance from the CFT, so ρðωÞ of
impurity operators must be a featureless continuum. Our
marginally-relevant Kondo coupling then breaks scale
invariance and produces a resonance, while Q ≠ 0 breaks
PHS. We will show that ρðωÞ of O then indeed generically
exhibits asymmetric Fano resonances.

IV. SPECTRAL FUNCTIONS

We compute GðωÞ holographically by solving for
linearized fluctuations about solutions for the unscreened
and screened phases [44,51,52]. At all T, we find that the
Kac-Moody current’s GðωÞ is unaffected by the impurity.
In the unscreened phase, we find that all charged GðωÞ
vanish, i.e. GOOðωÞ≡ hOðωÞOð−ωÞi ¼ 0, while

GO†OðωÞ≡ hO†ðωÞOð−ωÞi ¼ N
λK

�
1 −

1

λKDðωÞ
�
;

DðωÞ≡H

�
−
1

2
þ iQ −

iω
2πT

�
þH

�
−
1

2
− iQ

�

þ ln

�
2T
TK

�
;

with Harmonic number H½x�, and λK evaluated at Λ. The
form of GOO†ðωÞ is the same, but with Q → −Q. Scale
invariance in (0þ 1)-dimensions and Δ ¼ 1=2 imply a
trivial UV continuum: limω→∞ ρO†OðωÞ ¼ 0.
For given Q and T, GO†OðωÞ has poles in ω when

DðωÞ ¼ 0. Figure 1 shows our numerical results for the

FIG. 1. Positions of poles in the complex ω=ð2πTÞ plane
for Q ¼ 1=2. Blue and purple denote lowest and next-lowest
poles, respectively, of GO†OðωÞ (ReðωÞ > 0) and GOO†ðωÞ
(ReðωÞ < 0), for T=Tc from 100 down to 1.001. Red and orange
denote the same for GO†OðωÞ for T=Tc from 1 down to 0.2.
Arrows indicate movement of poles as T decreases.
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positions of the lowest (closest to ω ¼ 0) and next-lowest
poles of GO†OðωÞ and GOO†ðωÞ in the complex ω=ð2πTÞ
plane, for Q ¼ 1=2. Other Q give similar results. As
T → Tþ

c , the lowest pole moves towards the origin, arrives
there at Tc, and when T < Tc, crosses into the ImðωÞ > 0
region, signaling instability (not shown). We thus identify
Tc as the T where Dðω ¼ 0Þ ¼ 0,

Tc ¼
1

2
TK exp

�
−2Re

�
H

�
1

2
þ iQ

���
:

Figure 2 shows the normalized spectral function

ρ̄O†OðωÞ≡ −2 λ2K
N ImGO†OðωÞ versus real ω=ð2πTÞ forQ ¼

1=2 and T=Tc ¼ 16, 8, 4, 2. We find a Fano resonance,
as advertised, with asymmetric minimum and maximum.
Numerically, ω0 ≈ ReðωpÞ and Γ ≈ 2jImðωpÞj, as in (2),
where ωp is GO†OðωÞ’s lowest pole. As T → Tþ

c , q grows:
q ≈ 1.7 at T ¼ 16Tc while q ≈ 4 at T ¼ 2Tc.
For T just above Tc, T ≳ Tc, expanding in T about Tc

and in ω about ω ¼ 0 gives, for GO†OðωÞ’s lowest pole,

ωp

2πT
¼ −i

T=Tc − 1

ψ 0½1
2
þ iQ� ; Z ¼ −i

N
λ2K

2πTc

ψ 0½1
2
þ iQ� ; ð3Þ

with digamma function ψ ½x�. The resonance height thus
grows as ðT=Tc − 1Þ−1 and the width shrinks as T=Tc − 1.
It is therefore not related to a Kondo resonance, which
grows logarithmically as T → Tþ

K [22]. Indeed, at large N
we expect the Kondo resonance only in the screened phase
[23]. Our resonance is presumably a bound state of ψL
and χ, heralding the nascent screened phase.
The Z in (3) gives q that depends only on Q, shown in

Fig. 3. (Anti)symmetric values q ¼ 1, 0, ∞ occur when
Q → 0, ∓ ∞, respectively. Indeed, Fig. 4 shows that even
for relatively modest Q ¼ 1, the resonance is nearly
Lorentzian, the minimum having practically vanished.
In the screened phase, we have numerical results for

GO†OðωÞ [18–21,44]. Figure 1 shows our numerical results
for the positions of the lowest and next-lowest poles in
GO†OðωÞ for Q ¼ 1=2. Other Q give similar results. At
T ¼ Tc the poles are coincident with those ofGO†OðωÞ and
GOO†ðωÞ in the unscreened phase. As T decreases below
Tc, GO†OðωÞ’s lowest pole, ωp, moves straight down the
ImðωÞ axis.

FIG. 2. The normalized spectral function ρ̄O†OðωÞ versus real
ω=ð2πTÞ for Q ¼ 1=2 and, from shortest to tallest, T=Tc ¼ 16
(red), 8 (green), 4 (orange), and 2 (blue).

FIG. 3. Asymmetry parameter q versus Q, for T ≳ Tc.

FIG. 4. The normalized spectral function, ρ̄O†OðωÞ, versus real
ω=ð2πTÞ for Q ¼ 1 and, from shortest to tallest, T=Tc ¼ 1.04
(green), 1.02 (orange), and 1.01 (blue).

FIG. 5. The normalized spectral function ρ̄O†OðωÞ versus real
ω=ð2πTÞ forQ ¼ 1=2 and, from tallest to shortest, T=Tc ¼ 0.998
(blue), 0.991 (orange), and 0.964 (green).
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From our experience with the unscreened phase, we
expect ωp to produce a Fano resonance in the normalized
spectral function, ρ̄O†OðωÞ. Crucially, ReðwpÞ ¼ 0, so ωp

preserves PHS, ReðωÞ → −ReðωÞ, so we expect an anti-
symmetric Fano resonance at ReðωÞ ¼ 0. Moreover,
jImðωpÞj increases as T decreases, and so should the width
Γ. Figure 5 confirms our expectations: ρ̄O†OðωÞ’s only
significant feature is a Fano resonance at ReðωÞ ¼ 0
with q ¼ 1, meaning perfectly antisymmetric minimum
and maximum, and whose Γ increases as T decreases.
Additionally, the height decreases, and indeed our numerics
suggest limT→0 ρ̄O†OðωÞ ¼ 0.
Figure 6 shows our numerical results for the position

of ωp versus small λ2K
N2 hOi2=ð2πTÞ, or equivalently, T just

below Tc, T ≲ Tc, for Q ¼ 1=2. Figure 6 also shows a
linear fit demonstrating that.1

ωp ∝ −ihOi2: ð4Þ
Our model’s mean-field behavior hOi ∝ ðTc − TÞ1=2 then
implies Γ ∝ Tc − T for T ≲ Tc.

The behavior in (4) is in fact identical to that in a LFL
at large N. In a LFL, the Kondo resonance is formally
defined in the LFL fermion spectral function, and at largeN
appears only in the screened phase, with Γ ∝ hOi2 [23]. For
T ≲ Tc, the mean-field behavior hOi ∝ ðTc − TÞ1=2 then
implies Γ ∝ Tc − T. Crucially, in the screened phase the
Kondo resonance also appears in other spectral functions,
due to operator mixing induced by the symmetry breaking
[23]. In particular, a Kondo resonance should produce a
pole in GO†OðωÞ precisely of the form in (4)2 Our result (4)
thus proves the existence of a Kondo resonance in our
model when T ≲ Tc, with defining features essentially
intact despite the strong interactions.

V. CONCLUSION

In a holographic model describing the interaction of a
magnetic impurity with a strongly correlated CFT at large
N, we discovered a novel mechanism for producing Fano
resonances, namely via RG flows between (0þ 1)-dimen-
sional fixed points. The origin and consequences of such
Fano resonances, in existing cases that have gone uniden-
tified and in novel cases, deserve further study, particularly
of the physics contained in the asymmetry parameter q.
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