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In quantum mechanics and quantum field theory perturbation theory generically requires the inclusion of
extra contributions nonperturbative in the coupling, such as instantons, to reproduce exact results. We show
how full nonperturbative results can be encoded in a suitable modified perturbative series in a class of
quantum mechanical problems. We illustrate this explicitly in examples which are known to contain
nonperturbative effects, such as the (supersymmetric) double-well potential, the pure anharmonic
oscillator, and the perturbative expansion around a false vacuum.
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The coefficients of saddle-point expansions of (path)
integrals generically grow factorially and produce non-
convergent asymptotic series. In special cases exact results
can be obtained from such a series by “Borel resummation,”
consisting in taking the Laplace transform of the function
obtained by resumming the original series after dividing
their terms by a factorially growing coefficient. However
this procedure generically fails, because exact results take
the form of trans-series, i.e. series in powers of the coupling
λ, e−1=λ and logð−λÞ, which capture behaviors nonpertur-
bative in the coupling λ.
There are several well understood tools which determine

the properties of perturbative series of finite-dimensional
integrals. For path integrals some results are available in
specific cases (mostly within quantum mechanics or super-
symmetric theories using localization techniques) but a
systematic characterization of the behavior of their pertur-
bation theories is still lacking. Quantum mechanics (QM)
represents the simplest playground to test our understand-
ing of the interplay between perturbative and nonperturba-
tive effects in path integrals, for exact results can be
extracted efficiently by other means. In this paper we
present a method to recover the full nonperturbative answer
from a deformation of the perturbative series in a certain
class of QM problems that contain nonperturbative effects.
Such a technique could be used to improve numerical
computations based on perturbation theory in QM and
might, in principle, be extended to higher dimensional
quantum field theories (QFT).
Consider one-dimensional quantum mechanical systems

described by the Hamiltonian

H ¼ p2

2
þ Vðx; λÞ; ð1Þ

where the potential Vðx; λÞ is a regular function of x
describing a bounded system [i.e. limjxj→∞VðxÞ ¼ ∞]. If

the dependence on the coupling λ is such that Vðx; λÞ ¼

Vðx ffiffiffi
λ

p
; 1Þ=λ then the perturbative expansion in λ coincides

with the ℏ expansion. We call such potential classical. If
V0ðx; λÞ and V1ðx; λÞ are two such potentials then the
combination Vðx; λÞ ¼ V0ðx; λÞ þ λV1ðx; λÞ is a sum of a
classical contribution (V0) and a quantum one (V1).
Consider now the classical anharmonic oscillator

Vaoðx; λÞ ¼ 1

2
x2 þ λ

2
x4; ð2Þ

whose energy eigenvalues at small λ are close to those of
the harmonic oscillator Eao

n ¼ nþ 1
2
þOðλÞ. By studying

the analytic properties of the eigenvalues, their perturbative
series has been shown to be Borel resummable to the exact
result [1,2]. The conditions under which Borel resumm-
ability holds can be characterized more systematically [3],
extending the result to other potentials and observables.
Similar results seem to hold also in higher dimensions, i.e.
λϕ4 theories in two and three dimensions [4,5].
Note that the Borel resummability of the theory crucially

depends on the presence and sign of the quadratic term x2.
In fact, in the case of the double-well potential, where the
quadratic term is negative, perturbation theory in λ around
the minima is known to be non-Borel resummable.
Nonperturbative effects, instantons, are needed to cure
the ambiguities of the Borel transform and to reproduce
the exact answer. A particularly interesting example is the
supersymmetric double-well potential where perturbative
corrections to the vacuum energy vanish at all orders,
making the perturbative series trivially Borel resummable.
Still supersymmetry is broken nonperturbatively [6] and the
vacuum energy is lifted by instanton contributions.
For the special case of vanishing mass term, i.e. for the

pure anharmonic oscillator

VpaðxÞ ¼ 1

2
x4; ð3Þ

the situation is more subtle. This case corresponds
to the strong coupling limit, λ → ∞, of the anharmonic
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potential, obtained after the rescaling x → x=λ1=6,
p → pλ1=6, and H → H=λ1=3. As such, normal perturba-
tion theory (i.e. perturbation theory around the harmonic
oscillator) cannot be used. In this special case a different
semiclassical expansion in ℏ, the WKB approximation, is
more useful. Not only such perturbative expansion is not
Borel resummable but real instantons are not enough to
reproduce the full answer [7]—complex saddles are also
required to recover the full result (see [8] for a recent
reanalysis).
In this work we present a different approach, which

instead uses the normal perturbation theory and exploits the
Borel resummability of the anharmonic potential, to show
that the full result can be recovered by a single perturbative
series (with no need of trans-series) in all the cases above,
even at strong coupling (λ≳ 1).
We will make use of the following property. If V0ðx; λÞ is

a classical potential with a perturbation theory which is
Borel resummable to the exact result (as in the case of the
anharmonic oscillator), the perturbative series of a QM
system with potential Vðx; λÞ ¼ V0ðx; λÞ þ λV1ðx; λÞ is
still Borel resummable to the exact result for any V1 if
limjxj→∞V1ðx; 1Þ=V0ðx; 1Þ ¼ 0. We will provide a deriva-
tion of this property in [3] using the Leftschetz-thimbles
techniques along the lines of [9], in the current work we
limit ourselves to provide numerical evidence in a number
of nontrivial examples.
The property above allows us to compute a certain class

of QM problems through a Borel resummable perturbative
expansion even if the initial naive ℏ expansion was not.
Imagine we have a system with potential Vðx; λÞ and we
want to compute a quantity at some value of the coupling
λ ¼ λ0. If we can find a potential V̂ðx; λÞ ¼ V0ðx; λÞ þ
λV1ðx; λÞ satisfying the conditions above and such that
V̂ðx; λ0Þ ¼ Vðx; λ0Þ we will have a way to extract the full
answer by computing the perturbative expansion in λ of the
modified potential V̂ðx; λÞ and setting λ ¼ λ0 after the Borel
resummation. We name such expansion “exact perturbation
theory” (EPT), while we refer to the trans-series originating
from the potential Vðx; λÞ as “standard perturbation
theory” (SPT).
In practical computations where the perturbative series is

truncated at a fixed order, the accuracy of EPT depends
on the choice of the potential V̂ and on the value of the
coupling constant.
As a first application consider the anharmonic potential

in Eq. (2) perturbed at the quantum level by a negative mass
term, namely

V̂paðx; λÞ ¼
�
1

2
x2 þ λ

2
x4
�
− λ

�
1

2
x2
�
: ð4Þ

At λ ¼ 1 the potential V̂paðx; 1Þ reduces to the potential
VpaðxÞ of the pure anharmonic oscillator. According to our

criterion a Borel resummation of the perturbative series of
V̂paðx; λÞ computed at λ ¼ 1 should therefore reproduce
the exact results of the pure anharmonic potential.
Perturbative coefficients of eigenvalues and eigenfunctions
in QM can be efficiently computed using the recursion
relations by Bender and Wu [10,11].
Using only the first 10 orders of perturbation theory (and

performing a Padé-Borel resummation) the estimate for the
ground state energy Epa

0 ¼ 0.5302 matches the accuracy
obtained by the WKB expansion of [8], using 320 orders of
perturbative expansions and including the leading non-
perturbative complex and real saddle contributions. The
accuracy can easily be improved by including higher-order
terms without the need of extra nonperturbative effects; for
example with 320 orders of perturbation theory the accu-
racy reaches the 10−46 level. The result agrees with that
obtained using Rayleigh-Ritz methods (see e.g. [12]),
which remains however the most efficient for this type
of problems.
Few remarks are in order. The pure anharmonic

potential is a genuinely nonperturbative problem, in
the sense that there is no small parameter to expand
around. The modified potential V̂ðx; λÞ admits a pertur-
bative expansion but it coincides with the pure anhar-
monic potential only at strong coupling λ ¼ 1. Still the
Borel resummability of the theory allows us to recon-
struct the full answer from the perturbative terms alone
without having to include nonperturbative effects (unlike
the WKB expansion). The precision that can be achieved
in this way is remarkable, especially considering that we
are working at λ ¼ 1. We should say that the WKB
approach is particularly weak for the ground state while it
improves considerably for higher energy states, still the
expansion is not Borel resummable and the full answer
requires the inclusion of nontrivial saddles. EPT instead
does not require extra nonperturbative contributions and
the full answer is always contained in the perturbative
series. We checked numerically also the wave function as
well as higher excited states, which can be computed
with similar high precision (although the accuracy slowly
reduces for higher energy states), confirming that indeed
all observables are Borel resummable to the exact result.
We also checked numerically other pure anharmonic
potentials of the type VðxÞ ¼ x2n with n > 2.
We now turn to the discussion of the ground state

eigenvalue of the supersymmetric double well or Fokker-
Planck potential,

Vsdwðx; λÞ ¼ λ

2

�
x2 −

1

4λ

�
2

þ
ffiffiffi
λ

p
x; ð5Þ

which is the sum of a classical symmetric double-well
potential (first term) plus a quantum linear tilt correction
(second term). The latter can be interpreted as the con-
tribution to the classical bosonic potential from integrating
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out the fermionic variables. Because of supersymmetry the
ground state energy vanishes at all orders in λ. Super-
symmetry is however known to be broken nonperturba-
tively [6]. At weak coupling the leading contribution comes
from instantons interpolating the two classical vacua at
x ¼ �1=

ffiffiffiffiffi
4λ

p
. This contribution has been computed at high

orders in [13] using a generalized Bohr-Sommerfeld
quantization formula [14] and the result agrees extremely
well at weak coupling with the exact answer from non-
perturbative numerical computations such as Raylegh-Ritz
methods. While the instanton computation is particularly
efficient at weak coupling it becomes useless at strong
coupling—for λ≳ 1 the perturbative expansion around the
leading instanton solution is divergent and non-Borel
resummable, an infinite series of multi-instanton solutions
and the corresponding perturbative series have to be
properly resummed altogether, making the full approach
impractical. The presence of such instantons may seem
puzzling since the full quantum corrected potential (5) has
no nontrivial finite-action solutions. This fact led several
authors [15,16] to reinterpret the nonperturbative effects in
terms of complex instantons. From our point of view
however there is no puzzle: The asymptotic properties of
the λ expansion are determined only by the classical part of
Eq. (5), which is a symmetric double-well potential known
to have a non-Borel resummable perturbative expansion
and requiring the inclusion of the corresponding (real)
instantons. For the ground state energy the perturbative
saddle-point expansion around the minimum of the full
quantum corrected potential (5) is instead Borel resum-
mable to the exact result [3].
Consider now the potential

V̂sdwðx; λ; λ0Þ ¼
�
1

32λ
þ λ0

2
x2 þ λ

2
x4
�

þ
ffiffiffi
λ

p
x − λ

�
1þ 1

2λ0

�
x2

2
; ð6Þ

which for λ0 ¼ λ reduces to Eq. (5), i.e. V̂sdwðx; λ; λÞ ¼
Vsdwðx; λÞ. Expanding in λ at fixed λ0 the terms in the first
line of Eq. (6) represent the classical part of the potential
and correspond to a Borel-resummable anharmonic oscil-
lator. Similarly to the case of the pure anharmonic oscillator
we conclude that the perturbative expansion in λ (at fixed
λ0) is Borel resummable to the exact result for any λ. Setting
λ ¼ λ0 we thus recover the result for the supersymmetric
double well.
Note that the choice of V̂sdwðx; λ; λ0Þ above is particu-

larly good at moderate and large values of λ0 but is not ideal
for small values of the coupling. In the latter regime,
nonperturbative effects become exponentially small and
anyway harder to be resolved, as discussed below.
In Fig. 1 we compare the accuracy of SPT from the

leading instanton contribution of Vsdwðx; λÞ computed in

[13] against EPT using 200 orders and Padé-Borel resum-
mation. At small coupling SPT becomes more accurate,
since the leading order instanton formula provides the
asymptotic λ → 0 limit of the result. On the other hand EPT
is less and less accurate at weak coupling—such expansion
is not supersymmetric, at λ ¼ λ0 perturbative corrections at
each order cancel up to the next order, leading to an
asymptotic series whose Borel resummation encodes the
full nonperturbative result. This means that at small
coupling more orders of perturbation theory are required
to capture the exponentially small nonperturbative effects,
with a corresponding weakening of accuracy. Notice
however that there is a nontrivial interval of small couplings
where both SPT and EPT are under control and agree at the
10−4 level. At strong coupling on the other hand EPTworks
extremely well. Paradoxically, while the instanton calcu-
lation only works in the perturbative limit, EPTworks best
in the nonperturbative regime.
We can repeat a similar analysis for the nonsupersym-

metric double-well potential

Vdwðx; λÞ ¼ λ

2

�
x2 −

1

4λ

�
2

: ð7Þ

In this case the ground state energy receives corrections
also from the perturbative expansion in λ, which is not
Borel resummable. The combination of the perturbative
corrections and the instanton ones requires some care, see
e.g. [17]. As usual this approach works better and better at
weak coupling while it breaks down at strong coupling. As
before we can recover the same result by considering, for
example, the potential

FIG. 1. The ground state energy (top) and the relative error
(bottom) as a function of the coupling λ for the supersymmetric
double-well potential (5) computed using the SPT up to the ninth
order from [13] (orange dots) and using our EPT (blue crosses).
The exact result (black line) has been computed via a Rayleigh-
Ritz method.
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V̂dwðx;λ;λ0Þ¼
�
1

32λ
þλ0

2
x2þ λ

2
x4
�
−λ

�
1þ 1

2λ0

�
x2

2
; ð8Þ

whose classical part (in the first brackets) corresponds to a
Borel resummable anharmonic oscillator and it matches the
potential (7) for λ ¼ λ0. Using 300 orders of perturbation
theory at λ ¼ λ0 ¼ 0.03 we get a ground state energy Edw

0 ¼
0.4546ð15Þ, which differs from the exact value (0.4531) only
by 1.5 × 10−3. On the other hand, the difference between
the two lowest energies, which represents the size of the
instanton contribution and the level of precision that can be
reached by just truncating the perturbative asymptotic series,
is 0.02, i.e. 1 order of magnitude larger. The accuracy rapidly
improves increasing the coupling. Already at λ ¼ 0.04, the
difference between EPT and the exact answer drops to
3 × 10−9, while the instanton contributions amount to 0.06.
It is thus clear that EPT is able to correctly reproduce the
full answer, automatically combining perturbative and
multi-instanton contributions at weak coupling. Considera-
tions similar to those of the supersymmetric double well
apply regarding the complementarity of SPT versus EPT:
while the former is more powerful at weak coupling the latter
extends also at strong coupling. Furthermore note that
observables that receive both a perturbative and a non-
perturbative contribution in SPT (as the ground state energy)
require a nontrivial resummation before the instanton con-
tributions could improve the accuracy.
The final example we present, although very similar to

the previous ones, is maybe the most amusing from a
theoretical point of view. Consider the potential

Vfvðx; λÞ ¼ 1

2
x2 −

3

2

ffiffiffi
λ

p
x3 þ λ

2
x4; ð9Þ

corresponding to an asymmetric double well with a false
vacuum at x ¼ 0 and a true one at x ¼ 2=

ffiffiffi
λ

p
. Perturbation

theory around the false vacuum is known to be non-Borel
resummable, with the corresponding ambiguity related to the
instanton describing the tunneling to the true vacuum.
Information about the true vacuum is completely nonper-
turbative from the point of view of the perturbative expan-
sion around the false vacuum. Consider now the potential

V̂fvðx; λ; λ0Þ ¼
�
1

2
x2 þ λ

2
x4
�
− λ

�
3

2

ffiffiffi
λ

p

λ0
x3
�
; ð10Þ

whose classical part is a Borel resummable anharmonic
oscillator around the false vacuum. At small coupling the

potential is an asymmetric anharmonic oscillator with a
unique vacuum at x ¼ 0. As λ increases a new vacuum
develops becoming deeper than the one at the origin. At
λ ¼ λ0 the potential coincides with the one in Eq. (9).
Analogously to the previous cases we therefore expect that
the perturbative λ expansion around the origin of
V̂fvðx; λ; λ0Þ reproduces the exact results of the potential
Vfvðx; λÞ for λ ¼ λ0 when the perturbative series is properly
Borel resummed.
At λ ¼ 1 the ground state energy is Efv

0 ¼ −0.828,
deeply below zero. Using V̂fvðx; λ; 1Þ with 280 orders of
perturbation theory and performing a Padé-Borel resum-
mation we get the estimate Êfv

0 ¼ −0.847. This result is
in quite good agreement with the exact value, especially
considering that the ground state energy of the corre-
sponding classical anharmonic potential around the false
vacuum is large and positive (+0.7). Despite in this
example the accuracy is not on par with the previous
cases, it is notable that perturbation theory around the
false vacuum can still be used to recover a completely
nonperturbative result, such as the energy of the true
vacuum, with a few percent accuracy.
The examples above show how, in a class of QM

problems, a suitable modification of the perturbative
expansion allows us to recover all nonperturbative effects
from perturbation theory alone, in the spirit of the
resurgence program [18], but without the need of
trans-series. The high accuracy (especially at strong
coupling) of the numerical checks presented above
confirms the absence of extra contributions not accounted
for by the EPT. The success of this expansion can be
understood more easily by extending Lefschetz-thimble
techniques to the QM path integral [3], suggesting that
similar methods might also apply to more general
theories. Complications such as ultraviolet divergences
and the possible presence of phase transitions could make
the extension to QFT less straightforward. However a
certain class of nontrivial QFT has been proven to be
Borel resummable [4,5] and may serve as a starting point
(the analogue of V0) to apply the technique to more
general theories. The idea of EPT may then represent a
new avenue for the study of strongly coupled theories, by
allowing all nonperturbative effects to be recovered from
perturbation theory alone.
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