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We discuss a novel worldline framework for computations of the chiral magnetic effect (CME) in
ultrarelativistic heavy-ion collisions. Starting from the fermion determinant in the QCD effective action, we
show explicitly how its real part can be expressed as a supersymmetric worldline action of spinning,
colored, Grassmannian particles in background fields. Restricting ourselves for simplicity to spinning
particles, we demonstrate how their constrained Hamiltonian dynamics arises for both massless and
massive particles. In a semiclassical limit, this gives rise to the covariant generalization of the Bargmann-
Michel-Telegdi equation; the derivation of the corresponding Wong equations for colored particles is
straightforward. In a previous paper [N. Mueller and R. Venugopalan, arXiv:1701.03331.], we outlined
how Berry’s phase arises in a nonrelativistic adiabatic limit for massive particles. We extend the discussion
here to systems with a finite chemical potential. We discuss a path integral formulation of the relative phase
in the fermion determinant that places it on the same footing as the real part. We construct the
corresponding anomalous worldline axial-vector current and show in detail how the chiral anomaly
appears. Our work provides a systematic framework for a relativistic kinetic theory of chiral fermions in the
fluctuating topological backgrounds that generate the CME in a deconfined quark-gluon plasma. We
outline some further applications of this framework in many-body systems.
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I. INTRODUCTION

The prospect of experimental access in ultrarelativistic
heavy-ion collisions to emergent CP- and P-odd phenom-
ena in quantum chromodynamics (QCD) has inspired much
interest. Some of this interest derives from the fact that
topology-changing sphaleron transitions [1–5], associated
with the quantum anomalies generating such phenomena,
are a central ingredient in models of electroweak baryo-
genesis in the evolution of the early Universe [6–9].
Quantum anomalies are also conjectured to play an
important role in the electronic properties of strongly
correlated condensed matter systems [10]. In general, the
real-time dynamics involving the effects of anomalies are
an excellent probe of the topological structure of gauge
theories. In the context of heavy-ion collisions, a major
advance is the conjectured existence of a chiral magnetic
effect (CME). The CME here corresponds to fluctuations of
axial charge imbalances in the strongly correlated quark-
gluon plasma (QGP) that generate electric currents in the
direction of the Abelian magnetic fields that exist in off-
central collisions of the heavy nuclei [11–13].
The CME has already been observed in condensed

matter experiments [14]. Observing its effects in heavy-
ion collisions however poses a significant challenge
[13,15]. It requires an understanding of the earliest times

in the heavy-ion collision, as the Abelian magnetic fields
generated by “spectator” nucleons decrease very rapidly in
time [16,17]. Weak coupling frameworks applicable at high
energies indicate that, at these early times, the strongly
correlated quark and gluon matter is far off-equilibrium in a
highly overoccupied “glasma” state, which subsequently
thermalizes to a quark-gluon plasma (QGP). Recent studies
suggest that sphaleron transitions are far more frequent in
the glasma [18], than in the QGP [19]. Classical-statistical
real-time simulations that include the dynamics of chiral
fermions [20] clearly demonstrate the emergence of the
CME in background magnetic fields [21,22].
However this real-time description of the glasma breaks

down when, due to the spacetime expansion of the glasma,
typical occupation numbers become of order unity. In this
dilute regime of the glasma, classical-statistical methods
must be matched to kinetic descriptions that describe the
dynamics of the system as a weakly interacting gas of
quasiparticles. Real-time simulations studying the thermal-
ization process in the glasma [23] show that the classical-
statistical description matches smoothly onto an effective
kinetic theory [24], which in turn can be matched to
relativistic viscous hydrodynamics at later times. This
description, when extrapolated to realistic values of cou-
pling, gives values for thermalization times that are com-
patible with hydrodynamic descriptions of heavy-ion data.
Phenomenological studies in such a hybrid framework have
now been extended to photon production, whose yields are
sensitive to all spacetime stages of a heavy-ion collision [25].
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Similar considerations apply to the classical-statistical
description of the spacetime evolution of the chiral mag-
netic current through the glasma. The development of a
chiral kinetic theory that interpolates between classical-
statistical glasma dynamics of axial charges at early times
and hydrodynamic descriptions of such dynamics in the
QGP [26–30] at late times is therefore essential for
systematic phenomenological analysis of the CME in
heavy-ion collisions. There has been a significant amount
of work in developing such a chiral kinetic theory both in
the context of condensed matter systems and for a decon-
fined QGP [31–43]. In several of the treatments, systems
with large chemical potential are considered. The dynamics
includes a Berry term corresponding to the Berry phase
[44,45] that arises in such systems in an adiabatic limit,
valid for excitations near the Fermi surface. While such
treatments may be appropriate for systems containing large
chemical potentials, they are problematic in relativistic
contexts such as heavy-ion collisions where the assump-
tions of adiabaticity may not apply and where chemical
potentials are not a priori large.
A further concern with chiral kinetic treatments is the

possible conflation of topological effects due to the chiral
anomaly and those arising from geometric phases in
adiabatic and nonrelativistic limits. Unlike the latter, the
topological effects due to anomalies are generic and
independent of kinematic limits. The connection between
anomalies and Berry’s phase, which has been made
frequently in the literature [46–48] (see Ref. [49] for a
review), is the subject of a critical series of papers by
Fujikawa and collaborators [50–52], where they pointed to
distinctions between the topology of Berry’s phase and
those of the anomaly [53,54]).
In this work, we will develop a novel framework towards

constructing a consistent Lorentz-covariant chiral kinetic
theory that is generally valid in relativistic contexts and
makes no requirement that the dynamics be adiabatic. To
achieve this goal, we will adopt the worldline approach1 to
quantum field theory [57–64]. This worldline framework is
closely connected to the Polyakov path integral in string
theory [65]. These connections were very effectively
exploited in the work of Bern, Dixon, Dunbar and
Kosower [66,67] relating string amplitudes to multileg
Feynman diagrams in QCD. More to the point, it was
employed in the seminal work on quantum anomalies by
Alvarez-Gaume and Witten [68,69] where it was shown
how anomalies arise in the framework from the phase of the
fermion determinant, as anticipated in the work of
Fujikawa [70,71].
In a previous paper [72], we showed that a particular

worldline construction2 of D’Hoker and Gagné [73,74] is

well suited to the construction of a chiral kinetic theory. We
sketched there how the coherent state formalism of
D’Hoker and Gagné gives rise to the Bargmann-Michel-
Telegdi equations for spinning point particles in external
gauge field backgrounds and Wong’s equations for their
colored counterparts. We further outlined how for massive
particles the corresponding Hamiltonian description gen-
erates a Berry phase when an adiabaticity condition is
imposed. The principal value of the D’Hoker-Gagné
worldline construction is in its treatment of the relative
phase in the fermion determinant which, as noted, is
responsible for the chiral anomaly. By an ingenious trick,
this phase can be rewritten as a path integral, with a point-
particle “action.” This action has an identical structure to
the action arising from the real part of the fermion
determinant, with the only (and critically important) change
being that the gauge fields are multiplied by a regulating
parameter which breaks chiral symmetry explicitly. In the
paper, we briefly outlined how the chiral anomaly arises in
the D’Hoker-Gagné construction.
We will here develop many of the ideas outlined in

Ref. [72] and provide an explicit derivation, adapted to
our QED/QCD framework, of the D’Hoker-Gagné formal-
ism. For the real part of the effective action, we explicitly
write down the point-particle action, and demonstrate that
the equations of motion for QED are the covariant
generalization of the Bargmann-Michel-Telegdi [75] equa-
tions for spinning particles in external fields. (For colored
particles in QCD, the counterparts are the Wong [76]
equations.) In particular, we will discuss the constrained
Hamiltonian dynamics of spinning particles [77–81] in the
worldline approach. This discussion is of considerable
importance in deriving the nonrelativistic limit for spinning
particles. As noted in our paper, this approach leads in a
clean logical manner to Berry’s phase after further assump-
tions of adiabaticity. We will here extend the latter
discussion to the case of systems with large chemical
potentials.
Another novel feature of this manuscript is an explicit

derivation of the chiral anomaly in the D’Hoker-Gagné
worldline construction. In their work, they used a pertur-
bative expansion to show how a Wess-Zumino-Witten
term arises [53,54] from the relative phase in the fermion
determinant. In our work, in addition to clarifying
some subtle points in the D’Hoker-Gagné construction,
we will instead employ a nonperturbative variational
method to derive the anomaly equation explicitly as
the scalar product of electric and magnetic fields. The
corresponding worldline anomalous axial current has a
structure we will find useful in constructing a chiral kinetic
theory.
This observation provides the segue to note that the

worldline treatment of the real and imaginary terms in the
effective action for the fermion determinant both provide
essential ingredients in a kinetic description of relativistic

1The original ideas can be traced all the way back to seminal
works by Feynman [55] and Schwinger [56].

2See also related work in Refs. [59,62].
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fermions in the background of Abelian or non-Abelian
gauge fields. The quasiparticle limit of the theory, and
furthermore the Liouville description of phase space, is
contained entirely in the real part of the fermion effective
action (continued to the Minkowskian metric), independ-
ently of the anomaly. The Hamilton evolution of the
corresponding equations of motion, formulated in proper
time τ, allow for a Lorentz-covariant kinetic theory. Spin
effects related to the definition of a Lorentz frame, such as
recently proposed “side-jumps” are natural outcomes of a
covariant description of spinning particles [35]. We showed
in our paper [72] that for a nonrelativistic limit correspond-
ing to massive particles, adiabaticity conditions on the
Larmor interaction energy, generate a Berry phase. Since
this derivation only involves the real part of the fermion
determinant, and the chiral anomaly arises from its imagi-
nary piece, our work is an explicit demonstration of the
prior observation by Fujikawa and collaborators [70,71]
regarding the distinction between the topological effects
arising from each part. For massless relativistic particles,
and for situations where the Larmor energy is large, the
topology of the anomaly alone is relevant.
An exception is the case of systems with large chemical

potential, the original focus of the kinetic theory con-
struction in Refs. [31,33]. We will extend our discussion of
nonrelativistic limits in Ref. [72] to this case. We will show
explicitly how the adiabaticity condition for the Larmor
energy arises in this case. However even though there is a
Berry phase in such situations, it is still distinct from the
effects from the anomaly. Our work provides a first-
principles framework to address the fascinating interplay
of these distinct effects. As noted in our paper, the real-time
formulation [82] of a semiclassical worldline kinetic theory
for spinless colored particles results in the non-Abelian
Boltzmann-Langevin Bödeker kinetic theory of hot QCD
[60,83–85] including both noise and collision terms. In
work in progress,3 the formalism discussed here will be
employed to derive the analogous “anomalous” Bödeker
theory [87]. The resulting generalization of chiral kinetic
theory can then be matched to results from classical-
statistical simulations at early times and to anomalous
hydrodynamics at late times.
The outline of this manuscript is as follows. In Sec. II, we

begin by giving an introduction to the worldline method
and we work out its formulation for a Dirac fermion
coupled to both vector and axial-vector gauge fields. In
particular, we introduce a 16-dimensional matrix formu-
lation of the fermion effective action. As we shall discuss,
this formulation is convenient for implementing a coherent
state formalism for spinning and colored fields. We will
show how the real part of the effective action is expressed in
terms of a Grassmannian path integral over a supersym-
metric point-particle action for such fields. We next discuss

the D’Hoker-Gagné path integral construction for the
imaginary phase in the fermion determinant and show that
it has a similar structure to the path integral formulation of
the real part of the effective action. We use this construction
to derive expressions for the vector and anomalous axial-
vector current which fulfill the (anomalous) Ward identities
known from second quantization. We pay particular atten-
tion to the anomaly equation, which has novel features, and
provide a detailed derivation to expose these features. In
Sec. III we perform a saddle-point expansion to obtain the
pseudoclassical dynamics of spinning particles. These were
studied extensively previously in the literature and we
connect our results to this body of work [77–81] in
Sec. III A. We note some parallels between our work
and those of Stone and collaborators [36,37,39] though
the derivations are different and employ different tech-
niques. We emphasize that the quantization of spinning
particles has been studied by Gitman and Gavrilov [88,89],
as well as Naka [90], in accordance with Schwinger’s
proper time method. In their approach, quantization of
the spinning particle on an open worldline reproduces the
fermion propagator, while our approach is to quantize the
particle on a closed loop. As we shall show, the dynamics of
the anomaly is related to the corresponding boundary
conditions and the emergent fermion zero modes. This
distinction highlights the need for careful ab initio
approaches such as the worldline technique to consistently
include the dynamics of the axial anomaly.
The pseudoclassical limit of the worldline effective

action leads to a Lorentz-covariant form of the “anoma-
lous” equations of motions put forward in Refs. [31–
35,41], when taking the nonrelativistic and adiabatic limit
in Sec. III B. A kinetic theory can be constructed from the
worldline framework for half-integer particles; as noted, the
equations of motion obtained from the stationarity con-
dition of the worldline path integral constitute characteristic
equations for the Liouville evolution of the phase-space
density. We investigate the case of massless particles in the
presence of a large chemical potential and discuss the
corresponding nonrelativistic adiabatic limit.
Our findings are supplemented by several appendices. In

Appendix A, we provide details of a derivation that is not
discussed in the main text. In Appendix B, we discuss the
symmetry properties of the worldline action for spin-1=2
particles, corresponding to a N ¼ 1 supersymmetric quan-
tum mechanics. As our derivations generalize to arbitrary
internal symmetry groups, we give an introduction in
Appendix C to how color degrees of freedom can be
treated semiclassically using Grassmannian variables. In
Appendix D, we discuss the difference between covariant
and consistent anomalies. Finally in Appendix E, we
discuss in detail the meaning of the pseudoclassical limit
in the worldline framework, which is tied to a hidden
gauge symmetry and to constraints, which arise upon
quantization.3For another attempt, we refer the reader to Ref. [86].
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II. THE WORLDLINE FRAMEWORK

A. Introduction

In this section, we shall derive in the worldline formal-
ism, the one-loop effective action for a Dirac fermion
coupling to vector and axial-vector gauge fields. We will
show that in the Euclidean metric the axial anomaly can be
understood as arising from the imaginary part of the
effective action [68,69]. This result is transparently related
to the violation of chiral symmetry. We begin by intro-
ducing the main ideas of the relevant worldline framework.
Some parts of our derivation parallel the work of D’Hoker
and Gagné [73,74]. We will however place special empha-
sis on some of the details in the definition of single-particle
path integrals. The careful treatment of these is relevant for
the realization of the axial anomaly. The expression for the
fermionic part of the action in the background of vector (A)
and axial-vector (B) fields is

S½A;B� ¼
Z

d4xψ̄ði∂ þ Aþ γ5BÞψ ; ð1Þ

where we allow the fermion fields to carry any internal
(gauge) symmetry. We introduced here an auxiliary
Abelian axial-vector field B because we are interested in
the color-singlet axial anomaly. We will treat B as a
variational parameter which we will set to zero eventually.
In the following, we have absorbed all couplings into the
definition of the fields for convenience and they can be
easily restored when necessary.
The fermionic part of the full path integral containing the

action in Eq. (1) is a Grassmannian Gaussian integral and
can be performed. This gives the determinant of the bilinear
operator, detði∂ þ Aþ γ5BÞ, from which the fermion
effective action can be defined,

−W½A; B� ¼ log detðθÞ; θ≡ i∂ þ Aþ γ5B: ð2Þ

We can now split Eq. (2) into real and imaginary parts,

W½A;B� ¼ WR½A;B� þ iWI½A; B�; ð3Þ

which we discuss in detail below. We will continue with
massless quarks; the extension to massive particles is
straightforward and for the problems of interest will be
discussed explicitly later. Since the imaginary piece above
may be unfamiliar to some, we mention for future reference
that, albeit in the physical case one has W½A;B ¼ 0�I ¼ 0,
the variation δW½A;B�I=δBμ is nonzero even if B ¼ 0. This
variation defines the anomalous axial-vector current. For
the sake of illustration, our final results will be given for the
QED anomaly, but we will discuss how our findings can be
generalized to non-Abelian theories as well. In Appendix A
we provide supplementary material and elaborate on some
intermediate steps in the calculation.

B. Real part

In this section, we will derive an expression for the real
part of the fermion determinant, defined in Eq. (2) and
Eq. (3). The real part is related to the modulus of the
operator θ and can be expressed as

WR ¼ −
1

2
log det ðθ†θÞ ¼ −

1

2
Tr log ðθ†θÞ: ð4Þ

The main idea behind the worldline technique is to find an
integral representation for the logarithm of the positive-
definite operator θ†θ. As we will show below, this is
equivalent to defining a quantum-mechanical path integral
for a relativistic particle on a closed loop, which is the
worldline. We will require a basis of states for the trace in
Eq. (4), which is over an infinite-dimensional space and
contains both spacetime as well as internal indices. For
spinors, this basis is related to the Clifford algebra of
fermions, but the basis can include possible further internal
symmetry groups such as color.
The spacetime trace can be turned into a quantum-

mechanical path integral for the bosonic coordinates of a
point particle, as was shown in Ref. [57]. The trace over the
Dirac matrix structure of spinors leads to path integrals
using a Grassmannian coherent state formalism. Such a
coherent state formalism was discussed in Refs. [73,74] and
requires an artificial enlargement of the dimension of the
space, in which the Dirac matrix structure is embedded,
from 4 × 4 to 8 × 8. Interpreting θ†θ as an eight-
dimensional matrix and making a similarity transformation
as outlined in detail in Ref. [74], the fermionic effective
action can be written as

WR ¼ −
1

8
log detð ~Σ2Þ ¼ −

1

8
Tr logð ~Σ2Þ; ð5Þ

where ~Σ2 is given by (cf. Refs. [73,74])

~Σ2 ¼ ðp̂ −AÞ2I8 þ
i
2
ΓμΓνFμν½A�; ð6Þ

and where we have defined dpμ ¼ −i∂μ and Fμν ¼
∂μAν − ∂νAμ. Here we have artificially enlarged the rep-
resentation space of the gauge field to include the left- and
right-handed chiral fields,

A ¼
�
Aþ B 0

0 A − B

�
; ð7Þ

whereby ~Σ2 is a 16-dimensional (8 × 2) matrix. The six-
dimensional (8 × 8) gamma matrices Γa are defined as
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Γμ ¼
�

0 γμ

γμ 0

�
; Γ5¼

�
0 γ5

γ5 0

�
; Γ6¼

�
0 iI4

−iI4 0

�
;

ð8Þ

with an additional matrix Γ7, anticommuting with all other
elements of the algebra,

Γ7 ¼ −i
Y6
A¼1

ΓA ¼
�
I4 0

0 −I4

�
; fΓ7;ΓAg ¼ 0: ð9Þ

Here γμ and γ5 are the usual Dirac matrices.
This artificial enlargement of both the dimensions of the

Dirac matrices as well as the representation of gauge fields
may seem unmotivated. Indeed the splitting of Eq. (7) is
strictly speaking not necessary at all, but simplifies our
calculations significantly. The dimensional extension of the
Dirac matrices, on the other hand, as defined in Eq. (8) is a
necessity. The elementary idea behind the worldline
approach is to express traces, such as those given in
Eq. (5), in terms of quantum-mechanical single-particle
states. As observed in Refs. [73,91], this is not possible for
four-dimensional Dirac matrices; a set of coherent fermion
states, representing the corresponding Clifford algebra,
exists however for the extension given in Eq. (8).4

With this path integral formulation in mind, we will
adopt Schwinger’s integral representation to write Eq. (5)
as (cf. Refs. [73,74])

WR ¼ 1

8

Z
∞

0

dT
T

Tr16e−
E
2
T ~Σ2

; ð10Þ

where, by means of the T integral, we have introduced what
is commonly known as a closed worldline of length T.
While Eq. (10) can be taken as the definition of the
worldline, its structure will be discussed in more detail
below. We introduced here an arbitrary positive real number
E called the einbein. As is well known, and as we shall
discuss explicitly in Sec. III and in Appendix B, E is not a
physical quantity but rather a gauge parameter related to
reparametrization invariance on the worldline.
The trace in Eq. (10) includes the internal (Dirac) space

and it can be evaluated using a coherent state basis that

realizes the Clifford algebra of Dirac fermions. More
specifically, the spin part of the trace in Eq. (10) is turned
into a path integral over Grassmann variables [73,74],
employing the methods developed first by Berezin and
Marinov [77]. Towards this end, we introduce the fermion
creation and annihilation operators (a�r , r ¼ 1, 2, 3),

a�r ¼ 1

2
ðΓr � iΓrþ3Þ; faþr ; a−s g ¼ δrs;

faþr ; aþs g ¼ fa−r ; a−s g ¼ 0: ð11Þ

These operators a�r span the space of the Clifford algebra
satisfied by the Γ matrices. They define the coherent states
jθi; jθ̄i which satisfy

hθja−r ¼ hθjθr; a−r jθi ¼ θrjθi;
hθ̄jaþr ¼ hθ̄jθ̄r; aþr jθ̄i ¼ θ̄rjθ̄i; ð12Þ

with the matrix elements between coherent states defined
to be

hθjθ̄i ¼ eθrθ̄r ; hθ̄jθi ¼ eθ̄rθr : ð13Þ

These satisfy the completeness relationsZ
jθihθjd3θ ¼

Z
d3θ̄jθ̄ihθ̄j ¼ I: ð14Þ

Note that while θr, θ̄r; dθr; dθ̄r anticommute with hθj, jθ̄i,
they commute with jθi, hθ̄j. All states and variables
commute with the vacuum. With these definitions, traces
in the coherent state basis can be defined.
The trace over a generic operator has the form

TrðOÞ ¼
Z

d3θh−θjOjθi: ð15Þ

This expression for the trace was discussed at length in
Ref. [92]. The negative sign in Eq. (15) arises from
transforming the coherent state basis to a Fock state basis.
As this includes anticommuting variables, the minus sign in
Eq. (15) can be interpreted as enforcing antiperiodic
boundary conditions for the Grassmann variables on the
closed worldline. We can therefore write the trace in
Eq. (10) as

Tr16e−
E
2
T ~Σ2 ¼ tr

Z
d4zd3θhz;−θje−E

2
T ~Σ2 jz:θi: ð16Þ

The remaining trace (tr) on the rhs now contains only the
trace over the representation space Eq. (7) and other
internal symmetries such as color. If we proceed with
Abelian gauge fields alone, tr is only over the two-
dimensional representation space (7) and is in fact trivial:
it amounts to a simple sum over the two chiral

4We note that the use of eight-dimensional (reducible) repre-
sentations of the Dirac gamma matrices is not related to six-
dimensional spacetime, but is rather a mathematical necessity: as
was shown by Mehta [91] the use of a four-dimensional gamma
matrix representations results in inconsistent Green’s functions of
the Euclidean theory and a consistent fermionic coherent state
basis is only found using eight dimensions. In view of our
findings in the later sections of the manuscript, the importance of
the eight-dimensional representation becomes manifest, as the
operators Γ5, Γ6 appear explicitly as worldline insertions and Γ7

can be interpreted as the higher-dimensional equivalent of γ5,
realizing periodic boundary conditions for Grassmann fields and
thus worldline supersymmetry.
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configurations, as we will see below. Non-Abelian gauge
fields can be included straightforwardly, as we show in
Appendix C. For simplicity, we will discuss only Abelian
gauge fields for the rest of the manuscript; the extension to
QCD will be discussed in follow-up papers.
We will now express the matrix element on the rhs of

Eq. (16) as a path integral,5 with T playing the role of
“time” and the “Hamiltonian” represented by E ~Σ2=2
[73,74]. Our derivation, for this real part of the effective
action, uses the conventional time-slicing procedure to
construct the path integral. Splitting the time interval into N
discrete steps of length Δ≡ T=N (the continuum limit is
defined as N → ∞ and Δ → 0), we define the average
position between two time slices

x̄kμ ¼
xkμ þ xk−1μ

2
; ð17Þ

and for later use combine the three complex Grassmann
variables θ, θ̄ into six real ones,

ψk
a ¼

1ffiffiffi
2

p ðθka þ θ̄kaÞ a ¼ 1; 2; 3;

ψk
a ¼

iffiffiffi
2

p ðθka−3 − θ̄ka−3Þ a ¼ 4; 5; 6: ð18Þ

Further, with these definitions, matrix elements containing
gamma matrices Γ are evaluated by making use of Eq. (11)
and Eq. (12) to read

hθkjΓaΓbjθk−1i ¼ −
Z

dθ̄khθkjθ̄kihθ̄kjθk−1i2ðψk
aψ

k−1
b Þ

¼ −
Z

dθ̄keθ
k
r θ̄

k
rþθ̄krθ

k−1
r 2ðψk

aψ
k−1
b Þ: ð19Þ

Equation (19) can be generalized to higher matrix products
using the simple mnemonic Γa →

ffiffiffi
2

p
ψa.

After these preliminaries, inserting complete sets of
coherent states, we obtain,

Trfe−E
2
T ~Σ2g ¼ −tr

Z �YN−1

l¼0

d4xl

��YN
l¼1

d4pl

ð2πÞ4
��YN−1

l¼0

d3θl

��YN
l¼1

d3θ̄l

�

× exp

�
−Δ

XN
k¼1

�
−ipk

μ
ðxkμ − xk−1μ Þ

Δ
þ E

2
ðpk

μ −Aμ½x̄k�Þ2 −
ðθkr − θk−1r Þ

Δ
θ̄kr þ

iE
2
ψk
μFμν½x̄k�ψk−1

ν

��

¼ −tr
Z �YN−1

l¼0

d4xl

��YN
l¼1

d4pl

ð2πÞ4
��YN−1

l¼0

d3θl

��YN
l¼1

d3θ̄l

�

× exp

�
−Δ

XN
k¼1

�
−ipk

μ
ðxkμ − xk−1μ Þ

Δ
þ E

2
ðpk

μ −Aμ½x̄k�Þ2 þ
1

2
ψk
a
ðψk

a − ψk−1
a Þ

Δ
þ iE

2
ψk
μFμν½x̄k�ψk−1

ν

��

≡N
Z
P
Dx

Z
AP

Dψ tr exp

�
−
Z

T

0

dτLðτÞ
�
: ð20Þ

In obtaining the second equality, we symmetrized the
“kinetic term” with respect to the variables θ, θ̄ in order
to replace the complex variables θ with ψk

a, using Eq. (18),
before taking the continuum limit of the path integral
[73,74]. Further, in the last step, we completed the
squares and shifted the p integration.6 Periodic boundary
conditions P for bosonic variables and antiperiodic boun-
dary conditions AP for fermion observables are imposed
respectively by identifying x0 ¼ xN and ψ0 ¼ −ψN .

Expressing the Grassmannian integration measure by
the six-dimensional variables Dψ ¼ DψμDψ5Dψ6, gener-
ates a trivial Jacobian, which can be absorbed in the
normalization.
The real part of the effective action can thus be expressed

in path integral form as

WR ¼ 1

8

Z
∞

0

dT
T

N
Z
P
Dx

Z
AP

Dψ tr exp

�
−
Z

T

0

dτLðτÞ
�

ð21Þ

with the point-particle “quantum-mechanical” worldline
Lagrangian

LðτÞ ¼ _x2

2E
þ 1

2
ψa _ψa − i_xμAμ þ

iE
2
ψμFμν½A�ψν; ð22Þ6This standard trick replaces pk

μ → pk
μ − Aμ½x̄k�−

iðxkμ − xk−1μ Þ=EΔ.

5This strategy highlights the fact that in the worldline ap-
proach, contrary to the conventional approaches in quantum field
theory, spin is not accounted for by means of a multidimensional
wave function (as it is done for fermion spinors) but instead as an
independent degree of freedom in the path integral.
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where

LðτÞ ¼
�
LL 0

0 LR

�
;

LL=RðτÞ ¼
_x2

2E
þ 1

2
ψa _ψa − i_xμðA� BÞμ

þ iE
2
ψμFμν½A� B�ψν; ð23Þ

carries the two-dimensional matrix structure of the helicity
representation of the gauge fields (7) and can be trivially
split into separate Lagrangians for both chiralities/helicities.
The path integral can further be written more explicitly as

WR ¼ 1

8

Z
∞

0

dT
T

N
Z
P
Dx

Z
AP

Dψ

�
exp

�
−
Z

T

0

dτLLðτÞ
�

þ exp

�
−
Z

T

0

dτLRðτÞ
��

: ð24Þ

For a vector gauge theory, where B ¼ 0, LL ¼ LR, as both
left- and right-handed massless particles couple to vector
fields identically. In this case, the trace in Eq. (21) just gives
an overall factor of 2. For the reasons outlined previously,
we will keep B ≠ 0. The normalization in Eq. (21) is

N ≡N ðTÞ ¼
Z

Dpe−
E
2

R
T

0
dτp2ðτÞ: ð25Þ

With this path integral definition of the real part of the
fermion effective action, one can begin to define currents
(and products thereof). For instance, one obtains the vector
current7 hjVμ ðyÞi

hjVμ ðyÞi ¼
δΓR

δAμðyÞ

¼ −
i
8

Z
∞

0

dT
T

N
Z
P
Dx

Z
AP

DψjV;clμ

×
	
e−

R
T

0
dτLLðτÞ þ e−

R
T

0
dτLRðτÞ



; ð26Þ

jV;clμ ≡
Z

T

0

dτ½Eψνψμ∂ν − _xμ�δ4ðxðτÞ − yÞ: ð27Þ

It can be easily shown that

∂μhjVμ i ¼ 0 ⇔ ∂μj
V;cl
μ ¼ 0: ð28Þ

In proving these relations, we first used the definition of the
total derivative for the divergence of the first term of

Eq. (27), employed our knowledge of the boundary terms
and used the fact that

Z
T

0

dτ _xμ
∂
∂yμ δ

4ðxðτÞ − yÞ ¼ −
Z

T

0

dτ
d
dτ

δ4ðxðτÞ − yÞ ¼ 0:

ð29Þ

The second term in the four-divergence of Eq. (27) vanishes
by the antisymmetry of the Grassmann variables, when
interchanging the y and xðτÞ derivatives. We note further
that the worldline description provides us with a natural
regularization as discussed in Ref. [93], whereby T → 0
represents the ultraviolet limit of the effective action and
T → ∞ is related to the infrared limit.

C. Imaginary part

1. Worldline representation of the phase
of the fermion determinant

In this section, we will derive a path integral represen-
tation of the imaginary part of the fermion effective action,
as defined in Eq. (3). As noted in Ref. [68], the absolute
value of the phase of the fermion determinant is not well
defined (for fermions in a complex representation). On the
other hand, variations or relative phases (variation with
regards to an external parameter), are unambiguous. In the
worldline framework, the fact that the absolute value of the
phase in the fermion determinant is ill defined is reflected
by the lack of a heat kernel regularization for the imaginary
part of the effective action; the latter is only possible when
the action breaks axial symmetry explicitly.
We proceed with our discussion by expressing the

relation between the phase of the fermion determinant
and the corresponding imaginary part of the resulting
effective action as

WI ¼ − arg det½θ�; ð30Þ

where θ is defined in Eq. (2). Again, extending the
dimensionality of θ, we can write the above as

WI ¼ −
1

2
arg det½Ω�; Ω ¼

�
0 θ

θ 0

�
; ð31Þ

where Ω is an 8 × 8-dimensional matrix which reads

Ω ¼ Γμðpμ − AμÞ − iΓ7ΓμΓ5Γ6Bμ: ð32Þ

The gamma matrices are those defined previously in Eq. (8)
and Eq. (9). A lengthy derivation, that includes a further
doubling of dimensions (discussed in Refs. [73,74] in full
detail) results in the expression

7Note that this expression is still written in a Euclidean
formulation. The continuation of this and similar expressions
to real time is straightforward as we will show in Sec. III.
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−iWI ¼
1

4
Tr log ~Ω −

1

4
Tr log ~Ω†; ð33Þ

where ~Ω is given as

~Ω ¼ 1

2
ð ~Σ − ~ΣcÞiγ6γ7 þ

i
2
γ5γ6γ7χð ~Σ − ~ΣcÞiγ6γ7; ð34Þ

with

~Σ ¼ γμðpμ −AμÞ; χ ¼
�
1 0

0 −1

�
: ð35Þ

We note that ~Σc is the chiral conjugate of ~Σ, by setting
B → −B. As before, this expression allows one to represent
the phase of the fermion determinant as the trace of
logarithms. The crucial difference to the real part however
is that Eq. (34) does not permit a path integral representa-
tion analogous to Eq. (10). This is principally because the
operator ~Ω does not have a positive-definite spectrum
(respectively, heat kernel expression).
Nevertheless this obstacle is overcome by a trick due to

D’Hoker and Gagné [73,74]. Inserting an auxiliary param-
eter α, Eq. (33) can be written as

−iWI ¼
1

4

Z
1

−1
dα

∂
∂α

�
Tr log

�
1

2
ð ~Ωþ ~Ω†Þ þ α

2
ð ~Ω − ~Ω†Þ

��

¼ 1

4

Z
1

−1
dαTr

�
~Ω − ~Ω†

ð ~Ωþ ~Ω†Þ þ αð ~Ω − ~Ω†Þ

�
: ð36Þ

Symmetrizing this expression with respect to α gives

1

4

Z
1

−1
dαTr

�
~Ω2− ~Ω†2

ð ~Ωþ ~Ω†Þ2þ2α½ ~Ω; ~Ω†�−α2ð ~Ω2− ~Ω†2Þ

�
: ð37Þ

There is an identity that ensures that the denominator of this
expression is positive-definite and admits a heat kernel
regularization [73]. However, by keeping the numerator
separate and defining it as

M̂ ≡ ~Ω2 − ~Ω†2; ð38Þ

in analogy to Sec. II B, the imaginary part of the effective
action can be expressed as

WI ¼
iE
64

Z
1

−1
dα

Z
∞

0

dTTrfM̂e−
E
2
T ~Σ2

ðαÞg: ð39Þ

Remarkably the matrix ~Σ2
ðαÞ coincides with ~Σ2 that enters

Eq. (10), albeit with the replacement of the axial-vector
field therein by B → αB. This result permits us to properly
interpret α as the parameter regulating chiral symmetry
breaking in the effective action. The values α ¼ �1
correspond to the coupling of gauge fields to left- or

right-handed particles. Since Eq. (39) contains an continu-
ous integral over α, chiral symmetry is necessarily broken
for α ≠ �1. There is a trace insertion of Eq. (38), in
Eq. (39) that is absent in the real part of the effective
action.8 This can be split into two contributions,

M̂ ¼ γ7Λ; Λ ¼ Λð1Þ þ Λð2Þ; ð40Þ

which are given as

Λð1Þ ≡ 2γ5γ6½∂μ; Bμ�I2;
Λð2Þ ≡ ½γμ; γν�f∂μ; Bνgγ5γ6I2: ð41Þ

Both contributions are linear in the axial-vector field B and
further are diagonal in the (two-dimensional) field repre-
sentation space introduced in Eq. (7). Just as in the case
for the real part of the effective action, the coherent state
basis (11) can be used to present the trace in Eq. (39) as
follows:

TrfM̂e−
E
2
T ~Σ2

ðαÞg ¼
Z

d4zd3θhz;−θjM̂e−
E
2
T ~Σ2

ðαÞ jz; θi: ð42Þ

Here the (trivial) subtrace over the two-dimensional field
representation space is implicit. From Eq. (42), a path
integral representation can be found; however the insertion
of the operator M̂ in the trace requires care in the
discretization of the worldline, more so than for the real
case discussed in Sec. II B.

D. The axial-vector current

Our goal is to derive an expression for the global axial-
vector current, defined as

hj5μðyÞi≡ iδWI½A;B�
δBμðyÞ

jB¼0: ð43Þ

We will subsequently derive the famous anomaly equation
in our approach demonstrating that this current is not
conserved. Equation (43) can be written as

hj5μðyÞi≡ iδWI

δBμðyÞ
����
B¼0

¼ −
E
64

Z
1

0

dα
Z

∞

0

dTTr

�
δM̂

δBμðyÞ
e−

E
2
T ~Σ2

ðαÞ

�
B¼0

¼ −
E
32

Z
∞

0

dTTr

�
δM̂

δBμðyÞ
e−

E
2
T ~Σ2

�
B¼0

: ð44Þ

Note that the variation of the exponential with respect to Bμ

does not contribute when Bμ is set to zero. The surviving

8This contribution is analogous to the γ5 insertion in “text-
book” discussions of the anomaly [65].
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expression above contains both terms in Eq. (40). We will
discuss both separately. The trace in Eq. (44) is written as

Tr

�
δM̂

δBμðyÞ
e−

E
2
T ~Σ2

�
B¼0

¼ tr
Z

d4x0d3θ0hx0;−θ0j δM̂
δBμðyÞ

e−
E
2
T ~Σ2 jx0; θ0i

¼ tr
Z

d4x0d3θhx0; θ0j δΛ
δBμðyÞ

e−
E
2
T ~Σ2 jx0; θ0i: ð45Þ

Here, in going from the first line to the second, we made
use of h−θjγ7 ¼ hθj. In particular, γ7 can be shown to be the
equivalent of ð−1ÞF, where F is the fermion number
operator defined from the coherent states in Eq. (11)
(cf. Ref. [73]).
This has important consequences: due to this worldline

insertion, the path integral representation of the imaginary
part of the fermion effective action will contain an
integration over Grassmannian variables with periodic
boundary conditions. Consequently, fermionic zero modes
arise, which would not be present otherwise. By inserting a
complete sets of states, Eq. (44) can be written as

hj5μðyÞi ¼ −
E
32

Z
∞

0

dTtr
Z

d4x0d3θ0d4xNd3θNhx0; θ0j

×
δΛ

δBμðyÞ
jxN; θNihxN; θN je−E

2
T ~Σ2 jx0; θ0i: ð46Þ

Both matrix elements on the rhs of this expression can be
treated separately. We begin with the matrix element
containing the exponential. In analogy with previous
derivations, we get

hxN; θN je−E
2
T ~Σ2 jx0; θ0i

¼ −
Z �YN−1

k¼1

d4xk

��YN
k¼1

d4pk

ð2πÞ4
��YN−1

k¼1

d3θk

��YN
k¼1

d3θ̄k

�

× exp

�
−Δ

XN
k¼1

�
−ipk

μ
ðxkμ − xk−1μ Þ

Δ
þ E

2
ðpk

μ − Aμ½x̄k�Þ2

−
ðθkr − θk−1r Þ

Δ
θ̄kr þ

iE
2
ψk
μFμν½x̄k�ψk−1

ν

��
: ð47Þ

We now proceed to evaluate the matrix element in Eq. (46)
that contains the worldline insertion. From Eq. (40), the
latter can be split into separate parts. We begin our
discussion with Λð1Þ, which gives

hx0; θ0j δΛð1Þ

δBμðyÞ
jxN; θNi

¼ 2

� ∂
∂x0μ δðx

0 − yÞ
�
δðx0 − xNÞhθ0jγ5γ6jθNi: ð48Þ

The second worldline insertion ∝ Λð2Þ is similarly

hx0; θ0j δΛð2Þ

δBμðyÞ
jxN; θNi

¼
�� ∂

∂x0ν δðx
0 − yÞ

�
δðx0 − xNÞ

þ 2

� ∂
∂x0ν δðx

0 − xNÞ
�
δðx̄0 − yÞ

�
× hθ0j½γν; γμ�γ5γ6jθNi: ð49Þ

Adding together Eq. (48) and Eq. (49), multiplying it with
the matrix element in Eq. (47), and inserting this expression
into the rhs of Eq. (46), gives us the complete worldline
expression for the anomalous axial-vector current.

1. Derivation of the axial anomaly

To determine the anomaly equation, we need to compute
∂μðδiWI=BμðyÞÞB¼0. We should mention here at the outset
that only Eq. (48) contributes to the anomalous non-
conservation of the axial-vector current, while Eq. (49)
does not; this statement is illustrated in Appendix A. One
thus obtains

∂μhj5μðyÞi ¼ ∂μ
iδWI

δBμðyÞ
����
B¼0

¼ −
E
32

Z
∞

0

dT∂μTr

�
γ7

δΛð1Þ

δBμðyÞ
e−

E
2
T ~Σ2

�
ð50Þ

where the trace is now written as

∂μTr

�
γ7

δΛð1Þ

δBμðyÞ
e−

E
2
T ~Σ2

�
¼ −8

Z �YN−1

l¼0

d4xl
��YN

i¼1

d4pi

ð2πÞ4
��YN

j¼0

d3θjd3θ̄j
�� ∂2

∂yμ∂x0μ δðx
0 − yÞ

�
ψ0
5ψ

N
6

× exp

�
−Δ

XN
k¼1

�
−ipk

α
ðxkα − xk−1α Þ

Δ
−
ðθkr − θk−1r Þ

Δ

þ E
2
ðpk

α − Aαðx̄kÞÞ2 þ
iE
2
ψk
αψ

k−1
β Fαβðx̄kÞ

�
þ ðθ0r − θNr Þθ̄0r

�
: ð51Þ
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We have made use of Eq. (18) to write this expression in a compact form. We can now follow the same procedure as for the
real part and complete the squares for the pk (k ¼ 1;…; N) integration9

pk
α → pk

α − Aα½x̄k� − i
ðxkα − xk−1α Þ

ΔE
: ð52Þ

We then find

∂μTr

�
γ7

δΛð1Þ

δBμðyÞ
e−

E
2
T ~Σ2

�
¼ −8

�Z YN
l¼1

d4pl

ð2πÞ4 e
−Δ

P
N
k¼1

E
2
ðpkÞ2

�

×
Z �YN−1

i¼0

d4xi
��YN

j¼0

d3θjd3θ̄j
�� ∂2

∂yμ∂x0μ δðx
0 − yÞ

�
ψ0
5ψ

N
6 exp

�
−Δ

XN
k¼1

Lk

�
: ð53Þ

The exponential factor in the latter expression is

exp

�
−Δ

XN
k¼1

Lk

�
≡ exp

�
−Δ

XN
k¼1

�
1

2E
ðxkα − xk−1α Þ2

Δ2
−
ðθkr − θk−1r Þ

Δ
− i

ðxkα − xk−1α Þ
Δ

Aαðx̄kÞ þ
iE
2
ψk
αψ

k−1
β Fαβðx̄kÞ

�

þ ðθ0r − θNr Þθ̄0r
�
: ð54Þ

By means of partial integration ∂2
∂yμ∂x0μ δðx

0 − yÞ ¼ −δðx0 − yÞ ∂2
∂x0μ∂x0μ, we get

∂2

∂x0μ∂x0μ exp
�
−Δ

XN
k¼1

Lk

�
¼

�
−

8

EΔ
− 2i

� ∂
∂x0μ Aμðx̄1Þ −

∂
∂x0μ Aμðx̄0Þ

�
− iðx1α − x0αÞ

∂2

∂x0μ∂x0μ Aαðx̄1Þ

− iðx0α − xNα Þ
∂2

∂x0μ∂x0μ Aαðx̄0Þ þOðΔÞ
�
e−Δ

P
N
k¼1

Lk
→ −

8

EΔ
exp

�
−Δ

XN
k¼1

Lk

�
; ð55Þ

where the leading terms in the limit of k → τ, Δ → 0 are kept. In the continuum limit and setting B ¼ 0 we have

∂μ
iδWI

δBμðyÞ
¼ 2

Z
∞

0

dTN ðTÞ
Z
P
Dx

Z
P
Dψðψ5ψ6Þð0Þδðxð0Þ − yÞ

× exp

�
−
Z

T

0

dτ
1

2E
_x2 − i_xαAαðxÞ −

1

2
ψa _ψa þ

iE
2
ψμFμνψν

�
; ð56Þ

where ðψ5ψ6Þð0Þ is an insertion of the respective
Grassmann variables at worldline “time” τ ¼ 0.
We will now find an analytic solution for Eq. (56). To

this end, we remark that, as illustrated above, both anti-
commuting as well as commuting worldline variables are
defined with periodic boundary conditions. We can there-
fore write both respectively as a sum of a zero mode and a
proper-time-dependent contribution

xμðτÞ ¼ x̄μ þ x0μðτÞ; ð57Þ

ψaðτÞ ¼ ψ̄a þ ψ 0
aðτÞ; ð58Þ

where the zero modes are defined to be

x̄μ ≡
Z

T

0

dτxμðτÞ; x̄μ ¼ xμð0Þ ¼ xμðTÞ; ð59Þ

ψ̄a ≡
Z

T

0

dτψaðτÞ; ψ̄a ¼ ψað0Þ ¼ ψaðTÞ ð60Þ

and similarly for ψ5, ψ6. The latter two fields can be
trivially integrated in Eq. (56). The result is

9This of course does not effect the integration variables in the
representation of the worldline insertion. We emphasize this
point, because in the compact notation in Ref. [73], this procedure
is unclear and may cause confusion.

NIKLAS MUELLER and RAJU VENUGOPALAN PHYSICAL REVIEW D 96, 016023 (2017)

016023-10



Z
P
dψψe−

1
2

R
T

0
dτψ _ψ ¼

Z
dψ0dψ 0ðψ0 þ ψ 0Þe−1

2

R
T

0
dτψ 0 _ψ 0 ¼ 1;

ð61Þ

where ψ stands for either ψ5 or ψ6. We will henceforth
define the remaining integral measure asDψ ≡Q

4
μ¼1Dψμ.

The result can be compactly summarized as

∂μ
iδWI

δBμðyÞ
����
B¼0

¼ 2

Z
∞

0

dTN ðTÞ
Z

Dx̄Dx0
Z

Dψ̄Dψ 0δðx̄ − yÞ

× exp

�
−
Z

T

0

dτ
1

2E
_x02 − i _x0αAαðxÞ −

1

2
ψ 0
μ _ψ

0
μ

þ iE
2
ψ 0
μFμνψ

0
ν þ

iE
2
ψ̄μFμνψ̄ν

�
; ð62Þ

where the normalization N is as in Eq. (25).
Because this normalization has a strong power-law

dependence on 1=T [65], the path integral receives its
largest contributions from T → 0. As the nonzero modes in
Eq. (57) can be expanded in terms of eigenmodes with
frequencies T−1, higher modes do not contribute to the
T → 0 limit. It is therefore sufficient to expand the
integrand around the zero modes, keeping nonzero modes
only up to quadratic order. To evaluate this, it is convenient
to use the Fock-Schwinger gauge,10 centered around x̄,
which is defined by

x0μðτÞAμðx̄þ x0ðτÞÞ ¼ 0: ð63Þ

This expression can be formally solved for A, which
results in

Aμðx̄þ x0Þ ¼ x0ν

Z
1

0

dηηFνμðx̄þ ηx0Þ

¼ x0ν

Z
1

0

dηη expðηx0α∂αÞFνμðx̄Þ: ð64Þ

As we are expanding around the zero modes, it is sufficient
to expand

Aμðx̄þ x0Þ ¼ 1

2
x0νFνμðx̄Þ þ

1

3
x0νx0ρ∂νFρνðx̄Þ þ… ð65Þ

In fact, we only need to keep

AμðxÞ ≈
1

2
Fμνðx̄Þx0ν: ð66Þ

Exploiting the Fock-Schwinger gauge thusly, Eq. (62) can
be cast in the appealing form11

∂μ
iδWI

δBμðyÞ
����
B¼0

¼ 2

Z
∞

0

dTN ðTÞ
Z

Dx̄Dx0
Z

Dψ̄Dψ 0δðx̄ − yÞ

× exp

�
−
Z

T

0

dτ
1

2E
_x02 −

i
2
x0μFμν _x0ν −

1

2
ψ 0
μ _ψ

0
μ

þ iE
2
ψ 0
μFμνðx̄Þψ 0

ν þ
iE
2
ψ̄μFμνðx̄Þψ̄ν

�
: ð67Þ

We proceed by performing the (quadratic) nonzero mode
integration in Eq. (67). The results of performing these
integrals are [61]

Z
Dx0 exp

�
−
Z

∞

0

� _x02

4
−
i
2
x0μFμν _x0ν

��

¼ Det0−1
2

�
−

d2

dτ2
þ 2iF

d
dτ

�

¼ 1

ð4πTÞ2Det
0−1

2

�
1 − 2iF

�
d
dτ

�
−1
�

¼ 1

ð4πTÞ2 det
−1
2

�
sinðFTÞ
FT

�
ð68Þ

and

Z
Dψ 0 exp

�
−
Z

T

0

�
1

2
ψ 0
μ
_ψ 0
μ þ iψ 0

μFμνψ
0
ν

��

¼ det
1
2

�
sinðFTÞ
FT

�
: ð69Þ

Here “Det0” indicates the determinant acting on the space of
variables without the zero modes, while “det” is defined on
the reduced space on which the gauge field tensor F is
defined. Due to the N ¼ 1 supersymmetry of Eq. (67), the
fermionic and bosonic integrals (68) and (69) cancel,

Z
Dx0Dψ 0 exp

�
−
Z

τ

0

dτ
_x02

4
þ 1

2
ψ 0
μ _ψ

0
μ −

i
2
x0μFμνðx̄Þ_x0ν

þ iψ 0
μFμνðx̄Þψ 0

ν

�
¼ 1

4π2
1

4T2
ð70Þ

leaving us with the zero-mode integration alone:

10This procedure was discussed in detail in Refs. [68,69].

11As will become clear from our derivation below, Eq. (67)
carries in fact an N ¼ 1 supersymmetry, turning bosonic
into fermionic variables and vice versa. Details are given in
Appendix B.
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Z
Dψ̄ exp

�
−
Z

∞

0

dτiψ̄μFμνðx̄Þψ̄ν

�

¼
Z

d4ψ̄ expf−iTψ̄μFμνðx̄Þψ̄νg

¼ −
T2

2
ϵμνρσFμνFρσ: ð71Þ

We therefore obtain

∂μ
iδWI

δBμðyÞ
����
B¼0

¼ −
1

16π2

Z
∞

0

dTN ðTÞ
Z

Dx̄δðx̄− yÞϵμνρσFμνðx̄ÞFρσðx̄Þ

¼ −
1

16π2

�Z
∞

0

dTN ðTÞ
�
ϵμνρσFμνðyÞFρσðyÞ: ð72Þ

The normalization can be set to unity giving us the well-
known result12

∂μhj5μðyÞi≡ ∂μ
iδWI

δBμðyÞ
����
B¼0

¼ −
1

16π2
ϵμνρσFμνðyÞFρσðyÞ: ð73Þ

This is the central result of this section.13 It nicely illustrates
that the axial anomaly can be understood as arising from
the phase of the fermionic determinant. Unlike many
derivations in the literature, we employed a variational
technique for the imaginary part of the effective action in a
Euclidean formalism. This also confirms that our result for
the axial-vector current in Eq. (44) is robust. The analytic
continuation to the Minkowskian metric will be straight-
forward, albeit the imaginary part of the effective action
will have a different interpretation.
In the upcoming Sec. III we will continue our worldline

path integral formulation to real time and we will make
contact with the results of Refs. [31–35] containing a Berry
connection. Our very general approach allows one to study
the origin and role of any geometric phases which arise
under certain approximations, such as those corresponding
to adiabatic variations in interactions with external fields.
We then give an outlook on how a chiral kinetic theory

should be constructed, which is equivalent to a saddle-point
approximation of our worldline path integral. In this
context, we argue that Eq. (44) in the pseudoclassical limit
provides a consistent definition of the axial-vector current
and can be used in the construction of chiral kinetic
extensions of Bödecker’s effective theory [83,84].
For completeness, we note that the corresponding

definition of the axial-vector current in the continuum
formulation of the worldline path integral is given as

hjμ5ðyÞi ¼
1

4

Z
∞

0

dTN
Z
P
DxDψδð4Þðxð0Þ − yÞ

× f½_xμ þ _xνψμψν�ψ5ψ6g
���
τ¼0

exp

�
−
Z

∞

0

dτL
�
;

ð74Þ

where with B ¼ 0 the Lagrangian L ¼ LL ¼ LR is given
in Eq. (23).

III. CHIRAL KINETIC THEORY

A. Pseudoclassical description of spinning particles

The worldline framework provides a consistent Lorentz-
covariant description of quantum field theory using the
language of first quantization. It is therefore well suited for
a pseudoclassical kinetic description of quantum many-
body systems. We will begin our discussion here with the
worldline Lagrangian (22) continued to the Minkowskian
metric (g ¼ diag½−;þ;þ;þ�). Henceforth we will consider
the coupling of fermions to vector gauge fields and set the
auxiliary field B ¼ 0. We have

L ¼ _x2

2E
þ i
2
ψμ _ψμ þ

i
2
ψ5 _ψ5 þ

i
2
ψ6 _ψ6 þ _xμAμðxÞ

−
iE
2
ψμFμνψ

ν; ð75Þ

and the corresponding worldline effective action, obtained
by the continuation of WR from Eq. (24), is given by

W ¼
Z

∞

0

dT
T

Z
P
Dx

Z
AP

Dψ exp

�
i
Z

T

0

dτL
�
: ð76Þ

The discussion in Sec. II C translates into the Minkowskian
formulation directly. The emergence of the anomaly is
understood in the Minkowskian formulation as arising
from the fact that the path integral measure over the
Grassmannian variables in Eq. (76) does not contain zero
modes.
The path integral is accompanied by an integration over a

worldline of length T, which is directly related to the
reparametrization invariance of the worldline parameter
τ → τ0 ¼ fðτÞ. In fact, Eq. (76) closely resembles
Schwinger’s proper time method, albeit in this case the

12We note that the regularization and normalization of the
worldline path integral is nontrivial [57–59,61–64]. The nor-
malization can be inferred from the real part, by the requirement
that the free path integral should be normalized to unity. The (UV
and IR) regularization of worldline path integrals was further
discussed in Ref. [94].

13We note that in the literature a distinction is commonly made
between covariant and consistent anomalies [95,96]. In our
situation both definitions agree, as is argued in Appendix D.
However this distinction is of crucial importance, when deriving
nonsinglet anomalies or anomalies with both physical vector- and
axial-vector-background fields present.
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worldline manifold is now an interval in proper time rather
than a closed loop. Consequently the worldline length T
and the einbein E, which is the square root of the
determinant of the worldline metric, can also be understood
to emerge from a Becchi-Rouet-Stora-Tyutin (BRST)
construction (see Ref. [93]). While reparametrization
invariance is a gauge symmetry (a redundancy in our
description), it is not related to any symmetry group in
the usual sense.
For particles with spin, yet another physicality condition

arises, which is not immediately obvious from Eq. (76):
longitudinal spin components should not be dynamical.
This restricts the integral measureDψ to a specific physical
hypersurface. In practice, this helicity constraint can be
implemented by means of introducing a Lagrange multi-
plier χ in the Lagrangian,

L → L − i
_xμψμ

2E
χ: ð77Þ

To illustrate its role, we will proceed to the Hamiltonian
formulation by defining the conjugate momenta [from
Eq. (75)]

pμ ≡ ∂L
∂ _xμ ¼ πμ þ Aμ; with πμ ≡ _xμ

E
− i

ψμ

2E
χ: ð78Þ

The corresponding worldline action, equivalent to Eq. (75),
can be written as

S ¼
Z

T

0

dτ

�
pμ _xμ þ

i
2
½ψμ _ψ

μ þ ψ5 _ψ5 þ ψ6 _ψ6�

−
E
2
π2 þ i

2
ðπμψμÞχ − iE

2
ψμFμνψ

ν

�
: ð79Þ

The role of E as a Lagrange multiplier is transparent in
the above expression. The constraints that are encoded in
Eq. (79) can be easily understood from their quantized
counterparts. Promoting the Grassmannian variables to
operators in a Hilbert space,

ψμ →

ffiffiffi
ℏ
2

r
γ5γμ; ψ5 →

ffiffiffi
ℏ
2

r
γ5; ð80Þ

the mass-shell condition and the helicity constraint in
Eq. (79) correspond to the Klein-Gordon and Dirac
operator equations respectively, defining the physical
subspace jΦi of the theory,

π2 þ iψμFμνψ
ν ¼ 0 ⇔ ðπ̂2 þ iσμνFμνÞjΦi ¼ 0 ðmass-shell constraintÞ;

πμψ
μ ¼ 0 ⇔ γ5γμπ̂

μjΦi ¼ 0 ðhelicity constraintÞ: ð81Þ

The generalization of Eq. (81) to the massive case is
straightforward, as one simply replaces

π2 þ iψμFμνψ
ν ¼ 0 → π2 þ iψμFμνψ

ν þm2 ¼ 0

⇔ ðπ̂2 þ iσμνFμν þm2ÞjΦi ¼ 0; ð82Þ

πμψ
μ ¼ 0 → πμψ

μ þmψ5 ¼ 0 ⇔ γ5ðγμπ̂μ þmÞjΦi ¼ 0;

ð83Þ

as these then reproduce the massive Klein-Gordon and
Dirac equations.
Equations (82) and (83) are not independent. On the

operator level, Eq. (82) is the (operator) squared of
Eq. (83), whereas, on the level of the worldline phase-
space variables pμ, xμ, ψμ, ψ5, the constraints are part of a
N ¼ 1 supersymmetric (SUSY) algebra, with the super-
charge given by Eq. (83). This is discussed further in
Appendix B. In the latter case, both constraints are related
by the algebra of Poisson brackets. The action for a
spinning massive particle, including both mass-shell and
helicity constraints, is then given by

S¼
Z

T

0

dτ

�
pμ _xμþ

i
2
½ψμ _ψ

μþψ5 _ψ5þψ6 _ψ6�

−
E
2
ðπ2þm2Þ− i

2
ðπμψμþmψ5Þχ−

iE
2
ψμFμνψ

ν

�

≡
Z

T

0

dτ

�
pμ _xμþ

i
2
½ψμ _ψ

μþψ5 _ψ5þψ6 _ψ6�−H

�
; ð84Þ

where the Hamiltonian, being merely a sum of
constraints, is

H ¼ E
2
ðπ2 þm2 þ iψμFμνψ

νÞ þ i
2
ðπμψμ þmψ5Þχ: ð85Þ

Since H does not depend on ψ6, the dynamics of the latter
is trivial, ψ6 ¼ const and we will drop it from our
discussion henceforth. Equation (84) serves as our starting
point for the determination of the Hamiltonian dynamics of
the worldline theory and ultimately leads to the equations
of motion in the pseudoclassical (kinetic) limit of the
theory.
The classical limit is not immediately apparent in

Eq. (76) as the T integration obscures its usual
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interpretation as the saddle point of a path integral with the
variables x, ψ . However, as described above, the T
integration is related to the gauge freedom of the einbein
parameter E. We will illustrate how this can be dealt with in
practice and refer the reader to Appendix E for further
detailed discussion.
One approach is to perform the T integral in Eq. (76)

explicitly. In this case, the worldline path integral can be
shown to be independent of the value of the einbein
parameter E and the latter can thus can be fixed to any
value. The result of the T integration is a modified single-
particle action, different from Eq. (75). The resulting
pseudoclassical dynamics can be derived from this modi-
fied action, which now permits [93] only physical degrees
of freedom (those satisfying constraint relations) to evolve
via the equations of motion. An alternative approach is as
follows: instead of performing the T integral, Eq. (75)
might be taken as defining the single-particle action
directly, albeit explicitly keeping the T integral in
Eq. (76). In this case, E cannot be fixed and must be
treated as a variational parameter.
We will here illustrate both approaches, starting with the

first. Fixing E ¼ 2 and defining the dimensionless proper
time as u≡ τ=T, Eq. (76) can be written as

W ¼
Z

∞

0

dT 0

T 0 e
−iT 0

Z
DxDψ exp

�
im̄2

T 0

Z
1

0

du
_x2

4

þ i
Z

1

0

du

�
i
2
ðψμ _ψ

μ þ ψ5 _ψ5Þ

þ _xμAμ −
i
2

�
_xμψμ

2
þmψ5

�
χ

��
; ð86Þ

where we further defined m̄2 ≡m2 þ i
R
1
0 duψ

μFμνψ
ν.

Provided the kinetic term is large compared to the
interactions, the T 0 integral can be performed by the
stationary phase method around the stationary point T 0

0 ¼
m̄

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
R
1
0 du_x

2
q

. The result is

W ¼
Z

DxDψ ~N exp iS ð87Þ

where ~N ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffi
iπ=2m̄

p ð− R
1
0 du_x

2Þ14, and the corresponding
worldline action is

S ¼ −m̄

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
Z

1

0

du_x2

s
þi

Z
1

0

du
�
i
2
½ψμ _ψ

μ þ ψ5 _ψ5 þ ψ6 _ψ6�

þ _xμAμ −
i
2

�
_xμψμ

2
þmψ5

�
χ

�
: ð88Þ

Using the abbreviation Y ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
R
1
0 du_x

2
q

, the equations of

motion are obtained by varying this (nonlocal) action,

−
m̄ẍμ

Y
þ iY
2m̄

ψα∂μFαβψ
β þ Fμν _xν þ

i
4
_ψμχ ¼ 0; ð89Þ

_ψμ −
Y
m̄
Fμνψ

ν −
_xμ
4
χ ¼ 0; ð90Þ

_ψ5 −
mχ

2
¼ 0; ð91Þ

while, as noted previously, the dynamics of ψ6 is trivial.
These equations of motion, for an appropriate choice of χ
(as we shall shortly discuss), provide the covariant gener-
alization of the well-known Bargmann-Michel-Telegdi
equations [75] for spinning particles in external gauge
fields. The extension of these equations of motion to
include colored degrees of freedom, generalizing thereby
the Wong equations [76], was already discussed a long time
ago in Ref. [97].
As we show in Appendix E, an identical dynamics is

obtained in the other approach when E is treated as a
variational parameter and thereby eliminated from the
action. This approach will be particularly beneficial when
we take the nonrelativistic limit of the action. In this
variational approach, the Euler-Lagrange equations applied
to E, using Eq. (75), give the consistency relation

E ¼ m−1
R

�
z − i

_xμψμ

2z
χ

�
; ð92Þ

where z≡ ffiffiffiffiffiffiffiffi
−_x2

p
and

m2
R ¼ m2 þ iψμFμνψ

ν: ð93Þ

This consistency relation allows us to eliminate E by
inserting the relation into Eq. (75). The resulting equations
of motion agree with the dynamics in Eqs. (89)–(91),
provided the constraints are fulfilled.
Therefore a saddle-point expansion of Eq. (76)—under

the proviso that all constraints are respected—provides the
correct pseudoclassical limit with the corresponding action
given as

S ¼
Z

T

0

dτL; ð94Þ

where the Lagrangian in Eq. (75) can now be expressed as

L≡ −
mRz
2

�
1þ m2

m2
R

�
þ i
2
ðψμ _ψ

μ þ ψ5 _ψ5Þ

−
imR

2

�
_xμψμ

z

�
1 −

m2

2m2
R

�
þ m
mR

ψ5

�
χ

þ _xμAμðxÞ − i
2mR

zψμFμνψ
ν: ð95Þ

This Lagrangian, explicitly implementing the mass-shell
constraint, will serve as the starting point for the discussion
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of the nonrelativistic limit in Sec. III B. We can now use
Eq. (95) to define the conjugate four-momenta of the
constrained phase space; these are

pμ ≡ ∂L
∂ _xμ ;
where πμ ≡pμ −Aμ

¼mRuμ −
imR

2z

�
1−

m2

2m2
R

�
½ψμ þ uνψνuμ�χ;

ð96Þ

where the four-velocity is defined as

uμ ≡ _xμ

z
: ð97Þ

Equation (96) is easily inverted and gives

_xμ ¼ z
mR

πμ þ i
2

�
1 −

m2

2m2
R

��
ψμ þ πνψ

νπμ

m2
R

�
χ: ð98Þ

The equations of motion in this setup, respecting all
constraints, are completely equivalent to Eqs. (89)–(91).
This point is illustrated with a specific example in
Appendix E. We note a few additional points: the
Lagrange multiplier χ is an anticommuting Lorentz scalar,
which means that the structure of expressions that can be
assigned to it are very restricted [77]. A vanishing χ ¼ 0 is
trivially consistent with this requirement; it turns out that
the only other choice14 is χ ∝ ϵμνλσπμψνψλψσ [77].
Our considerations here are essential ingredients in

deriving a consistent relativistic chiral kinetic theory.
The explicit derivation of this kinetic framework is fairly
involved and will be left to forthcoming work [87]. In the
following subsection, we will discuss the role of χ in more
detail and we shall fix it explicitly. Our focus in Sec. III B
will however be on the nonrelativistic reduction of Eq. (95)
with the helicity constraint imposed. We will comment on
some interesting features of the corresponding kinetic
theory that are complementary to those discussed in our
recent paper [72].

B. The nonrelativistic limit

In this subsection, we shall derive the nonrelativistic
limit of the single-particle action defined by Eq. (95). We
will carefully discuss the role of the mass-shell and helicity
constraints and their related Lagrange multipliers. Based on
an adiabatic approximation of our result, we make contact
with the geometric action put forward in Refs. [31,32]. As

in those works, we showed in our accompanying paper [72]
how a Berry term arises in the massive nonrelativistic and
adiabatic limit. However in Ref. [72], we only considered a
massive system with a small or vanishing chemical poten-
tial. We will extend the discussion here to a system with a
large chemical potential.
We will begin by writing Eq. (95) with all factors of c

specified:

L ¼ −
mRcz
2

�
1þ m2

m2
R

�
þ i
2
ðψμ _ψ

μ þ ψ5 _ψ5Þ

−
imRc
2

�
_xμψμ

z

�
1 −

m2

2m2
R

�
þ m
mR

ψ5

�
χ

þ _xμAμðxÞ
c

−
i

2mRc
zψμFμνψ

ν: ð99Þ

The nonrelativistic limit can be derived systematically in an
expansion of the particle’s velocity over the speed of light.
The adiabatic limit corresponds to taking the interaction
energy of the particle with the external electromagnetic
fields to be small relative to its rest energy. To proceed
further in deriving these limits from the relativistic
Lagrangian, we choose, without loss of generality,
χ ¼ 0. It follows thence from Eq. (91) that _ψ5 ¼ 0 and
hence ψ5 ¼ const.
We will next use the supersymmetric properties of the

worldline action (discussed in Appendix B)

ψμ → ψμ þ
_xμffiffiffiffiffiffiffiffi
−_x2

p η; ψ5 → ψ5 þ η; xμ → xμ þ i
ψμη

m
;

ð100Þ

where η is an anticommuting parameter generating a N ¼ 1
supersymmetric transformation. Since ψ5 ¼ const, we can
perform a time-independent transformation such that
ψ5 ¼ 0. Thereby eliminating ψ5 from the dynamics
entirely, the Lagrangian can be written as

L ¼ −
mRcz
2

�
1þ m2

m2
R

�
þ i
2
ðψ _ψ − ψ0 _ψ0Þ þ

_xμAμðxÞ
c

−
i

mRc
zψ0F0iψ

i −
i

2mRc
zψ iFijψ

j: ð101Þ

This expression does not contain any approximations yet.
To take the nonrelativistic limit, we identify the world-

line proper time τ of a “particle,” with the physical time t as

τ ¼ ct
γ
¼ ct

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðdx=dtÞ2

q
; x0 ¼ ct; ð102Þ

where v is the nonrelativistic velocity, v≡ dx=dt. From the
spatial components of the Grassmannian variables, the
conventional spin vector is defined as Si ≡ − i

2
ϵijkψ jψk.

14Note that χ cannot be linear in ψ , as this cannot be combined
to form a Lorentz invariant. Even powers in ψ result in χ being a
commuting variable, rather than an anticommuting one.
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Using Bi ¼ 1
2
ϵijkFjk and Ei ¼ F0i, we can therefore

express

−iψ0F0iψ
i ¼ S · ðπ × EÞ

cπ0
; ð103Þ

−
i
2
ψ iFijψ

j ¼ S · B: ð104Þ

Furthermore, in the nonrelativistic limit, the electromag-
netic “Larmor” energy is small compared to the mass; we
can therefore approximate15

mR ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ iψμFμνψ

ν
q

≈m

�
1þ i

2

ψμFμνψ
ν

m2c2

�
≡mð1þ XÞ; ð105Þ

where we introduced the abbreviation

X ≡ −
S · ðπ × EÞ=ðcπ0Þ þ S · B

2m2c2
: ð106Þ

The Lagrangian, which is defined by

S ¼
Z

dtL0; ð107Þ

can be written as

L0 ¼ −
mRc2

2γ

�
1þ m2

m2
R

�
þ i
2
ðψ _ψ − ψ0 _ψ0Þ − A0 þ v

c
· A

þ 1

mRγ

�
S · ðπ × EÞ

cπ0
þ S · B

�

¼ −
mc2

2γ

�
1þ X þ 1

1þ X

�
þ i
2
ðψ _ψ − ψ0 _ψ0Þ − A0

þ v
c
· A −

2mc2

γ

X
1þ X

: ð108Þ

The nonrelativistic limit is found when x ∝ ðv=cÞ2 is small.
Thus we expand the expression in terms of X and v=c and
keep only terms at most quadratic in the latter. This gives

L0 ≈ −mc2 þ 1

2
mv2 þ i

2
ðψ _ψ − ψ0 _ψ0Þ þ A0 −

v
c
· A

þ S · ðπ × EÞ
mcπ0

þ S · B
m

: ð109Þ

Since in this limit

π0 → p0 −
A0

c
; and π → p −

A
c
; ð110Þ

our final form for the nonrelativistic Lagrangian is

LNR ¼ −mc2 þ 1

2
mv2 þ i

2
ðψ _ψ − ψ0 _ψ0Þ − A0 þ v

c
· A

þ S · ð½v=c − A=ðmc2Þ� × EÞ
mc

þ S · B
m

: ð111Þ

Here ψ i, i ¼ 1, 2, 3 are the dynamical spin degrees of
freedom. Since ψ0 is not dynamical, we shall drop it from
now on. To obtain the corresponding nonrelativistic
Hamiltonian, we proceed just as we did in the Lorentz-
covariant case, by introducing a nonrelativistic conjugate
momentum

pi ¼ ∂LNR

∂ _xi ¼ m_xi þ Ai

c
þ ϵijkEjSk

mc2
: ð112Þ

We can then compactly express the nonrelativistic action as

S ¼
Z

dt

�
p · _xþ i

2
ψ · _ψ −H

�
; ð113Þ

where the nonrelativistic Hamiltonian (in SI units) is

H ≡mc2 þ ðp − A
cÞ2

2m
þ A0ðxÞ

−
S · ð½v=c − A=ðmc2Þ� × EÞ

2mc
−
B · S
m

: ð114Þ

This expression is of course the well-known expression for
the Hamiltonian for a fermion in an external electromag-
netic field [98]: the penultimate term is the spin-orbit
interaction energy from Thomas precession, while the last
term is the Larmor interaction energy.
In the accompanying paper [72],we showed in somedetail

that in an adiabatic approximation the system described by
Eq. (113) and Eq. (114) contains a Berry phase with a
monopole form, also postulated in Refs. [31–34]. In the next
subsection, we will repeat part of our derivation for the case
of a massless particle in the presence of a large chemical
potential. This was the case discussed for instance in
Refs. [31,32] and several other works.

15We note that due to the Grassmann nature of X there is only
one further nonzero term in this expansion ∝X2. Due to the
nilpotency of the Grassmannian variables this term is antisym-
metric in four Lorentz indices and thus reminiscent of the
discussion in Sec. II C. We note however that in Sec. II C, the
emergence of the anomaly was tied to the existence of Grass-
mannian zero modes and thereby resulted in the well-known
anomaly relation (73). The order-X2 term here corresponds to a
field configuration ∝E ·B; however it is not a sign of the
presence of the anomaly and not related to the nonconservation
of the axial current. See also Ref. [80], where such a term was
seen in the equations of motion.
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C. Chemical potential

The limit that we derived in Eq. (114) is different from
the one in Refs. [31,32], as the latter contains an effective
description for (massless) particles near the Fermi surface,
which is well defined for large μ. We will here explore how
this limit appears in the worldline framework. As suggested
by Eq. (81), a chemical potential can be introduced by
adding a term to the Dirac operator equation

γ5γ
νπνjΦi ¼ 0 → γ5ðγνπν þ μγ0ÞjΦi ¼ 0: ð115Þ

The corresponding worldline expression is

πνψ
ν ¼ 0 → πνψ

ν þ μψ0 ¼ 0: ð116Þ

The mass-shell constraint is modified by the introduction of
a chemical potential to read

π2 þ iψαFαβψ
β þ μ2 ¼ 0: ð117Þ

The worldline Lagrangian for massless fermions in the
presence of a chemical potential is then16

LðμÞ ¼ _x2

2E
−
E
2
μ2 þ i

2
ψα _ψ

α þ _xαAα −
iE
2
ψαFαβψ

β

−
i
2

�
_xαψα

E
þ μψ0

�
χ; ð118Þ

which we emphasize is a relativistic expression. The path
integral we have to evaluate is

WðμÞ ¼
Z

dT
T

Z
Dx

Z
Dψ exp

�
i
Z

T

0

dτLðμÞ
�
: ð119Þ

As previously for Eq. (92), a consistency relation can be
derived here as well. In this case, we will proceed by
performing the T integration in Eq. (119) directly. The
integral in Eq. (119) can be performed by the stationary
phase method. Fixing E ¼ 2, we obtain

LðμÞ ¼
Z

1

0

du

�
_x2

4T
− μ2

�
1þ i

μ2
ψαFαβψ

β

�
T þ _xαAα

þ i
2
ψα _ψ

α −
i
2

�
_xαψα

2
þ μψ0

�
χ

�
: ð120Þ

We further rescale T →
R
1
0 duμ

2ð1þ i
μ2
ψμFμνψ

νÞT ≡
m2

effT to obtain

WðμÞ¼
Z

dT
T

e−iT
Z

Dx
Z

Dψ exp

�
i
m2

eff

T

Z
1

0

du
_x2

4

þ i
Z

1

0

du

�
_xμAμþ i

2
ψμ _ψ

μ−
i
2

�
_xαψα

2
þμψ0

�
χ

��
:

ð121Þ

For large chemical potential the integral is dominated by
the first term in the exponent. Therefore, using the sta-
tionary phase method, the T integral can be performed

around the stationary point T0 ¼ meff

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
R
1
0 du

_x2
4

q
. The

result is

WðμÞ≈
Z

Dx
Z

Dψ

ffiffiffiffiffiffiffiffiffiffiffi
iπ

2meff

s �
−
Z

1

0

du_x2
�

−1
4

×exp

�
−imeff

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
Z

1

0

du_x2

s

þ i
Z

1

0

du

�
_xαAαþ i

2
ψα _ψ

α −
i
2

�
_xαψα

2
þ μψ0

�
χ

��
:

ð122Þ

For a large chemical potential, we can Taylor expand

meff ≈ μ

�
1þ i

2μ2

Z
1

0

duψαFαβψ
β

�
; ð123Þ

so that, using the abbreviation N̄ ≡
ffiffiffiffiffiffiffiffi
iπ

2meff

q
ð− R

1
0 du_x

2Þ−1
4,

we finally have

WðμÞ ≈
Z

Dx
Z

DψN̄ exp

(
−iμ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
Z

1

0

du_x2

s

þ i
Z

1

0

du
�
−i
2μ

ψαFαβψ
β þ _xαAα þ i

2
ψα _ψ

α

�)
:

ð124Þ

This effective action describes excitations near the fermion
surface for a massless theory with a large chemical
potential. In obtaining this form for the action, in analogy
with the previous section, we chose χ ¼ 0. Equation (124)
can be directly compared with the result in Sec. III B: as
might have been anticipated, the role of the mass parameter
is effectively taken over by the chemical potential. The
nonrelativistic limit is thus identical upon this identifica-
tion, as is the adiabatic limit in Ref. [72]. It was shown there
how a Berry monopole is found when level crossings
between spin states are suppressed.
A closer look at the individual terms in the action of

WðμÞ illustrates these points nicely. While the first square
root term is the conventional kinetic term for a particle with

16For simplicity, we have omitted the kinetic terms for ψ5

and ψ6.
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effective mass μ, the second term is a Larmor-interaction
energy, with the effective mass μ. For large chemical
potentials, excitations around the Fermi surface behave
nonrelativistically. Further, the adiabatic limit corresponds
to ψαFαβψ

β=μ ≈ 0. The effective description of
Refs. [31,32] is thus straightforwardly understood by
taking the appropriate limits in the worldline framework.
The aforementioned nonrelativistic and the adiabatic

approximation may not be applicable to ultrarelativistic
heavy-ion collisions. Instead, the general Lorentz-covariant
worldline framework, which we have established in
Eqs. (89)–(91) is ideally suited for the description of the
anomalous transport of axial charges in the hot fireball
created in a heavy-ion collision.

IV. CONCLUSIONS

In this manuscript, and in an accompanying paper [72],
we developed a worldline framework in quantum field
theory to construct a Lorentz-covariant chiral kinetic theory
for fermions. In the first part of the paper, we obtained a
worldline path integral representation of the (Euclidean)
fermion determinant in the background of vector and axial-
vector gauge fields. This was achieved by using a heat-
kernel representation of the (infinite-dimensional) operator
logarithm. We exploited a fermionic coherent state formal-
ism whereby spin is not treated as part of a wave function
but rather as an independent degree of freedom in the path
integral. This powerful construction can be extended to
include other internal degrees of freedom such as color.
We then investigated how the axial anomaly arises in the

worldline quantization. As is well known [68], the axial
anomaly is related to the phase of the fermion determinant,
which is ill defined for fermions in a complex representa-
tion. The fermion effective action is thus understood to
contain both a real as well as an imaginary part, the latter
being related to the violation of chiral symmetry. Using a
path integral construction due to D’Hoker and Gagné
[73,74], we obtained a representation of the real part of
the effective action in terms of a Grassmannian path
integral over spinning variables. Remarkably, there is a
very similar path integral representation for the imaginary
part, wherein an integral over a regulating parameter
represents the loss of chiral symmetry. This path integral
representation includes an operator insertion, which in this
framework is responsible for the fermion zero modes in the
spectrum of the theory. Following the discussion by
Alvarez-Gaume and Witten [68], we demonstrated in our
framework how these modes are responsible for the axial
anomaly. In particular, we employed a variational method
to obtain a nonperturbative expression for the axial-vector
current in first quantization and thence derived the anomaly
equation. The emergence of the axial anomaly in first
quantization crucially depends on a hidden supersymmetry
between bosonic and fermionic degrees of freedom induced

by periodic boundary conditions for the fermion variables
on the closed worldline.
Motivated by our findings in Sec. III, we derived the

pseudoclassical kinetic limit of the worldline effective
action. Continuing our prior discussion from the
Euclidean to Minkowski metric, we established that the
Liouville dynamics of spinning particles arises from the real
part (in the original Euclidean formulation) of the fermion
determinant alone. This contribution to the kinetic dynamics
is independent of those arising from the piece in the path
integral containing the fermionic zero modes that are
responsible for the anomaly. However in a chiral kinetic
theory, anomalous contributions to the dynamics, in a
covariant formulation, will be manifest through the axial-
vector current.
A part of the impetus of our work was to understand the

origins of the Berry term in kinetic descriptions from first
principles in quantum field theory and to establish thereby
its relation, if any, to the chiral anomaly. In our accom-
panying paper [72], we showed how such a term arises
from the worldline action for massive spinning particles in
external background gauge fields. We demonstrated explic-
itly that we needed to take the nonrelativistic limit of large
masses, as well as an adiabatic limit wherein the Larmor
interaction energy of the spinning particles was much
smaller than the rest energy. In this paper, we addressed
the problem in the case where the spinning particles are
massless but the system possesses a large chemical poten-
tial. This is the case for quasiparticle excitations near the
Fermi surface in a number of condensed matter systems.
We showed explicitly in the worldline framework that the
chemical potential replaces the role of the mass and the rest
energy in a manner that is exactly the same as in the case for
massive spinning particles. An analogous nonrelativistic
and adiabatic limit for these excitations can therefore be
taken, and it can be similarly demonstrated how the Berry
term arises upon taking these limits.
This exercise also suggests that away from the adiabatic

nonrelativistic limit, the Berry phase is not robust and its
effects are implicit in the relativistic dynamics of spinning
particles. As such, we have arrived at the same conclusion
as the previous observation by Fujikawa and collaborators
[50–52]. In contrast to the Berry phase, the effects of the
anomaly are robust and manifest in a relativistic kinetic
description. More generally, the semiclassical worldline
construction we obtained here can be incorporated in a real-
time Schwinger-Keldysh framework to describe the evo-
lution of a chiral current in a gauge field background.
A similar construction was performed in Ref. [60] for
spinless colored particles. It was shown in that case how
one recovers in the worldline framework the non-Abelian
Boltzmann-Langevin “Bödeker kinetic theory” [83–85] of
hot QCD. This framework can be extended to construct an
“anomalous Bödeker theory” which can then be matched to
classical-statistical simulations at early times in heavy-ion
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collisions and to anomalous hydrodynamics at late times
[28,29,99,100]. This work is in progress [87]. We note that
there has been a recent discussion of the anomalous
Bödeker kinetic theory in the literature [86,101] in a
different approach and it will be useful in the future to
compare and contrast results in the two approaches.
The framework presented here is not only applicable in

the QCD framework of heavy-ion collisions but is poten-
tially applicable to a number of many-body contexts where
topology is important and the dynamics is relativistic. One
such example is that of the transport of chiral fermions in
astrophysical situations [102–105]. In this context, our
framework provides a first-principles perspective that can
be used to address situations where masses and chemical
potentials are not large and nonrelativistic and adiabatic
assumptions are no longer valid. Another intriguing pos-
sibility is to apply this framework to helicity evolution in
QCD at small x [106]. In QCD at small x, semiclassical
concepts provide fertile ground [107,108]; a semiclassical
worldline description was previously employed [109] to
derive the well-known Balitsky-Fadin-Kuraev-Lipatov
(BFKL) equation for unpolarized parton distributions
[110,111]. The worldline construction developed here for
spinning particles therefore shows great promise for a wide
variety of many-body problems and will be pursued in
future work.
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APPENDIX A: DETAILS OF THE
CALCULATION OF THE IMAGINARY
PART OF THE EFFECTIVE ACTION

In this appendix, as promised, we will show that the
second term in the worldline insertion, does not contribute
to the nonconservation of the axial-vector current. Writing
out the relevant expression,

∂μTr

�
γ7

δΛð2Þ

δBμðyÞ
e−

E
2
T ~Σ2

�
¼ −

Z �YN
l¼0

d4xld3θld3θ̄l
��YN

l¼1

d4pl

ð2πÞ2
�
hθ0j½γμ; γν�γ5γ6jθNi

�� ∂2

∂yμ∂x0μ δðx
0 − yÞ

�
δðx0 − xNÞ

þ 2

� ∂
∂xν δðx

0 − xNÞ
�� ∂

∂yμ δðx̄
0 − yÞ

��
exp

�
−Δ

XN
k¼1

�
−ipk

α
ðxkα − xk−1α Þ

Δ
þ E

2
ðpk

α − Aαðx̄kÞÞ2

−
ðθkr − θk−1r Þ

Δ
θ̄kr þ

iE
2
ψk
αψ

k−1
β Fαβðx̄kÞ

��

¼ −
Z �YN−1

l¼0

d4xl
��YN

l¼0

d3θld3θ̄l
��YN

l¼1

d4pl

ð2πÞ2
�
hθ0j½γμ; γν�γ5γ6jθNi

×

�
−

∂2

∂x0μ∂x0ν
�
exp

�
−Δ

XN
k¼1

�
−ipk

α
ðxkα − xk−1α Þ

Δ
þ E

2
ðpk

α − Aαðx̄kÞÞ2 −
ðθkr − θk−1r Þ

Δ
θ̄kr

þ iE
2
ψk
αψ

k−1
β Fαβðx̄kÞ

��
: ðA1Þ

In the final expression above, we observe that while the expression containing the commutator of gamma matrices is
antisymmetric under the exchange of μ and ν, the derivative of the exponent is clearly symmetric under this exchange.
Therefore

∂μTr

�
γ7

δΛð2Þ

δBμðyÞ
e−

E
2
T ~Σ2

�
¼ 0; ðA2Þ
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which completes our proof of the statement following
Eq. (40) in the main text of the paper.

APPENDIX B: SUPERSYMMETRY
AND GAUGE FREEDOM OF THE

RELATIVISTIC SPINNING PARTICLE

The Lorentz-covariant formulation of the spinning par-
ticle action given by Eq. (75) posses two important
symmetries respected by the worldline path integral.
First, the physical content of the theory is invariant under
reparametrizations of the worldline parameter τ,

τ → τ0 ¼ fðτÞ: ðB1Þ

This gauge symmetry corresponds to the mass-shell con-
straint or “charge”

H≡ 1

2
ðπμπμ þm2 þ iψμFμνψ

νÞ; ðB2Þ

[with πμ defined as in Eq. (78)] which upon quantization is
a constraint on the physical states in the Hilbert-space
equivalent to the Klein-Gordon equation. It is also closely
connected to another invariance of the action in terms of
proper-time-dependent quantum-mechanical supersymmet-
ric transformations. Assuming ηðτÞ to be an anticommuting
parameter, these supersymmetric transformations are

ψμ → ψμ þ
_xμffiffiffiffiffiffiffiffi
−_x2

p η;

ψ5 → ψ5 þ η;

xμ → xμ þ i
ψμη

m
: ðB3Þ

These transformations correspond to the supersymmetric
charge,

Q≡ πμψ
μ þmψ5: ðB4Þ

This charge, along with the constraints (B2) and (B4),
generates a N ¼ 1 SUSY algebra,

fQ;Qg ¼ −2iH: ðB5Þ

In generating this algebra, one employs the fundamental
Poisson brackets:

fxμ; pνg ¼ δμν ; ðB6Þ

fψμ;ψνg ¼ −iδμν ; ðB7Þ

fψ5;ψ5g ¼ −i; ðB8Þ

fψμ;ψ5g ¼ 0: ðB9Þ

We refer the reader to Refs. [68,93] for more details on the
use of SUSY models in the context of path integrals and
index theorems, as they are used, most prominently, in
gravity. A discussion of a covariant fixing of the gauge
freedom (reparametrization invariance under τ → τ0) in
terms of a BRST construction can be found in Ref. [93]
and gives a nice illustration of the structure of the worldline
path integral. These techniques will be particularly helpful
in implementing the phase-space constraints satisfied by
the relativistic dynamics of spinning and colored particles.

APPENDIX C: INTERNAL SYMMETRIES

Internal symmetries, such as color, can be represented
via Grassmannian path integrals in the same manner as we
have done for the spin degrees of freedom. These were
discussed in Refs. [77–81] and their path integral formu-
lation was worked out in Refs. [73,74]. The essential
elements are anticommuting color degrees of freedom that
combine to give the color charges, which in classical
representations satisfy the Wong equations [76]. It was
shown in Refs. [73,74] that path-ordered exponentials of
the form

trPe−
R

T

0
dτLðτÞ; ðC1Þ

where LðτÞ is a N × N Hermitian traceless matrix, can be
written asZ

Dλ†DλJ ðλ†λÞ

×exp

�
−
Z

T

0

dτ

�
_x2

2E
þ1

2
ψa _ψaþλ† _λ−λ†Lintλ

��
; ðC2Þ

where Lint is the interaction part of the Lagrangian and
J ðλ†λÞ ¼ ðπTÞN

P
ϕ exp½iϕðλ†λþ N=2 − 1Þ�. If the matrix

structure of L is that of fermions in the fundamental
representation of SUðNcÞ, then simplyN ¼ Nc. In a similar
fashion, an insertion of ω into the trace gives

trPωe−
R

T

0
dτLðτÞ ¼

Z
Dλ†DλJ ðλ†λÞfλ†ωλg

× e−
R

T

0
dτð_x2

2Eþ1
2
ψa _ψaþλ† _λ−λ†LintλÞ: ðC3Þ

It can be shown that defining the worldline path integral for
colored, albeit spinless, particles reproduces Wong’s equa-
tions in the pseudoclassical limit [60]. The equations of
motion for spinning colored particles were already written
down 40 years ago in Ref. [97].

APPENDIX D: CONSISTENT
VS COVARIANT ANOMALIES

It has long been known that the definition of axial-vector
currents is ambiguous in some cases, allowing for two
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anomaly types, termed consistent and covariant respec-
tively. It was pointed out [95] that this difference arises
when one derives the nonsinglet anomaly either from the
variation of an effective action (which yields the consistent
anomaly) or from Fujikawa’s method via variation of the
measure (which gives the covariant anomaly). The first type
was called the consistent anomaly, as it fulfills the Wess-
Zumino consistency conditions thereby predicting the
correct anomalous physics of effective hadronic theories.
The second type is obtained from the first type by adding a
local counterterm, which makes the nonsinglet anomaly
transform covariantly under group transformations.
For the singlet anomaly, and in QED, this issue is much

simpler, as in this case one has manifestly gauge-invariant
expressions for both vector and axial-vector currents.
Therefore the possibility that a current is not covariant
never arises. However as was discussed by Bardeen [96],
care has to be taken when deriving currents, when there are
both nonzero vector as well as axial-vector fields. In this
case, there is an ambiguity regarding whether the anomaly
should be contained in the vector or the axial-vector
currents (or even both). Physics dictates that the vector
current is related to the baryon number and so it better be
conserved. Hence by the introduction of local Bardeen

counterterms this physicality condition can be enforced.
We note however that if there are no physical axial-vector
gauge fields present, as in our case, this ambiguity does not
exist. The vector current is conserved by construction and
hence the only possible form of the anomaly is given
by Eq. (73).

APPENDIX E: SADDLE-POINT EXPANSION
IN THE WORLDLINE FRAMEWORK

AND GAUGE INVARIANCE

We will discuss here two different approaches to the
fixing of the gauge symmetry determining E. Our deriva-
tion is based on the fact that E is related to the reparamet-
rization invariance of the proper time

τ → τ0 ¼ fðτÞ; ðE1Þ

where f is an arbitrary continuous function. For the sake of
simplicity, we will neglect here spin-dependent pieces of
our action and write down the worldline path integral for a
scalar particle. We will then subsequently generalize the
discussion to particles with spin. The worldline path
integral for the spinless case is

Wscalar ¼
Z

∞

0

dT
T

Z
Dx exp

�
i
Z

T

0

dτ

�
_x2

2E
þ _xμAμðxÞ − E

2
m2

��

¼
Z

∞

0

dT
T

Z
Dx exp

�
i
Z

1

0

du
�ðdx=duÞ2

2ET
þ dxμ

du
AμðxÞ − ET

2
m2

��
; ðE2Þ

where in the second line we have replaced u ¼ τ=T. From
Eq. (E2) it is clear that T and E are not independent. Setting
E to a constant value does not affect the result of the T
integration. Therefore we can simply set E ¼ 2 and rescale
m2T → T. The path integral is then given as

Wscalar ¼
Z

∞

0

dT
T

Z
Dx

×exp

�
i
Z

1

0

du

�
m2

ðdx=duÞ2
4T

þdxμ
du

AμðxÞ−T

��
:

ðE3Þ

The T integration can now either be performed explicitly
(see Refs. [112–114]) or via the method of stationary phase
around the expansion point

T0 ¼
m
2

�
−
Z

1

0

du

�
dxμ
du

�
2
�1

2

: ðE4Þ

We obtain

Wscalar≈
ffiffiffiffiffiffiffi
iπ
2m

r Z
Dx

�
−
Z

1

0

du

�
dxμ
du

�
2
�

−1
4

×expi

�
m

�
−
Z

1

0

du

�
dxμ
du

�
2
�1

2þ
Z

1

0

du
dxμ
du

AμðxÞ
�
:

ðE5Þ

We now derive the equations of motion from requiring the
invariance of this action under variation. The result is

�
−
Z

1

0

du_x2
�

−1
2

mẍμ ¼ _xνFμν: ðE6Þ

We can write this, defining z ¼
ffiffiffiffiffiffiffiffi
−_x2

p
, as17

mẍμ
z

¼ _xνFμν: ðE7Þ

17Multiplying this equation through by _xμ, one observes that
_x2 ¼ const.
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One can alternately start from the Lagrangian in
Eq. (E2). Instead of fixing E and leaving the T integral
explicit, we can work with the single-particle action

S ¼
Z

T

0

dτ
�
_x2

2E
þ _xμAμðxÞ − E

2
m2

�
ðE8Þ

directly. Since E is kept explicit, there are two variations to
perform: one for E and one with respect to x. Variation with
respect to E gives

_x2

E2
−m2 ¼ 0: ðE9Þ

Solving this equation for E, one obtains the consistency
relation

E ¼
ffiffiffiffiffiffiffiffi
−_x2

p

m
¼ z

m
: ðE10Þ

Note that Eq. (E10) does not fix the gauge, as z has yet to be
determined. It rather is an equation that allows us to
implement the constraint in the action directly. Plugging
Eq. (E10) into Eq. (E8) eliminates the dependence on the
einbein parameter and yields

S ¼
Z

T

0

dτ½mzþ _xμAμðxÞ�; ðE11Þ

from which the equations of motion follow directly. Not
surprisingly, they coincide with Eq. (E7). This derivation
shows that Eq. (E8) can be interpreted as a single-particle
action, under the premise that all constraints are imple-
mented correctly and the consistency condition (E10) is
fulfilled. The latter is satisfied if the einbein E is treated
as a variational parameter. This equivalence generalizes
easily to the case of spinning particles as discussed in the
main text.
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