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We study charmonium and bottomonium as relativistic bound states in a light-front quantized
Hamiltonian formalism. The effective Hamiltonian is based on light-front holography. We use a recently
proposed longitudinal confinement to complete the soft-wall holographic potential for the heavy flavors.
The spin structure is generated from the one-gluon exchange interaction with a running coupling. The
adoption of asymptotic freedom improves the spectroscopy compared with previous light-front results.
Within this model, we compute the mass spectroscopy, decay constants and the r.m.s. radii. We also present
a detailed study of the obtained light-front wave functions and use the wave functions to compute the light-
cone distributions, specifically the distribution amplitudes and parton distribution functions. Overall, our
model provides a reasonable description of the heavy quarkonia.
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I. INTRODUCTION

Nonperturbative calculations of quantum chromodynam-
ics (QCD) provide insights into the fundamental structure of
hadrons which constitute the majority of the visible matter in
the Universe. Lattice gauge theory has produced high
precision results for hadron spectroscopy and many other
observables. It is expected that lattice QCD will eventually
provide a valid description of the experimental data arising
from both the theoretical progress and the growth of
computational capacity. On the other hand, QCD at high
energy is most conveniently expressed through the light-
front variables [1].While the so-called “hard processes”may
be evaluated through perturbation theory (pQCD), non-
perturbative information from QCD is also needed and is
encoded within the so-called “light-cone distributions.” The
light-cone distributions are intrinsically Minkowskian, and
cannot be easily extracted from a Euclidean formulation of
quantum field theories. It is anticipated that the light-front1

Hamiltonian formalism provides a complementary alterna-
tive to lattice gauge theory [2], with convenient access to
light-cone distributions and other observables.
In principle, the hadron mass spectrum and light-front

wave functions (LFWFs) can be obtained fromdiagonalizing
the light-front quantized QCD (LFQCD) Hamiltonian oper-
ator [3]. Ab initio light-front Hamiltonian approaches, such
as discretized light-cone quantization (DLCQ, [4]) and basis
light-front quantization (BLFQ, [5]), have made important
strides in tackling various test problems, and showpromise of
advancing towards more realistic field theories, including
QCD [6]. As a complementary method to these ab initio
approaches, light-front holography constructs an effective
Hamiltonian based on insights from string theory, and has

been shown, notwithstanding criticisms (e.g., [7,8]), to
be a valuable approximation to QCD [9]. The efforts to
improve light-front holography can be roughly cast into
two categories: one is on the holographic QCD side (see [9]
and the references therein); the other is on the light-front
Hamiltonian side (see [10] for a recent review).
The present work falls into the second category. We

generalize the light-front holographic QCD of Brodsky
and de Téramond to incorporate quark masses and quarko-
nium spin structure by extending the “soft-wall” light-front
Hamiltonian. Our model introduces a phenomenological
effective Hamiltonian. Key elements include a confining
potential in the longitudinal direction and an effective one-
gluon exchange interaction derived from light-front QCD
[11,12]. It was long pointed out by Lepage and Brodsky [1]
that the dominant ultraviolet (UV) physics can be analyzed
through one-gluon exchange. Here, we combine the one-
gluon exchange physics at short distance and the holographic
QCD at long distance. The present work improves our
previous calculation [11] by including the evolution of the
strong coupling as a function of invariant 4-momentum
transfer. Incorporating the running coupling not only imple-
ments important QCD physics, but also improves the UV
asymptotics of the kernel. In particular, a previous non-
covariant UV counterterm is now removed and the hyperfine
structure is readily improved as we present in this work.
Themotivation of the present work is multifold. As stated,

we supplement the light-front holographic QCD interaction
with one-gluon exchange, rather than patching the holo-
graphic wave functions with, e.g., spin structures (see, e.g.,
Ref. [13] and the references therein). The spectroscopy and
the wave functions are obtained as a natural output. More
importantly, we solve the problem using the basis function
method [5]. Effectively, we are applying BLFQ to a phe-
nomenological interaction that emulates features of QCD.
Indeed, this work is a direct extension of the BLFQ approach
to positronium in QED [14]. Finally, we acknowledge the
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similarities between our work and the relativistic bound-state
models in QCD (e.g., Refs. [15–19]), especially the light-
front QCD bound-state models [20–25].
We organize this paper as follows. In Sec. II, we

introduce the theoretical model, including the longitudinal
confinement and a running strong coupling. The formu-
lation and the methods are detailed in Sec. III. Section IV
summarizes and analyzes the numerical results, including
the spectroscopy, decay constants and radii. Section V
presents LFWFs and light-cone distributions computed
from them. We summarize the paper in Sec. VI.

II. HOLOGRAPHIC CONFINEMENT
PLUS ONE-GLUON EXCHANGE

We extend light-front holography by introducing realis-
tic QCD interactions such as the one-gluon exchange
interaction with running coupling [11]. In addition we
include finite quark masses, important for heavy flavors, as
well as a longitudinal confining potential to complement
the transverse holographic confining potential. Spin struc-
ture and excited states (radial and angular) naturally emerge
from the one-gluon exchange and its nonperturbative
interplay with the confining potential [12]. The effective
Hamiltonian Heff ≡ PþP−

eff − P⃗2⊥ reads,

Heff ¼
k⃗2⊥ þm2

q

x
þ k⃗2⊥ þm2

q̄

1 − x
þ κ4ζ⃗2⊥

−
κ4

ðmq þmq̄Þ2
∂xðxð1 − xÞ∂xÞ

−
CF4παsðQ2Þ

Q2
ūs0 ðk0ÞγμusðkÞv̄s̄ðk̄Þγμvs̄0 ðk̄0Þ: ð1Þ

where ζ⃗⊥ ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1 − xÞp

⃗r⊥ is Brodsky and de Téramond’s

holographic variable [9], ∂xfðx; ζ⃗⊥Þ ¼ ∂fðx; ζ⃗⊥Þ=∂xjζ⃗,
CF ¼ ðN2

c − 1Þ=ð2NcÞ ¼ 4=3 is the color factor for the
color singlet state. κ is the strength of the confinement,
and mq (mq̄) is the mass of the quark (anti-quark). Q2¼
−ð1=2Þðk0−kÞ2−ð1=2Þðk̄0−k̄Þ2 is the average 4-momentum
squared carried by the exchanged gluon. In terms of
kinematical variables,

Q2¼1

2

 ffiffiffiffi
x0

x

r
k⃗⊥−

ffiffiffiffi
x
x0

r
k⃗0⊥

!
2

þ1

2

 ffiffiffiffiffiffiffiffiffiffi
1−x0

1−x

r
k⃗⊥−

ffiffiffiffiffiffiffiffiffiffi
1−x
1−x0

r
k⃗0⊥

!
2

þ1

2
ðx−x0Þ2

 
m2

q

xx0
þ m2

q̄

ð1−xÞð1−x0Þ

!
þμ2g: ð2Þ

A. Longitudinal confinement

In Eq. (1), the term κ4ζ⃗2⊥ ≡ κ4xð1 − xÞ⃗r2⊥ is the “soft-
wall” confinement from light-front holography, which is
introduced in the massless case. For heavy quarkonium, the

quark masses and the longitudinal dynamics cannot be
ignored2 and we introduce a longitudinal confining inter-
action to complete the transverse holographic confinement.
The form of the longitudinal confinement is designed to
produce a power-law behavior for the distribution ampli-
tudes ϕðxÞ ∼ xað1 − xÞb at the endpoints (cf. [26–28]).
We fix the strength of the longitudinal confinement by

matching to the transverse holographic confinement in the
nonrelativistic limit. Therefore, rotational symmetry is
retained in the heavy-quark limit. Another advantage of
this choice for the longitudinal confinement is that it
produces, without the one-gluon exchange, analytic sol-
utions. Therefore, it affords computational convenience
within the basis function method (see Sec. III B). In the
massless limit, our wave function (without the one-gluon
exchange) reduces to the soft-wall wave function of
Brodsky and de Téramond3 [9]. It has been suggested that
in the massless limit one can choose the longitudinal
confining strength to be independent of the quark mass
to reproduce the Gell-Mann-Oakes-Renner relation [26].
Our proposal shares some similarities with other proposals
in the literature [28–30].

B. Running coupling

As mentioned, we employ a running coupling based on
the 1-loop pQCD. The running coupling is a function of
the 4-momentum transfer squared Q2 ¼ −q2 > 0 (see also
Fig. 1), viz

αsðQ2Þ ¼ 1

β0 lnðQ2=Λ2 þ τÞ

≜ αsðM2
zÞ

1þ αsðM2
zÞβ0 lnðμ2IR þQ2Þ=ðμ2IR þM2

zÞ
; ð3Þ

where β0 ¼ ð33 − 2NfÞ=ð12πÞ, with Nf the number of
quark flavors, Nf ¼ 4 for charmonium and Nf ¼ 5 for
bottomonium. A constant τ is introduced to avoid the
pQCD IR catastrophe. Similar ansätze are widely adopted
in the literature (e.g. [18]). Λ and constant τ are obtained by
fixing the strong coupling at the Z-boson mass αsðM2

zÞ ¼
0.1183 and at Q ¼ 0. In practice, we choose αsð0Þ ¼ 0.6,
corresponding to μIR ¼ 0.55 GeV for Nf ¼ 4. We find,
however, the spectra are not sensitive to the choice of αsð0Þ
within the range of 0.4 ≤ αsð0Þ ≤ 0.8.
Introducing the evolution of the strong coupling imple-

ments asymptotic freedom for the one-gluon exchange
through a natural dependence on the covariant 4-momentum
transfer Q2. The use of the running coupling also serves to

2Without a longitudinal confinement, the longitudinal excita-
tions will not be separated by mass gaps. In light-front holog-
raphy (no quark mass nor one-gluon exchange), these excitations
are degenerate and the system is two-dimensional in nature.

3See Eq. (8) for our normalization convention.
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improve the UV asymptotics of the one-gluon exchange
kernel. In our previous work [11], we used a fixed coupling.
The effective one-gluon exchange kernel, as derived from the
leading-order effective Hamiltonian approach, produces a
divergent results, as is well known in the literature (e.g.,
Refs. [31–33]). This divergence is the result of the high
momentum contribution from the spin non-flip part of the
Hamiltonian matrix elements. It can be easily seen from the
power counting in transverse momenta. In Ref. [11], we
adopted a UV counterterm proposed by Krautgärtner, Pauli
and Wölz (KPW) [31] (cf. Refs. [14,34–36]). However, the
KPW counterterm is noncovariant, and introduces a major
source of violation of the rotational symmetry that is
manifested in the spectrum. With asymptotic freedom, the
UV divergence associated with the one-gluon exchange
kernel is absent. Therefore, the noncovariant KPW counter-
term is not needed and we omit it in the present work. As
we will see below, the rotational symmetry is improved
compared to the results of Ref. [11].

III. HAMILTONIAN FORMALISM

A. Eigenvalue equation

The mass spectrum and the wave functions are obtained
from diagonalizing the effective light-front Hamiltonian
operator (1):

Heff jψhðP; j;mjÞi ¼ M2
hjψhðP; j;mjÞi: ð4Þ

where P ¼ ðP−; Pþ; P⃗⊥Þ is the 4-momentum of the par-
ticle; j and mj are the particle’s total angular momentum
and the magnetic projection, respectively.

The Fock space representation of quarkonium reads:

jψhðP; j;mjÞi ¼
X
s;s̄

Z
1

0

dx
2xð1 − xÞ

Z
d2k⊥
ð2πÞ3 ψ

ðmjÞ
ss̄=hðk⃗⊥; xÞ

×
1ffiffiffiffiffiffi
Nc

p
XNc

i¼1

b†siðxPþ; k⃗⊥ þ xP⃗⊥Þ

× d†s̄iðð1 − xÞPþ;−k⃗⊥ þ ð1 − xÞP⃗⊥Þj0i:
ð5Þ

The coefficients of the expansion, ψ
ðmjÞ
ss̄=hðk⃗⊥; xÞ are the

valence sector LFWFs with s (s̄) representing the spin of
the quark (antiquark). The quark and antiquark creation
operators b† and d† satisfy the canonical anticommutation
relations,

fbsiðpþ;p⃗⊥Þ;b†s0i0 ðp0þ;p⃗0⊥Þg¼fdsiðpþ;p⃗⊥Þ;d†s0i0 ðp0þ;p⃗0⊥Þg
¼2pþð2πÞ3δ3ðp−p0Þδss0δii0 ;

ð6Þ

where δ3ðp − p0Þ≡ δðpþ − p0þÞδ2ðp⃗⊥ − p⃗0⊥Þ. We have
kept only the qq̄ sector while, in principle, the qq̄g sector
can be included by, e.g., a perturbative treatment [37]. The
hadron state vector can be orthonormalized according to the
one-particle state [cf. Eq. (6)]:

hψhðP; j;mjÞjψh0 ðP0; j0; m0
jÞi

¼ 2Pþð2πÞ3δ3ðP − P0Þδjj0δmj;m0
j
δhh0 : ð7Þ

Then, the orthonormalization of the LFWFs reads,

X
s;s̄

Z
1

0

dx
2xð1 − xÞ

Z
d2k⊥
ð2πÞ3 ψ

ðm0
jÞ�

ss̄=h0 ðk⃗⊥; xÞψ
ðmjÞ
ss̄=hðk⃗⊥; xÞ

¼ δhh0δmj;m0
j
: ð8Þ

Note that different hadron states with the same quantum
numbers, such as J=ψ and ψ 0, are also orthogonal. It is also
useful to introduce LFWFs in the transverse coordinate
space:

~ψ ss̄ð⃗r⊥; xÞ≡ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1 − xÞp Z

d2k⊥
ð2πÞ2 e

ik⃗⊥ ·⃗r⊥ψ ss̄ðk⃗⊥; xÞ ð9Þ

with orthonormalization,

X
s;s̄

Z
1

0

dx
4π

Z
d2r⊥ ~ψ

ðm0
jÞ�

ss̄=h0 ð⃗r⊥; xÞ ~ψ
ðmjÞ
ss̄=hð⃗r⊥; xÞ ¼ δhh0δmj;m0

j
:

ð10Þ

Parity P is a dynamical symmetry on the light front,
as it swaps light-front coordinate x− and light-front time

FIG. 1. The effective running coupling implemented in this
work. Data points correspond to various experimental measure-
ments. The vertical and horizontal lines mark the location of Mz

and αsðM2
zÞ.
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xþ. The mirror parity mP ≡RxðπÞP, which only flips one
of the transverse spatial coordinates (x1), survives as a
kinematical symmetry in light-front dynamics. The eigen-
value equations related to the mirror parity m̂P and the
charge conjugation Ĉ are [11,31,35,38]:

m̂PjψhðP; j;mjÞi ¼ ð−iÞ2jPjψhð ~P; j;−mjÞi;
ĈjψhðP; j;mjÞi ¼ Cjψ h̄ðP; j;mjÞi: ð11Þ

HereP andC are the parity and charge conjugation quantum
numbers, respectively; andP ¼ ðP−; Pþ; P1; P2Þ is the total
4-momentum of the particle, ~P ¼ ðP−; Pþ;−P1; P2Þ. h̄
represents the antiparticle of hadron h.
Particles are further classified by the eigenvalues of the

intrinsic angular momenta fJ⃗ 2;J zg, viz

J⃗ 2jψhðP; j;mjÞi ¼ jðjþ 1ÞjψhðP; j;mjÞi;
J zjψhðP; j;mjÞi ¼ mjjψhðP; j;mjÞi: ð12Þ

On the light front, J⃗ 2 is dynamical and, in principle, it
should be diagonalized simultaneously with the light-front
Hamiltonian operator P− to obtain the total angular
momentum j [3]. Accordingly, in a truncated and regular-
ized model space, J⃗ 2 may not commute with P−, and the
rotational symmetry is only approximate (see Fig. 4). To
extract j, we compute the mass eigenvalues from all mj

sectors. We count the multiplicity of the nearly-degenerate
mass eigenstates with the further help of the mirror parity,
charge conjugation and other relevant quantities.4 For this
scheme to succeed, the degeneracies have to be observed in
the results with sufficient accuracy to resolve ambiguities.

B. Basis representation

The eigenvalue equation (4) can be solved in a basis
function approach [5,11]. The basis function approach is
particularly advantageous for the present model with the
holographic confining potential, since, in the absence of the
one-gluon exchange term, it can be diagonalized analyti-
cally. On the other hand, the confining interactions in
momentum space are highly singular. The solutions can be
expressed in terms of the analytic functions ϕnm and χl. For
the transverse direction, we have [see Fig. 2(a)]:

ϕnmðq⃗⊥; bÞ ¼ b−1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4πn!
ðnþ jmjÞ!

s �
q⊥
b

�jmj

× expð−q2⊥=ð2b2ÞÞLjmj
n ðq2⊥=b2Þ expðimθqÞ;

ð13Þ

where q⃗⊥≜k⃗⊥=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1 − xÞp

, q⊥ ¼ jq⃗⊥j, θq ¼ arg q⃗⊥. La
nðzÞ

is the associated Laguerre polynomial. b is the harmonic
oscillator (HO) basis parameter in mass dimension.
Following Ref. [11], we choose b≡ κ to match the
confining strength. For simplicity, we will often omit the
label b though it is implicit throughout. In the longitudinal
direction, we have [see Fig. 2(b)]:

χlðx; α; βÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πð2lþ αþ β þ 1Þ

p
×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Γðlþ 1ÞΓðlþ αþ β þ 1Þ
Γðlþ αþ 1ÞΓðlþ β þ 1Þ

s

× x
β
2ð1 − xÞα2Pðα;βÞ

l ð2x − 1Þ: ð14Þ

Here Pðα;βÞ
l ðzÞ is the Jacobi polynomial. α and β are

dimensionless basis parameters. In the model, they are
α ¼ 2mq̄ðmq þmq̄Þ=κ2, β ¼ 2mqðmq þmq̄Þ=κ2. Again,

(a) (b)

FIG. 2. Left panel: the transverse basis function ϕnmðk⃗⊥; bÞ at b ¼ 1, n ¼ 5, arg k⃗⊥ ¼ 0; Right panel: the longitudinal basis function
χlðx; α; βÞ at α ¼ β ¼ 16.

4For example, the decay constants.
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we will drop the explicit dependence on α or β from
now on.
In the presence of the one-gluon exchange term, we use

these analytic functions as a basis to expand the LFWFs in,

ψ ss0=hðk⃗⊥;xÞ
¼
X
n;m;l

ψhðn;m;l;s;s0Þϕnm

�
k⃗⊥=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1−xÞ

p �
χlðxÞ: ð15Þ

Here the coefficients ψhðn;m; l; s; s0Þ are obtained from
diagonalization. The basis is constructed to conserve the
magnetic projection of the total angular momentum: mj ¼
mþ sþ s0.
Performing a 2D Fourier transformation gives the

LFWFs in coordinate space. The Fourier transformation
of a HO function is a HO function with a relative phase,
which simplifies the expression greatly.

~ψ ss0=hð⃗r⊥; xÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1 − xÞ

p X
n;m;l

ψhðn;m; l; s; s0Þ

× ~ϕnm

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1 − xÞ

p
⃗r⊥
�
χlðxÞ: ð16Þ

Here ~ϕnm is the 2D HO in coordinate space:

~ϕnmðρ⃗⊥; b−1Þ ¼ b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n!

πðnþ jmjÞ!

s
ðbρ⊥Þjmj

× expð−b2ρ2⊥=2ÞLjmj
n ðb2ρ2⊥Þ

× exp½imθρ þ iπðnþ jmj=2Þ�: ð17Þ

In practical calculations, the basis is truncated and wave
functions are obtained in the basis expansion. Following
Refs. [5,11,14], we truncate the transverse and the longi-
tudinal bases separately by their energies:

2nþ jmj þ 1 ≤ Nmax; 0 ≤ l ≤ Lmax: ð18Þ

As such, the Nmax-truncation provides a natural pair of UV
and IR cutoffs: ΛUV ≃ b

ffiffiffiffiffiffiffiffiffiffi
Nmax

p
, λIR ≃ b=

ffiffiffiffiffiffiffiffiffiffi
Nmax

p
, where

b ¼ κ is the oscillator basis energy scale parameter. Lmax
represents the resolution of the basis in the longitudinal
direction. Namely, the basis cannot resolve physics at:
Δx≲ L−1

max [14]. The complete basis is reached by taking
Nmax → ∞, Lmax → ∞.
The eigenvalues of the parity and charge conjugation

operators can be extracted from the basis representation of
the LFWFs as [11],

ð−iÞ2jP ¼ hψ−mj
jm̂Pjψmj

i
¼

X
n;m;l;s;s̄

ð−1Þmψ�
−mj

ðn;−m; l;−s;−s̄Þ

× ψmj
ðn;m; l; s; s̄Þ: ð19Þ

C ¼ hψmj
jĈjψmj

i
¼

X
n;m;l;s;s̄

ð−1Þmþlþ1ψ�
mj
ðn;m; l; s̄; sÞψmj

ðn;m; l; s; s̄Þ:

ð20Þ
C. Generalizing light-front holography

Before proceeding to the full diagonalization, it is worth
looking at the results without the one-gluon exchange, where
the solutions are analytical. The mass eigenvalues are:

M2
n;m;l ¼ ðmq þmq̄Þ2 þ 2κ2ð2nþ jmj þ lþ 1Þ

þ κ4

ðmq þmq̄Þ2
lðlþ 1Þ: ð21Þ

Here l is the longitudinal quantum number, not the orbital
angular momentum. The corresponding wave functions are

ψnmlðk⃗⊥; xÞ ¼ ϕnm

�
k⃗⊥=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1 − xÞ

p �
χlðxÞ: ð22Þ

States may be identified according to their mass spec-
trum with the help of parity P and charge conjugation C.
The quarkonium ground state (1S) is identified with n ¼ 0,
m ¼ 0, l ¼ 0:

ψgsðk⃗⊥; xÞ ¼ N exp½−k⃗2⊥=ð2κ2xð1 − xÞÞ�ðxð1 − xÞÞ2m2
q=κ2 :

ð23Þ
In the literature, a commonly-used way to incorporate
quark masses in the AdS/QCDwave function is through the
invariant mass ansatz (IMA) [39], viz,

N exp½−k⃗2⊥=ð2κ2xð1 − xÞÞ�
→ N0 exp½−ðk⃗2⊥ þm2

qÞ=ð2κ2xð1 − xÞÞ�: ð24Þ
Figure 3 compares the purely longitudinal part of our
ground-state wave function with that of the IMA wave
function. Our longitudinal wave function becomes almost
identical to the IMA wave function in both the chiral limit
and the heavy quark limit, except near the endpoints. This
reflects the fact that rotational symmetry is restored in the
nonrelativistic limit with our choice of longitudinal basis
functions.
The first excited state (1P) is identified with n ¼ 0,

m ¼ �1, l ¼ 0 or n ¼ 0, m ¼ 0, l ¼ 1, noting that for
heavy quarkonium, the term κ4=ðmq þmq̄Þ2lðlþ 1Þ is
small comparing to the remaining terms. There are four
1P states: χ0 (0þþ), χ1 (1þþ), χ2 (2þþ) and h (1þ−). Let us
focus on h and restrict the discussion to mj ¼ 0. From
Eq. (20), we conclude: −1 ¼ C ¼ ð−1Þmþlþ1ð−1Þsþ1,
where s is the total spin, viz s ¼ 0 for singlet and s ¼ 1
for triplet. Apparently, for both sets of quantum
numbers (m ¼ �1, l ¼ 0 or m ¼ 0, l ¼ 1), s ¼ 0. From
Eq. (19), −1 ¼ ð−1ÞjP ¼ ð−1Þmð−1Þsþ1, implying m ¼ 0.
Therefore, the correct quantum numbers for h meson (1þ−)
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are n ¼ 0, m ¼ 0, l ¼ 1 with a singlet spin configuration,
which is consistent with the nonrelativistic quantum num-
ber assignment 11P0. Note that the orbital motion is excited
through the longitudinal direction but not the transverse
direction. This cannot be obtained from IMA.5

IV. NUMERICAL RESULTS

We apply the model to heavy quarkonia (charmonium
and bottomonium), where the quark masses are large and
the radiative corrections are negligible. Therefore these are
ideal systems to test our model. The model parameters are
summarized in Table I.
As mentioned, we fixed αsð0Þ ¼ 0.6. For fixed Nmax and

Lmax, we use experimental data to fit the confining strength
κ and the effective quark mass mq (mc and mb) using the
mass eigenvalues in the mj ¼ 0 sector. We employ the
experimental values, compiled by the Particle Data Group
(PDG) [40], below the open charmor openbottom threshold.
We also introduced a small mass parameter μg ¼ 0.02 GeV
to regularize the integrable Coulomb singularity in the
energy denominator and to avoid numerical instability.6

As has been shown in previous work with fixed coupling,
the mass eigenvalues are converged with respect to μg → 0

within the numerical precision.
The effective Hamiltonian (1) is diagonalized for various

mj sectors. Figure 4 shows a representative spectrum as a
function of mj. The spectrum is symmetric with respect to
�mj, a consequence of the mirror parity symmetry (11).
The discrete quantum numbers mP ¼ ð−iÞ2jP and C are
computed to help identify states as mentioned. Total spin
h⃗s2i ¼ sðsþ 1Þ as an approximate quantum number is also
exploited. States with the same j but different mj’s are not
exactly degenerate owing to the violation of the rotational
symmetry. As is seen in Fig. 4, the approximate degener-
acies are easily visible, at least for low-lying states. So the
multiplicities, together with mP, C, s and the constraints:

jl − sj ≤ j ≤ lþ s; P ¼ ð−1Þlþ1; C ¼ ð−1Þlþs;

ð25Þ

can be employed to deduce the full set of quantum numbers
n2sþ1lj or jPC, where l is the total orbital angular
momentum, n the radial quantum number. We also
cross-check the state identification with the decay constants
and the wave functions themselves (see Sec. V).

FIG. 3. Comparison of the ground-state longitudinal wave
functions obtained from the invariant mass ansatz:

N1 expð− m2
q

2κ2xð1−xÞÞ and from BLFQ: N2ðxð1 − xÞÞ2m2
q=κ2 . We

convert the wave functions to those of the Brodsky-de Téramond
convention [9] by including a factor

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1 − xÞp

[cf. Eq. (8)].
Quark masses mq and conning strengths κ are taken from the fits
of Ref. [9] and this work (Sec. IV)

TABLE I. Summary of the model parameters (see text).

Nf

αs
ð0Þ

μg
(GeV)

κ
(GeV)

mq

(GeV)
rms

(MeV)
δjM
(MeV) Nexp

Nmax
¼ Lmax

cc̄ 4 0.6 0.02 0.966 1.603 31 17 8 32
bb̄ 5 0.6 0.02 1.389 4.902 38 8 14 32

FIG. 4. A representative bottomonium mass spectrum obtained
by diagonalizing the light cone Hamiltonian within various mj
sectors at Nmax ¼ Lmax ¼ 32. Even though the rotational sym-
metry is not exact, the approximate degeneracies are sufficient to
extract j. States with the same orbital angular momentum l tend
to cluster, as expected from the nonrelativistic quark model, even
though l is not a good quantum number, which is also helpful for
identifying states.

5In the literature, the longitudinal excitations are typically
obtained from modeling the spin structure via the spinor wave
function ūΓv. However, the longitudinal profile of the spinor
wave function is qualitatively different from the holographic
wave function.

6Our numerical method is designed such that no singularity is
encountered in the actual calculation. Nevertheless, we intro-
duced this parameter, smaller than all other energy scales, to
further tame the integrable singularity.
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A. Spectroscopy

The reconstructed spectra at Nmax ¼ Lmax ¼ 32 are pre-
sented in Fig. 5. In these figures, we use boxes to indicate the
spreads of themass eigenvalues from differentmj. The mean
values, marked by dashed bars, are defined as:

M≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

−j þM2
1−j þ � � � þM2

j

2jþ 1

s
; ð26Þ

where Mmj
is the mass eigenvalue associated with the

magnetic projection mj. This definition is motivated by
the covariant light-front analysis of relativistic bound states
in Refs. [33,41]. On the other hand, the mass spreads δjM≡
maxMmj

−minMmj
measure the violation of the rotational

symmetry. We also introduce the mean spread:

δjM ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Nh

Xj≠0
h

ðδjMhÞ2
s

:

�
Nh ≡

Xj≠0
h

1

�
ð27Þ

For charmonium (bottomonium) states evaluated by PDG
below the threshold, the mean mass spread is 17 MeV
(8 MeV), improving our previous results [11] by a factor of
∼3 (∼2). More comparison between the results of this work
and those of Ref. [11] is collected in Table II.
Our light-front Hamiltonian approach yields states with

high angular and radial excitations, which are not easily

accessible in some other methods. No exotic quantum
numbers emerge from our calculation, as is expected from
the two-body truncation. In bottomonium, predictions are
made for various states below the BB̄ threshold, as also
predicted in other approaches (e.g., [42–44]). The quality
of the spectra can be measured by the root mean squared
(r.m.s.) deviation from the experimentally measured values.
For charmonium (bottomonium), the r.m.s. mass deviation
is 31 MeV (38 MeV), improving the fixed coupling results
[11] by as much as ∼40% (∼20%). See Table II for further
comparisons. Our spectroscopy is competitive with those
obtained from other relativistic models [19,42–44]. Not
only are the mass spectra improved, the spread of the mass

FIG. 5. The reconstructed charmonium (left panel) and bottomonium (right panel) spectra at Nmax ¼ Lmax ¼ 32. The horizontal
and vertical axises are jPC and invariant mass in GeV, respectively. Model parameters are listed in Table I. Calculated states are
marked by boxes to represent the spread of the mass eigenvalues in mj owing to violation of the rotational symmetry (see text).
The mean mass spreads, i.e. the average heights of the boxes, are 17 MeVand 8 MeV for charmonium and bottomonium, respectively.
The r.m.s. deviations of the masses from the PDG values are 31 MeV and 38 MeV for charmonium and bottomonium, respectively.
See text for details.

TABLE II. Comparison of differences between fits and PDG
experimental data between results of Ref. [11] and those
presented here. δMcc̄ is the rms mass deviation for charmonium
from the PDG data. δjMcc̄ is the mean mass spread for
charmonium. “fix-αs (refitted)” improves the bottomonium fits
by ∼10 MeV.

δjMcc̄

δMcc̄
(rms) δjMbb̄

δMbb̄
(rms)

Nmax
¼ Lmax

fix-αs [11] 49 MeV 52 MeV 17 MeV a58 MeV 24
fix-αs (refitted) � � � � � � 15 MeV 48 MeV 24
running-αs 17 MeV 31 MeV 7 MeV 39 MeV 24
running-αs 17 MeV 31 MeV 8 MeV 38 MeV 32

aIn Ref. [11], this is misquoted as 50 MeV.
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eigenvalues δjM due to the violation of rotational sym-
metry, is also significantly reduced as mentioned. A related
issue is the quenching of the hyperfine splitting found
within the fixed coupling results. With the running cou-
pling, this issue is resolved and the hyperfine splittings are
consistent with the experimental values, as shown in Fig. 5
(cf. Fig. 6). Therefore, the violation of the rotational
symmetry is significantly reduced.
Figure 6 shows the trends of the charmonium mass

eigenvalues as functions of N−1
max (with Nmax ¼ Lmax). The

left panel presents the convergence trends of the ground-state
masses (ηc andJ=ψ). The right panel presents the convergence
trends for the hyperfine splittings between 1S (MJ=ψ −Mηc)
and 2S (Mψ 0 −Mη0c) states. Two sets of parameters are used:
the fix-parameter results use model parameters from the
Nmax ¼ Lmax ¼ 32 fit; the refit-parameter calculation
refits the model parameters for each Nmax ¼ Lmax. Smooth
extrapolations are made using three types of functions:
aþb=Nmaxþc=N2

max (solid), aþbexpð−cNmaxÞ (dashed),
aþ b expð−c ffiffiffiffiffiffiffiffiffiffi

Nmax
p Þ (dot-dashed). Both hyperfine split-

tings, 1S and 2S, show reasonable convergence in the
complete basis limit (N−1

max ¼ L−1
max ¼ 0).

Table III compares the spectroscopy obtained from
different Nmax ¼ Lmax fits. While results from different
Nmax ¼ Lmax are well converged, the r.m.s. deviation
decreases as Nmax ¼ Lmax increases. In the present work,
we adopt Nmax ¼ Lmax ¼ 32 for our presented results,
unless otherwise specified.

B. Decay constants

Decay constants are defined as the local vacuum-to-
hadron matrix elements:

h0jψ̄ð0Þγþγ5ψð0ÞjPðpÞi ¼ ipþfP; ð28Þ
h0jψ̄ð0Þγþψð0ÞjVðp; λÞi ¼ eþλ MVfV: ð29Þ

Here only the “good” currents (the “þ” component) are
used. The corresponding LFWF representation reads [1],

fP;V
2
ffiffiffiffiffiffiffiffi
2Nc

p ¼
Z

1

0

dx

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1 − xÞp Z

d2k⊥
ð2πÞ3 ψ

ðλ¼0Þ
↑↓∓↓↑ðx; k⃗⊥Þ: ð30Þ

For this calculation, we choose Nmax ¼ 8 for charmonium
and Nmax ¼ 32 for bottomonium, roughly corresponding to

FIG. 6. TheNmax convergence. The left panel compares the J=ψ and ηc mass eigenvalues as a function ofN−1
max (Nmax ¼ Lmax,mj ¼ 0)

for fixed and refitted parameters. For the former (“fix-parameter”), parameters are the same for all Nmax, and are chosen to be the fitted
values at Nmax ¼ 32. For the latter (“refit-parameter”), parameters are refitted for each Nmax. The right panel shows the hyperfine
splittingsMψðnSÞ −MηcðnSÞ as a function of N

−1
max (Nmax ¼ Lmax,mj ¼ 0) with fixed parameters. The PDG values are marked as crosses.

In both figures, different fitting functions, aþ b=Nmax þ c=N2
max (solid), aþ b expð−cNmaxÞ (dashed), aþ b expð−c ffiffiffiffiffiffiffiffiffiffi

Nmax
p Þ (dot-

dashed), are shown for the fix-parameter results. The refit-parameter results are simply connected by a straight line segments.

TABLE III. Model sensitivity with respect to the basis size Nmax ¼ Lmax. The model parameters fits and the r.m.s.
deviations are well converged as Nmax ¼ Lmax increases.

αsð0Þ Nf μg (GeV) κ (GeV) mq (GeV) rms (MeV) δjM (MeV) Nexp Nmax ¼ Lmax

cc̄ 0.6 4 0.02

0.985 1.570 41 15

8 states

8
0.979 1.587 32 21 16
0.972 1.596 31 17 24
0.966 1.603 31 17 32

bb̄ 0.6 5 0.02

1.387 4.894 48 6

14 states

8
1.392 4.899 41 6 16
1.390 4.901 39 7 24
1.389 4.902 38 8 32
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ΛUV≜κ
ffiffiffiffiffiffiffiffiffiffi
Nmax

p
≈ 1.7mq, whereΛUV is theUV regulator, and

mq is the heavy quark mass. This choice is motivated by the
competition between the needs for both a better basis
resolution and a lower UV scale since our model does not
incorporate radiative corrections.We also provide an indicator
for sensitivity by altering the basis truncation parameterNmax.
The resulting charmonium and bottomonium decay constants
are shown in Fig. 7, which also collects PDGvalues converted
from dilepton or diphoton decay widths [40], Lattice [43,45–
47] and Dyson-Schwinger/Bethe-Salpeter equations (DSE/
BSE or DSE, [48]; see also [49]) results for comparison. Our
results fall into the ballpark of the PDG values as well as those
from other approaches wherever available.

C. Radii

Classically and in nonrelativistic quantum mechanics, the
root-mean-square charge (mass) radius is the expectation
value of the displacement operator that characterizes the
charge (mass) distribution of the system. In quantum field
theory, no such local position operator is allowed and, instead,
the form factors are defined as the slope of the charge
(gravitational) form factor at zero momentum transfer:

hr2ci ¼ −6
∂

∂Q2
FchðQ2ÞjQ→0;

hr2mi ¼ −6
∂

∂Q2
FgrðQ2ÞjQ→0: ð31Þ

Remarkably, in LFWF representation [50], this definition
exactly restores the charge (mass) distribution interpretation
[12]. For example, for (pseudo)scalarmesons in the two-body
approximation,

hr2ci ¼
3

2
hb⃗2⊥i≜ 3

2

X
s;s̄

Z
1

0

dx
4π

×
Z

d2r⊥ð1 − xÞ2 ⃗r2⊥ ~ψ�
ss̄ð⃗r⊥; xÞ ~ψ ss̄ð⃗r⊥; xÞ;

ð32Þ

hr2mi ¼
3

2
hζ⃗2⊥i≜3

2

X
s;s̄

Z
1

0

dx
4π

×
Z

d2r⊥xð1− xÞr⃗2⊥ ~ψ�
ss̄ðr⃗⊥; xÞ ~ψ ss̄ðr⃗⊥; xÞ:

ð33Þ
Here ~ψ are LFWFs in transverse coordinate space.
ζ⃗⊥≜

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1 − xÞp

⃗r⊥ is Brodsky and de Téramond’s holo-

graphic variable [9], b⃗⊥≜ð1 − xÞ⃗r⊥ is Burkardt’s impact
parameter [51]. This relation is also valid when higher Fock
sector contributions are included if thewe define ζ⃗⊥ and b⃗⊥ in
the n-body Fock sector as,

ζ⃗2⊥≜
X
i

xið⃗ri⊥ − R⃗⊥Þ2; b⃗2⊥≜
X
i

eið⃗ri⊥ − R⃗⊥Þ2; ð34Þ

where R⃗⊥≜Pixi ⃗ri⊥ is the transverse center of the system,ei is
the charge number of the ith constituent, and

P
iei ≡Q.

Due to charge conjugation symmetry, the charge radii of
quarkoniumvanishes.Herewe define a fictitious charge radii
by considering only the charge of the quark. With this
definition, the “charge” radii are the same as themass radii in
the nonrelativistic limit, which suggests that their difference
is a pure relativistic effect. Figure 8 presents the r.m.s. charge
and mass radii of scalar and pseudoscalar mesons. In our
results, the mass radii are in general smaller than the charge
radii and the difference is reduced in the heavier system
(bottomonium). Fixed αs BLFQ results (BLFQ15, [11]) as

FIG. 7. The decay constants for vector and pseudoscalar
charmonia and bottomonia. The results are obtained with Nmax ¼
Lmax ¼ 8 for charmonium and Nmax ¼ Lmax ¼ 32 for bottomo-

nium, corresponding toUVcutoffsΛUV≜κ
ffiffiffiffiffiffiffiffiffiffi
Nmax

p
≈ 1.7mq,where

mq is the heavy quarkmass. Thewidths of the “error bars” are taken
to beΔfcc̄ ¼ jfcc̄ðNmax ¼ 8Þ − fcc̄ðNmax ¼ 16Þj for charmonium
and Δfbb̄ ¼ 2jfbb̄ðNmax ¼ 32Þ − fbb̄ðNmax ¼ 24Þj for bottomo-
nium. They are used to indicate the sensitivity with respect to the
basis truncation, rather than the full error estimates. Results from
PDG [40], Lattice [43,45–47] and Dyson-Schwinger equations
(DSE) [48] are provided for comparison.

FIG. 8. “Charge” and mass radii of (pseudo)scalar mesons (see
text). Results are obtained from extrapolating Nmax ¼ Lmax ¼ 8,
16, 24, 32 values. The numerical uncertainty is quoted as the
difference between the extrapolated result and the largest basis
result (Nmax ¼ Lmax ¼ 32). Charge radii from our earlier work
with fixd αs (BLFQ15, [11]) as well as other approaches [52,53]
are provided for comparison.
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well as earlier results from quenched lattice calculation [52]
and DSE [53] are included in Fig. 8 for comparison. Our
results are systematically smaller. From the trendwith respect
to basis truncation Nmax ¼ Lmax, UV physics and/or higher
Fock sector contributions may be expected to produce
significant corrections to our results for radii.

V. WAVE FUNCTIONS, AMPLITUDES
AND DISTRIBUTIONS

A. Light-front wave functions

Wave functions offer first-hand insight into the system.
They play a central role in evaluating hadronic observables
and light-cone distributions, and are an indispensable tool
for investigating exclusive processes in deep inelastic
scattering [13]. Compared with the widely used phenom-
enological LFWFs in the literature, our wave functions
generalize the AdS/QCD wave functions and provide
unified access to ground and excited states. In particular,
the spin structure is generated from the one-gluon exchange
and its interplay with the confining interaction.
In this section, we present the valence sector wave

functions. Heavy quarkonium is an ideal system to explore

the qualitative features of the wave functions, as they can be
compared with the familiar nonrelativistic quantum
mechanical wave functions. We show LFWFs with differ-
ent polarizations and spin alignments: ψλ

ss̄ðk⃗⊥; xÞ. For each
spin configuration, the orbital angular momentum projec-
tionml¼ λ−s1−s2 is definite (λ≡mj). Hence, the angular

dependence of the wave function factorizes: ψλ
ss̄ðk⃗⊥; xÞ ¼

Ψλ
ss̄ðk⊥; xÞ expðimlθÞ, with θ≡ arg k⃗⊥, k⊥ ≡ jk⃗⊥j. To visu-

alize the wave functions, we drop the phase expðimlθÞ,
while retaining the relative sign expðimlπÞ ¼ ð−1Þml for
negative values of k⊥. Namely, we plot:

Ψλ
ss̄ðk⊥; xÞ≡

�
Ψλ

ss̄ðk⊥; xÞ; k⊥ ≥ 0;

Ψλ
ss̄ð−k⊥; xÞ × ð−1Þml ; k⊥ < 0:

ð35Þ

Wealso define:ψλ
↑↓�↓↑ðk⃗⊥;xÞ≡ 1ffiffi

2
p ½ψλ

↑↓ðk⃗⊥;xÞ�ψλ
↓↑ðk⃗⊥;xÞ�.

The full set of results is collected in Supplemental Material
[54]. Here we focus on some selected results.
Figure 9 shows the LFWFs of the charmed ground-

state pseudoscalar ηcð1SÞ. There are two independent

FIG. 9. LFWFs of ηcð1SÞ. The left and central panels visualize LFWFs as functions of x and k⊥. The right panels show LFWFs in the
transverse plane kx–ky at x ¼ 0.5.
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components: ψ↑↓−↓↑ðk⃗⊥; xÞ and ψ↓↓ðk⃗⊥; xÞ ¼ ψ�
↑↑ðk⃗⊥; xÞ.

The number of independent components is not a priori
the same in different relativistic approaches. One of the
components is related to the nonrelativistic wave functions,
whereas the other one is of purely relativistic origin and
becomes negligible in the nonrelativistic limit. In covariant
light-front dynamics, the extra component depends on the
orientation of the quantization surface [37,41]. Its existence
ensures the rotational symmetry, albeit not exactly in our
model [41]. The Lorentz structure of the pseudoscalar wave
function can be written as [37,41],

ψ ss̄ðk⃗⊥; xÞ ¼ ūsðk1Þ
�
ϕ1ðk⊥; xÞγ5 þϕ2ðk⊥; xÞ

γþγ5
Pþ

	
vs̄ðk2Þ;

ð36Þ

where γþ ¼ γ0 þ γ3. Let n ¼ ð1; 0; 0;−1Þ be a null vector
perpendicular to the quantization surface. γþ ¼ nμγμ,
Pþ ≡ nμPμ, both depending on the orientation of the
quantization surface.
For charmonium, the dominate component is the singlet

ψ↑↓−↓↑ and its wave function resembles an S-wave. In the
nonrelativistic limit, the longitudinalmomentum fraction x is

reduced to: x → 1=2þ kz=ð2mqÞ. Hence, the x–k⊥ plots in
Fig. 9 (central panels) are reduced to the kz–k⊥ density plots
of the nonrelativistic wave function, i.e., a slice of the full 3D
wave function, in the nonrelativistic limit. To visualize the
full 3D wave function, one may rotate the density plot along

FIG. 10. Spin singlet LFWFs ψ↑↓−↓↑ðk⃗⊥; xÞ of charmonium (top panels) and bottomonium (bottom panels).

FIG. 11. Comparison of the spin singlet LFWFs ψ↑↓−↓↑ðk⃗⊥; xÞ
between charmonium (left) and bottomonium (right). The mag-
nitude of the wave function is in GeV−1.
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the vertical axis at k⊥ ¼ 0, applying a phase factor
expðimlθÞ as necessary.7 To facilitate the visualization
in 3D, we also plot the real part of the wave functions in
the transverse plane at x ¼ 0.5 in Fig. 9 (right panels).
Figure 10 shows the spin singlet components of the

charmed and beautified pseudoscalars ηcðnSÞ and ηbðnSÞ.
Each of them is the dominant component in their respective
systems. The 2S and 3S states show both longitudinal and
transverse nodes, consistent with the nonrelativistic wave
functions. Therefore, the nonrelativistic picture emerges in
heavy quarkonium as expected. Note that the node structure
spans a broad kinematical region [x ∼ ð0.2 − 0.8Þ] in
charmonium, extending beyond the naïve nonrelativistic
scope: jx − 1

2
j ≪ 1.

It is also interesting to compare the charmonium and
bottomonium LFWFs, as shown in Fig. 11. Bottomonium is
associated with a larger mass scale and is broader in the
transverse momentum direction. On the other hand, botto-
monium ismore nonrelativistic comparedwith charmonium,
and hence in the longitudinal direction its wave functions

are narrower. Recall that in the non-relativistic limit,
the quarkonium distribution amplitude is a Dirac delta:
ϕðxÞ ∝ δðx − 1

2
Þ.

Figure 12 compares selected spin configurations of the
charmed vector mesons: J=ψ with its “angular” excitation
ψð1DÞ. The dominant components of J=ψ are ψλ¼0

↑↓þ↓↑

[Fig. 12(a)] and ψλ¼1
↑↑ (see Supplemental Material [54])—

both are S-wave. The D-wave components [e.g. Figs. 12(b)
and 12(c)] are small but nonvanishing in J=ψ as a result of
S-D mixing. Similar subdominant components due to
relativity are often missing in phenomenological vector
meson wave functions,8 e.g., boosted Gaussian wave
function [13]. The dominant components of ψð1DÞ
are ψλ¼0

↑↓þ↓↑ [Fig. 12(d)], ψλ¼0
↓↓ [Fig. 12(e)], and ψλ¼1

↓↓

[Fig. 12(f)]. It is evident that they resemble the non-
relativistic D-waves Y20ðk̂Þ, Y21ðk̂Þ and Y22ðk̂Þ, where
Ylmðk̂Þ are the spherical harmonics. This becomes more

FIG. 12. Selected spin configurations of the charmed vectors J=ψ (top panels) and ψð1DÞ (bottom panels).

7This is where the relative sign at negative k⊥ is useful.

8Very often, the spin structure of the phenomenological vector
meson wave function is borrowed from the photon wave function,
which is obtained via light-cone perturbation theory.
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evident when LFWFs in the transverse plane (kx–ky) are
considered (see Fig. 13). Figure 14 displays ϒð2DÞ, a state
consisting of both radial and angular excitations.

B. Distribution amplitudes

LFWFs provide unique access to light cone distri-
butions by integrating out the transverse momentum [3].

Among those, the distribution amplitudes (DAs) and the
parton distribution functions (PDFs) control the exclu-
sive and inclusive processes at large momentum transfer,
respectively [1].
DAs are defined from the light-like separated gauge

invariant vacuum-to-meson matrix elements [1,55]. In
light-front formalism, the leading-twist DAs within the

FIG. 13. One component of ψð1DÞ: ψλ¼þ1
↓↓ in the x–k⊥ plane (left panel) and in the transverse plane kx–ky at x ¼ 0.5 (right panel).

FIG. 14. The 6 independent spin components ofϒð2DÞ. These wave functions show both radial and angular excitations, in accordance
with the quantum number identifications.

QUARKONIUM AS A RELATIVISTIC BOUND STATE ON … PHYSICAL REVIEW D 96, 016022 (2017)

016022-13



light-cone gauge for pseudoscalar and vector mesons9

are [55–57]:

h0jψ̄ðzÞγþγ5ψð−zÞjPðpÞiμ
¼ ipþfP

Z
1

0

dxeip
þz−ðx−1

2
ÞϕPðx; μÞjzþ;⃗z⊥¼0; ð37Þ

h0jψ̄ðzÞγþψð−zÞjVðp; λÞiμ
¼ eþλ ðpÞMVfV

Z
1

0

dxeip
þz−ðx−1

2
ÞϕVðx; μÞjzþ ;⃗z⊥¼0;ðλ ¼ 0Þ

ð38Þ

where fP;V are the decay constants (see Sec. IV B).MP;V are
the mass eigenvalues. eμλðpÞ is the polarization vector. The
nonlocal matrix elements as well as the DAs depend on the
scale μ, the renormalization scale or UV cutoff. In these
definitions, DAs are normalized to unity, viz:

Z
1

0

dxϕðx; μÞ ¼ 1: ð39Þ

In LFWF representation, DAs can be written as [1],

fP;V
2
ffiffiffiffiffiffiffiffi
2Nc

p ϕP;Vðx; μÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xð1 − xÞp Z≲μ2
d2k⊥
2ð2πÞ3 ψ

λ¼0
↑↓∓↓↑ðx; k⃗⊥Þ:

ð40Þ

Here ψ↑↓�↓↑ ¼ ðψ↑↓ � ψ↓↑Þ=
ffiffiffi
2

p
as defined above and the

minus (plus) sign is associatedwith the pseudoscalar (vector)
state. TheUVcutoff is taken ask⊥=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1 − xÞp ≲ μ (see, e.g.,

Refs. [1,31,58]). In the basis representation, the truncation
parameterNmax provides a naturalUV regulatorμ ≈ κ

ffiffiffiffiffiffiffiffiffiffi
Nmax

p
and no hard cutoff is needed in the integration.
Figure 15 compares the ground-state vector meson (J=ψ

and ϒ) DAs with predictions from BLFQ and AdS/QCD
with or without IMA [9,59–61]. Calculations using pure
basis functions are also presented (AdS/QCD + LC), which
turns out to be very close to AdS/QCD + IMA (cf. Fig. 3),
but very different from the full diagonalization (“BLFQ”)
results. In fact, the BLFQ results move towards the pQCD
asymptotics as the scale increases. Obviously, the one-
gluon exchange interaction plays an important role at short
distance as is expected. DAs of S-wave heavy quarkonia are
shown in Fig. 16. The difference between the pseudoscalar
mesons and the accompanying vector mesons are, again,
driven by the one-gluon exchange interaction. The shape of
the excited state DAs is consistent with what has been
obtained from other methods, e.g. QCD sum rule [62],
wherever available. The basis functions are optimized for
long-distance physics, i.e., confinement, and DAs are
sensitive to short-distance physics. The mismatch as a
finite-basis effect is clearly visible around the endpoints in
these figures.
It is useful to compute the moments in order to

quantitatively compare with other approaches. The nth
moment is defined as,

hξni ¼
Z

1

0

dxð2x − 1ÞnϕðxÞ: ðξ≡ 2x − 1Þ ð41Þ

FIG. 15. Comparison of the longitudinal leading-twist distribution amplitudes of J=ψ (left) and Υ (right). The pQCD asymptotic is
given by 6xð1 − xÞ [1]. The AdS/QCD prediction of Brodsky and de Téramond is given by ð8=πÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xð1 − xÞp
[9]. For AdS/QCD + IMA,

we use parameters from Ref. [59] (cf. [61]) for J=ψ and our parameters κ, mq for ϒ. AdS=QCD þ LC adopts longitudinal confinement
to modify the AdS/QCD wave function, viz the basis functions. BLFQ further implements the one-gluon exchange. The BLFQ results
are with basis truncation Nmax ¼ Lmax ¼ 8, 32 as indicated in the legends. The corresponding UV cutoffs are μcc̄ ≈ 2.8, 5.5 GeV,
μbb̄ ≈ 3.9, 7.9 GeV.

9In the present work, we focus on the longitudinal DA for
vector mesons.
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Table IV compares the first few moments of selected
heavy quarkonia states obtained from various approaches.
Results from other approaches, including nonrelativistic
QCD (NRQCD, [63]), QCD sum rule (QCDSR,
[56,57,62]), light-front quark model (LFQM, [64]) and
Dyson-Schwinger/Bethe-Salpeter equations (DSE, [49]),
are shown for comparison. In all these approaches,
moments are computed at the effective heavy quark
mass scale μ≃mq, with the exception of DSE at
μ ¼ 2 GeV. We provide results at μ ≈ 1.7mq, correspond-
ing to Nmax ¼ Lmax ¼ 8 for charmonium and Nmax ¼
Lmax ¼ 32 for bottomonium. For the sake of conven-
ience, we also provide moments at the effective heavy
quark mass scale μ ¼ mq (“BLFQ*”) through simple
extrapolation (for charmonium) or interpolation (for
bottomonium). The 3σ (99.75% C.L.) extrapolation or
interpolation errors (prediction intervals) are included.
Our results are in reasonable agreement with various
other approaches, though relativistic models, including
ours, are systematically larger than those of NRQCD.
Results from pQCD asymptotics and AdS/QCD of
Brodsky and de Téramond (AdS/QCD, [9]) are not
particularly applicable for heavy quarkonia at the heavy
quark mass scale and are simply included for complete-
ness. The second moment can be used to estimate the
relative velocity of the partons: hv2i ≈ 3hξ2i, viz

cc̄∶ hv2ηci ∼ 0.36; hv2η0ci ∼ 0.54; ðμ ≈ 1.7mcÞ
bb̄∶ hv2ηbi ∼ 0.21; hv2η0bi ∼ 0.30; hv2η00bi ∼ 0.36:

ðμ ≈ 1.6mbÞ ð42Þ

C. Parton distributions

The quark parton distribution function (PDF)
qðx; μÞ is the probability of finding a collinear quark

carrying momentum fraction x up to scale μ. In the
light-front formalism, it can be obtained by integrating
out the transverse momentum of the squared wave
function:

qðx; μÞ ¼ 1

xð1 − xÞ
X
s;s̄

Z≲μ2
d2k⊥
2ð2πÞ3 jψ ss̄ðx; k⃗⊥Þj2: ð43Þ

Within the two-body approximation, the PDF and its
first moment are normalized to unity [cf. Eq. (8)]:

Z
1

0

dxqðx; μÞ ¼ 1;Z
1

0

dx½xqðx; μÞ þ ð1 − xÞqðx; μÞ� ¼ 1: ð44Þ

Figure 17 shows PDFs of (pseudo)scalar quarkonia.
They exhibit distinctive features compared with DAs. In
particular, there is no dip at x ¼ 1=2 in excited-state PDFs,
in contrast to DAs. There appear to be ripples on the
downward slopes of PDFs for excited states as may be
expected from contributions of longitudinally excited basis
functions.
The generalization of PDFs, known as generalized

parton distributions (GPDs), unifying PDFs and form
factors, provide more insights into the system, and are
directly related to experiments [51,65]. Wigner distri-
butions are more general quantities unifying GPDs and
the transverse momentum distributions. In principle,
all of them are accessible through LFWFs, at least in
some kinematical regime (e.g. [61]). For example, in
the zero skewedness limit, the impact parameter GPD
qðx; b⃗⊥Þ of Burkardt [51] is related to the LFWFs
simply by,

FIG. 16. The leading-twist distribution amplitudes of the S-wave charmonia (left) and S-wave bottomonia (right) at
Nmax ¼ Lmax ¼ 32. The corresponding UV cutoffs are μcc̄ ≈ 5.5 GeV, μbb̄ ≈ 7.9 GeV.
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TABLE IV. Comparison of heavy quarkonia moments from NRQCD [63], QCD sum rule [56,57,62], light-front quark model [64] and
DSE [49]. The DSE results are obtained at 2 GeV. Results from other approaches are evaluated at quark mass scale μ≃mq. The BLFQ
results are given at Nmax ¼ Lmax ¼ 8 for charmonium and Nmax ¼ Lmax ¼ 32 for bottomonium, roughly corresponding to UV cutoffs
μ ¼ κ

ffiffiffiffiffiffiffiffiffiffi
Nmax

p
≈ 1.7mq. For the convenience of comparison with other approaches, we also provide the extrapolated (ext.) or interpolated

(int.) results at the effective quark mass scale (BLFQ*). The 3σ (∼99.75% C.L.) statistical errors (prediction intervals) are included to
indicate the quality of the extrapolation or interpolation procedure. The pQCD asymptotics [1] hξniasy ¼ 3=ðnþ 1Þðnþ 2Þ and the AdS/
QCD results of Brodsky and de Téramond (AdS/QCD, [9]) hξniLFH ¼ 2ðn − 1Þ!!=ðnþ 2Þ!!, and the IMA modified AdS/QCD results
(IMA, [59,61]) are also provided for comparison.

NRQCD QCDSR LFQM DSE BLFQ* BLFQ AdS/QCD IMA pQCD

ηc

hξ2i 0.075(11) 0.070(7) 0.0084þ0.004
−0.007 0.10 0.096(13) 0.12 0.25 0.0058 0.20

hξ4i 0.010(3) 0.012(2) 0.017þ0.001
−0.003 0.032 0.019(2) 0.036 0.13 0.0084 0.086

hξ6i 0.0017(7) 0.0032(9) 0.0047þ0.0006
−0.0010 0.015 0.0036(27) 0.014 0.078 0.0018 0.047

hξ8i 0.0059 −0.0005ð46Þ 0.0068 0.055 0.00047 0.030
μ mc mc mc 2 GeV mc (ext.) 1.7mc ∞

J=ψ

hξ2i 0.075(11) 0.070(7) 0.082þ0.004
−0.006 0.039 0.096(20) 0.11 0.25 0.0058 0.20

hξ4i 0.010(3) 0.012(2) 0.016þ0.002
−0.002 0.0038 0.021(9) 0.030 0.13 0.0084 0.086

hξ6i 0.0017(7) 0.0031(8) 0.0046þ0.0005
−0.0010 7.3 × 10−4 0.0060(41) 0.011 0.078 0.0018 0.047

hξ8i 3.3 × 10−4 0.0015(15) 0.0053 0.055 0.00047 0.030
μ mc mc mc 2 GeV mc (ext.) 1.7mc ∞

η0c

hξ2i 0.22(14) 0.18þ0.005
−0.07 0.157(9) 0.179

hξ4i 0.085(110) 0.051þ0.031
−0.031 0.043(7) 0.059

hξ6i 0.039(77) 0.017þ0.016
−0.014 0.013(3) 0.025

hξ6i 0.0036(5) 0.012
μ mc mc mc mc (ext.) 1.7mc

ηb

hξ2i 0.070 0.052(2) 0.071 0.25 0.20
hξ4i 0.015 0.0081(61) 0.015 0.13 0.086
hξ6i 0.0042 0.0020(48) 0.0051 0.078 0.047
hξ8i 0.0013 0.0006(31) 0.0021 0.055 0.030
μ mb mb mb 2 GeV mb (int.) 1.6mb ∞

Υ

hξ2i 0.014 0.047(17) 0.061 0.25 0.20
hξ4i 4.3 × 10−4 0.0066(73) 0.012 0.13 0.086
hξ6i 4.4 × 10−5 0.0014(63) 0.0036 0.078 0.047
hξ8i 3.7 × 10−6 0.0004(30) 0.0014 0.055 0.030
μ mb mb mb 2 GeV mb (int.) 1.6mb ∞

η0b

hξ2i 0.082(13) 0.10
hξ4i 0.013(15) 0.022
hξ6i 0.003(10) 0.0068
hξ8i 0.0007(44) 0.0027
μ mb mb mb 2 GeV mb (int.) 1.6mb

FIG. 17. PDFs of (pseudo)scalar charmonia (left) and bottomonia (right) at Nmax ¼ Lmax ¼ 32. The equivalent UV cutoffs are
μcc̄ ≈ 5.5 GeV, μbb̄ ≈ 7.9 GeV.
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qðx; b⃗⊥Þ ¼
1

ð1 − xÞ2
X
s;s̄

j ~ψ ss̄ðb⃗⊥=ð1 − xÞ; xÞj2:

ðb⃗⊥ ¼ ð1 − xÞ⃗r⊥Þ ð45Þ

VI. SUMMARY AND DISCUSSIONS

We present a light-front model for quarkonium that
incorporates light-front holographic QCD and the one-gluon
exchange interaction with a running coupling. We solve the
model in the Hamiltonian approach with a basis function
expansion. We obtain mass spectroscopy and the light-front
wave functions. The spectroscopy agrees with the PDG data
within 30–40 MeVof r.m.s. mass deviation for states below
the open flavor threshold. The overall quality improves the
previous work that employed a fixed strong coupling and a
noncovariant counterterm. The wave functions reveal rich
structures, especially for excited states. Through analysis and
comparison, we find these structures are consistent with the
standard nonrelativistic picture. From these wave functions,
we also compute thedecay constants, r.m.s. radii, distribution
amplitudes, and parton distributions. Our results appear to be
in reasonable agreement with those from other approaches
wherever available.
This work is an attempt to improve light-front holographic

QCD approach by adding realistic QCD interactions. In
particular, we show that while rotational symmetry is broken
due to truncation, the extraction of angular momentum j is
feasible and reliable [35,38]. TheHamiltonian formalismand
the basis function approach enable us to access a wide range
of states, including radial and angular excited states extend-
ing over all known excited states and beyond. The obtained
light-front wave functions allow us to directly compute
hadronic distributions such as distribution amplitudes as
well as hadronic observables. It should be emphasized that
these attractive features are not limited to the present effective
model—they are the shared advantages within the light-front
Hamiltonian formalism [2].
We did not include self-energy in solving the heavy

quarkonia. However, radiative corrections may become
important in evaluating some observables as we employ
more realistic field-theory dynamics. The calculation of the
decay constants illustrates this particular challenge. As we
move to the light sector, the consistent inclusion of self-
energies and renormalization issues may become more
acute if one wants to address additional phenomena within
QCD such as chiral symmetry breaking. Nevertheless, we
believe the present work may serve as a substantial step for
developing an elaborate light-front model for hadrons as
relativistic bound states.
While the advantages of the basis function expansion is

obvious, it nevertheless requires more investigation. The IR
and UV scales are tied to the basis truncation parameter
Nmax and Lmax. Compared to the wave-equation approach,
the UVasymptotics is not easy to analyze. We typically rely

on extrapolation of the basis parameters as developed in
ab initio nuclear structure calculations [66]. In BLFQ, the
basis extrapolation requires further study. One investigation
was conducted in the context of strong coupling light-front
QED and the authors found robust basis extrapolations that
are consistent with the wave-equation approach [14]. The
coupling (α ¼ 0.3), the transverse basis as well as the one-
photon exchange kernel used in Ref. [14] are very similar to
the present model.
Future developments should focus on the inclusion of

higher Fock sectors and the nonperturbative renormaliza-
tion (see Ref. [10] for a recent review). In the top-down
approach, a systematic nonperturbative renormalization
scheme should be developed and nonpertubative dynamics
has to be addressed using efficient numerical methods.
Notable examples include the full basis light-front quan-
tization (BLFQ, [5]), the renormalization group procedure
for effective particles (RGPEP, [67,68]), the Fock sector
dependent renormalization (FSDR, [69,70]), and the light-
front coupled cluster method (LFCC, [71]). In the bottom-
up approach, one is motivated to design appropriate kernels
that incorporate important physics while preserving the
symmetries. Notable physics goals for hadrons include the
radiative corrections, asymptotic freedom and the dynami-
cal chiral symmetry breaking. Incorporating the running
coupling is the first step. In both approaches, the current
model may serve as a first approximation. See also
Refs. [72–76] for some recent works bridging other
approaches with the light-front approach.
The applicability of the current model is not restricted to

heavy quarkonium. Extensions to other meson and baryon
systems, in principle, are straightforward, although new
issues have to be addressed in each of these systems.
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APPENDIX A: LIGHT-FRONT COORDINATES

We adopt natural units throughout the article: ℏ ¼
c ¼ 1. We roughly follow the convention of Ref. [14].

QUARKONIUM AS A RELATIVISTIC BOUND STATE ON … PHYSICAL REVIEW D 96, 016022 (2017)

016022-17



The light-front coordinates are defined as x ¼
ðx−; xþ; x1; x2Þ≡ ðx−; xþ; x⃗⊥Þ, where x� ¼ x0 � x3.
The inner product of two 4-vectors is defined as:
a · b ¼ 1

2
a−bþ þ 1

2
aþb− − a⃗⊥ · b⃗⊥. It should be noted that

the determinant of the metric tensor is det g ¼ −ð1=4Þ.
The Lorentz invariant phase space measure is

Z
d4p
ð2πÞ4 ϑðp

0Þ2πδðp2 −m2Þ ¼
Z

d3p
ð2πÞ32p0

ϑðp0Þ

¼
Z

d2p⊥dpþ

ð2πÞ32pþ ϑðpþÞ;

ðm2 ≥ 0Þ ðA1Þ

where ϑðzÞ is the unit step function. The one-
particle state is normalized as: hp; j;mjjp0; j0; m0

ji ¼
2pþϑðpþÞð2πÞ3δ3ðp − p0Þδjj0δmj;m0

j
, where the Dirac delta

is defined as δ3ðpÞ≡ δðpþÞδ2ðp⃗⊥Þ.

APPENDIX B: FEW-BODY KINEMATICS

We define boost-invariant momenta from the single-
particle momenta fpþ

i ; p⃗i⊥g as,

xi ¼ pþ
i =P

þ;

k⃗i⊥ ¼ p⃗i⊥ − xiP⃗⊥:�
Pþ ¼

X
i

pþ
i ; P⃗⊥ ¼

X
i

p⃗i⊥
�

ðB1Þ

xi are the longitudinal light-front momentum fractions; and
ki⊥ are the transverse relative momenta. They satisfy:X

i

xi ¼ 1;
X
i

k⃗i⊥ ¼ 0: ðB2Þ

The n-body phase space integration measure factorizes:

Y
i

Z
d2pi⊥dpþ

i

ð2πÞ32pþ
i
ϑðpþ

i Þ

¼
Z

d2P⊥dPþ

ð2πÞ32Pþ ϑðPþÞ
Y
i

Z
1

0

dxi
2xi

Z
d2ki⊥
ð2πÞ3

× 2ð2πÞ3δ
�X

i

xi − 1

�
δ2
�X

i

k⃗i⊥
�
: ðB3Þ

The invariant mass squared of the n-body Fock state is

s≡ ðp1 þ p2 þ � � �pnÞ2 ¼
X
i

k⃗2i⊥ þm2
i

xi
: ðp2

i ¼ m2
i Þ

ðB4Þ

APPENDIX C: SPINORS

The u, v spinors are defined as,

usðpÞ ¼
1

2
ffiffiffiffiffiffi
pþp ðpþmÞγþχs;

vsðpÞ ¼
1

2
ffiffiffiffiffiffi
pþp ðp −mÞγþχ−s; ðC1Þ

where χþ ¼ ð1; 0; 0; 0ÞT, χ− ¼ ð0; 1; 0; 0ÞT; γ� ¼ γ0 � γ3;
s ¼ � is the light-front helicity. The u, v spinors defined
above are polarized in the z-direction (or longitudinal
direction):

Szu�ðpþ; p⃗⊥ ¼ 0Þ ¼ � 1

2
u�ðpþ; p⃗⊥ ¼ 0Þ;

Szv�ðpþ; p⃗⊥ ¼ 0Þ ¼∓ 1

2
v�ðpþ; p⃗⊥ ¼ 0Þ; ðC2Þ

Sz ≡ i
2
γ1γ2 and follow the standard orthonormality

ūsðpÞus0 ðpÞ ¼ 2mδss0 ;

v̄sðpÞvs0 ðpÞ ¼ −2mδss0 ;

ūsðpÞvs0 ðpÞ ¼ v̄sðpÞus0 ðpÞ ¼ 0; ðC3Þ

and completeness

X
s¼�

usðpÞūsðpÞ ¼ pþm;

X
s¼�

vsðpÞv̄sðpÞ ¼ p −m: ðC4Þ

Here are some useful identities:

ūs0 ðp0ÞγþusðpÞ ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
pþp0þp

δss0 ;

ūs0 ðp0Þγþγ5usðpÞ ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
pþp0þp

δss0signðsÞ: ðC5Þ

The spinor matrix elements for the one-gluon
exchange are collected in Table V (see also Table I
of Ref. [14]).

APPENDIX D: POLARIZATION VECTORS

1. Gauge bosons

The polarization vector of a gauge boson in light-cone
gauge Aþ ¼ 0 is:

εμλðkÞ ¼ ðε−λ ; εþλ ; ⃗ελ⊥Þ≜
�
2⃗ϵλ⊥ · k⃗⊥

kþ
; 0; ⃗ϵλ⊥

�
; ðλ ¼ �1Þ

ðD1Þ
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where ⃗ϵ�⊥ ¼ 1ffiffi
2

p ð−1;∓ iÞ. The polarization vector defined
here satisfies:

(i) kμε
μ
λðkÞ ¼ 0;

(ii) εμλðkÞε�λ0μðkÞ ¼ −δλ;λ0 ;
(iii) helicity sum:

X
λ¼�

εμ�λ ðkÞενλðkÞ¼−gμνþnμkνþnνkμ

n ·k
−

k2

ðn ·kÞ2n
μnν:

ðD2Þ

Here n ¼ ð1; 0; 0;−1Þ is a light-like 4-vector
(nμnμ ¼ 0) perpendicular to the light front.

2. Vector bosons

The polarization vector for the a vector boson:

eμλðkÞ ¼ ðe−λ ðkÞ; eþλ ðkÞ; e⃗λ⊥ðkÞÞ

≜

8>>><
>>>:

�
k⃗2⊥−m2

mkþ ; k
þ
m ; k⃗⊥m

�
; λ ¼ 0�

2⃗ϵλ⊥·k⃗⊥
kþ ; 0; ⃗ϵλ⊥

�
; λ ¼ �1

ðD3Þ

where m is the mass of the vector boson. The polarization
vector defined here satisfies:

(i) kμe
μ
λðkÞ ¼ 0;

(ii) eμλðkÞe�λ0μðkÞ ¼ −δλ;λ0 ;
(iii) spin sum:

X
λ¼0;�1

eμ�λ ðkÞeνλðkÞ ¼ −gμν þ kμkν

k2
: ðD4Þ
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TABLE V. Spinor matrix elements ūs0
1
ðp0

1Þγμus1ðp1Þv̄s2ðp2Þ
γμvs0

2
ðp0

2Þ. mq (ma) is the mass of the quark (antiquark). x ¼
pþ
1 =P

þ and x0 ¼ p0þ
1 =P

þ are longitudinal momentum fractions
of the quark, p⃗⊥ ¼ p⃗1⊥ − xP⃗⊥ and p⃗0⊥ ¼ p⃗0

1⊥ − x0P⃗⊥ are relative
transverse momenta. For convenience, we use the complex
representation for the transverse vectors, viz, p≜px þ ipy and

p�≜px − ipy.

s1 s2 s01 s02

ūs0
1
ðp0

1
Þγμus1 ðp1Þv̄s2 ðp2Þγμvs0

2
ðp0

2
Þ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1−xÞx0ð1−x0Þ

p

þ þ þ þ m2
q

1
xx0 þm2

a
1

ð1−xÞð1−x0Þ þ pp0�
xð1−xÞx0ð1−x0Þ

− − − − m2
q

1
xx0 þm2

a
1

ð1−xÞð1−x0Þ þ p�p0
xð1−xÞx0ð1−x0Þ

þ − þ − m2
q

1
xx0 þm2

a
1

ð1−xÞð1−x0Þ þ ðp0�
x0 þ p�

1−xÞðpx þ p0
1−x0Þ

− þ − þ m2
q

1
xx0 þm2

a
1

ð1−xÞð1−x0Þ þ ðp�
x þ p0�

1−x0Þðp
0

x0 þ p
1−xÞ

þ þ þ − ma
x0

ð1−xÞð1−x0Þ ðp
0

x0 −
p
xÞ

− − − þ ma
x0

ð1−xÞð1−x0Þ ðp
�
x − p0�

x0 Þ
− þ − − ma

x
ð1−xÞð1−x0Þ ðp

0
x0 −

p
xÞ

þ − þ þ ma
x

ð1−xÞð1−x0Þ ðp
�
x − p0�

x0 Þ
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