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The form factors of semileptonic By — a\(K\)¢T¢~, ¢ =, u, e transitions are investigated in the
framework of the light-cone sum rules with B-meson distribution amplitudes, which play an important role
in exclusive B decays. The B-meson distribution amplitudes, ¢, (@) are a model-dependent form, so we
consider four different parametrizations which can provide a reasonable description of ¢ () from QCD
corrections. The branching fractions of these transitions are calculated. For a better analysis, a comparison
of our results with the prediction of other models is provided.
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I. INTRODUCTION

Inclusive and exclusive decays of the B meson play a
perfect role in determination of fundamental parameters
used in the standard model (SM) and improve our studies
in understanding the dynamics of quantum chromody-
namics (QCD). Among all B decays, the semileptonic
decays occupy a special place since their theoretical
description is relatively simple. In this field, reliable
calculations of heavy-to-light transition form factors of
semileptonic B decays are very important in particle
physics. These form factors are also used to determine
the amplitude of nonleptonic B decays applied to evaluate
the CKM parameters as well as to test various properties
of the SM.

In the region of large momentum transfer squared, (g?)
heavy-to-light form factors are successfully investigated via
the Lattice QCD. But in small g2, other approaches are used
such as the light-cone sum rules (LCSR) [1-3]. In the usual
LCSR method, the correlation function is inserted between
the vacuum and light meson. As a result of this calculation,
the long distance dynamics is described by light-cone
distribution amplitudes (LCDAs) of light meson [4-12].
Still, there is very limited knowledge of the nonperturbative
parameters determining these LCDAs. Therefore, the main
uncertainty in estimating the form factors comes from the
limited accuracy of the LCDA parameters.

As the direct analogue of the LCDAs of light mesons, the
B-meson distribution amplitudes (DAs) were introduced to
describe generic exclusive B decays with the contribution
of the hard gluon exchange [13]. Based on the local OPE
and condensate expansion, the classical two-point sum
rules was used for the B-meson DAs already in the original
study [14]. The B-meson DAs emerge as universal non-
perturbative objects in many studies of exclusive B-meson
decays (for instance see [15]). An estimate of the inverse
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moment of two-particle DA, ¢, was also obtained by
matching the factorization formula to the LCSR for B —
yZv [16]. The shapes of the B-meson DA, ¢, depends on
the model and our knowledge of the behaviors of ¢, is still
rather limited due to the poor understanding of nonpertur-
bative QCD dynamics.

Using the LCSR technique and relating the B-meson
DAs to the B — n form factor, a new approach was
suggested in [17]. In this new LCSR, correlation function
was taken between the vacuum and B meson and it was
expanded in terms of B-meson DAs near the light-cone
region. Therefore, the link was established between the
B-meson DAs and transition form factors, which provide
an independent dynamical information on the B-meson
DAs. The new LCSR has been derived for B — =z, K and
B — p,K* form factors in the leading order including
the contributions of two- and three-particle DAs in [18].
Moreover, in this reference, the B-meson three-particle
DAs have been investigated and their forms have been
established at small momenta of light-quark and gluon.

In this paper, the heavy-to-light decays, B —
a\ (K¢t ¢~,¢ =e, p, 7, are described by the flavor-
changing neutral current (FCNC) processes via a b —
d¢ "¢ transition at the quark level which proceeds through
the electroweak penguin and box diagrams. The exclusive
FCNC B decays are important for development of new
physics and flavor physics beyond the SM. The main
purpose of this paper is to consider the form factors of the
FCNC B(,) — a,(K,) transition with LCSR approach,
using the B-meson DAs, and comparing these form factors
with those of other approaches, especially the usual LCSR.
Comparing form factor results between two independent
methods establishes input parameters and assumptions as
well as predictions of the conventional LCSR.

It should be noted that the physical state of the K (1270)
meson is considered as a mixture of two [*P;) and |'P,)
states and can be parametrized in terms of a mixing angle
Ok as follows [19],
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|K(1270)) = sin0g|>P;) + cos Og|' P;), (1)

where |*P))=|K4) and |'P,)=|K,) with different
masses and decay constants. Also, @ is the mixing
angle and can be determined by the experimental data.
There are various approaches to estimate the mixing angle.
In [20], the result 35° < |0k| < 55° was found, while in
[21], two possible solutions with |0x| ~ 33° and 57° were
obtained.

The contents of this paper are as follows: In Sec. II, the
effective weak Hamiltonian of the b — d¢* ¢~ transition is
presented. In Sec. III, we derive the By — a;(K )£ ¢~
form factors with the LCSR method using the B-meson
DAs. To achieve a better analysis, we consider four
different parametrizations for the shapes of the B-meson
|
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DAs, ¢.. The form factors of the B, — a;(K )" ¢~
decays are basic parameters in studying the exclusive
nonleptonic two-body decays and semileptonic decays.
Our numerical analysis of the form factors as well as
branching ratio values and their comparison with the
prediction of other approaches is provided in Sec. IV.

II. THE EFFECTIVE WEAK HAMILTONIAN
OF THE b — d¢* ¢~ TRANSITION

In the SM, the B(;—a;(K,)/"¢~ decay amplitude
is reduced to the matrix element defined as
(a1 (K, )¢+ ¢ [HE7Y|B ). The effective weak Hamiltonian
of the b — df™¢~ transition has the following form in
the SM,

10
~ViVia Z Ci (ﬂ)@(ﬂ)) ; (2)
i=3

where V ; and C;(u) are the CKM matrix elements and Wilson coefficients, respectively. The local operators are current-

current operators

15, QCD penguin operators O3 ¢, magnetic penguin operators O, and semileptonic electroweak

penguin operators Og ;9. The explicit expressions of these operators for the b — d¢*¢~ transition are written as [22]

01 = (dicj)y_. (€bi)y_4- 0, =

O3 = (db) V—AZ(QQ V-A>
q

Os = (Jb)V—AZ(Q‘I)WAv

(CZC)V—A(Eb)V—A’
O, = (G?ibj)v—AZ(%%')v—A’

(dib )V_AZ

V+A ’

0; = < (do**(1+ys5)b)F,, O3 = 92 my(d;0* (1 4 v5)T;ib;)G.
8 87
e - e - _
09 ) (db)V—A(”)Vv 010 ) (db)V—A(”)A’ (3)
8 8

where G, and F,, are the gluon and photon field strengths,
respectlvely, T ;; are the generators of the SU(3) color group;
and i and j denote color indices. Labels (V + A) stand for
7*(1 £ p°). The magnetic and electroweak penguin oper-
ators O7, and Og ( are responsible for the short distance
(SD) effects in the FCNC b — d transition, but the operators
|

GFa

Mz\/_

where dy, (1 — ys)b and dic,,q" (1 + y5)b are the transition
currents denoted with J) ™ and J}, respectively, in this
work. Equation (4) also contains two effective Wilson

Vi Vi |Gt dy, (1 = ys)bly,l + Cyody,(1

0;_¢ involve both SD and long distance (LD) contributions
in this transition. In the naive factorization approximation,
contributions of the O;_4 operators have the same form
factor dependence as Cy which can be absorbed into an
effective Wilson coefficient Cgff. Therefore, the matrix
element for the b — d# "¢~ transition can be written as

—_ m -. —_
—y5)bly,ysl - 2C%ffq—§dwﬂyq”<1 +75)bly,l|. (4)

[
coefficients C& and C§, where C$f = C; — C5/3 — Cs.

The effective Wilson coefficient Ceff includes both the SD
and LD effects as
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C§" = Cy + Ysp(q?) + Yip(g?). (5)

where Y, (g?) describes the SD contributions from four-quark operators far away from the resonance regions, which can be
calculated reliably in perturbative theory as [22,23]

1
Y5p(a?) = 0.1380(s) + h(in. 5)Co = 5 h(1,)(4C; +4Cy +3C5 + )

1 2
- Eh(O, 5)(22,[3C) + Co] + C5 +4Cy) + §(3C3 +Cy+3Cs + Co), (6)
where s = ¢*/m2, . = m./my, Co = —A.(3C; + C3) +3C3 + C4 + 3Cs + Cq, A = V‘%, Ay = Vubgzd, and
2, 4 . 2 5+ 4s 25(1 + 5)(1 = 2s)
— 22 i) = Sn(s) In(1 =) = — " qn(1 —s) — I
(s) = =5* =3 Liz(s) =3 In(s) In(1 —s) 301 2y) n(l-s) 30 =521 £ 2) n(s)
54 9s — 652
B e 7
30— +29) 9

represents the O(a,) correction coming from one gluon exchange in the matrix element of the operator Oy [24], while
h(i,.,s) and h(0,s) represent one-loop corrections to the four-quark operators O;_g [25]. The functional form of the
h(m.,s) and h(0,s) are as

8 m, 8 8 4
(g, s) = ——In—2 = “Ins, +—+~
(Mg, s) 9", g +27+9x
\/1 —x+1 . 4mé
2 ( —— ‘ 71'), for x==-<1
~5 @+ - vizd 3
2arctanm, for xz%’f>l,
8§ 8 4 4
h(0.s) = 5= 51n @—§1ns+§m (8)

The LD contributions, Y, 5(g?), from four-quark operators near the uii, dd, and c¢ resonances cannot be calculated from the
first principles of QCD and are usually parametrized in the form of a phenomenological Breit-Wigner formula as [22,23]

3 T _ T .
Vinl(e?) = 2 Wim By, m(0.93¢, + €)Y il L
2 2 2 r 2 2 r
a Vi=y(Ls)p(2s) mVI -q - lmvi Vi Vi=p,w mV[ -4q - lmvi Vi
I
IIL B, — a,(K,)¢*#~ FORM FACTORS (usually Vacuum), and J;' = iy,ysd is the interpolating
WITH THE LCSR current of the axial-vector meson a,. The external momenta

of the interpolating and transition currents, J,' and J y-Al T>,

are p and g, respectively, and P> = (p + q)* = m%. The
leading-order diagram for B — a,#*#~ decays is depicted
in Fig. 1.

First, we start with the two-point correlation function to
compute the form factors of the B — a,£* ¢~ via the LCSR
and then explain how to extract the B — K transition form
factors. The correlation function is constructed from the
transition currents JY = and J! as follows:

p
u /
l_IV—A(T)

w o (P.q)
d

T
. . . . . aq
In this definition for the correlation function, 7 is the
time-ordering operator, |0) is an appropriate ground state FIG. 1. Leading-order diagram for B — a,£" ¢~ decays.

N "/ d*xe? (0| T{J5 (x)7. T (0)}[B(P)).  (10)
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According to the general philosophy of the QCD sum
rules and its extension (light-cone sum rules), the above
correlation function should be calculated in two different
ways. In phenomenological or physical representation, it is
calculated in terms of hadronic parameters. On the QCD
side, it is obtained in terms of DAs and QCD degrees of
freedom. The LCSR for the physical quantities like form
factors are acquired equating coefficient of the sufficient
structures from both representations of the same correlation
function through the dispersion relation and applying Borel
transformation and continuum subtraction to suppress the
contributions of the higher states and continuum.

To obtain the phenomenological representation of the
correlation function, a complete set of intermediate states
with the same quantum number as the current J},' is inserted
in Eq. (10). Isolating the pole term of the lowest axial vector
a; meson and applying Fourier transformation, we get
|

; . 24(q°
(DY BP)) = g Prp? L)

B—

* .
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" (p. q)
1 . _
= O Pl (P (LT B(P))
aj
+ higher states. (11)

The matrix element, (0|J,'(p)la;(p)), is defined as

(017 (0)|ay (P)) = fayma,Eu (12)

where f, and ¢, are the leptonic decay constant and
polarization vector of the axial vector meson a;, respectively.

The transition matrix element, (a; (p)|J, —AM) |B(P)), can be
parametrized via Lorentz invariance and parity considera-
tions as [26]

igj, (mp — my,)Vi(q°)

* .

. &P . e P
+i————(P+p),Va(q?) + 2im,, 7%[‘/3(612) - Vo(q?)].

mpg — ma]

(a1(p)|Ti|B(P)) = 2i€,uape™ P*p'T (%) + [e(mf — mg,) — (7 - P)(P + ), T2(q?)

2

q
+ (e -P)|g ——1
(&7 P) |4y my —m

g* is the momentum transfer squared of the Z boson

(photon). It should be noted that V((0) = V;3(0) and
the identity 6,75 = 5 €,,450 (€p123 = 1) implies that
T,(0) = T,(0) [26]. Moreover, V3 can be written as a
linear combination of V; and V,:

HV—A _ falma] 2A
wo =3 7 X
pr—md "~ |mp—m,

Vz(q2)
mp — ma,

falma]

+ i

T _
I, =

pm—my,

> (P+ ), |T5(q°). (13)

aj

I
mp — ”lal mpg ”lal 1%
Y —1V,

Vi(g?) = Vi(q*) - 5 (¢%). (14)

2mal a
Using Egs. (12) and (13) in Eq. (11), and performing
summation over the polarization of a; meson, we obtain

(qz)eﬂuaﬂpapﬁ - lVl (q2)(mB — My, )g;w

2m,, Vo(q?)
(P+p),P,—i—"—5—=

3 q,P,| + higher states,
q

2 2 X [2T1 (qz)e;waﬁpapﬂ - lT2(q2)(m12'3 - m%, )gm/

—iT5(¢*)q,P,] + higher states. (15)

To calculate the form factors A, V(i =0,1,2) and T;(j = 1,2,3), we will choose the structures eﬂmﬂP“p/’, Gy

(P+p),P.. q,P,, from I, and €,,,;P*p”, g,,, and g, P, from IT,

written as

Lw» Tespectively. For simplicity, the correlations are

H/‘J/D_A(pv q) = ng;w + HZG/JL/(I/]Pap/} + H3(P + p)yplz + H4qﬂPl/ R s
H;fu(P, q) = Hllg/w + Héeuvaﬁpapﬂ + ngypv +e (16)
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Now, we consider the QCD part of the correlation  where § = ¢ — m,v, and v is the four-velocity of the B
functions in Eq. (10) based on light-cone OPE in the = meson. Also, up to 1/m, corrections in HQET, the state of
heavy quark effective theory (HQET). After the transition  the B-meson |B(P)), and the b-quark field b(x) are
to HQET, the correlation functions are written as [18] substituted by the state |B(v)) and the effective field

e~imvxp (x), respectively. Therefore, the correlation func-
HX[A(T)(p, q) = ﬁX—MT) (p,qG)+O(1/my), (17)  tions in the heavy quark limit, (m, — o), become

M (p.4) = i/d4xei”‘x<0|7{ﬁ(x)7,475iSd(X)n(1 —75)h,(0)}[B(v)).

M (p. @) = i/d“xei’"x<0|T{ﬁ(X)m75iSd(X)%q’7(1 +75)1,(0)}[B(v)). (18)

From Eq. (18) a convolution of a short-distance part with the matrix element of the bilocal operator is obtained between the
vacuum and B(v)-state as:

1, (p. 4) = i/d4xei”"‘ X A1ur5i8a(x)7,(1 = 75)} 15 (Olita(x) 1 (0) | B(v)).
I, (p. ) = i/d“xei”'x X {1ur5iSa(x)0,,q" (1 + ¥5)} 5 (Olitg(x) 1,5 (0)|B(v)). (19)

The full-quark propagator, S,(x), of a massless quark in the external gluon field in the Fock-Schwinger gauge is as follows:

'k, [k ! 1 1
=1 —lkx ) MU __ MV . 2
S,4(x) l/(2”)4e {k2 A dvG,, (vx) [2k4}éa v y]} (20)

In addition, the DAs of the B meson are as [27]:

_ __imeB © we " iovx _xﬁ —
Oy OB} = =52 [ et (1 )0, =T 0. 0) |

(081G g OB =722 [ [ azemtosscral [, =y, = w0)

X 0, — X,V X7, — X
—io;, ¥y — MXA + Tl — %M YA:| (1+ ”)75} , (21)
vX vX fa
where [18]
Mg o o g —ok
lPA<CU, §) = lPv(ab f) = 6—(1)‘0‘5 e “, Xa(w,8) = 6—(035(20) - é’)e "0,
22 _wie
Yi(0,8) = =5 8(Twy — 130 + 3&)e . (22)
24w

Our knowledge of the behaviors of ¢ (w) at small w is still rather limited due to the poor understanding of nonperturbative
QCD dynamics. To achieve a better understanding of the model dependence of ¢ (@) in the sum rule analysis, we consider
the following four different parametrizations for the shapes of the B-meson DA ¢, [14,28-30]:

@
Praf@) = oo,
,

0
1k 1 2(g-1) ®
= - Ink|, k=——,
¢4n(®) drag k2 + 1|2+ 1 2 1 GevV
20)2 2 2(0
— —(@/)) i
(p+,lll(a)) a)ow% e ) w1 \/7_1' )
0] W, — @ 4w,
w) = 0w, — w), ) = 23
@yv(®) 0003 /02w, — @) (2 ) 2T 4. (23)

016018-5



S. MOMENI and R. KHOSRAVI

The determination of coefficient @y, which constitutes the
most important theory uncertainty in the B-meson LCSR
approach, will be discussed for each of the four models in the
next section.

The corresponding expression of ¢_(w) for each model
is determined by

o_(@) = 1§¢+<w/(s>. (24)
0

These parametrizations can provide a reasonable descrip-
tion of ¢ (w) at small w due to the radiative tail developed
from QCD corrections.

Inserting the full propagator and B-meson DAs pre-
sented in Egs. (20) and (21), respectively, in the
correlation functions [Eq. (19)], traces and then integrals
should be calculated. To estimate these calculations, we

have used x, — i%. In addition to this, for terms
n

containing a factor of vx in the denominator, we have
used the following trick: in order not to have any
singularity at ».x =0, the integral of these wave

PHYSICAL REVIEW D 96, 016018 (2017)

functions in the absence of the exponential should cancel.
Hence, for these terms only, one can write

. . a .
ezav.x N et(w‘x _ 1 — iU.X/ dketkv.x7 (25)
0

and the rest of the calculation is similar to the presented
one. Note that the subtracted 1 does not contribute.
After completing the integrals and matching them
with the hadronic representation below the continuum
threshold s(, through the dispersion relation and apply-
ing Borel transform with respect to the variable p? as

”12
1 >” (=D e
p*—m? L(n) (M?)"”

00 (26)

in order to suppress the contributions of the higher
states, the form factors are obtained via the LCSR. For
instance, the form factor V; is presented here:

Sfemp "y /ffo M? d _ A s
Vilg*) = - w2 do|— e |+ L (1 = u)¥y ——e
1(4%) oo (mg —m) <" Uy % ¢i(@) et | +L|(L-u)¥y e
2u—1 d _  mgp(1—2u) S : R :
—W(TA —Tv)%e m* 4 2M2 (3XA - YA>€ M +63M2XA6 M
2 2 M4
x | mg(1 + 30) — 2my +W (27)

The explicit expressions for the other form factors are
presented in the Appendix.

Finally, with a little bit of change in the previous steps,
such as the change in the quark spectator (# — s), we can
easily find similar results for the form factors of the B, —
K4 and B; - K,z decays.

The form factors of the B, — K (1270)¢" ¢~ transitions
with the mixing angle 6 are defined as [31]

fK1(1270) = C, sinOg fKia 4+ Cycos O fK15,  (28)

TABLE 1. The coefficients C; and C, for each form factor of

B, — K,(1270).

Form factors o C,

A Vl V2 mp —ng, mp —nig,
’ ’ mBS—mKIA VIIBS—YIIK]B

VO MKix MK\

mg, mg,
T, Ts 1 1
T, méj—mim m%s _mim
my —mil . —mil

where fKi1(1270) fKia and fKis stand for the form factors
A Vi(i=0,1,2),T,(j=1,2,3) of B;—K;(1270),
B, — K, and B; — K p decays, respectively. The coef-
ficients C; and C, related to each form factor of the B, —
K(1270) decay are given in Table 1.

IV. NUMERICAL ANALYSIS

In this section, our numerical analysis of the form factors
A, V; and T; are presented for the B, — a,(K,)¢"¢~
decays. The values are chosen for masses in GeV as
mp = (527+£0.01),m, = (123 +£0.04), my, = (1.27 %
0.01), m, =0.11 and m, = 1.77 [32], mg, = (131 &
0.06), mg = (1.34+0.08) [33]. The leptonic decay

TABLE II. The values of @, for each model in MeV.

Model I | I v
wo (for B — a;) 23515 24613 2591 2174
wy (for By > Ki) 254127 26712 281133 23413
wo (for By — Kyp) 282733 29813% 31373  259°%
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— PQCD
— — Model IlT

Model I == Model II
Model VI

— PQCD
Model VI

Model I = * = Model Il — — Model 111‘

— PQCD
Model VI

Model I = - = Model Il — — Model m|

0.5

0.5

B—a,

0.2 T T T T T T T T 0.2

0.26

0244 °

q*(Gev?)

FIG. 2. Dotted, dot-dashed, dashed, solid (black) curves show the form factors A, calculated with the B-meson DAs, whose values at

g* = 0 have been fixed to the prediction from the PQCD (blue).

constants are taken as: f, = (0.24 £0.01) GeV, fg, =
(025+0.01) GeV,  fg,, = (0.194£0.01) GeV  [33],
f5=1(0.184£0.02) GeV [34], and fp =(0.23+0.03) GeV
[35]. Moreover, sy, = (2.55 +0.15) GeV? is used for the
continuum threshold [33]. The values of the parameters /I%
and o of the B-meson DAs are chosen as 12 = (0.11 =&
0.06) GeV? [14] and o = 1.4+ 0.4 [28]. The Borel
parameter in this article is taken as 1.5 GeV? < M? <
4 GeV2. In this region, the values of the form factors A, V;
and T; are stable enough. The uncertainties which origi-
nated from the Borel parameter M? in this interval are
about 1%.

Having all these input values and parameters at hand, we
proceed to carry out numerical calculations. As can be seen
in Eq. (23), the B-meson DAs, ¢, in the four cases are
related to the parameter @, whose value is dependent on the

model. In order to determine the parameter @, for the B —
a,¢7¢~ decay, we match the values of the form factor
AB~a in ¢> = 0, estimated with the four models of the B-
meson DAs ¢, with AB~%(0) = 0.26 & 0.09 computed
from the PQCD as a different method [35], and derive the
values of the coefficient @, for each model. Also, taking
AB:=Ki4(0) = 0.25 £ 0.10 and AB:=Ki5(0) = 0.18 £ 0.08
evaluated via the PQCD [35], and performing the same
procedure as the B — a; decay for B, - K, and B, —
K,p transitions, the values of the parameter w, are
calculated for these decays. The values of the parameter
w, for three aforementioned decays are given in Table IL
Figure 2 shows the form factors AB=4 AB:=Ki and
AB:=Kis with the four models of the B-meson DAs ¢
whose values at zero momentum transfer have been fixed to

TABLE IIl.  The B, — a, (K4, K, ) form factors at zero momentum transfer in the four models of the B-meson DAs, ¢., .

Model AB—»al Vlli—ml Vg—ml V(I)%—»m Tl]?—ml _ T§—>a1 T?—»a,

I 0.26 £ 0.09 0.42£0.13 0.22 £0.07 0.11 £0.03 0.25 £0.08 0.22 £0.06
I 0.26 £ 0.09 0.51 £0.16 0.25 £0.08 0.13 £0.04 0.30 £ 0.09 0.25 £0.07
I 0.26 +0.09 0.54 £0.17 0.28 £0.09 0.27 £0.08 0.34 £0.11 0.29 £0.09
VI 0.26 +0.09 0.40+0.13 0.20 £ 0.06 0.11 £0.03 0.24 +0.07 0.21 £0.06
Model AB:—Kia st—ﬂ(m Vgx—’KlA Vgx—’KlA fo—’Km _ Tgs—’Km T:‘;B.v_)KlA

I 0.25£0.10 0.35£0.12 0.15 £ 0.05 0.12 £0.04 0.27 £0.09 0.24 £0.08
I 0.25£0.10 0.37£0.13 0.18 £0.05 0.11 £0.03 0.32 £0.11 0.27 £0.09
I 0.25£0.10 0.45£0.15 0.22 £0.07 0.12£0.04 0.39 £0.13 0.33 £0.12
VI 0.25 +£0.10 0.33 £0.11 0.13 £0.04 0.11 £0.03 0.25 +£0.09 0.21 £0.07
Model ABs—Kis st—”(m Vgs—}Km Vgx—”(m Tfs—’Km _ Tgs—ﬂ(m Tgs—’Km

I 0.18 £0.08 0.28 £0.10 0.12 £0.04 0.07 £0.02 0.22 £0.08 0.19 £0.07
I 0.18 £0.08 0.33 £0.12 0.15£0.05 0.10 £ 0.03 0.28 £0.10 0.25 £0.09
I 0.18 £0.08 0.38 £0.14 0.20 £ 0.07 0.12 £ 0.03 0.33 £0.11 0.30 £0.11
VI 0.18 £0.08 0.27 £0.08 0.11 £0.03 0.09 £0.02 0.21 £0.07 0.18 £0.05
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TABLE IV. Transition form factors of the B(s) — (K4, K )¢ "¢~ at g> = 0 in various methods.

Approaches AB—>u1 Vf—»al Vé}—m] V(l)?—ml T?—»al _ Tf—m] Té?—m]
PQCD [35] 0.26 +0.09 0.43 £0.16 0.13 £0.04 0.34+0.16 0.34 £0.13 0.30 £0.17
LCSR [36] 042 +£0.16 0.68 £0.13 0.31 £0.16 0.30 £0.18 0.44 +0.28 0.41+£0.18
3PSR [37] 0.51 0.52 0.25 0.76 0.37 0.41
ABS_)K]A V?x—’KlA Vgx—’KlA vg.s—’KlA Tlfx_’KlA — fo_)K]A Tfs—’KlA
PQCD [35] 0.25£0.10 0.43 £0.19 0.11 £ 0.05 0.36 £0.18 0.34 £0.15 0.30£0.13
ABs—Kis V?\—’Km Vg\_’KIB Vg.‘—’Km T‘]B\—’Km _ Tg.‘—’Km Tg\—’Km
PQCD [35] 0.18 £ 0.08 033 +0.14 0.03 +0.03 0.42 £0.16 0.26 £0.11 0.17 £ 0.08
TABLE V. The parameters [a, 5] obtained for the form factors of the B — a; transition in the four models.
Model A(g?) Vi(g®) Va(q?®) Vo(q®) Ti(q%) T,(q°) T5(q%)
1 [1.33, 0.57] [0.87, 0.38] [1.01, 0.53] [1.04, 0.29] [1.11, 0.21] [1.25, 0.48] [1.13, 1.10]
1I [1.51, 0.50] [1.15, 0.36] [1.38, 0.54] [1.28, 0.26] [1.29, 0.47] [1.23, 0.29] [1.29, 0.94]
I [1.70, 0.64] [1.20, 0.46] [1.28, 0.73] [1.15, 0.31] [1.36, 0.52] [1.30, 0.35] [1.62, 0.87]
v [1.34, 0.46] [0.88, 0.30] [1.03, 0.42] [1.08, 0.22] [1.41, 0.17] [1.31, 0.38] [1.14, 0.88]

the predictions from the PQCD. In this figure, blue lines
show the form factors predicted by the PQCD method.

Now, by inserting the values of the masses, leptonic
decay constants, continuum threshold, Borel mass, the
parameters of the B-meson DAs such as @, and other
quantities that appear in the form factors, we can calculate
the form factors of B, — a,(K 4, Kp) decays at zero
momentum transfer. Taking into account all the uncertain-
ties, the numerical values of the form factors A, V; and T';
for aforementioned decays in g> =0 are presented in
Table III for the four models of the B-meson DAs, ¢, .
The main uncertainty comes from @, the decay constant
fa, (k> fk,,)» and B-meson mass.

So far, several authors have calculated the form factors of
the B(y) — a; (K4, K15)¢ "¢~ decays via differen frame-
works. To compare the results, we should rescale them
according to the form factor definitions in Eq. (13).
Table IV shows the values of the rescaled form factors
at ¢g> =0 from different approaches. Considering the
uncertainties, our results for the form factors of these
decays are in a good agreement with those of the PQCD in
most cases (except V, and V(). However, there is not
good agreement between our results with the LCSR with
a;-meson DAs [36].

The LCSR calculations for the form factors are trun-
cated at about 0<¢g? <8 GeV?. To extend the g¢>

TABLE VI. The same as Table V but for B, - K, transition.

Model A(q®) Vi(q*) Va(q?) Vo(q?) T\(4%) T»(q%) T5(4%)

I [1.16, 0.53] [0.98, 0.24] [1.14, 0.39] [0.96, 0.34] [1.30, 0.17] [1.09, 0.46] [0.95, 1.17]
I [1.44, 0.56] [1.31, 0.32] [1.20, 0.49] [1.25, 0.34] [1.34, 0.28] [1.33, 0.35] [1.08, 0.91]
111 [1.56, 0.72] [1.52, 0.31] [1.37, 0.76] [1.32, 0.43] [1.46, 0.50] [1.38, 0.39] [1.12, 0.98]
VI [1.18, 0.42] [1.01, 0.45] [1.15, 0.31] [0.99, 0.27] [1.33, 0.13] [1.11, 0.36] [0.96, 1.03]
TABLE VII. The same as Table V but for B; — K, transition.

Model A(q) Vi(q*) Va(q?) Vo(q?) T\(q%) T5(q%) T5(4%)

I [0.83, 0.48] [0.62, 0.29] [0.75, 0.49] [0.77, 0.37] [0.96, 0.31] [0.78, 0.37] [0.63, 1.47]
I [1.03, 0.50] [0.81, 0.35] [0.81, 0.41] [0.93, 0.40] [0.99, 0.28] [0.99, 0.28] [0.71, 1.14]
111 [1.08, 0.63] [0.90, 0.28] [0.80, 0.77] [0.96, 0.42] [1.01, 0.56] [0.91, 0.24] [0.38, 1.04]
VI [0.87, 0.37] [0.66, 0.22] [0.81, 0.39] [0.82, 0.29] [0.98, 0.23] [0.84, 0.28] [0.66, 1.18]
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TABLE VIII. The parameters F;(0), «, and f obtained for the
average form factors of the B(;) — a;(K) transitions.

Form factor F;(0) a B

[AB=ar AB—K) [0.26, 0.30] [1.51, 1.17] [0.53, 0.45]
[Vf_’“',VfﬁK'] [0.46, 0.48] [1.05, 1.43] [0.36, 0.16]
[Vg_"”’ Vgs_’Kl} [0.23, 0.23] [1.18, 1.08] [0.55, 0.43]
[Vg_’“l,vg\_’l(l] [0.25, 0.15] [1.17, 1.01] [0.28, 0.30]
[Tf_’al,T?"'_'K'] [0.28, 0.40] [1.32, 1.18] [0.36, 0.25]
(T8~ r%-%]  [0.28,040]  [1.29, 1.08]  [0.38, 0.27]
[Tg_’al’Tf»‘_’Kl} [0.24, 0.34] [1.32, 0.86] [0.83, 1.02]

dependence of the form factors to the full physical region,
where the LCSR results are not valid, we find that the sum
rules predictions for the form factors are well fitted to the
following function,

PHYSICAL REVIEW D 96, 016018 (2017)

where F;(0), a, and f are the constant fitted parameters.
The values of the parameters [a,f] are presented in
Tables V, VI, and VII for B — a;, By, — K4, and
B, — K, respectively. The values of parameter F;(0)
expressed the form factor results at g> = 0 were listed in
Table III before.

By averaging the values of the form factors derived from
the four models of the B-meson DAs ¢ at some points of
¢*, and then extrapolating to the fit function in Eq. (29), we
can investigate average form factors. The parameters F;(0),
a, and f3 for the average form factors of By — a;(K) are
given in Table VIIIL. For the B, — K, "¢~ transition, the
average form factors are calculated at 0y = 45°. Figure 3
shows the form factors with the four models, for instance
Vo(g?) and T, (q*) with respect to g2, on which blue lines
display the average form factors. Considering the uncer-
tainties, the average form factors Vj(¢®) and T (g?) of the
B, — a,(K,) decays with their uncertainty regions are

displayed on ¢” in Fig. 4.

F;(0) .
2\ 1

Fi(q*) = T Py pray pry (29) Now, we are ready to evaluate the branching

g/, g7/, ratio values for the By — a;(K,)Z"¢~ decays. The
’ Average - Model I — - — Model II — — Model III‘ ’ Average "ttt Model I — - — Model II — — Model III‘
Model VI Model VI
0.549
0.6
B~K, .6, = 7

0.5

10

4 6 8 10

0 2
0’ (Gev?) q*(Gev?)
Average - Model I — - — Model II — — Model III Average - Model I — - — Model II — — Model III
Model VI Model VI
19 1.2 /|
i Vs 7
Bﬂa1 B5—>K1,ek:? P ,

14

q*(Gev?)

FIG. 3.
factors.

q*(Gev?)

The form factors V and T of B(y) — a, (K,) on ¢*> with the four models (black color). Blue lines show the average form
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FIG. 4. The average form factors Vjy and T of B — a 1(K}) decays with their uncertainty regions.

expression of the double differential decay rate
d’T'/dg*dcos @, for the By — a;(K;) transitions can
be found in [26,38]. This expression contains the
Wilson coefficients, the CKM matrix elements, the
form factors related to the fit functions, series of
functions, and constants. The numerical values of the
Wilson coefficients are taken from Ref. [39]. The
corresponding values are listed in Table IX in
the scale u = m,. The other parameters can be found
in [26]. After numerical analysis, the dependency
of the differential branching ratios for B — a, "¢~
on ¢* using the average form factors, with and without
LD effects, is shown in Fig. 5 for the charged

In Table X, we present the branching ratio values for
the muon and tau without and with LD effects using the
form factors derived in the four models of ¢.. We also
estimate the branching ratio values with the average form
factors (AFF). For B, — K, transitions, we have calcu-
lated the average value of branching ratios in the region
35° < |0k| < 55°. Here, we should also stress that the
results obtained for the electron are very close to those of
the muon; and for this reason, we only present the
branching ratios for the muon in our table. In Ref. [36]
via the LCSR with a;-meson DAs, the branching ratio
values of B — autuy~ and B — a;tt” decays by
considering SD + LD effects are predicted (2.52 +

lepton case. 0.62) x 107 and (0.31 £0.06) x 107, respectively.
TABLE IX. Central values of the Wilson coefficients used in the numerical calculations.

C, &) Cs Cy Cs Cs cett Cy Cio
—0.248 1.107 0.011 -0.026 0.007 —0.031 -0.313 4.344 —4.669
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FIG.5. The differential branching ratios of the semileptonic B — a,(K,)£*¢~ for £ = u, v decays on ¢*> with and without LD effects
using the average form factors.

Our results are in good agreement with its prediction for
tau case.

In summary, we calculated the transition form factors
of the B(;) — a,(K,)£ "¢~ decays via the LCSR with the
B-meson DAs, ¢, in four models. The main uncertainty
comes from the @, as a parameter of the B-meson DAs.
We estimated the branching ratio values for these decays.

The dependence of the differential branching ratios on g?
were investigated. The results for the branching fraction
of B— a;t™7" are in good agreement with the usual
LCSR method in Ref. [36]. However, there is not good
agreement between our results for the form factors of the
B — a; decays in ¢> =0 with those of the LCSR
method.

TABLE X.  Branching ratio values of the semileptonic B(y) — a, (K )¢ ¢~ decays without and with LD effects using the form factors
in the four models as well as the average form factors (AFF).

Only SD effects model-I model-1I model-III model-VI AFF

BR(B — au*pu~) x 108 2.46 £0.54 2.77 £0.58 2.96 £ 0.62 2.43 £0.50 2.82 £0.62
BR(B — K u*tu~) x 108 3.12£0.58 341 £0.82 3.64 £0.94 3.09 £0.57 3.45+0.90
BR(B = a;tt77) x 10° 0.23 £ 0.05 0.25 £0.05 0.29 £ 0.06 0.22 £0.04 0.27 £0.06
BR(B - K tt77) x 10° 0.40 £ 0.09 0.44 £0.10 0.49 £0.11 0.39 +0.08 0.43 +£0.10
SD + LD effects model-I model-II model-III model-VI AFF

BR(B — au*tu~) x 108 2.82 +£0.65 3.18£0.74 3.40 £ 0.81 2.79 £ 0.64 3.26 £ 0.81
BR(B - Ky u~) x 108 3.80£0.83 4.16 £ 091 4.44 £0.97 3.76 £0.82 424 £0.95
BR(B — a;t777) x 10° 0.24 £ 0.05 0.26 +0.05 0.31 +£0.06 0.23 £ 0.04 0.29 £ 0.06
BR(B — K tt77) x 10° 0.45£0.10 0.50 £ 0.11 0.54+0.12 0.44 +0.09 0.49 +0.11
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APPENDIX: EXPLICIT EXPRESSIONS FOR THE FORM FACTORS

In this appendix, the explicit expressions for the form factors of B — a,£"¢~ decays are given.
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T5(q*) = fBﬂe"ﬂfg{/”0 do Ffﬂ (a)/)e_MLZ - (i
famal 0 o "

A 1 M2 m
+£|:(1—2u)(W+W—W
+(1 _2”)<52M2+53M2_53M4

where

4o M2 B 20 (M? + M)

PHYSICAL REVIEW D 96, 016018 (2017)

e M2

M2 GM* sM*

> (P4 —Py)e ™ + 76_
O

)@ @)= .(@)

c

2
20 O-M )(XA - ZYA)e_ﬁ:| },

ﬁz/%da/wdw/wfﬁ,
0 0 o' - 5

o' = omy and m% = m3(1 + o) — ¢*/5, also

c
_ 2 2 ~
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