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We study the leptonic and semileptonic D-meson decays (D → lþνl and D → Kð�Þlþνl) in the
framework of covariant quark model with built-in infrared confinement. We compute the required
form factors in the entire kinematical momentum transfer region. The calculated form factors are
used to evaluate the branching fractions of these transitions. We determine the following ratios of the partial
widths: ΓðD0 → K−eþνeÞ=ΓðDþ → K̄0eþνeÞ ¼ 1.02, ΓðD0 → K−μþνμÞ=ΓðDþ → K̄0μþνμÞ ¼ 0.99 and

ΓðDþ → K̄0μþνμÞ=ΓðDþ → K̄0eþνeÞ ¼ 0.97 which are in close resemblance with the isospin invariance
and experimental results.
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I. INTRODUCTION

The semileptonic decays involve strong as well as
weak interactions. The extraction of Cabibbo-Kobayashi-
Maskawa (CKM) matrix elements from these exclusive
decays can be parametrized by form factor calculations. As
jVcdj and jVcsj are constrained by CKM unitarity, the
calculation of semileptonic decays ofD-mesons can also be
an important test to look for new physics. The decay D →
Kð�Þlþνl provides accurate determination of jVcsj. Thus,
the theoretical prediction for the form factors and their q2-
dependence need to be tested. A comprehensive review of
experimental and theoretical challenges in study of had-
ronic decays of D and Ds mesons along with required
experimental and theoretical tools [1] provide motivation to
look into semileptonic decays in this paper.
Recently, BESIII [2–5] and BABAR [6] collaborations

have reported precise and improved measurements on
semileptonic form factors and branching fractions on
decays of D → Klþνl and D → πlþνl. A brief review
of the earlier work and present experimental status of
D-meson decays are given in [7]. Also there are variety of
theoretical models available in the literature for the com-
putation of hadronic form factors. One of the oldest models
is based on the quark model known as ISGW model for
CP violation in semileptonic B meson decays based on the
nonrelativistic constituent quark picture [8]. The advanced
version (ISGW2 model [9]) includes the heavy quark
symmetry and has been used for semileptonic decays of
BðsÞ, DðsÞ and Bc mesons. The form factors are also
calculated in lattice quantum chromodynamics (LQCD)
[10–15], light-cone sum rules (LCSR) [16–18] and LCSR
with heavy quark effective theory [19]. The form factor
calculations from LCSR provide good results at low

(q2 ≃ 0) and high (q2 ≃ q2max) momentum transfers. The
form factors have also been calculated for the process D →
Klνl in the entire momentum transfer range [15] using the
LQCD. Also recently the Flavour Lattice Averaging Group
(FLAG) have reported the latest lattice results for deter-
mination of CKM matrices within the standard model [20].
The form factors ofD;B → P; V; S transitions with P, V

and S corresponding to pseudoscalar, vector and scalar
meson respectively have been evaluated in the light front
quark model (LFQM) [21]. The form factors for D → P;V
are also computed in the framework of chiral quark model
(χQM) [22] as well in the phenomenological model based
on heavy meson chiral theory (HMχT) [23,24]. The form
factors of BðsÞ; DðsÞ → π; K; η have been evaluated in three
flavor hard pion chiral perturbation theory [25]. The form
factors for D → πeþνe have been computed in the frame-
work of “charm-changing current” [26]. The authors of

[27,28] have determined the form factors fKðπÞþ by globally
analyzing the available measurements of branching frac-
tions for D → KðπÞeþνe. The vector form factors for D →
Klνl were also parameterized in [29]. The evaluation of
transition form factors and decays of BðsÞ; DðsÞ →
f0ð980Þ; K�

0ð1430Þlνl has been done in [30,31] from
QCD sum rules. The computation of differential branching
fractions forDðsÞ → ðP;V; SÞlνl was also performed using
chiral unitary approach [32,33], generalized linear sigma
model [34,35] and sum rules [36]. Various decay properties
of DðsÞ and BðsÞ are also studied in the formalism of
semirelativistic [37–40] and relativistic [41–43] potential
models.
In this paper, we employ the covariant constituent quark

model (CQM) with built-in infrared confinement [44–49]
to compute the leptonic and semileptonic decays. The form
factors of these transitions are expressed through only few
universal functions. One of the key features of CQM is
access to the entire physical range of momentum transfer.
Our aim is to perform independent calculations of these
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decays including q2 behavior of the transition form factors,
leptonic decay constants of D and K mesons and ratios
of branching fractions for the decay D → Kð�Þlþνl and
D → πlþνl.
This paper is organized as follows. After a brief

introduction of the semileptonic D-meson decays in
Sec. I, in Sec. II we introduce the theoretical framework
of CQM and also discuss the method of extracting the
model parameters. In Sec. III, we give the definition of the
form factors for the decays D → Kð�Þlþνl. In Sec. IV for
numerical results, we first compute the leptonic branching
fractions of Dþ-meson. Next we give numerical results
of the form factors. We also parametrize the form factors
using double pole approximation. From the form factors,
we compute the differential branching fraction for the
D → Kð�Þlþνl, with l ¼ e and μ and the branching
fractions. We also calculate the forward-backward asym-
metry and convexity parameters. We compare our results
with available experimental, lattice and other theoretical
results. Finally, we summarize the present work in Sec. V.

II. MODEL

The CQM is an effective quantum field approach
[44–49] for hadronic interactions based on an effective
Lagrangian of hadrons interacting with their constituent
quarks. In this paper, we restrict ourselves to weak decays
of D-mesons only. The interaction Lagrangian describing
the coupling of mesonMðq1q̄2Þ to the constituent quarks q1
and q̄2 in the framework of CQM is given by

Lint ¼ gMMðxÞ
Z

dx1dx2FMðx; x1; x2Þq̄2ðx2ÞΓMq1ðx1Þ

þ H:c: ð1Þ
where ΓM is the Dirac matrix and projects onto the spin
quantum number of relevant mesonic field MðxÞ. gM is the
coupling constant and FM is the vertex function that is
related to the scalar part of the Bethe-Salpeter amplitude.
FM also characterizes the finite size of the mesons. We
choose the vertex function that satisfies the Lorentz
invariance of the Lagrangian Eq. (1),

FMðx; x1; x2Þ ¼ δ

�
x −

X2
i¼1

wixi

�
ΦMððx1 − x2Þ2Þ ð2Þ

with ΦM is the correlation function of two constituent
quarks with masses mq1 and mq2 and wqi ¼ mqi=ðmq1 þ
mq2Þ such that w1 þ w2 ¼ 1. We choose Gaussian function
for vertex function as

~ΦMð−p2Þ ¼ expðp2=Λ2
MÞ ð3Þ

with the parameterΛM characterized by the finite size of the
meson. In the Euclidian space, we can write p2 ¼ −p2

E, so
that the vertex function has the appropriate falloff behavior

so as to remove the ultraviolet divergence in the loop
integral.
We use the compositeness conditions [50,51] to deter-

mine the coupling strength gM in Eq. (5) that requires the
renormalization constant ZM for the bare state to composite
mesonic state MðxÞ set to zero, i.e.,

ZM ¼ 1 − ~Π0
Mðm2

MÞ ¼ 0; ð4Þ

where ~Π0
M is the derivative of meson mass operator and ZM

is the wave function renormalization constant of the meson
M. Here, Z1=2

M is the matrix element between the physical
state and the corresponding bare state. The above condition
guarantees that the physical state does not contain any bare
quark state i.e. bound state. The constituents are virtual and
are introduced to realize the interaction and as a result the
physical state turns dressed and its mass and wave function
are renormalized.
The meson mass operator Fig. 1 for any meson is defined

as

~ΠMðp2Þ ¼ Ncg2M

Z
d4k

ð2πÞ4i
~Φ2
Mð−k2Þ

× trðΓ1S1ðkþ w1pÞΓ2S2ðk − w2pÞÞ ð5Þ
where Nc ¼ 3 is the number of colors. Γ1, Γ2 are the Dirac
matrices and for scalar, vector and pseudoscalar mesons,
we choose the gamma matrices accordingly. S0s are the
quark propagator and we use the free fermion propagator
for the constituent quark. For the computation of loop
integral in Eq. (5), we write the quark propagator in terms
of Fock-Schwinger representation as

Sqðkþ pÞ ¼ 1

mq − k − p
¼ mq þ kþ p

m2
q − ðkþ pÞ2

¼ ðmq þ kþ pÞ
Z

∞

0

dαe−α½m2
q−ðkþpÞ2�; ð6Þ

where k is the loop momentum and p is the external
momentum. The use of Fock-Schwinger representation
allows to do the tensor integral in an efficient way since

FIG. 1. Diagram describing meson mass operator.
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the loop momenta can be converted into the derivative of
exponential function [49]. All the necessary trace evalu-
ation and loop integrals are done in FORM [52]. For the
remaining integral over the Fock-Schwinger parameters
0 ≤ αi ≤ ∞, we use an additional integration converting
the Fock-Schwinger parameters into a simplex. The trans-
formation reads [53]

Yn
i¼1

Z
∞

0

dαifðα1;…;αnÞ

¼
Z

∞

0

dttn−1
Yn
i¼1

Z
dαiδ

�
1 −

Xn
i¼1

αi

�
fðtα1;…; tαnÞ

ð7Þ
For meson case n ¼ 2.
While the integral over t in Eq. (7) is convergent below

the threshold p2 < ðmq1 þmq2Þ2, its convergence above
threshold p2 ≥ ðmq1 þmq2Þ2 is guaranteed by augmenting
the quark mass by an imaginary part, i.e. mq → mq−
iϵ; ϵ > 0, in the quark propagator Eq. (6). This makes it
possible to rotate the integration variable t to the imaginary
axis t → it. The integral Eq. (7) in turn becomes convergent
but obtains an imaginary part corresponding to quark pair
production. However, by reducing the scale of integration
at the upper limit corresponding to the introduction of an
infrared cutoff

Z
∞

0

dtð…Þ →
Z

1=λ2

0

dtð…Þ; ð8Þ

one can remove all possible thresholds present in the initial
quark diagram [49]. Thus the infrared cutoff parameter λ
effectively guarantees the confinement of quarks within
hadrons.
Before going for the semileptonic decays, we need to

specify the independent model parameters namely size
parameter of meson Λ and constituent quark masses mqi .
These model parameters are determined by fitting calcu-
lated decay constants of basic processes such as leptonic
(Fig. 2) and radiative decays to available experimental data

or LQCD for vector and pseudoscalar mesons. We use the
updated least square fit performed in the recent papers of
the model parameters [54–56] (all in GeV). We take the
infrared cutoff parameter λ to be the same throughout this
study.

mu=d ms mc mb λ

0.241 0.428 1.67 5.05 0.181 GeV

and the size parameters

ΛD ΛD� ΛK ΛK� Λπ

1.6 1.53 1.01 0.80 0.87 GeV

We have listed our results for the leptonic decay

constants of Dð�Þ
ðsÞ , K

ð�Þ and π mesons in the Table I. The

decay constants we use in our calculations match quite well
with Particle Data Group (PDG), LQCD and QCD sum
rules (QCDSR) results.

III. FORM FACTORS

In the standard model of particle physics, semileptonic
decays of any meson is caused by weak force in which one
lepton and corresponding neutrino is produced in addition
to one or more hadrons (Fig. 3).
The invariant matrix element for the semileptonic

D → Kð�Þlþνl decay can be written asFIG. 2. Quark model diagrams for the D-meson leptonic decay.

TABLE I. Leptonic decay constants fH (in MeV).

fH Present Data Reference

fD 206.1 204.6� 5.0 PDG [57]
207.4 (3.8) LQCD [58]
210� 11 QCDSR [59]

fD� 244.3 263� 21 QCDSR [59]
278� 13� 10 LQCD [60]

fDs
257.5 257.5� 4.6 PDG [57]

254 (2) (4) LQCD [61]
250.2� 3.6 LQCD [12]
247.2 (4.1) LQCD [58]
259� 10 QCDSR [59]

fD�
s

272.0 308� 21 QCDSR [59]
311� 9 LQCD [60]

fDs
=fD 1.249 1.258� 0.038 PDG [57]

1.192 (0.22) LQCD [58]
1.23� 0.07 QCDSR [59]

fK 156.0 155.0 (1.9) LQCD [58]
155.37 (34) LQCD [62]
157.9� 1.5 LQCD [12]

fK� 226.8 217� 7 PDG [57]
fπ 130.3 132.3� 1.6 LQCD [12]

130.39 (20) LQCD [62]
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MðD → Kð�ÞlþνlÞ ¼
GFffiffiffi
2

p VcshKð�Þjs̄OμcjDilþOμνl ð9Þ

where Oμ ¼ γμð1 − γ5Þ is the weak Dirac matrix with left chirality. The matrix elements for the above semileptonic
transitions in the covariant quark model are written as

hK½d̄s�ðp2Þjs̄OμcjD½d̄c�ðp1Þi¼NcgDgK

Z
d4k

ð2πÞ4i
~ϕDð−ðkþw13p1Þ2Þ ~ϕKð−ðkþw23p2Þ2Þ

×tr½OμS1ðkþp1Þγ5S3ðkÞγ5S2ðkþp2Þ�
¼Fþðq2ÞPμþF−ðq2Þqμ ð10Þ

hK�
½d̄s�ðp2; ϵνÞjs̄OμcjD½d̄c�ðp1Þi ¼ NcgDgK�

Z
d4k

ð2πÞ4i
~ϕDð−ðkþ w13p1Þ2Þ ~ϕK� ð−ðkþ w23p2Þ2Þ

× tr½OμS1ðkþ p1Þγ5S3ðkÞϵ†νS2ðkþ p2Þ�

¼ ϵ†ν
m1 þm2

½−gμνP · qA0ðq2Þ þ PμPνAþðq2Þ þ qμPνA−ðq2ÞþiεμναβPαqβVðq2Þ� ð11Þ

with P ¼ p1 þ p2, q ¼ p1 − p2 and ϵν to be the polari-
zation vector such that ϵ†ν · p2 ¼ 0 and on-shell conditions
of particles require p2

1 ¼ m2
1 ¼ m2

D and p2
2 ¼ m2

2 ¼ m2
Kð�Þ .

Since there are three quarks involved in this transition, we
use the notation wij ¼ mqj=ðmqi þmqjÞ (i, j ¼ 1, 2, 3)
such that wij þ wji ¼ 1.

IV. NUMERICAL RESULTS

Having determined the necessary model parameters and
form factors, we are now in position to present our
numerical results. We first compute pure leptonic decays
of Dþ-meson and then using the form factors obtained in
Sec. III, we compute branching fractions for semileptonic
D-meson decays.

We compute the pure leptonic decays of Dþ → lþνl
within the standard model. The branching fraction for
leptonic decay is given by

BðDþ → lþνlÞ ¼
G2

F

8π
mDm2

l

�
1−

m2
l

m2
D

�
2

f2DjVcdj2τD ð12Þ

where GF is the fermi coupling constant, mD and ml are
the D-meson and lepton masses respectively and τD is the
D-meson lifetime. fD is the leptonic decay constant of
D-meson from Table I. The resultant branching fractions
for l ¼ τ, μ and e are given in Table II. It is important to
note that the helicity flip factor ð1 −m2

l=m
2
DÞ affects the

leptonic branching fractions because of the different lepton
masses. We also compare our results with the experimental
data. The branching fraction for Dþ → μþνμ shows very
good agreement with BESIII [63] and CLEO-c [64] data.
The branching fractions for Dþ → eþνe and Dþ → τþντ
also fulfill the experimental constraints.
In Figs. 4 and 5, we plot our calculated form factors as

a function of momentum transfer squared in the entire
range 0 ≤ q2 ≤ q2max ¼ ðmD −mKð�Þ Þ2. The multidimen-
sional integral (three-fold for semileptonic case) appear-
ing in Eqs. (10) and (11) are computed numerically using

FIG. 3. Quark model diagrams for the D-meson semileptonic
decay.

TABLE II. Leptonic Dþ-decay branching fraction (τDþ ¼
1.040 × 10−12 s [57]).

Channel Present Data Reference

Dþ → eþνe 8.953 × 10−9 <8.8 × 10−6 PDG [57]
Dþ → μþνμ 3.803 × 10−4 ð3.71� 0.19Þ × 10−4 BESIII [63]

ð3.82� 0.32Þ × 10−4 CLEO-c [64]
Dþ → τþντ 1.013 × 10−3 <1.2 × 10−3 PDG [57]
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Mathematica. Our form factor results are also well
represented by the double-pole parametrization

Fðq2Þ ¼ Fð0Þ
1 − asþ bs2

; s ¼ q2

m2
1

: ð13Þ

The numerical results of form factors and associated
double-pole parameters are listed in Table III. In Fig. 4, we
plot the form factor Fþ for D → KðπÞlþνl decays in the
entire kinematical range of momentum transfer. We com-
pare our plot with the results from LCSR Ref. [18], LFQM

FIG. 4. The results for the form factors appearing in Eq. (10) for semileptonic D → π and D → K transitions. We compare our plot
with the results from LCSR Ref. [18], LFQM Ref. [21], LQCD Ref. [10] as well with the BESIII data Ref. [4].

FIG. 5. The form factors appearing in Eq. (11) for semileptonic D → K� transitions. We compare our results with LFQM Ref. [21],
chiral quark model (χQM) Ref. [22] and heavy meson chiral theory (HMχT) [24].
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Ref. [21], LQCD Ref. [10] as well with the BESIII data
Ref. [4]. Our results at maximum recoil point q2 → 0 are in
very good agreement with the other approaches as well as
with the experimental result. A similar plot can be obtained
for form factor F−. We also plot the vector form factors and
for the comparison of the form factors for D → K�lþνl
transition with other approaches, we need to write our form
factors Eq. (11) in terms of those used in Ref. [17]. The
relations read

A0 ¼
m1 þm2

m1 −m2

A1; Aþ ¼ A2;

A− ¼ 2m2ðm1 þm2Þ
q2

ðA3 − A0Þ; V ¼ V: ð14Þ

The form factors in Eq. (14) also satisfy the constraints

A0ð0Þ ¼ A3ð0Þ
2m2A3ðq2Þ ¼ ðm1þm2ÞA1ðq2Þ− ðm1 −m2ÞA2ðq2Þ: ð15Þ

Figure 5 shows form factors from the present calculation
along with the results from LFQM [21], chiral quark model
(χQM) [22] and with heavy meson chiral theory (HMχT)
[24]. The plot shows that our results of the form factors A0,
A1 and A2 match with LFQM [21] and the vector form
factors match with the χQM [22] where the authors have
used energy scaling parameters extracted from modified
low energy effective theory in H → V transitions. Our
results show little deviation from those obtained using
HMχT [24]. In computation of form factors for q2 ¼ 0

using LCSR, the authors of [18] have used the MS scheme
for c-quark mass and the computation of form factors for
q ≥ 0 is performed in the form of conformal mapping and
series parametrization. In the LFQM [21], the authors have
used the method of double pole approximation, where as in
BESIII [4] and BABAR [6] experiment, the form factors are
parametrized in terms of two and three parameters series
expansion respectively.
The differential branching fractions for semileptonic

D → Klþνl decay are computed using [65,66]

dΓðD → KlþνlÞ
dq2

¼ G2
FjVcsj2jp2jq2v2
12ð2πÞ3m2

1

× ðð1þ δlÞHL þ 3δlHSLÞ ð16Þ

where the helicity flip factor δl ¼ m2
l=2q

2, jp2j ¼
λ2ðm2

1; m
2
2; q

2Þ=2m1 is momentum of K meson in the
rest frame of D-meson and velocity-type parameter
v ¼ 1 −m2

l=q
2.

The bilinear combinations of the helicity amplitudes H
are defined as [48],

HL ¼ jH0j2; HS ¼ jHtj2; HSL ¼ ReðH0H
†
t Þ
ð17Þ

and the helicity amplitudes are expressed via the form
factor in the matrix element as,

Ht ¼
1ffiffiffiffiffi
q2

p ðPqFþ þ q2F−Þ ð18Þ

H0 ¼
2m1jp2jffiffiffiffiffi

q2
p Fþ: ð19Þ

Similarly the differential branching fractions for semi-
leptonic D → K�lþνl decay is computed by [65,66]

dΓðD → K�lþνlÞ
dq2

¼ G2
FjVcsj2jp2jq2v2
12ð2πÞ3m2

1

× ðð1þ δlÞðHU þHLÞ þ 3δlHSÞ:
ð20Þ

The bilinear combinations of the helicity amplitudes H
are defined as [48]

HU ¼ jHþ1þ1j2 þ jH−1−1j2;
HP ¼ jHþ1þ1j2 − jH−1−1j2;
HL ¼ jH00j2; HS ¼ jHt0j2;
HSL ¼ ReðH00H

†
t0Þ ð21Þ

here also the helicity amplitudes are expressed via the form
factor in the matrix element as

Ht0 ¼
1

m1 þm2

m1jp2j
m2

ffiffiffiffiffi
q2

p ðPqð−A0 þ AþÞ þ q2A−Þ ð22Þ

H�1�1 ¼
1

m1 þm2

ð−PqA0 � 2m1jp2jVÞ ð23Þ

H00 ¼
1

m1 þm2

1

2m2

ffiffiffiffiffi
q2

p
× ð−Pqðm2

1 −m2
2 − q2ÞA0 þ 4m2

1jp2j2AþÞ: ð24Þ

In Fig. 6, we present our results for differential branching
fractions of D → Kð�Þlþνl in the entire kinematical range
of momentum transfer. The semileptonic branching

TABLE III. Double pole parameters for the computation of
form factors in Eq. (13).

Fþ F− A0 Aþ A− V

Fð0Þ 0.76 −0.39 2.07 0.67 −0.90 0.89
a 0.72 0.75 0.39 0.84 0.95 0.96
b 0.046 0.032 −0.10 0.087 0.13 0.13
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FIG. 6. Differential branching fractions of the decays D → Kð�Þlþνl.

TABLE IV. Branching fractions of D → Kð�Þlþνl and D → πlþνl (in %).

Channel Present Data Reference

Dþ → K̄0eþνe 8.84 8.60� 0.06� 0.15 BESIII [2]
8.83� 0.10� 0.20 CLEO-c [72]

Dþ → K̄0μþνμ 8.60 8.72� 0.07� 0.18 BESIII [3]
Dþ → π0eþνe 0.619 0.363� 0.08� 0.05 BESIII [2]

0.405� 0.016� 0.009 CLEO-c [72]
Dþ → π0μþνμ 0.607 – –
Dþ → K̄�ð892Þ0eþνe 8.35 – –
Dþ → K̄�ð892Þ0μþνμ 7.94 – –
D0 → K−eþνe 3.46 3.538� 0.033 PDG [57]

3.505� 0.014� 0.033 BESIII [4]
3.50� 0.03� 0.04 CLEO-c [72]
3.45� 0.07� 0.20 Belle [73]

D0 → K−μþνμ 3.36 3.33� 0.13 PDG [57]
3.505� 0.014� 0.033 BESIII

D0 → π−eþνe 0.239 0.2770� 0.0068� 0.0092 BABAR [6]
0.295� 0.004� 0.003 BESIII [4]
0.288� 0.008� 0.003 CLEO-c [72]
0.255� 0.019� 0.016 Belle [73]

D0 → π−μþνμ 0.235 0.238� 0.024 PDG [57]
D0 → K�ð892Þ−eþνe 3.25 2.16� 0.16 PDG [57]
D0 → K�ð892Þ−μþνμ 3.09 1.92� 0.25 PDG [57]
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fractions in Eqs. (16) and (20) are computed by numerically
integrating the differential branching fractions shown in
Fig. 6. The branching fractions for D → Kð�Þlþνl and
D → πlþνl are presented in Table IV. We also compare
our results with experimental results. The results for
BðDþ → K̄0lþνlÞ and BðD0 → K−lþνlÞ, (l ¼ e and μ)
show excellent agreement with the recent BESIII data [2–4]
as well with the other experimental collaborations. Also the
ratios of the different semileptonic decay widths for the
channels D → Klþνl are presented in Table V and our
results are well within the isospin conservation rules
given in Ref. [67]. We also present our results for
BðD0 → K�ð892Þ−lþνeÞ but our results overestimate the
data given in PDG [57]. This deviation of the present study
within the standard model might be explained through
hadronic uncertainty or ratios of differential distributions
for longitudinal and transverse polarizations of these K�

mesons [68]. The FOCUS [69] and CLEO-c [70] experi-
ments have also reported mixing of scalar amplitudes with
dominant vector decays. These observations open up new
possibilities of investigations in charm semileptonic
decays. There have also been attempts to explain these
exclusive decays using R-parity violating supersymmetric
effects [71] and their direct correlation with possible
supersymmetric signals expected from LHC and BESIII
data. We predict the branching fractions for Dþ →
K̄�ð892Þ0lþνe but we do not compare our results since
no experimental results are available for this channel.
We also present our results for branching fractions of

Dþ → π0lþνl and D0 → π−lþνl transitions. Our predic-
tion for BðDþ → π0eþνeÞ is higher than BESIII [2] and
CLEO-c data [72] while the trend is opposite in the case of
BðD0 → π−eþνeÞ. The deviation of the BðDþ → π0eþνeÞ
from experimental and LQCD data might be attributed to
the computed form factors. However, our BðD0 → π−eþνeÞ
is in close proximity to that by Belle [73] and BðD0 →
π−μþνμÞ is in excellent agreement with PDG data [57].
We also list some more physical observables in terms of

helicity amplitudes. We have already shown the computed
differential branching fractions in Fig. 6. Next, the
helicity amplitudes defined above are used to plot the

FIG. 7. Forward-backward asymmetries of the decays D → Kð�Þlþνl.

TABLE V. Ratios of the semileptonic decays of D mesons.

Ratio Value

ΓðD0 → K−eþνeÞ=ΓðDþ → K̄0eþνeÞ 1.02
ΓðD0 → K−μþνμÞ=ΓðDþ → K̄0μþνμÞ 0.99
ΓðDþ → K̄0μþνμÞ=ΓðDþ → K̄0eþνeÞ 0.97
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forward-backward asymmetry in Fig. 7 for D → Kð�Þlþνl
in the entire kinematical range of momentum transfer. We
use the following relation for plotting the forward-back-
ward asymmetry (AFB) [55,65]

AFBðq2Þ ¼ −
3

4

HP þ 4δlHSL

ð1þ δlÞðHU þHLÞ þ 3δlHS
: ð25Þ

It is evident from Fig. 7 that the AFBðq2Þ for D → Klþνl
and D → K�lþνl are similar for both e and μ modes.
AFBðq2Þ → 0 for in the both zero recoil and larger recoil
limits because of the zero recoil relations of the helicity
functions HP ¼ HSL ¼ 0 and longitudinal dominance in
the partial rates at the maximum recoil.
Also the lepton and hadron side convexity parameter are

defined as [55,65]

Cl
F ¼ 3

4

ð1 − 2δlÞðHU − 2HLÞ
ð1þ δlÞðHU þHLÞ þ 3δlHS

ð26Þ

and

Ch
F ¼ −

3

2

ð1þ δlÞðHU − 2HLÞ − 6δlHS

ð1þ δlÞðHU þHLÞ þ 3δlHS
: ð27Þ

The plot for the convexity parameters Eqs. (26) and (27)
as a function of entire momentum transfer range can easily
be obtained. In Table VI, we give the q2 averages of the
above observables. Note that in order to obtain the averages
of these observables, we need to multiply the numerator
and denominator by phase space factor jp2jq2v2. Also in

computation of leptonic and semileptonic branching frac-
tions, forward-backward asymmetry and convexity param-
eters, the values of CKM matrices namely jVcsj and jVcdj,
meson masses, lepton masses and their lifetimes are taken
from PDG [57].

V. CONCLUSION

In this article, we have analyzed the leptonic (Dþ →
eþνe) and semileptonic (D → Kð�Þlþνl, D → πlþνl)
decays using covariant quark model with infrared confine-
ment within the standard model framework. The ratios of
the partial widths are found to be consistent with the isospin
conservation holding within uncertainties in experimental
data. It is interesting to note here that the BðDþ → π0lþνlÞ
deviate from existing data while BðD0 → π−lþνlÞ match
well. Further exploration to this observation may lead to
interesting outcome.
The deviation of branching fractions in case of D →

K�lνl might be understood by underlying hadronic
uncertainty or ratios of differential distributions for longi-
tudinal and transverse polarizations of the K� mesons. We
are looking forward to analyzing D → K�lþνl decay and
expect the experimental facilities to throw more light on
their form factor shapes in forthcoming attempts that will
help in understanding the charm decays and possibly the
dynamics of these systems beyond the standard model.
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