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We review the main results on the generalization of the DGLAP evolution equations within the cut
Mellin moments (CMM) approach, which allows one to overcome the problem of kinematic constraints in
Bjorken x. CMM obtained by multiple integrations as well as multiple differentiations of the original parton
distribution also satisfy the DGLAP equations with the simply transformed evolution kernel. The CMM
approach provides novel tools to test QCD; here we present one of them. Using appropriate classes of
CMM, we construct the generalized Bjorken sum rule that allows us to determine the Bjorken sum rule
value from the experimental data in a restricted kinematic range of x. We apply our analysis to COMPASS
data on the spin structure function g1.
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I. INTRODUCTION

In virtue of QCD factorization in hard processes, hadron
properties in the deep inelastic scattering (DIS) can be
described in terms of the parton distribution functions
(PDFs) fpðx; μ2Þ. They are universal process-independent
densities explaining how the whole hadron momentum P
is partitioned in x · P between partons of type p. Here hard
momentum transfer q: −q2 ¼ Q2 ≫ P2 ¼ m2

h, and the
Bjorken variable x satisfies 0 < x ¼ Q2=ð2PqÞ < 1.
These distributions fpðx; μ2Þ are formed by nonperturba-
tive strong interaction at hadronic scale m2

h, while the
dependence on the normalization scale μ2 is governed by
the well-known Dokshitzer-Gribov-Lipatov-Altarelli-Parisi
(DGLAP) evolution equations [1–4] within perturbative
QCD. Alternatively, one can study how to evolve with this
scale μ2 the Mellin moments of the parton densities
fðn; μ2Þ, which are integrals of PDFs weighted with xn

over the whole range (0, 1) of x. These moments provide a
natural framework of QCD analysis as they originate from
the basic formalism of operator product expansion.
However, these standard moments, in principle, cannot
be extracted from any experiment due to kinematic con-
straints inevitably appearing in real DIS of lepton-hadron
and hadron-hadron collisions. Namely, arbitrarily small
values of the variable x cannot be reached in experiments,
which shows itself especially in “fixed target” experiments
like in JLab [5,6]. It would be useful to invent new “real
observables” with a goal to overcome the kinematic
constraints. They were realized as the “cut (truncated)
Mellin moments” (CMM) fðz; n; μ2Þ ¼ R

1
z fðx; μ2Þxn−1dx,

generalized moments of the parton distribution fðx; μ2Þ in
the unavoidable lower limit of integration z≡ xmin ¼
Q2

min=ð2ðPqÞmaxÞ > 0, and in this way the kinematic
constraint can be taken into account. This circumstance
can be the main reason for large uncertainties at data
processing; this effect is aggravated if a singularity of
fðx; μ2Þ in the neighborhood of x ¼ 0 is expected [6].
The idea of “truncated” Mellin moments of the parton

densities in QCD analysis was introduced and developed in
the late 1990s [7–10]. The authors obtained the non-
diagonal differential evolution equations, in which the
nth truncated moment couples to all higher ones. Later
on, diagonal integro-differential DGLAP-type evolution
equations for the single and double truncated moments of
the parton densities were derived in [11] and [12,13],
respectively. The main finding of the truncated CMM
approach is that the nth moment of the parton density also
obeys the DGLAP equation, but with a rescaled evolution
kernel P0ðzÞ ¼ znPðzÞ [11]. The CMM approach has
already been successfully applied, e.g., in spin physics
to derive a generalization of the Wandzura-Wilczek relation
in terms of the truncated moments and to obtain the
evolution equation for the structure function g2 [13,14].
The advantages of the CMM approach to QCD factoriza-
tion for DIS structure functions were also presented in [15].
The truncation of the moments in the upper limit is less
important in comparison to the low-x limit because of the
rapid decrease of the parton densities as x → 1; never-
theless, a comprehensive theoretical analysis requires an
equal treatment of both truncated limits. The evolution
equations for double cut moments and their application to
study the quark-hadron duality were also discussed in [16].
Recently, a valuable generalization of the CMM approach
incorporating multiple integrations as well as multiple
differentiations of the original parton distribution has been
obtained [17]. This novel generalization of CMM and the
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corresponding DGLAP equations provides a powerful tool
to test QCD at experimental constraints. In Sec. II, we
briefly discuss the approach and present its main practically
important results together with its DGLAP evolution. Then
we focus attention on a new important special CMM. Based
on this CMM, we construct in Sec. III a device to improve
an experimental determination of the Bjorken polarized
sum rule. In Sec. IV, we present the simplified form of the
effective method, based on the CMM, for practical use in
analysis of data. We apply it to the COMPASS measure-
ments on g1 [18] and also discuss the impact of the higher
twist effects using JLAB data.

II. CMM AS SOLUTIONS OF DGLAP
GENERALIZATION

To apply our approach to specific cases of cut Mellin
moments, like the Bjorken polarized sum rule (BSR), we
consider it in more general context, as solutions of the
DGLAP evolution [17]. Indeed, to deal with new distribu-
tions CMM to process DIS data, one should know how the
CMM can be evolved with the factorization scale μ2. We
review here a variety of linear transformations L̂ under the
solutions of the nonsinglet DGLAP equation that lead to
generalized CMM (gCMM) and then focus our attention on
special cases of gCMM. Suppose fðx; μ2Þ is a solution of the
nonsinglet DGLAP equation with the kernel Pðy; asðμ2ÞÞ,

_f ≡ d
d ln μ2

fðz; μ2Þ

¼ ðP � fÞðzÞ

≡
Z

1

0

Pðy; asðμ2ÞÞfðx; μ2Þδðz − xyÞdxdy; ð1Þ

where the sign � means Mellin convolution; the running
coupling as ¼ αs=ð4πÞ satisfies the renormalization
group equation with the QCD β function in the rhs
μ2 d

dμ2 asðμ2Þ ¼ −βðasðμ2ÞÞ. Then the linear transformed

f, f → F ¼ L̂f, which is a generalization of CMM (see
the second column of Table I) is also the solution of the
DGLAP equation:

_F ¼ ðP � F Þ ð2aÞ
with the kernel P,

Pðy; asðμ2ÞÞ ¼ L̂Pðy; asðμ2ÞÞL̂−1;

where L̂ � L̂−1 ¼ δð1 − yÞ: ð2bÞ

The different transformations L̂ are presented in Table I
explicitly: in the second column—for F , in the third one—
for the corresponding DGLAP evolution kernel P. Item 4
plays the key role: all the other results below can be obtained
from thisF . They admit generalization from integer k to real
ν for items 5, 6, and 8; see the discussion in [17]. The partial
solutions in 7 and 8 were also considered earlier in [19,20].
The expression in item 5 admits differentiation and integra-
tion with respect to the parameter ν and leads to new
solutions. The same is also true for the expression in item
6with the evident additionalmodification of the kernelP and
the convolution in the right-hand side of the DGLAP
equation.Basedon thesegCMM,different interesting special
solutions of the generalized DGLAP Eq. (2) can be con-
structed and applied to an analysis of the experimental data.
It is evident that the singlet case keeps in force the same

transformations L̂ under the quark qðx;Q2Þ and gluon
gðx;Q2Þ distributions simultaneously and, respectively, (2b)

TABLE I. Collection of the main results of CMM generalization of the DGLAP equations. The second column contains the
generalized CMM F and the third column contains corresponding DGLAP evolution kernels P.

No. Generalized CMM F DGLAP Kernel P

1 fðxÞ PðyÞ
2 xnfðxÞ PðyÞ · yn

3 fðz; nÞ ¼
Z

1

z
xn−1fðxÞdx PðyÞ · yn

4 fðz; fnigkÞ ¼
Z

1

z
znk−1k dzk

Z
1

zk

znk−1−1k−1 dzk−1…
Z

1

z2

zn1−11 fðz1; μ2Þdz1 PðyÞ · y
P

k
i¼1

ni

5 fðz; fn; 0gνÞ ¼
Z

1

z

lnðν−1Þðx=zÞ
ΓðνÞ xnfðxÞ dx

x
PðyÞ · yn

6 fðz; fn; 1gνÞ ¼
Z

1

z

ðx − zÞν−1
ΓðνÞ xnfðxÞ dx

x
PðyÞ · ynþν−1

7 −
dfðxÞ
dx

PðyÞ · y−1

8 ð− d
dx

Þ
k
½xnfðxÞ� PðyÞ · yn−k

9 fðz; �ωÞ ¼ ðω � fÞðzÞ PðyÞ
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under the matrix of the corresponding evolution kernels. In
other words, Eq. (1) can be extended to a homogeneous
system of evolution equations together with symmetry trans-
formations in Eq. (2).
Now let us focus on the transform in item 5 in Table I.

The corresponding DGLAP kernel for it is independent of
ν. Hence, integrands lnk ðx=zÞ=k! at different k are “bricks”
for any new gCMM constructions that evolve following the
DGLAP equation with the same kernel P. Indeed, for any
normalized weight ωðtÞ the CMM fðx; �ωÞ presented as a
Mellin convolution of PDFs f and ω (see item 9 of Table I),

fðxÞ → F ðxÞ≡ fðx; �ωÞ
¼ ðω � fÞðxÞ

≡
Z

1

x
ωðx=zÞfðz; μ2Þ dz

z
; ð3aÞ

Z
1

0

ωðtÞdt ¼ 1; ð3bÞ

is normalized as f,

Z
1

0

fðx; �ωÞdx ¼
Z

1

0

fðxÞdx ¼ 1: ð4Þ

The corresponding DGLAP kernel P for the fðx; �ωÞ can
be obtained directly in virtue of the commutativity of
Mellin convolution, P ¼ ω � P � ω−1 ¼ P.1 The weight
ωðtÞ can be considered as a result of appropriate (including
infinite) sums of the mentioned normalized bricks
lnkðtÞ=k!; each of them does not change the DGLAP
kernel. To return to the initial PDF fðxÞ, one must take
ωðzÞ ¼ δð1 − zÞ in the definition (3). We shall investigate
the applications of these properties for experimental data
analysis in the case of the nonsinglet spin structure function
g1 (in other notation gNS

1 ) in the next sections.

III. GENERALIZED BJORKEN SUM RULE

We construct the generalized truncated moment
g1ðz; n;ωÞ as a Mellin convolution of the function g1 with
any normalized function ωðxÞ, Eq. (3a), which obeys the
DGLAP evolution equation with the rescaled kernel:

g1ðx; n;ωÞ ¼
Z

1

x
ωðx=zÞg1ðzÞzn

dz
z
; ð5Þ

PðyÞ ¼ PðyÞ · yn: ð6Þ

For n ¼ 0 one obtains

g1ðx; 0;ωÞ ¼ ðω � g1ÞðxÞ ð7Þ

with the same evolution kernel as g1, namely, PðyÞ. In this
way, we define the cut Bjorken sum rules, Γ1ðx0Þ, and
simultaneously, the generalized cut Bjorken sum rules
(gBSR), Γ1;ωðx0Þ,

Γ1ðx0Þ ¼
Z

1

x0

g1ðxÞdx; ð8Þ

Γ1;ωðx0Þ ¼
Z

1

x0

g1ðx; 0;ωÞdx; ð9Þ

which are equal to the ordinary Bjorken sum rule as
x0 → 0:

Γ1;ωð0Þ¼
Z

1

0

g1ðx;0;ωÞdx¼
Z

1

0

g1ðxÞdx≡Γ1ð0Þ: ð10Þ

We shall estimate the value of Γ1ð0Þ from the smooth
extrapolation of the truncated moments Γ1;ωðx0Þ in x0. To
this aim, we construct a bunch of different Γ1;ωðx0Þ. Note
that Γ1;ωðx0Þ ≤ Γ1ðx0Þ for any non-negative ω that leads to
one-side estimates Δ ¼ Γ1ðx0Þ − Γ1;ωðx0Þ ≥ 0. To extend
the range of variation of the approach and enable upper
estimates of Γ1ðx0Þ, we construct a bunch of Γ1;ωðx0Þ based
on the simple sign-changing normalized function ωðxÞ
depending on three parameters z1, z2, A,

ωðzÞ ¼ −Aδðz − z1Þ þ ð1þ AÞδðz − z2Þ: ð11Þ
Here the ω-model parameters are z2 > z1 > x0 > 0 and
A > 0 for the sign change. This model, following (7), leads
to a “shuffle” of the initial PDF g1 with different weights
and arguments:

g1ðx; 0;ωÞ ¼ −A
θðz1 > xÞ

z1
g1ðx=z1Þ

þ ð1þ AÞ θðz2 > xÞ
z2

g1ðx=z2Þ; ð12Þ

Γ1;ωðx0Þ ¼
Z

1

x0=z2

g1ðxÞdxþ A
Z

x0=z1

x0=z2

g1ðxÞdx: ð13Þ

The Γ1;ωðx0Þ approaches Γ1ðx0Þ from above, Γ1;ωðx0Þ ≥
Γ1ðx0Þ for

A >
Z

x0=z2

x0

g1ðxÞdx
�Z

x0=z1

x0=z2

g1ðxÞdx: ð14Þ

We shall fit free ω-model parameters in order to saturate the
integral Γ1;ωðx0Þ as soon as possible when the parameter x0
tends to 0. To this end, let us expand Γ1;ωð0Þ into Taylor
series around x0,

Γ1ð0Þ ¼ Γ1;ωðx0 − x0Þ

¼ Γ1;ωðx0Þ − x0Γ0
1;ωðx0Þ þ x20

1

2
Γ00
1;ωðx0Þ þ � � � ;

ð15Þ
1Notation ω−1 means that ðω�ω−1ÞðxÞ¼ðω−1�ωÞðxÞ¼δð1−xÞ

or for the corresponding moments ωðnÞ, 1=ωðnÞ · ωðnÞ ¼ 1.
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to estimate Γ1ð0Þ in the lhs using a few first orders of Taylor
expansion in the rhs of Eq. (15). Requiring the first
derivatives to vanish, Γ0

1;ωðx0Þ ¼ 0, or, requiring the same
for the second one, Γ00

1;ωðx0Þ ¼ 0, to straighten the behavior
of Γ1;ωðx0Þ, one can improve the approach to Γ1ð0Þ.
(1) Let us require Γ0

1;ωðx0Þ ¼ 0, then for the lhs of
Eq. (15) one obtains the approximation:

Γ1ð0Þ ≈ Γ0APX
1 ðx0Þ ¼ Γ1;ωðx0Þ þ 0þ 1

2
x20Γ00

1;ωðx0Þ:
ð16Þ

This condition fixes the value of the model param-
eter A ¼ A01ðx0Þ and then Γ00

1;ωðx0Þ:

A01ðx0Þ ¼
�
t1g1ðt1Þ
t2g1ðt2Þ

− 1

�
−1
; ð17Þ

x20Γ00
1;ωðx0Þ¼A01ðx0Þt21g01ðt1Þ− ½1þA01ðx0Þ�t22g01ðt2Þ;

ð18Þ

where here and below t1 ¼ x0
z1
; t2 ¼ x0

z2
. For a special

(single) root x0 ¼ x00 that satisfies the condition

1

z1

g01ðt1Þ
g1ðt1Þ

¼ 1

z2

g01ðt2Þ
g1ðt2Þ

; ð19Þ

the second derivation Γ00
1;ωðx00Þ vanishes also and

the approximation Γ0APX
1 ðx0Þ in (16) in this case

reduces to

Γ1ð0Þ ≈ Γ0APX
1 ðx00Þ þ 0þ 0 ð20Þ

with A00 ¼ A01ðx00Þ.
(2) Let us require now Γ00

1;ωðx0Þ ¼ 0, which leads to the
first order approximation (IAPX),

Γ1ð0Þ ≈ ΓIAPX
1 ðx0Þ ¼ Γ1;ωðx0Þ − x0Γ0

1;ωðx0Þ þ 0;

ð21Þ
with A ¼ A02ðx0Þ and Γ0

1;ωðx0Þ:

A02ðx0Þ ¼
�
t21g

0
1ðt1Þ

t22g
0
1ðt2Þ

− 1

�−1
; ð22Þ

x0Γ0
1;ωðx0Þ¼A02ðx0Þt1g1ðt1Þ− ½1þA02ðx0Þ�t2g1ðt2Þ:

ð23Þ

To illustrate the features of Γ1;ω, we plot the bunch
Γ1;ωðx0Þ in Eq. (13) for different values of A in
Figs. 1 and 2, including: “constant behavior” value
A¼A00¼A01ðx00Þ fixed at special root x00 ≈ 0.037,
“quasilinear behavior” value A ¼ A02ðx̄Þ fixed at
some value x̄ ¼ 0.01 (22), and the standard

truncated Bjorken sum rule Γ1ðx0Þ, Eq. (8) (thick
black curve). One can see that an appropriate model
of g1 shuffling can improve significantly the ap-
proach Γ1;ωðx0Þ to Γ1ð0Þ; see, e.g., the red curve for
A ¼ A00. The parameters of an optimal ω depend on
the behavior of g1ðxÞ (especially in the neighbor-
hood of zero), which is fixed by different input
parametrizations of g1 at Q2

0 ¼ 1 GeV2,

g1ðx;Q2
0Þ ¼ N · xað1 − xÞbð1þ γxÞ; ð24Þ

where a ¼ 0 in Fig. 1 and a ¼ −0.4 in Fig. 2,
respectively, at b ¼ 3, γ ¼ 5 and the coefficient N is
the norm. In our tests, in order to obtain a smooth
approach of the bunch in the experimentally avail-
able x region, we fixed z1 ¼ 0.7 and z2 ¼ 0.9. The
already mentioned root x00 ≈ 0.037 for the para-
metrization, Eq. (24) (x00 value does not depend on
the a parameter of the input), corresponds to
approximation (20). It is important to mention that

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7

Γ 1
,ω

 (
x 0

,Q
02 )

x0

BSR
Γ1(0)

A=A00
A=A02
A=-1.5

A=5

FIG. 1. Γ1;ωðx0Þ, Eq. (13), for different values of A and the
truncated BSR Γ1ðx0Þ, Eq. (8) (thick black curve) as a function of
x0. Input parametrization, Eq. (24), with a ¼ 0.
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 0.1

 0.15

 0.2

 0.25

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7

Γ 1
,ω
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x 0

,Q
02 )

x0
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A=A00
A=A02
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FIG. 2. Γ1;ωðx0Þ, Eq. (13), for different values of A and the
truncated BSR Γ1ðx0Þ, Eq. (8) (thick black curve) as a function of
x0. Input parametrization, Eq. (24), with a ¼ −0.4.
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the quasilinear regime near 0 visibly starts at rather
large values of x0 ≳ 0.1 for the different parametri-
zation in (24). This should ensue the applicability of
approximation (21) even for JLab experimental
conditions, where the admissible x bunches are
rather far from 0. In practice, one can use fit to
the data instead of the ready input parametrization. It
is worthy to notice that the analysis based on the
bunch behavior allows one to shift the available
region of x to smaller values, x0 ¼ x · z2. In this
manner, using data from large x and choosing
suitable values of z1 and z2, one is able to get an
answer in a much smaller x region.

In this section, we have shown in detail how to construct
the generalized Bjorken sum rule and illustrated the
mechanism of shuffling in it. We have also presented
different methods of estimation of Γ1ð0Þ within the gBSR
approach. In the next section, we shall present the sim-
plified form of the most important equations of our
approach, rewritten in terms of experimental parameters,
for practical use in analysis of data.

IV. PRACTICAL ANALYSIS OF DATA

The generalized Bjorken sum rule enables one to analyze
integrals over the experimentally accessible x range in a
manner in which Γ1;ωðx0Þ > Γ1ðx0Þ. In this way, for
x0 > 0, Γ1;ωðx0Þ, Eq. (9) approaches Γ1ð0Þ closer than
the original BSR Γ1ðx0Þ, Eq. (8). For practical purposes, we
rewrite here the essential formulas from the previous
section in terms of experimental data and demonstrate
the effective method for the estimation of Γ1ð0Þ. Thus, the
gBSR, Eq. (13), where the lower limit of integrations has to
be strictly related to the minimal x accessible experimen-
tally, xmin, takes the form

Γ1;ωðxmin; rÞ ¼
Z

1

xmin

g1ðxÞdxþ A
Z

xmin=r

xmin

g1ðxÞdx: ð25Þ

The experimental lower value xmin in the above equation is
related to x0 from Eq. (13) via x0 ¼ xmin · z2. The ratio
parameter, r≡ z1=z2,

xmin < r < 1; ð26Þ
can also be chosen taking into account the set of exper-
imental x points. Please note that in the above formulas x0
and z2 do not appear separately, only as a ratio, x0=z2 ¼ xmin.
It means that gBSR can mimic a shift of the argument of the
original BSR, Γ1ðxminÞ to the smaller one, Γ1ðx0Þ.
We have tested the methods of estimation of Γ1ð0Þ,

described in Sec. III, and have found that a very effective
method, universal for the different small-x behavior of g1
and for xmin ≲ 0.1, is the first order approximation,
Eqs. (21) and (22). With use of the experimental parameters
xmin and r, it reads

Γ1ð0Þ ≈ ΓIAPX
1 ðxmin; rÞ

¼ Γ1;ωðxmin; rÞ þ ðAþ 1Þxming1ðxminÞ
− A

xmin

r
g1ðxmin=rÞ ð27Þ

with

A ¼
�
r2
g01ðxmin=rÞ
g01ðxminÞ

− 1

�
−1

ð28Þ

and Γ1;ωðxmin; rÞ given in Eq. (25). Γ1ð0Þ from Eq. (27) can
be compared to the estimate from the original BSR
Γ1ðxminÞ, (8), in the same first order approximation,

Γ1ð0Þ ≈ ΓIBSR
1 ðxminÞ ¼ Γ1ðxminÞ þ xming1ðxminÞ: ð29Þ

In Fig. 3, we plot the percent errors ϵIðxmin; rÞ,

ϵIðxmin; rÞ ¼ ðΓ1ð0Þ − ΓIAPX
1 ðxmin; rÞÞ=Γ1ð0Þ � 100% ð30Þ

as a function of xmin for three values of the ratio r. We
assume a not too singular small-x behavior of g1, a ¼ −0.1
in Eq. (24). In Fig. 4 we present the same but for a rather
singular shape of g1, a ¼ −0.4. For comparison, in both
figures we show also the large error ϵIBSRðxminÞ,

ϵIBSRðxminÞ ¼ ðΓ1ð0Þ − ΓIBSR
1 ðxminÞÞ=Γ1ð0Þ � 100%: ð31Þ

The range of xmin in our plots covers the smallest x
available in the polarized experiments ∼0.004 at
COMPASS, 0.02 at HERMES, and 0.1 at Jlab. One can
see a very good agreement of the estimated Γ1ð0Þ with its
true leading order (LO) value (assuming gA=gV ¼ 1.27), for
not too singular behavior of g1 at small x, independently of
the ratio r. For more singular behavior of g1, this agreement
is still satisfactory and for xmin ≳ 0.05 it can be improved

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 0.001  0.02  0.04  0.06  0.08  0.1

εI (x
m

in
,r

),
εIB

S
R
(x

m
in
)

xmin

r=0.9
r=0.5
r=0.3

εIBSR

FIG. 3. The percent errors ϵIðxmin; rÞ, Eq. (30), for different
r∶0.9; 0.5; 0.3, together with ϵIBSRðxminÞ, Eq. (31), as a function
of xmin. Small-x behavior of g1 with a ¼ −0.1, Eq. (24).
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by taking the ratio parameter r, Eq. (26), as large as
possible.
In Figs. 5 and 6, we present our results on determination

of the BSR based on the COMPASS [18] data, where
xmin ¼ 0.0036. We follow the method described above
using Eqs. (25)–(28). We assume the input parametrization,
Eq. (24), from our fit to the data at Q2 ¼ 3 GeV2:
g1 ∼ x−0.42ð1 − xÞ2.7ð1þ 3.4xÞ. We find the following
results for xmin and different r:

Γ1ð0Þ r ΓIAPX
1 ϵI½%� r ΓIAPX

1 ϵI½%�
0.186 0.1 0.185 1.4 × 10−2 0.9 0.186 −7.7 × 10−3

One can see that for the first order ΓIAPX
1 ðxmin; rÞ approxi-

mation the percentage error ϵIðxmin ¼ 0.0036Þ, Eq. (30), is
smaller than 1% in the wide range r > 0.01 and negligibly
small for r > 0.05. These results, together with the accu-
racy estimates presented in Figs. 3 and 4, confirm the
efficiency of our integral transform ω to estimate the BSR.

These estimates can be compared with the QCD result
for the BSR obtained in the MS scheme inOðαns Þ, n ¼ 1, 2,
3 and 4 approximation in [21–23] and [24], respectively,
and incorporating higher twist (HT) effects,

Γ1ðQ2Þ ¼ 1

6

gA
gV

�
1 −

αs
π
− 3.58

�
αs
π

�
2

− 20.22
�
αs
π

�
3

− 175.7
�
αs
π

�
4
�
þ μp−n4

Q2
: ð32Þ

Here αs ≡ αsðQ2Þ is the running QCD coupling, the
coefficients of expansion are taken for the number of
active quarks nf ¼ 3, and μp−n4 is the scale of the first
power correction to the HT. The HT effects become
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FIG. 4. The percent errors ϵIðxmin; rÞ, Eq. (30), for different
r∶0.9; 0.5; 0.3, together with ϵIBSRðxminÞ, Eq. (31), as a function
of xmin. Small-x behavior of g1 with a ¼ −0.4, Eq. (24).
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essential in the small/moderate Q2 region; see the analysis
of its impact for BSR in [25]. In our analysis Q2 is of the
order of a few GeV2 and the HT impact is visible, which is
shown in Fig. 7.
To illustrate the reasonableness of the new estimates for

Γ1ðQ2Þ, we have processed the JLab results [6] following
Eq. (32) taken at N2LO, i.e., holding the first three terms in
the perturbation part there. The results of the fit are shown
in Figs. 7 and 8. In Fig. 8, we present 1σ error ellipse for
two adjusted fit parameters: Λqcd ¼ 311� 103

156 MeV and
HT μp−n4 =M2 ¼ −0.047� 0.020

0.018; M is the nucleon mass.

These values look reasonable in view of the actual world
average data: Λqcd ¼ 332� 17 MeV [26] and μp−n4 =M2 ¼
−0.05� 0.02 [6,25].

V. CONCLUSIONS

The QCD analysis of real data for the deep inelastic
scattering processes faces the principal problem: Bjorken
variable x is constrained by the unavoidable kinematic
condition (from below) x ≥ xmin ¼ Q2

min=ð2ðPqÞmaxÞ > 0.
This is important for data processing, especially for the case
of PDF fpðx; μ2Þ increasing as x → 0. The CMM approach
has been elaborated just to overcome this problem. In this
paper, we have reviewed the main results of the CMM
approach and suggested its generalization that allows one to
study the fundamental integral characteristics of the parton
distributions in an experimentally restricted region of x. We
demonstrated how, with the help of the so-called general-
ized Bjorken sum rule, one can determine the BSR Γ1 from
experimental data in the available x region. We applied our
approach to the COMPASS data and obtained good agree-
ment with the QCD predictions for the BSR, incorporating
higher twist effects estimated from the JLAB measure-
ments. Concluding, the presented method seems to be
promising in the analysis of the QCD sum rules.

ACKNOWLEDGMENTS

This work is supported by the Bogoliubov-Infeld
Program, Grant No. 01-3-1113-2014/2018. S. V. M.
acknowledges support from the BelRFFR-JINR, Grant
No. F16D-004.

[1] V. N. Gribov and L. N. Lipatov, Yad. Fiz. 15, 781 (1972)
[Sov. J. Nucl. Phys. 15, 438 (1972)].

[2] V. N. Gribov and L. N. Lipatov, Yad. Fiz. 15, 1218 (1972)
[Sov. J. Nucl. Phys. 15, 675 (1972)].

[3] Y. L. Dokshitzer, Zh. Eksp. Teor. Fiz. 73, 1216 (1977) [Sov.
Phys. JETP 46, 641 (1977)].

[4] G. Altarelli and G. Parisi, Nucl. Phys. B126, 298 (1977).
[5] A. Deur et al., Phys. Rev. D 78, 032001 (2008).
[6] A. Deur, Y. Prok, V. Burkert, D. Crabb, F. X. Girod, K. A.

Griffioen, N. Guler, S. E. Kuhn, and N. Kvaltine, Phys. Rev.
D 90, 012009 (2014).

[7] S. Forte and L. Magnea, Phys. Lett. B 448, 295 (1999).
[8] S. Forte, L. Magnea, A. Piccione, and G. Ridolfi, Nucl.

Phys. B594, 46 (2001).
[9] A. Piccione, Phys. Lett. B 518, 207 (2001).

[10] S. Forte, J. I. Latorre, L. Magnea, and A. Piccione, Nucl.
Phys. B643, 477 (2002).

[11] D. Kotlorz and A. Kotlorz, Phys. Lett. B 644, 284
(2007).

[12] D. Kotlorz and A. Kotlorz, Acta Phys. Pol. B 40, 1661
(2009).

[13] D. Kotlorz and A. Kotlorz, Acta Phys. Pol. B 42, 1231
(2011).

[14] D. Kotlorz and A. Kotlorz, Phys. Part. Nucl. Lett. 11, 357
(2014).

[15] D. Kotlorz and A. Kotlorz, Int. J. Mod. Phys. A 31, 1650181
(2016).

[16] A. Psaker, W. Melnitchouk, M. E. Christy, and C. Keppel,
Phys. Rev. C 78, 025206 (2008).

[17] D. Kotlorz and S. V. Mikhailov, J. High Energy Phys. 06
(2014) 065.

[18] C. Adolph et al. (COMPASS Collaboration), Phys. Lett. B
753, 18 (2016).

[19] O. V. Teryaev, Phys. Part. Nucl. 36, 160 (2005).

μ 4p-
n / M

2

Λqcd
2    x 102 [GeV2]

-0.07

-0.06

-0.05

-0.04

-0.03

-0.02

 0  5  10  15  20

FIG. 8. Contour plot of 1σ error ellipse for Λ2
qcd and μ

p−n
4 , at the

central point χ2ndf ¼ 0.60. The upper band (yellow strip) repre-
sents the Jlab result μp−n4 =M2 ¼ −0.021� 0.016 [6] and the
lower band (blue strip) is a typical theoretical estimation,
μp−n4 =M2 ¼ −0.05� 0.02 [25].

CUT MOMENTS APPROACH IN THE ANALYSIS OF DIS DATA PHYSICAL REVIEW D 96, 016015 (2017)

016015-7

https://doi.org/10.1016/0550-3213(77)90384-4
https://doi.org/10.1103/PhysRevD.78.032001
https://doi.org/10.1103/PhysRevD.90.012009
https://doi.org/10.1103/PhysRevD.90.012009
https://doi.org/10.1016/S0370-2693(99)00065-9
https://doi.org/10.1016/S0550-3213(00)00670-2
https://doi.org/10.1016/S0550-3213(00)00670-2
https://doi.org/10.1016/S0370-2693(01)01059-0
https://doi.org/10.1016/S0550-3213(02)00688-0
https://doi.org/10.1016/S0550-3213(02)00688-0
https://doi.org/10.1016/j.physletb.2006.11.054
https://doi.org/10.1016/j.physletb.2006.11.054
https://doi.org/10.5506/APhysPolB.42.1231
https://doi.org/10.5506/APhysPolB.42.1231
https://doi.org/10.1134/S1547477114040153
https://doi.org/10.1134/S1547477114040153
https://doi.org/10.1142/S0217751X16501815
https://doi.org/10.1142/S0217751X16501815
https://doi.org/10.1103/PhysRevC.78.025206
https://doi.org/10.1007/JHEP06(2014)065
https://doi.org/10.1007/JHEP06(2014)065
https://doi.org/10.1016/j.physletb.2015.11.064
https://doi.org/10.1016/j.physletb.2015.11.064


[20] X. Artru, M. Elchikh, J.-M. Richard, J. Soffer, and O. V.
Teryaev, Phys. Rep. 470, 1 (2009).

[21] J. Kodaira, S. Matsuda, T. Muta, K. Sasaki, and T. Uematsu,
Phys. Rev. D 20, 627 (1979).

[22] S. G. Gorishnii and S. A. Larin, Phys. Lett. B 172, 109
(1986).

[23] S. A. Larin and J. A. M. Vermaseren, Phys. Lett. B 259, 345
(1991).

[24] P. A. Baikov, K. G. Chetyrkin, and J. H. Kuhn, Phys. Rev.
Lett. 104, 132004 (2010).

[25] R. S. Pasechnik, D. V. Shirkov, O. V. Teryaev, O. P. Solo-
vtsova, and V. L. Khandramai, Phys. Rev. D 81, 016010
(2010).

[26] C. Patrignani et al. (Particle Data Group Collaboration),
Chin. Phys. C 40, 100001 (2016).

KOTLORZ, MIKHAILOV, TERYAEV, and KOTLORZ PHYSICAL REVIEW D 96, 016015 (2017)

016015-8

https://doi.org/10.1016/j.physrep.2008.09.004
https://doi.org/10.1103/PhysRevD.20.627
https://doi.org/10.1016/0370-2693(86)90226-1
https://doi.org/10.1016/0370-2693(86)90226-1
https://doi.org/10.1016/0370-2693(91)90839-I
https://doi.org/10.1016/0370-2693(91)90839-I
https://doi.org/10.1103/PhysRevLett.104.132004
https://doi.org/10.1103/PhysRevLett.104.132004
https://doi.org/10.1103/PhysRevD.81.016010
https://doi.org/10.1103/PhysRevD.81.016010
https://doi.org/10.1088/1674-1137/40/10/100001

