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Using the fixed center approximation to Faddeev equations, we investigate the DKK and DKK̄ three-
body systems, considering that the DK dynamically generates, through its I ¼ 0 component, the
D�

s0ð2317Þ molecule. According to our findings, for the DKK̄ interaction we find evidence of a state
IðJPÞ ¼ 1=2ð0−Þ just above the D�

s0ð2317ÞK̄ threshold and around the Df0ð980Þ threshold, with mass of
about 2833–2858 MeV, made mostly of Df0ð980Þ. On the other hand, no evidence related to a state from
the DKK interaction is found. The state found could be seen in the ππD invariant mass.
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I. INTRODUCTION

The study of three-body systems is one of the starting
points in the study of nuclei and nuclear dynamics. The
traditional quantum mechanical approach to this problem is
based on the Faddeev equations [1], and the main appli-
cation was done for three-nucleon systems. The simplicity
of the Faddeev equations is deceiving since, in practice, its
evaluation is very involved, and one approximation or
another is done to solve them. One popular choice is the use
of separable potentials to construct the two-body scattering
amplitudes via the Alt-Grassberger-Sandhas (AGS) form of
the Faddeev equations [2]. Incorporation of chiral sym-
metry into the scheme has led to interesting developments
[3]. Another way to tackle these three-body systems is by
using a variational method [4–6]. Gradually, other systems
involving not only nucleons or hyperons but also mesons
were tackled. The interaction of K−d at threshold was
thoroughly investigated using Faddeev equations [7,8] or
approximations to them, basically, the fixed center approxi-
mation (FCA) [9]. The investigation of a possible state of
K−pp nature has also received much attention [10–16] and,
according to the calculations done in Ref. [17], the recent
J-PARC experiment [18] has found support for this state.
Another step in this direction was the investigation of

systems with two mesons and one baryon. Surprisingly, it
was found in Refs. [19–21] that with such systems, one
could obtain the low energy baryon states of JP ¼ 1=2þ.
Work in this direction with different methods was also done
in Ref. [6] for the K̄ K̄ N system and in Ref. [22] for the
KK̄N system. In this latter case a bound system developed,
giving rise to an N� state around 1920 MeV, mostly made
of an Na0ð980Þ, which was also predicted in Ref. [21].

Systems of three mesons also followed, and in Ref. [23]
the ϕKK̄ system was studied and shown to reproduce the
properties of the ϕð2170Þ. Similarly, in Ref. [24] the KKK̄
system is studied, and the bound cluster found is associated
with the Kð1460Þ. Another similar system, πKK̄, is studied
in Ref. [25], and the state found is associated with the
πð1300Þ. The ηKK̄ and η0KK̄ systems are also studied in
Refs. [25–27], and they are revised in Ref. [28] with the full
Faddeev equations and more solid results. Along the same
lines, the πK̄K� system is studied in Ref. [29] and found to
generate a state that is identified with the π1ð1600Þ.
An important result was found in Refs. [19–21,23]. In the

Faddeev equations one uses input from the two-body
amplitudes of the different components, and the off-shell
part of the amplitudes appears in the calculations. This off-
shell part is unphysical, and observables cannot depend
on it. The finding in those works was that the use of chiral
Lagrangians provides three-body contact terms that cancel
the off-shell two-body contributions. In other calculations
empirical three-body forces are introduced which might
have some genuine part, but an important part of them will
serve the purpose of effectively canceling these unphysical
off-shell contributions. Rather than introducing these terms
empirically and fitting them to some data, the message of
those works is that to make predictions it is safer to use as
input only on-shell two-body amplitudes, without extra
three-body terms, and an example of this is given inRef. [21].
An extension to the charm sector was also performed.

TheDNN system, analogous to the K̄NN system, is studied
in Ref. [30], and the NDK, K̄DN, and NDD̄ molecules are
studied inRef. [31]. TheρD�D̄� system is studied inRef. [32]
and the ρDD̄ in Ref. [33].
In the hidden charm sector a resonance is found for the

J=ψKK̄ system which is associated with the Yð4260Þ in
Ref. [34]. Closer to our work is the one of Ref. [35], where
the DKK̄ is studied using QCD sum rules and Faddeev
equations and in both methods a state coupling strongly to
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Df0ð980Þ is found. We study this system with a different
method and, in addition, the DKK system.
The former works show a constant feature, which is that

systems that add KK̄ to another particle generate states in
which the KK̄ clusters around the f0ð980Þ or the a0ð980Þ.
The DKK system benefits from the DK attraction that
forms the D�

s0ð2317Þ according to works using chiral
Lagrangians and the unitary approach [36–41]. It is also
supported by analysis of lattice QCD data [42,43].
However, the KK interaction is repulsive, and the system
might not bind. On the other hand, the DKK̄ system has
repulsion for DK̄ in I ¼ 1, and attraction for I ¼ 0, and the
DK interaction is attractive, as it is also the KK̄. Altogether
this latter system could have more chances to bind than
the DKK system, a detailed calculation is called for to find
the answer, and this is the purpose of the present work.
The starting point of our approach is to use the FCAwith a

preexistingmolecule, which is theD�
s0ð2317Þ, formed by the

DK interaction. In addition, another K (or K̄) is introduced
which is allowed to undergo multiple scattering with the D
and K components of the molecule. The result, as we shall
see, is that in theDKK system we do not see the signal of a
three-body bound state; however, in theDKK̄ systemwe find
a peak that we interpret as the KK̄ fusing to produce the
f0ð980Þwhich then gets bound to theDmeson, and a narrow
peak appears at an energy below the Df0ð980Þ threshold.
Such a state could be seen in the ππD invariant mass.

II. FORMALISM

The FCA to Faddeev equations is useful when a light
hadron H3 interacts with a cluster H composed of two
other hadrons H1 and H2, H½H1H2�, which are heavier
than the first one, i.e., MðH½H1H2�Þ > MH3

. This cluster
comes from the two-body interaction between the hadrons
H1 and H2 that can be described using a chiral unitary
approach in coupled channels. Hence, the Faddeev equa-
tions in this approximation have as an input the two-body
tmatrices for the different pairs of mesons which form the
system, and in this way, the generated bound states and
resonances are encoded. In our case, we have H1 ¼ D and
H2 ¼ K, while H3 ¼ K̄ if we consider the DKK̄ inter-
action or H3 ¼ K for the DKK system. Both three-body
interactions involve the D�

s0ð2317Þ and f0ð980Þ=a0ð980Þ
molecules that, according to Refs. [39,44], are dynami-
cally generated through DK and KK̄ interactions, respec-
tively, taking into account their associated coupled
channels. Therefore, the following channels contribute
to the three-body interaction systems with which we are
concerned: (1) K−½DþK0�, (2) K−½D0Kþ�, (3) K̄0½D0K0�,
(4) ½DþK0�K−, (5) ½D0Kþ�K−, and (6) ½D0K0�K̄0 for the
DKK̄ interaction, and (1) Kþ½DþK0�, (2) Kþ½D0Kþ�,
(3) K0½DþKþ�, (4) ½DþK0�Kþ, (5) ½D0Kþ�Kþ, and
(6) ½DþKþ�K0 for the DKK system. Note that the states
(1), (2), and (3) are the same as (4), (5), and (6),

respectively. Their distinction signifies that the interaction
in the FCA formalism occurs with the particle outside the
cluster, which is represented by the brackets ½…�, and the
particle of the cluster next to it. This allows for a compact
formulation that describes all the charge exchange steps
and distinguishes the interaction with the right or left
component of the cluster [17]. These channels will
contribute to the TDKK̄ and TDKK three-body scattering
matrices, and if those interactions generate bound states or
resonances, they will manifest as a pole in the solutions of
the Faddeev equations. In what follows, we discuss how to
construct these three-body scattering matrices and their
solutions for both the DKK̄ and DKK systems.

A. DKK̄ and DKK three-body systems

In order to write the contributions to Faddeev equations
of all the channels mentioned previously, we adopt the
following procedure to construct the relevant amplitudes:
For each channel the anti-kaon (kaon) meson on the left
side in (1), (2), and (3) interacts with the hadron on its right
side. Similarly, for (4), (5), and (6) the K or K̄ to the right
interacts with the particle to its left. In doing so, we can
distinguish the order of the anti-kaon (kaon) and two other
mesons with which the anti-kaon (kaon) interacts first and
last. This procedure is similar to that used in Ref. [17] to
study the K̄NN interaction. For instance, in theDKK̄ system,
the channel (1) K−½DþK0� in the initial state means that the
K− interacts with the Dþ meson to its right. The channel
(4) ½DþK0�K− indicates that the K− interacts with the K0 to
its left. This procedure allows us to divide the multiple anti-
kaon (kaon) scattering process in such a way that the
formulation of the multiple scattering becomes easier.
In order to illustrate the structure of themultiple scattering

in the fixed center approximation, we define the partition
functions TFCA

ij , which contain all possible intermediate
multiple steps, where the first index refers to the initial
K̄½DK�, (1), (2), and (3) or ½DK�K̄ (4), (5), and (6) states
and the second index to the final state. If we consider the
K−½DþK0� → K−½DþK0� amplitude denoted by TFCA

11 ,
which is diagramatically represented in Fig. 1, we obtain
the following expression [17,45]:

TFCA
11 ðsÞ ¼ t1 þ t1G0TFCA

41 þ t2G0TFCA
61 ; ð1Þ

which tells us that the transition from theK−½DþK0� to itself
is given in terms of a single and double scattering, coupled to
the amplitudesTFCA

ij related to the other channels.As a result,
the three-body problem is given in terms of the TFCA

ij

partitions, where the i, j indices run from 1 to 6 and stand
for the initial and final channels, respectively; as we discuss
later, they can be displayed in a matrix form.
In Eq. (1), s is the Mandelstam variable that is equal to

the square of the three-body energy system, while t1 and t2
are, respectively, the DþK− → DþK− and DþK− → D0K̄0
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two-body scattering amplitudes studied in Ref. [39], in
which the authors have applied the chiral unitary approach
in coupled channels to investigate the DK̄ and DK two-
body interaction. Here, G0 is the kaon propagator [46]
between the particles of the cluster, which is evaluated
using the equation below:

G0ðsÞ ¼
1

2MD�
s0

Z
d3q
ð2πÞ3

FRðqÞ
ðq0Þ2 − ω2

KðqÞ þ iϵ
; ð2Þ

with ω2
KðqÞ ¼ q2 þm2

K , and q0 is the energy carried by
the kaon meson in the cluster rest frame where FRðqÞ is
calculated, which corresponds to the following expression:

q0ðsÞ ¼
s −m2

K −M2
D�

s0

2MD�
s0

: ð3Þ

In this work, we use the isospin symmetric masses such
that mD and mK are the D and K meson average masses,
respectively, while MD�

s0
is the D�

s0 molecule mass. This
molecule dynamics does not come into play explicitly in
our formalism. The information on the molecule is encoded
in the function FRðqÞ appearing in Eq. (2), the form factor,
which is related to the cluster wave function by a Fourier
transform, as discussed in Refs. [45,47]. According to these
works, for the form factor to be used consistently, the
theory that generates the bound states and resonances
(clusters) -the chiral unitary approach, which is developed
for scattering amplitudes- has to be extended to wave
functions. This was done in those references for s-wave
bound states and s-wave resonant states as well as in states
with arbitrary angular momentum [48]. In our work we
need the form factor expression only for s-wave bound
states, which is given by [45]

FRðqÞ ¼
1

N

Z
jpj;jp−qj<Λ

d3p
1

MD�
s0
− ωDðpÞ − ωKðpÞ

×
1

MD�
s0
− ωDðp − qÞ − ωKðp − qÞ ; ð4Þ

where ωDðpÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

D

p
and the normalization factor

N is

N ¼
Z
jpj<Λ

d3p

�
1

MD�
s0
− ωDðpÞ − ωKðpÞ

�
2

: ð5Þ

The upper integration limit Λ has the same value of the
cutoff used to regularize the loop DK, adjusted in order to
get the D�

s0ð2317Þ molecule from the DK interaction.
Analogously to TFCA

11 expressed in Eq. (1), we can
calculate all the relevant multiple scattering amplitudes,
the partitions TFCA

ij , using diagrams similar to the one in
Fig. 1. As a result, they can be written as

TFCA
ij ðsÞ ¼ VFCA

ij ðsÞ þ
X6
l¼1

~VFCA
il ðsÞG0ðsÞTFCA

lj ðsÞ; ð6Þ

where Vij and ~Vil are the elements of the following
matrices:

VFCA ¼

0
BBBBBBBBB@

t1 0 t2 0 0 0

0 t3 0 0 0 0

t2 0 t4 0 0 0

0 0 0 t5 0 0

0 0 0 0 t6 t7
0 0 0 0 t7 t8

1
CCCCCCCCCA
;

~VFCA ¼

0
BBBBBBBBB@

0 0 0 t1 0 t2
0 0 0 0 t3 0

0 0 0 t2 0 t4
t5 0 0 0 0 0

0 t6 t7 0 0 0

0 t7 t8 0 0 0

1
CCCCCCCCCA
: ð7Þ

Therefore, according to Eq. (6), in our case we can solve
the three-body problem in terms of the multiple scattering
amplitudes given by partitions TFCA

ij , which contain only

FIG. 1. Feynman diagrams for theK− multiple scattering of the processK−DþK0. The white circle indicates theDK̄ → DK̄ scattering
amplitude, while the gray bubble is associated with the one for DKK̄.
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the DK̄ and KK̄ two-body amplitudes. Thus, for the DKK̄
system the solution to the scattering equation, Eq. (6),
will be

TFCA
ij ðsÞ ¼

X6
l¼1

½1 − ~VFCAðsÞG0ðsÞ�−1il VFCA
lj ðsÞ: ð8Þ

Analogously, for the DKK system, we have the same
solution as in Eq. (8). However, in this case, the ~VFCA and
VFCA matrices, in terms of the DK and KK two-body
amplitudes, are now given by

VFCA ¼

0
BBBBBBBBB@

t̄1 0 0 0 0 0

0 t̄2 t̄3 0 0 0

0 t̄3 t̄4 0 0 0

0 0 0 t̄5 0 t̄5
0 0 0 0 t̄6 0

0 0 0 t̄5 0 t̄5

1
CCCCCCCCCA
;

~VFCA ¼

0
BBBBBBBBB@

0 0 0 t̄1 0 0

0 0 0 0 t̄2 t̄3
0 0 0 0 t̄3 t̄4
t̄5 0 t̄5 0 0 0

0 t̄6 0 0 0 0

t̄5 0 t̄5 0 0 0

1
CCCCCCCCCA
: ð9Þ

The elements of the matrices in Eqs. (7) and (9), i.e.,
t1; t2;…; t8 and t̄1;…; t̄6, related to the three-body inter-
actionDKK̄ andDKK systems are the two-body scattering
matrix elements, respectively, given by

t1 ¼ tDþK−→DþK− ; t4 ¼ tD0K̄0→D0K̄0 ;

t2 ¼ tDþK−→D0K̄0 ; t5 ¼ tK0K−→K0K− ;

t3 ¼ tD0K−→D0K− ; t6 ¼ tKþK−→KþK− ;

t7 ¼ tKþK−→K0K̄0 ;

t8 ¼ tK0K̄0→K0K̄0 ;

ð10Þ

and

t̄1 ¼ tDþKþ→DþKþ ; t̄4 ¼ tDþK0→DþK0 ;

t̄2 ¼ tD0Kþ→D0Kþ ; t̄5 ¼ tKþK0→KþK0 ;

t̄3 ¼ tD0Kþ→DþK0 ; t̄6 ¼ tKþKþ→KþKþ ; ð11Þ

which we discuss in the next subsection.
It is important to mention that, in this work, we are using

the Mandl and Shaw normalization, which has different
weight factors for the particle fields. In order to use these
factors in a consistent manner in our problem, we should
take into account how they appear in the single-scattering
and double-scattering as well as in the full amplitude. The
detailed calculation on how to do this can be found in

Refs. [45–47]. According to these works, this is done by
multiplying the two-body amplitudes by the factor
Mc=M1ð2Þ, where Mc is the cluster mass while M1ð2Þ is
associated with the mass of the hadrons H1 and H2. In our
case, we haveMc=MD for the two-body amplitudes related
to the DK̄ðDKÞ and Mc=MK for the one related to the
KK̄ðKKÞ appearing in Eqs. (10) and (11).
Once we solve the Faddeev equations for the systems we

are concerned with, we have to write this solution in such a
way that it represents the amplitude of a K̄ðKÞ meson
interacting with the D�

s0 molecule, which is the DK cluster
written into an I ¼ 0 combination. Taking into account that
jDKðI¼ 0Þi¼ ð1= ffiffiffi

2
p ÞjDþK0þD0Kþi [recall ðDþ;−D0Þ

is the isospin doublet] and summing the cases where the
odd K̄ðKÞ interacts first to the left (right) of the cluster
and finishes interacting at the left (right), we obtain the
following combination for both DKK̄ and DKK systems,

TX−D�
s0
¼ 1

2
ðTFCA

11 þ TFCA
12 þ TFCA

14 þ TFCA
15 þ TFCA

21 þ TFCA
22

þ TFCA
24 þ TFCA

25 þ TFCA
41 þ TFCA

42 þ TFCA
44 þ TFCA

45

þ TFCA
51 þ TFCA

52 þ TFCA
54 þ TFCA

55 Þ; ð12Þ

where X denotes a K̄ in the DKK̄ case and a K meson for
the DKK interaction.

B. Two-body amplitudes

In order to solve the Faddeev equations using the FCA
for the systems we are concerned with, we need to know the
two-body scattering amplitudes appearing in Eqs. (10) and
(11). They were studied in Refs. [39,44]. These amplitudes
are calculated using the chiral unitary approach (for a
review see [49]). In this model, the transition amplitudes
between the different pairs of mesons are extracted from
Lagrangians based on symmetries such as chiral and heavy
quark symmetries. Then, they are unitarized using them as
the kernels of the Bethe-Salpeter equation, which, in its on-
shell factorization form, is given by

t ¼ ð1 − vGÞ−1v; ð13Þ

where G is the two-meson loop function and its expression
in the dimensional regularization method is

GðsiÞ ¼
1

16π2

�
αiðμÞ þ log

m2
1

μ2
þm2

2 −m2
1 þ si

2si
log

m2
2

m2
1

þ pffiffiffiffi
si

p ½logðsi −m2
2 þm2

1 þ 2p
ffiffiffiffi
si

p Þ

− logð−si þm2
2 −m2

1 þ 2p
ffiffiffiffi
si

p Þ
þ logðsi þm2

2 −m2
1 þ 2p

ffiffiffiffi
si

p Þ

− logð−si −m2
2 þm2

1 þ 2p
ffiffiffiffi
si

p Þ�
�
; ð14Þ
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with m1 and m2 standing for the i-channel meson masses in
the loop andp the three-momentum in the two-meson center-
of-mass energy,

ffiffiffiffi
si

p
. In Eq. (14), μ is a scale fixed a priori,

and the subtraction constant αðμÞ is a free parameter.
In Ref. [39], μ is considered to be equal to 1500 MeV for
theDK̄ system, corresponding toαDK̄ ¼ −1.15. On the other
hand, since the amount ofDK content inD�

s0ð2317Þ is about
70%[42],we consider just one channel,withαDK ¼ −0.925,
adjusted to provide the D�

s0ð2317Þ peak, corresponding to a
cutoff value equal to 650MeV. This value also has to be used
as the upper limit in the integrals given by Eqs. (4) and (5).
For the f0ð980Þ=a0ð980Þ we consider the same channels as
Refs. [50,51], where a cutoff equal to 600 MeV was used to
regularize the loops, given by

GðslÞ ¼
Z

d3q
ð2πÞ3

ω1ðqÞ þ ω2ðqÞ
2ω1ðqÞω2ðqÞ

×
1

ðP0Þ2 − ½ω1ðqÞ þ ω2ðqÞ�2 þ iϵ
; ð15Þ

where ðP0Þ2 ¼ sl, the two-body center-of-mass energy
squared. The index l stands for the following channels:
(1) πþπ−, (2) π0π0, (3)KþK−, (4)K0K̄0, (5) ηη, and (6) π0η.

In each channelω1ð2ÞðqÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þm2

1ð2Þ
q

, wherem1ð2Þ is the

mass of the mesons inside the loop.
In order to get the scattering amplitude for the KK

interaction, we follow Ref. [44]. First, we have to find the
kernel v to be used in Eq. (13). This kernel is the lowest
order amplitude describing the KK interaction, and it is
calculated using the chiral Lagrangian

L2 ¼
1

12f2π
hð∂μΦΦ −Φ∂μΦÞ2 þMΦ4i; ð16Þ

where h…imeans the trace in the flavor space of the SUð3Þ
matrices appearing in Φ and M, while fπ is the pion decay
constant. The matrices Φ and M are given by

Φ ¼

0
BBB@

π0ffiffi
2

p þ η8ffiffi
6

p πþ Kþ

π− − π0ffiffi
2

p þ η8ffiffi
6

p K0

K− K̄0 − 2η8ffiffi
6

p

1
CCCA;

M ¼

0
BB@

m2
π 0 0

0 m2
π 0

0 0 2m2
K −m2

π

1
CCA; ð17Þ

where inM we have taken the isospin limit (mu ¼ md), and
inΦwe take η8 ¼ η. Hence, from Eqs. (16) and (17) we can
calculate the tree-level amplitudes for KþK0 and KþKþ,
which, after projection in the s-wave, read as

vKþK0→KþK0 ¼ 1

2f2π
ðsKK − 2m2

KÞ;

vKþKþ→KþKþ ¼ 1

f2π
ðsKK − 2m2

KÞ; ð18Þ

where sKK is theMandelstam variable s in theKK center-of-
mass frame. From these equations one finds that vI¼0

KK ¼ 0

(and tI¼0
KK ¼ 0), and taking the unitary normalization appro-

priate for identical particles jKþKþ; I ¼ 1i ¼ jKþKþi= ffiffiffi
2

p
,

we find vI¼1
KK ¼ 1

2
vKþKþ→KþKþ . The tI¼1

KK amplitude will be
tI¼1
KK ¼ ð1 − vI¼1

KK GKKÞ−1vI¼1
KK , and then t

I¼1
KK has to be multi-

plied by two to restore the good normalization. Therefore,
using these expressions we obtain the KK scattering ampli-
tudes t̄5 and t̄6 present inEq. (11) (t̄6 ¼ tI¼1

KK , t̄5 ¼ 1
2
tI¼1
KK , with

tI¼1
KK the good normalization), wherewe have used a cutoff of
600MeV to regularize theKK loops, the samecutoff thatwas
used in the KK̄ and coupled channels system. After these
considerations we are able to determine all the two-body
amplitudes in Eqs. (10) and (11).
It is worth mentioning that the arguments of the

partitions TFCA
ij ðsÞ and the tiðsiÞ two-body amplitudes

are different. While the former is written into the three-
body center-of-mass energy

ffiffiffi
s

p
, the latter is given in the

two-body one. In order to write the
ffiffiffiffi
si

p
’s in terms of

ffiffiffi
s

p
,

we use the same transformations as in Refs. [46,52], which
are

sDKðDK̄Þ ¼ m2
K þm2

D þ 1

2M2
D�

s0

ðs −m2
K −M2

D�
s0
Þ

× ðM2
D�

s0
þm2

D −m2
KÞ; ð19Þ

where the subscript DKðDK̄Þ stands for the two-body
channels associated with the energy in the center-of-mass
frame of DKðDK̄Þ. Analogously, for the energy in the
KKðKK̄) center-of-mass frame, we have

sKKðKK̄Þ ¼ 2m2
K þ 1

2M2
D�

s0

ðs −m2
K −M2

D�
s0
Þ

× ðM2
D�

s0
þm2

K −m2
DÞ: ð20Þ

In this work, we call this set of transformations “prescrip-
tion I.” In order to estimate the uncertainties in our
calculations, we use another set of transformations, which
we call “prescription II,” given by

sDKðDK̄Þ ¼
� ffiffiffi

s
p

MD�
s0
þmK

�
2
�
mK þ mDMD�

s0

mD þmK

�
2

− P2
2

ð21Þ

and
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sKKðKK̄Þ ¼
� ffiffiffi

s
p

MD�
s0
þmK

�
2
�
mK þ mKMD�

s0

mD þmK

�
2

− P2
1;

ð22Þ

where P1 and P2 stand for the momenta of the D and K
mesons in the cluster, which we take to be equal such
that the kinetic energy in the DK cluster is of the order
of the binding energy; hence, P2

1 ¼ P2
2 ¼ 2~μBD�

s0
¼

2~μðmDþmK−MD�
s0
Þ, with ~μ the reduced mass of DK.

This prescription is based on another one discussed in
Refs. [32,52], which shares the binding energy among
the three particles proportionally to their respective masses.

III. RESULTS

In all our calculations we use mK ¼ 495 MeV,
mD¼1865MeV, mD�

s0ð2317Þ ¼ 2317MeV, mπ ¼ 138MeV,

mη ¼ 548 MeV, and fπ ¼ 93 MeV. In Fig. 2 we plot
the energies in the center-of-mass frame of each of the
two-body systems as a function of the energy of the center-
of-mass frame of the three-body system, according to
Eqs. (19)–(22). Both prescriptions map the energy range
around 2812 MeV, which corresponds to the threshold of
D�

s0ð2317ÞK [or D�
s0ð2317ÞK̄], to an energy range around

each of the thresholds of the two-body interactions, i.e., the
KK system (or KK̄) interacts in an energy range around
990 MeV in its center-of-mass frame, which corresponds to
2mK, and theDK system (orDK̄) interacts in an energy range
around 2360 MeV, which corresponds to mK þmD.
The main uncertainty in our calculation is the difference

between these two ways of mapping the total energy into
the center-of-mass frame of each two-body system. This
feature was also found in other works using FCA, for
instance in Ref. [52].

A. The DKK̄ system

In Fig. 3(a) we show the result of the total Faddeev
amplitude squared from Eq. (12) using prescription I.
We see a strong peak around 2833 MeV, which could be
interpreted as a D½f0ð980Þ=a0ð980Þ� bound state since it is
below the D½f0ð980Þ=a0ð980Þ� threshold of 2855 MeV.
On the other hand, using prescription II we observe a peak
around 2858 MeV, as can seen in Fig. 3(b), and now could
be interpreted as a D½f0ð980Þ=a0ð980Þ� resonance since it
is above its threshold.
In order to investigate if this strong peak in the DKK̄

system comes mostly from KK̄ merging into a0ð980Þ or
f0ð980Þ, we have separated the KK̄ amplitudes (that enter
in the Faddeev equations) in the isospin basis and selected
only one contribution at a time. In Fig. 4 we show the
results where the I ¼ 0 component of KK̄ was removed;
therefore, there is no f0ð980Þ contribution. In this figure we
can clearly see the shape of the a0ð980Þ in the three-body
amplitude, which peaks around 2842 MeV in prescription I

FIG. 2. Energy distribution in the center-of-mass frame of each
two-body system as a function of the total energy of the three-
body system, using prescriptions I and II. Here s1 ¼ sDKðDK̄Þ and
s2 ¼ sKKðKK̄Þ. The lower curves are for KK or KK̄, and the upper
curves are for DK or DK̄.

(a) (b)

FIG. 3. Results for the total DKK̄ amplitude squared using prescriptions I (left) and II (right).
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(and 2886 MeV in prescription II); according to Fig. 2, this
corresponds to 990 MeV in the KK̄ center-of-mass frame,
exactly where the a0ð980Þ peak results from the I ¼ 1 KK̄
two-body amplitude. Notice that when we removed the
I ¼ 0 isospin component from the KK̄ amplitude, the
strength of the peaks in jTDKK̄j2 have decreased by about
2 orders of magnitude in both prescriptions, pointing out
that the f0ð980Þ is indeed the most important contribution
coming from KK̄. It is interesting to recall that the same
conclusion was obtained in [35], where no apparent signal
forDa0ð980Þwas found. Furthermore, the small cusps seen
in both prescriptions at 2812 MeV in Fig. 4 correspond to
the D�

s0ð2317ÞK̄ threshold. In Table I we compile the
results of both prescriptions.
The results for theDKK̄ system point to the formation of

a three-body state: the D½f0ð980Þ=a0ð980Þ�, in which the
Df0ð980Þ is the strongest contribution in both prescrip-
tions. Specifically, in prescription I the Df0ð980Þ state
would be bound by about 20 MeV, while in prescription II
it would correspond to a resonance. This latter result would
be similar to the findings of Ref. [35], where a peak is seen
at higher energy, forming a Df0ð980Þ resonant state at
2890 MeV.
As mentioned previously, the difference between the

results of prescriptions I and II should be interpreted as the
main uncertainty in our approach, but what emerges from
both pictures is that a Df0ð980Þ state is formed, slightly
bound or unbound.

We note that the theoretical uncertainty of the present
method is of the order of 25 MeV. To put this number in a
proper context, we recall that the uncertainty in the QCD
sum rules method in Ref. [35] is far larger, with a mass
given by mDf0 ¼ ð2926� 237Þ MeV (the uncertainty for
the mass in the Faddeev method of Ref. [35] is not given).

B. The DKK system

In Fig. 5 we show theDKK total amplitude squared from
Eq. (12) using prescriptions I and II. We can see that in both
prescriptions, the amplitude decreases around 2812 MeV,
which corresponds to the D�

s0ð2317ÞK threshold, and both
have a maximum below this threshold; however, prescrip-
tion II also develops a broad structure above threshold, but
no clear peak that could indicate the formation of a bound
state or a resonance is found.
As a physical interpretation we could say that, even

though the interaction of the external K with the D inside
the cluster is attractive (the same responsible for the strong
binding that generates theD�

s0ð2317Þ cluster), the repulsion
of the external K with the K inside the cluster seems to be
of the same magnitude and prevents the DKK system from
forming a bound state.
One might be tempted to associate the peak below

threshold with a physical state, but this is not the case.
Indeed, one should note that the strength of jTDKKj2 in
Fig. 5 is about 3 orders of magnitude smaller than for
jTDKK̄j2 in Fig. 3, which simply indicates that no special
hadron structure has been formed in this case.

IV. CONCLUSIONS

In this work, we have used the FCA to Faddeev
equations in order to look for bound states or resonances
generated from DKK̄ and DKK three-body interactions.
The cluster DK in the I ¼ 0 component is the well-known
D�

s0ð2317Þ bound state studied by means of the chiral
unitary approach. From the DKK̄ interaction we found an

FIG. 4. Results for the DKK̄ amplitude squared after removing
the f0ð980Þ contribution, using prescriptions I and II.

FIG. 5. Results for the total DKK amplitude squared using
prescriptions I and II.

TABLE I. Comparison between position and intensity of the
peaks found in the DKK̄ amplitude.

Prescription I Prescription IIffiffiffi
s

p jTj2 ffiffiffi
s

p jTj2
Total 2833 6.8 × 106 2858 1.8 × 107

I ¼ 1 only 2842 7.7 × 104 2886 7.8 × 104
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IðJPÞ ¼ 1=2ð0−Þ state with mass about 2833–2858 MeV,
where the uncertainties were estimated by taking into
account two different prescriptions to obtain

ffiffiffiffiffiffiffiffi
sDK̄

p
andffiffiffiffiffiffiffiffi

sKK̄
p

from the total energy of the system
ffiffiffi
s

p
. Our findings

corroborated those of Ref. [35], where the authors studied
the DKK̄ interaction using two different nonperturbative
calculation tools, the QCD sum rules and the Faddeev
equations without FCA. They found a state around
2890 MeV, which is above the Df0ð980Þ threshold. As
we have pointed out before, this state could be seen in the
ππD invariant mass distribution. Therefore, as in Ref. [35],
we also suggest the search for such a state in future
experiments. On the other hand, for the DKK system
we found an enhancement effect, but with a very small
strength compared to theDKK̄ system, and it should not be
related to a physical bound state. In this case, the repulsion

between KK seems to be of the same magnitude as the
attraction on the DK interaction, preventing the formation
of the three-body molecular state.
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