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We optimize the pulse shape and polarization of time-dependent electric fields to maximize the
production of electron-positron pairs via strong field quantum electrodynamics processes. The pulse is
parametrized in Fourier space by a B-spline polynomial basis, which results in a relatively low-dimensional
parameter space while still allowing for a large number of electric field modes. The optimization is
performed by using a parallel implementation of the differential evolution, one of the most efficient
metaheuristic algorithms. The computational performance of the numerical method and the results on pair
production are compared with a local multistart optimization algorithm. These techniques allow us to
determine the pulse shape and field polarization that maximize the number of produced pairs in
computationally accessible regimes.
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I. INTRODUCTION

The generation of electron-positron pairs from strong
classical electric fields has been predicted theoretically
decades ago [1–3] but still eludes a direct experimental
verification. Generating electromagnetic radiation with an
electric field strength on the order of the Schwinger field
ES ≔ m2c3=eℏ ≈ 1.3 × 1018 V=m (m is the electron mass
and e is the elementary charge) is the main challenge
experimentalists are facing to observe this effect. Since the
probability to generate a pair from a constant field Eexp is
proportional to PS ∼ expð−πES=EexpÞ, the pair density is
exponentially suppressed for Eexp < ES. With current laser
technologies, the maximum attainable peak field strength is
approximately given by Eexp ∼ 1013–1014 V=m [4], which
is several orders of magnitude below the Schwinger field
and, hence, results in a minuscule pair production proba-
bility (PS ≪ 1).
Nevertheless, the latest developments in laser science

that aim at increasing the laser intensity, along with new
theoretical proposals, have made the experimental obser-
vation of the Schwinger mechanism more plausible [5–7].
In this line of research, the development of time-dependent
pulses or field configurations that enhance the pair density
has been one of the main guiding principles. As a matter of
fact, it has been demonstrated numerous times that the pair
density depends nonlinearly on the field and is hence very
sensitive to its temporal structure [8–18]. Among the most

promising field configurations are those that realize the
dynamically assisted Schwinger effect [19–21], whereby a
strong quasistatic electric field is superimposed by weak
high-frequency radiation. This increases the pair produc-
tion rate and reduces the exponential suppression owing to
the combination of tunneling and multiphoton effects.
Most theoretical calculations that investigate the effect of

the laser pulse shape on the pair density have considered
homogeneous fields, although some spatial effects have
also been studied recently [22–26]. Even for the simpler
homogeneous but oscillating electric field with an
envelope, it is far from trivial to understand the pair
spectrum and to find an optimal configuration due to
time-domain quantum interferences. The latter accounts
for the intricate “peak and valley” structure in the pair
spectrum [8,10,27]. The phenomenon of quantum interfer-
ence can be understood as a realization of the Stokes
phenomenon [13,28] or the Landau-Zener-Stückelberg
interferometry [14] and renders the pair spectrum extremely
sensitive to the field profile [10].
Recently, it has been proposed to optimize the time

profile parameters with optimal control theory to maximize
the pair density [29]. Later, a similar technique was utilized
to optimize the rate in some momentum region [30]. The
main impetus of this study was to find pulse shapes that
facilitate the detection of Schwinger’s effect in an exper-
imental investigation. Even with recent advances in laser
technologies, the laser pulses will need to be tightly
focused to reach the required field strength. This can only
be performed with large focusing optics that cover a
substantial part of the whole solid angle. As a consequence,
it may be challenging to design a particle detector with a
large acceptance. In addition, these particle detectors have
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some given momentum resolution and range. It is then
mandatory that pairs are emitted in the direction of the
particle detector with the proper energy. These experimen-
tal constraints could be theoretically controlled by using
optimization techniques.
Following a similar approach based on optimal control,

it is also possible to formulate the inverse problem for
Schwinger pair production to determine electric field
configurations that approximately reproduce a given
particle spectrum [31]. The success of this procedure
depends on the number of modes that characterize the
laser pulse. Generally speaking, the accuracy of the
solution improves exponentially as the number of modes
is increased. At the same time, the computational cost to
find optimal solutions grows polynomially with the size of
the search space if the mode amplitudes are chosen as the
optimization parameters as in Ref. [31]. This limits the
number of modes to Oð10Þ, which is unrealistically small
for short laser pulses that exhibit a broadband spectrum.
Another limitation of the optimization studies previously
performed in Refs. [29–31] is the assumption that the
electric field is spatially homogeneous and linearly polar-
ized. Although this assumption is well justified for an
e-dipole field in the vicinity of the focal spot or at the
antinodes of two counterpropagating standing waves,
recent investigations have demonstrated that an elliptic
or circular polarization of the electric field can have
substantial influence on the properties of produced par-
ticles [16,32,33]. For instance, it has been shown that a
circular polarized field results in a ring structure in the
spectrum of created particles and leads to a nontrivial spin
polarization [33–36].
The main goal of this article is to go beyond the

aforementioned limitations by improving the method
outlined in Refs. [29–31] in various respects:

(i) The pulse parametrization: We parametrize the
pulse in Fourier space by using a polynomial basis
expansion. Once the spectrum is parametrized in
this polynomial basis, a larger number of modes can
be used. If the pulse spectrum is smooth enough,
the number of necessary parameters to completely
characterize the pulse can be reduced significantly
compared to a direct optimization of the spectral
weights and phases.

(ii) The optimization technique: We perform a compari-
son of two optimization strategies, namely the
commonly used multistart local search and a more
general approach based on metaheuristics. Meta-
heuristics are well suited for large scale optimization
problems as they can usually find good solutions
with less computational resources than other meth-
ods, especially when the parameter space has many
local minima [37]. On the other hand, local search
algorithms usually have a faster rate of convergence
if the parameter space is convex.

(iii) The possible field configurations: We allow for
arbitrary ellipticities in the field configurations
instead of restricting calculations to the linearly
polarized case.

We note that pulse shape optimization problems are also
encountered in the control of wave packets in molecular
systems [38], in harmonic generation in atomic physics
[39–42], in ablation problems [43], or in the design of
high-fidelity quantum gates [44,45]. Thus, the optimization
strategies presented in this article may find application in
several physical systems.
This article is organized as follows. In Sec. II we

briefly describe two methods to evaluate the spectrum of
produced electron-positron pairs from strong electric fields.
In Sec. III we introduce the piecewise polynomial basis
expansion (B-splines) which is used to represent the
electric fields under consideration. In Sec. IV we outline
two optimization methods that are utilized in the current
study: a local multistart optimization algorithm as well as a
population-based metaheuristics. We discuss our numerical
results on pulse optimization in Sec. V and conclude
in Sec. VI.

II. PAIR PRODUCTION IN A STRONG
HOMOGENEOUS FIELD

In this section we briefly review electron-positron pair
production in a time-dependent homogeneous classical
electric field. In particular, we present two independent
techniques. The first one is based on the solution of the
Dirac equation in momentum space. It is adapted from the
formulation given in Refs. [14,46–48]. The second one is a
generalization of the quantum kinetic equation for linearly
polarized fields [49–51] to two-dimensional rotating elec-
tric fields. Both techniques yield equivalent results and will
be utilized in subsequent optimization calculations. The
performance of these approaches is compared in Sec. V C.
Throughout we use QED rationalized units in which c ¼
ℏ ¼ m ¼ 1 and e ¼ ffiffiffiffiffiffiffiffi

4πα
p

, such that eES ¼ 1. Moreover,
we choose the temporal-axial gauge in which A0ðt;xÞ ¼ 0.

A. Pair production from the Dirac equation

The electron-positron phase space density in a
homogeneous external field is computed from the field
induced transitions between negative and positive energy
states. Therefore, the leading order contribution to the
spin-summed electron phase space density fðt;pÞ can be
written as [47]

fðtf;pÞ ¼
X
s¼1;2

1

2ωoutðpÞ2ωinðpÞ ju
out†
s ðpÞψ sðtf;pÞj2; ð1Þ

where s is the spin index, ωin;outðpÞ are the asymptotic
energies, uouts ðpÞ is a positive energy spinor, and ψ sðtf;pÞ
is a relativistic wave function. The superscripts “in, out”
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imply that the variable is evaluated in regions where
the electric field vanishes, before and after the field is
applied. Equation (1) is based on the assumption that
the electric field vanishes at asymptotic times, i.e.
EðtÞjt∈½−∞;ti�∪½tf;∞� ¼ 0. In turn, the vector potential, related
to the electric field as usual by EðtÞ ¼ −∂tAðtÞ, may be
nonvanishing in these temporal regions depending on the
chosen gauge. Here, we choose gauges where the vector
potential is spatially constant but time dependent and given
by AðtÞjt∈½−∞;ti� ¼ Ain and AðtÞjt∈½tf;∞� ¼ Aout.
At this point, it is convenient to introduce the kinematic

momentum and the single particle energy according to

PðtÞ ≔ p − eAðtÞ; ð2aÞ

ωðp; tÞ ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2ðtÞ þm2

q
: ð2bÞ

The asymptotic energies are simply given by
ωin;outðpÞ ≔ ωðp; ti;fÞ. Moreover, the adiabatic free
spinors can be written as

usðt;pÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ωðp; tÞ þm
p

� ½ωðp; tÞ þm�ξs
½σ · PðtÞ�ξs

�
; ð3aÞ

vsðt;−pÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ωðp; tÞ þm
p

� −½σ · PðtÞ�ηs
½ωðp; tÞ þm�ηs

�
; ð3bÞ

where the bispinors are defined as ξ1 ¼ η2 ¼ ½1; 0�T and
ξ2 ¼ η1 ¼ ½0; 1�T . It can be verified that the spinors obey
the usual orthogonality relations u†sðt;pÞvsðt;−pÞ ¼ 0

which ensures that the pair density vanishes for free
propagation without electric field.
In Eq. (1), the superscripts “in, out” indicate that the

spinors are evaluated at times ti and tf, respectively
[uouts ðpÞ ≔ usðtf;pÞ and vins ðpÞ ≔ vsðti;pÞ]. Accordingly,
the momentum space wave function is given by

ψ sðtf;pÞ ¼ Upðtf; tiÞvins ð−pÞ; ð4Þ

where Up is the evolution operator in momentum space.
It evolves an initial negative energy free spinor vins from
the initial time ti to the final time tf according to the
momentum space Dirac equation

i∂tψðt;pÞ ¼ ½α · ½p − eAðtÞ� þ βm�ψðt;pÞ: ð5Þ

The Dirac matrices are chosen in the usual Dirac repre-
sentation and thus are given by α ¼ σx ⊗ σ and
β ¼ σz ⊗ I2, with Pauli matrices σ. The time evolution
of the wave function is performed by solving the Dirac
equation (5) for initial negative energy states of momentum
p, selected from a given range. To this end, we use a simple
split-operator method with a second order convergence

which was developed in previous studies [14,47,48]. The
time step is adjusted to reach convergence of the solution.
We conclude this section by noting that the conservation of

charge and momentum allows for a relation between the
electron and positron phase space density. The latter is
obtained by the substitution p → −p in the electronic
fðt;pÞ. Finally, the total pair density generated by the electric
field is obtained by integrating fðt;pÞ over all momenta.

B. Pair production from quantum kinetic theory

Equivalently, the evolution of a Dirac field under the
influence of an external vector potential Aðt;xÞ can be
suitably described using the Dirac-Heisenberg-Wigner
(DHW) phase space approach [52]. For a spatially homo-
geneous vector potential AðtÞ with EðtÞ ¼ −∂tAðtÞ, this
formalism appears as a linear system of Partial differential
equation (PDEs) for ten nontrivial Wigner components
w ¼ ½s; v⃗; a⃗; ⃗t1�T ,

½∂t þ eEðtÞ ·∇p�wðt;pÞ ¼ MðpÞwðt;pÞ ð6Þ

with

MðpÞ ¼

0
BBB@

0 0 0 2pT

0 0 −2p× −2m1

0 −2p× 0 0

−2p 2m1 0 0

1
CCCA; ð7Þ

and nontrivial initial conditions sðti;pÞ ¼ −2m=ωðpÞ and
v⃗ðti;pÞ ¼ −2p=ωðpÞ with ωðpÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p
. We note

that for linearly polarized fields EðtÞ ¼ E3ðtÞe3, the PDE
system can be reduced to a three-dimensional Ordinary
differential equation (ODE) system via the method of
characteristics [51,52].
In the following, we consider a two-dimensional electric

field and parametrize it asEðtÞ ¼ E2ðtÞe2 þ E3ðtÞe3. It has
been noted in Ref. [16] that there exists a possible
redundancy in the ten-dimensional PDE systems in sim-
ilarity to linearly polarized fields. However, this redun-
dancy was not lifted and the full system was solved. As we
will now show, it is in fact possible to reduce the system to a
subset of only six equations by a suitable choice of basis.
To this end, we proceed as in [51] and apply the method of
characteristics to transform Eq. (6) in the form

∂twðt;PÞ ¼ MðPÞwðt;PÞ; ð8Þ

with the kinematic momentum P as defined in Eq. (2a).
We then seek an appropriate basis to span the Wigner
components

wðt;PÞ ≔ −2
X10
i¼1

χiðt;PÞeiðt;PÞ; ð9Þ
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with normalized basis vectors eiðt;PÞ and expansion
coefficients χiðt;PÞ. For convenience, the first basis
vector is chosen such that it encodes the nontrivial initial
conditions χ1ðti;PÞ ¼ 1, whereas χi¼2���10ðti;PÞ ¼ 0.
Moreover, we introduce the following quantities:

Xðt;PÞ ≔ ω2ðPÞðE ·EÞ − ðE · PÞ2; ð10aÞ

Yðt;PÞ ≔ ω2ðPÞðE · _EÞ − ðE · PÞð _E · PÞ; ð10bÞ

with _E ≔ ∂tE. In fact, the choice of normalized basis
vectors

e1 ≔
1

ω
½m;P; 0; 0�T; ð11aÞ

e2 ≔
1

ω
ffiffiffiffi
X

p ½mðE · PÞ; ðE · PÞP − ω2ðPÞE; 0; 0�T; ð11bÞ

e3 ≔ −
1ffiffiffiffi
X

p ½0; 0;E × P; mE�T; ð11cÞ

e4 ≔
1

ϵ⊥
ffiffiffiffi
X

p

× ½−mðe1 × PÞ ·E;E × ðm2e1 þ p1PÞ; 0; 0�T; ð11dÞ

e5 ≔
1

ϵ⊥ω
ffiffiffiffi
X

p ðE × _EÞ · e1
× ½0; 0; ðX _E − YEÞ × P; mðX _E − YEÞ�T; ð11eÞ

e6 ≔ −
1

ϵ⊥ω
½0; 0; m2e1 þ p1P; me1 × P�T; ð11fÞ

with ϵ⊥ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

1

p
results in a closed subsystem of

equations. By defining the two auxiliary quantities

Qðt;PÞ ≔ e
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xðt;PÞp
ω2ðPÞ ; ð12aÞ

Rðt;PÞ ≔ ϵ⊥ωðPÞðE × _EÞ · e1
Xðt;PÞ ; ð12bÞ

we obtain

Me1 ¼ 0; ∂te1 ¼ −Qe2; ð13aÞ

Me2 ¼ 2ωe3; ∂te2 ¼ Qe1 þ Re4; ð13bÞ

Me3 ¼ −2ωe2; ∂te3 ¼ −Re5; ð13cÞ

Me4 ¼ −2ωe5; ∂te4 ¼ −Re2; ð13dÞ

Me5 ¼ 2ωe4; ∂te5 ¼ Qe6 þ Re3; ð13eÞ

Me6 ¼ 0; ∂te6 ¼ −Qe5: ð13fÞ

This means that the subset χi¼1���6ðt;PÞ fully characterizes
the fermion dynamics in the presence of a two-dimensional
electric field. Accordingly, we obtain the following ODE
system by equating the coefficients:

∂tχ⃗ðt;PÞ ¼ N ðt;PÞχ⃗ðt;PÞ; ð14Þ

which is governed by the skew-symmetric matrix

N ðt;PÞ ≔

0
BBBBBBBBB@

0 −Q 0 0 0 0

Q 0 −2ω R 0 0

0 2ω 0 0 −R 0

0 −R 0 0 2ω 0

0 0 R −2ω 0 Q

0 0 0 0 −Q 0

1
CCCCCCCCCA
; ð15Þ

and initial conditions χ1ðti;PÞ ¼ 1 and χi¼2…6ðti;PÞ ¼ 0.
The single-particle distribution function, which corre-
sponds to the spin-summed pair density, is identified
with [51]

fðt;PÞ ¼ 1 − χ1ðt;PÞ: ð16Þ

For linearly polarized fields we note that Rðt;PÞ ¼ 0. In
this special case, Eq. (15) takes a block-diagonal form,
which implies that it suffices to solve a three-dimensional
subsystem, corresponding to the well-known quantum
kinetic equation in differential form [50]. The ODE system
can be solved efficiently by using a standard fourth-order
Runge-Kutta method. Again, the time step is adjusted to
reach convergence.

III. TEMPORAL FIELD PROFILE

In this work we consider spatially homogeneous,
time-dependent electric fields. Specifically, we will look
at two-dimensional field configurations of the form

EðtÞ ¼ ½0; E2ðtÞ; E3ðtÞ�T: ð17Þ

Such fields can be generated physically at the antinodes
of counterpropagating lasers beams or by using more
sophisticated configurations such as the combination of
e-dipoles [53]. They are fully characterized by their
spectral density ~ElðωÞ and spectral phase ϕlðωÞ, for
l ¼ 2, 3. Here, ω is the angular frequency of the electric
field (not to be confused with the relativistic energies
defined in Secs. II A and II B).
For a given spectral density and phase, the field is

determined by sampling the spectrum at equidistant
frequencies Ωj ¼ ðNmin þ jÞΔω, where Δω is the
angular frequency difference between each mode and
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j ∈ ½0; jmax� ⊂ N results in an electric field that is periodic
with period T ¼ 2π=Δω. Using this notation, we have
the minimum frequency ωmin ¼ Ω0 and the maximum
frequency ωmax ¼ ΩN. Consequently, the electric field
components are given by a coherent superposition of
N þ 1 modes

ElðtÞ ¼ gðtÞ
XN
j¼0

El;j cosðΩjt −Φl;jÞ; ð18Þ

with the field strength El;j ≔ ~ElðΩjÞ and phase Φl;j ≔
ϕlðΩjÞ sampled from the spectral density and phase,
respectively. Here, we included an envelope function
gðtÞ for two reasons: First, it ensures that the field vanishes
smoothly at finite times t < ti and t > tf. Without the
envelope, the field would not reach zero after one period
unless all the phases vanished. Second, gðtÞ acts as an
apodization function which reduces the spectral leakage.
The latter is due to the fact that the signal has a finite time
extent. By smoothing the field when it turns on and off, the
apodization function reduces the spectral components
outside of the interval ½ωmin;ωmax�, which improves the
accuracy of the spectral representation. Many different
choices exist for implementing these windowing techniques
[54]. Here, we use the simple Hann function which is
similar to a laser pulse

gðtÞ ≔ cos2ðΩTtÞ; ð19Þ

with ΩT ≔ π=T.
We may define for each mode a dimensionless Keldysh

parameter [55,56]

γl;i ≔
mΩi

ejEl;ij
; ð20Þ

which determines whether the electron-positron production
mechanism for this mode is dominated by multiphoton
absorption ðγl;i≫1Þ or nonperturbative tunneling ðγl;i≪1Þ.
We note, however, that the notion of a Keldysh parameter is
airtight only for monochromatic fields, whereas its mean-
ing in multiscale problems is less obvious [19,57]. In
general, an electric field pulse contains low-frequency
modes in the tunneling regime which are dynamically
assisted by high-frequency modes. In this sense, some of
the field configurations considered in this article realize a
multimodal generalization of the dynamically assisted pair
production mechanism.
Given the electric field configurations in Eq. (18), we

may easily calculate the associated vector potential

AlðtÞ ¼ Al;0 −
XN
j¼0

El;jFl;jðtÞ; ð21Þ

with

Fl;jðtÞ ¼
1

4

�
2 sinðΩjt −Φl;jÞ

Ωj
þ sin ½ð2ΩT −ΩjÞtþΦl;j�

2ΩT −Ωj

þ sin ½ð2ΩT þΩjÞt −Φl;j�
2ΩT þΩj

�
: ð22Þ

The adjustable constant Al;0 ensures that the vector poten-
tial vanishes at the final time tf.
To facilitate and increase the performance of the opti-

mization procedure, the spectral density ~ElðωÞ and spectral
phase ϕlðωÞ are expanded over a polynomial basis as

~ElðωÞ ¼
XNs

i¼1

aðEÞl;i BiðωÞ; ð23aÞ

ϕlðωÞ ¼
XNs

i¼1

aðϕÞl;i BiðωÞ; ð23bÞ

where Ns is the number of basis elements Bi (defined

below) and aðE=ϕÞl;i are the corresponding expansion coef-
ficients. The latter will be used as fitting parameters over
which the optimization is carried out. In this work, the basis
functions are B-spline polynomials of order k,

BiðωÞ ¼ bðkÞi ðωÞ: ð24Þ

A thorough description of these functions can be found in
Ref. [58]. This choice is favored over other polynomial
bases as (i) they have compact support, (ii) they are positive
definite, and (iii) they are easy to implement. B-splines
are fully determined by the polynomial order k and a
given knot vector ðωiÞi¼1;…;Nsþk according to the iterative
relation [58,59]

bðkÞi ðωÞ ¼ ω − ωi

ωiþk−1 − ωi
bðk−1Þi ðωÞ þ ωiþk − ω

ωiþk − ωiþ1

bðk−1Þiþ1 ðωÞ;

ð25Þ

with initial conditions

bð1Þi ðωÞ ¼
�
1 for ωi ≤ ω < ωiþ1

0 otherwise
: ð26Þ

The number of knots at a given frequency determines the
continuity condition at that point. In this work, we use
the standard choice with knots of multiplicity k at the
end points ωmin and ωmax, and simple knots at the interior
points [58]

ωmin ¼ ω1 ¼ � � � ¼ ωk < � � �
< ωkþn−1 ¼ � � � ¼ ω2kþn−2 ¼ ωmax; ð27Þ
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where n is the number of breakpoints and 2kþ n − 2 is the
number of knot points. These two quantities are related to
the number of basis functions as Ns ¼ nþ k − 2.
The bandwidth of the electric field is fixed by the end

points ωmin and ωmax: Outside of this interval, the spectral
density and phase are zero. Moreover, the standard choice
for the knot vector leads to smooth functions on the whole
interval except at the end points at which discontinuities
may occur. As a consequence, the value of the spectral
density and phase are not constrained at these points.
Finally, in this work we choose equidistant breakpoints on
the whole interval, even though this is not mandatory; more
points could be added in some frequency ranges if one
desired a higher resolution.
Finally, we do not allow for arbitrary large field strengths

El;j but rather require that the integrated energy density
(fluence) of the field

U ≔
Z

tf

ti

dtE2ðtÞ ð28Þ

takes on a fixed value. From a physical point of view,
this requirement fixes the total flux of energy through the
focus while keeping the polarization of the electric field
arbitrary. Most notably, this allows different frequency
modes to have different polarizations. This constraint also
relates to experimental limitations. Typically, the amount of
energy in a pulse emitted from a high intensity laser is a
fixed parameter, determined by the laser configuration and
hardware.

IV. OPTIMIZATION TECHNIQUES

The basic idea behind optimization problems is to tune a
set of control parameters to find an optimal value of a
certain quantity. In the current study, we are interested in
finding an optimal temporal field profile that maximizes
the pair production rate. Formally, the optimization prob-
lem is defined as

~J ¼ max
½a⃗ðEÞ;a⃗ðϕÞ�

J½A�; ð29Þ

where J½A�∶R2Ns ⊗ ½0; 2π�2Ns → R is the objective func-
tional (observable) whose value implicitly depends on
the temporal profile of the vector potential AðtÞ. In the
present study, the latter is parametrized by the set of
basis expansion coefficients via Eqs. (23a) and (23b).
This defines our parameter space as

a⃗ðEÞ ≔ ½a⃗ðEÞ2 ; a⃗ðEÞ3 � ∈ R2Ns ; ð30aÞ

a⃗ðϕÞ ≔ ½a⃗ðϕÞ2 ; a⃗ðϕÞ3 � ∈ ½0; 2π�2Ns : ð30bÞ

Here, ~J is the value of the global maximum of the objective
functional in parameter space. The main goal of any

optimization method is to find an accurate approximation

of ~J by suitably changing the value of the parameters a⃗ðEÞ

and a⃗ðϕÞ. Specifically, we choose as objective functional the
pair density integrated over some momentum domain Dp,

such that

J½A� ≔
Z
Dp

d3pfðtf;PÞ; ð31Þ

which is supplemented by the constraint that the integrated
energy density of the field as defined in Eq. (28) takes a
fixed value Uconst.
In this work, we will apply two fundamentally different

optimization approaches in order to (i) cross-check and
guarantee a proper operation of each of these methods and
(ii) compare the efficiency of the different methods for the
current problem. On the one hand, we use local search
algorithms as in Refs. [29–31]. Since these algorithms are
designed to find local extrema of the objective functional,
the optimization has to be repeated a certain number of
times with random initial conditions in order to increase the
probability that the global maximum is among the local
maxima that have been found. This approach is especially
useful if the objective functional is convex or the number of
local maxima is small. On the other hand, we also use a
population based metaheuristics, which explores many
maxima of the objective function as it does not stick to
a given basin of attraction and allows one to scan a large
part of the parameter space.

A. Local search and multistart method

To solve the optimization problem as defined in Eq. (31),
we may employ the approach outlined in Refs. [29,30].
Accordingly, there are two types of constraints: First, the
integrated pair density is defined in terms of the single-
particle distribution function fðtf;PÞ ¼ 1 − χ1ðtf;PÞ (as
discussed in Sec. II B), which is obtained as the solution of
the ODE system

∂tχ⃗ðt;PÞ −N ðt;PÞχ⃗ðt;PÞ ≕ e⃗ðt;PÞ ¼ 0; ð32Þ

with initial conditions χ1ðti;PÞ¼ 1 and χi¼2;…;6ðti;PÞ ¼ 0.
Second, the integrated energy density takes a fixed value
Uconst, which is dealt with by introducing a penalty method
based on the constraint functional

C½A� ≔ Uconst −U ¼ Uconst −
Z

tf

ti

dtE2ðtÞ; ð33Þ

which measures deviations from Uconst. The augmented
Lagrangian, which is employed to turn the full constrained
optimization problem into an unconstrained one, is then
defined according to
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L ≔ −J½A� − λC½A� þ 1

2μ
C½A�2 þ

X6
i¼1

hei; λiiΩ; ð34Þ

with Lagrange multiplier fields λiðt;PÞ and a penalty
parameter μ > 0. Here, h·; ·iΩ denotes the L2 inner product
on Ω ¼ R3 × ½ti; tf�. The third term quadratic in C½A�
penalizes constraint violations while a Lagrange multiplier
λ is included to avoid ill-conditioning of the optimization
problem [60].
In this formulation, local maxima of the particle number

correspond to local minima of the Lagrangian. In fact, the
variation of the augmented Lagrangian with respect to
χ⃗ðt;pÞ yields the adjoint equations

∂tλ⃗ðt;PÞ −N ðt;PÞλ⃗ðt;PÞ ¼ 0; ð35Þ

which have to fulfill the final conditions λ1ðtf;PÞ ¼ −1
and λi¼2;…;6ðtf;PÞ ¼ 0. Accordingly, while solving
Eq. (32) forward in time, the adjoint equations, Eq. (35),
are solved backwards in time. From these solutions, the
gradient of the Lagrangian with respect to the field
parameters a⃗ ¼ ½a⃗ðEÞ; a⃗ðϕÞ� can be calculated as

∇L ¼
X6
i;j¼1

hχi; ½∇N �ijλjiΩ −
�
λ −

C½A�
μ

�
∇C½A�; ð36Þ

where ∇N denotes the elementwise gradient of Eq. (15).
The latter can be evaluated analytically because the vector
potential is explicitly known. In Eq. (36), the first term is
responsible for maximizing the particle number while
the second term tries to minimize energy constraint
violations. The stationarity of the gradient, ∇L ¼ 0, is a
necessary condition for a local extremum of the augmented
Lagrangian.
To take full advantage of the gradient ∇L, which

determines the local descent direction of the Lagrangian
in parameter space, we employ a local optimization
algorithm along with a multistart method. The general
outline of the algorithm is as follows (for further algo-
rithmic details we refer to Ref. [60]):
(1) (Initialization) Choose a random initial configura-

tion a⃗ð0Þ0 ¼ ½a⃗ðEÞ; a⃗ðϕÞ� along with initial values for
the Lagrange multiplier λð0Þ ¼ 0 and the penalty
parameter μð0Þ > 0. The value of μð0Þ determines
how severely constraint violations are penalized in
the first iteration ½l ¼ 0�.

(2) (Iterative minimization) At the lth iteration with
Lagrange multiplier λðlÞ and penalty parameter μðlÞ,
search the local minimizer of LðλðlÞ; μðlÞÞ iteratively,

a⃗ðlÞkþ1 ¼ a⃗ðlÞk þ αkd⃗k; k ∈ N0: ð37Þ

We calculate the local search directions d⃗k accord-
ing to the Broyden-Fletcher-Goldfarb-Shanno

algorithm, and viable step sizes αk are found via
an inexact line search that fulfills the strong Wolfe
conditions.

(3) (Increased penalization) After converging in the lth
iteration to a local minimum of the Lagrangian
~LðλðlÞ; μðlÞÞ for field parameters ~aðlÞ, update the
Lagrange multiplier and penalty parameter

λðlþ1Þ ¼ λðlÞ − C½ ~aðlÞ�=μðlÞ; ð38aÞ

μðlþ1Þ ¼ ξμðlÞ; ð38bÞ

with 0 < ξ < 1. This choice guarantees that con-
straint violations are more severely penalized in the
subsequent iteration.

(4) (Local minimization) Set the starting point for the
(lþ 1)th iteration according to

a⃗ðlþ1Þ
0 ¼ ~aðlÞ; ð39Þ

and repeat steps 2 and 3 until the constraint is exactly
fulfilled, C½A� ¼ 0. The corresponding minimum of
the augmented Lagrangian is a local solution of the
constrained optimization problem.

(5) (Global minimization) Repeat steps 1–4 with differ-
ent initial configurations (multistart approach) in
order to find the global minimum of the augmented
Lagrangian.

The functionality of this local search algorithm is depicted
schematically in Fig. 1(a).

B. Population based metaheuristics

We also employ population-based metaheuristics as an
alternative approach to maximize the pair production. This
optimization scheme is combined with the Dirac technique
as described in Sec. II A for the evaluation of the pair
density. In particular, the field parameters a⃗ ¼ ½a⃗ðEÞ; a⃗ðϕÞ�
are optimized by using a parallel version of differential
evolution (DE) [62–64]. DE is very efficient to solve
optimization problems on continuous variables and can
be faster than other metaheuristic algorithms [65]. Here, a
variant of DE that goes by the name of self-adaptive
differential evolution is used [66].
DE is a population-based metaheuristic where one starts

with a number of randomly selected candidate solutions
(individuals). Then, individuals are updated using sequen-
tial application of mutation, crossover, and selection
operators. The typical update procedure (DE/rand/1/bin
in usual DE notation) can be summarized as follows [61,66]
[see also Fig. 1(b) for a schematic visualization]:
(1) For each individual x⃗ in the population, choose three

other distinct individuals a⃗; b⃗; c⃗ randomly, also in
the population.
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(2) (Mutation) Create a vector u⃗ with components
ui ¼ ai þ Fðbi − ciÞ, the so-called mutation oper-
ation. Here, F ∈ ½0; 2� is the differential weight.

(3) (Crossover) Pick a random integer R from the set
f1;…; Npg, where Np is the size of the parameter
space. For each component ðxiÞi¼1;…;Np

, pick a
uniformly distributed random number ri from the
interval [0, 1]. If ri ≤ CR, where CR ∈ ½0; 1� is the
crossover probability, or if we look at the Rth
component (i ¼ R), then we set yi ¼ ui. Otherwise,
we have yi ¼ xi. The condition i ¼ R is included to
ensure that at least one of the components of the trial
vector y⃗ is inherited from the mutated vector u⃗ [61].

(4) (Selection) If Jðy⃗Þ < Jðx⃗Þ, replace x⃗ by y⃗ in the
population.

(5) Repeat the process from step 1.
In this algorithm, the crossover probability CR and the
differential weight F are the only control parameters,
along with the number of individuals in the population. In

self-adaptive DE, these parameters evolve during the evo-
lution and several mutation schemes are used (besides DE/
rand/1/bin). Formore details, we refer the reader to Ref. [66].
To ensure that the integrated energy density takes a fixed

value Uconst, we globally renormalize the electric field in
every updated step. In other words, the field coefficients
a⃗ðEÞ represent relative spectral weights. This is different
from the local search algorithm in which a penalty method
is used.
In this article, we use the parallel implementation in the

PAGMO library [67]. The latter implements the generalized
island model (GIM) parallelization of optimization algo-
rithms [68,69]. This paradigm is useful to execute optimi-
zation algorithms on parallel computers with a satisfactory
load balancing. According to this principle, the total
population is first separated into a number of subpopulations
sent to different islands. Then, on each of these islands, the
optimization algorithm (DE in our case) is carried out, as
usual. In practice, each island is dealt with by a different
processor, although this is not mandatory. The main feature
of the GIM relates to the migration policy, which allows for
the transfer of individuals between different islands,
allowing for a mixing of populations. This exchange of
information proceeds according to predefined migration
rules and for a given island topology. The migration rules
determine which individuals are migrated and at what
frequency, along with the direction of the population trans-
fer. In turn, the topology is defined by a graph type which
specifies the connectivity between islands. In this work, a
simple ring topology is used as it has demonstrated the best
performance when combined with DE [68]. This topology
limits the propagation of the best candidates, which turns out
to be beneficial for the DE algorithm.

V. RESULTS

In the following, we study particle production in one-
dimensional (1D) and two-dimensional (2D) electric field
configurations. By going beyond the case of linear polari-
zation as investigated in Refs. [29–31], we enlarge the
parameter space to take into account effects due to the
nontrivial polarization. Specifically, we consider a time-
dependent electric pulse as parametrized in Sec. III, and we
use both the local search algorithm and the population
based metaheuristics from Sec. IV to maximize the pair
density. Accordingly, we consider the objective functional
as defined in Eq. (31), where the choice of momentum
window Dp is discussed below.
In the 1D case we optimize the particle number along the

field direction; i.e., we disregard the transverse momentum
components,

EðtÞ ¼ ½0; 0; EðtÞ�T; ð40aÞ

Dp ¼ fp ∈ R3jp1 ¼ p2 ¼ 0g: ð40bÞ

(b)

(a)

FIG. 1. Schematic representation of the different optimization
schemes. (a) In a local search with multistart we choose different
initial conditions in parameter space (black squares). The
optimization trajectories then remain in the local basins of
attraction (indicated by the dashed lines) and converge toward
the corresponding local minima, amongst them also the global
minimum. This approach is especially useful if the number of
local extrema is small. (b) In population based metaheuristics,
different initial conditions or “individuals” (black squares) are
generated randomly in the parameter space. This population of
individuals is iteratively improved using successive applications
of mutation, crossover, and selection operators. Every generation
features individuals successively closer to local minima of the
problem. In the specific case of DE, the parameter space is
continuous, and the mutation operator is based on vector
differences. This is inspired by [61].
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Here, the focus lies on the applicability and quality of
the polynomial basis expansion using B-splines. We will
show that a comparatively small number of basis
functions BiðωÞ suffices to obtain a good approximation
of the multimodal electric field. Most important, an
increase in the number of basis functions basically does
not alter the optimal field configuration and momentum
distribution.
In the 2D case, we consider a momentum sheet in the

plane in which the electric field rotates,

EðtÞ ¼ ½0; E2ðtÞ; E3ðtÞ�T; ð41aÞ

Dp ¼ fp ∈ R3jp1 ¼ 0g: ð41bÞ

In this case, the emphasis is placed on effects due to the
polarization of the electric field, i.e., the phase relation
between the field components E2ðtÞ and E3ðtÞ. Finally, we
will use 2D results to compare the performance of the
numerical methods (Dirac equation vs quantum kinetic
theory) and the used optimization algorithms (local search
vs metaheuristics).

A. Optimization for linear polarization in 1D

In this section, we consider pair production in 1D,
where we maximize the total number of produced
particles along the field direction. The electric field
configuration is characterized by the data given in
Table I and corresponds to a soft to hard x-ray pulse.
We choose a large momentum window p3 ∈ ½−20; 20�
with a high momentum resolution Δp3 ¼ 0.0005 in
order to (i) cover all pairs that are produced along
the field direction, and (ii) resolve the fast oscillations in
the momentum spectrum. The corresponding number of
sampling points is Np ¼ 80000.
We individually employ both optimization techniques to

identify field configurations that maximize the particle
number. For DE, four islands in a ring topology are used
with a population of ten individuals on each island. In the
local search algorithm, we selected ten random initial
configurations of which all converged to the same optimal

momentum distribution, which indicates that the number of
local extrema is possibly small in this case.
In Fig. 2 we display the optimal momentum distribution

that has been found individually by both optimization
procedures for a different number Ns of basis functions:
(a) a⃗ðEÞ ∈ R5, a⃗ðϕÞ ∈ ½0; 2π�5 (ten-dimensional parameter

space),

(b) a⃗ðEÞ ∈ R10 with fixed a⃗ðϕÞ ≡ 0 (ten-dimensional
parameter space).

Both choices yield basically indistinguishable momentum
spectra that exhibit a smooth Gaussian-like behavior. For
comparison we also display the pair density for a single
mode (fundamental mode with ν ¼ 0.001) with the same
energy density Uconst and envelope function. Most notably,
the spectrum for optimal momentum distributions are many
orders of magnitude above the one for the fundamental
mode. Moreover, the fundamental mode spectrum exhibits
fast oscillations, which can be traced back to quantum
interferences and are clearly seen as the large line width.
This is in stark contrast to the optimal distributions that do
not display any fast oscillations. This indicates that optimal
field configurations are such that quantum interferences are
minimized and suppressed.
For case (a), optimizing both amplitudes and phases

reveals that the optimal field configuration exhibits a
linear phase dependence ϕðωÞ ∼ ω, corresponding to a
time translation of the signal under the envelope, similar to
a carrier envelope phase. A typical example of this linear
dependence is displayed in Fig. 3. On the other hand, the
spectral density ~EðωÞ yields a unique form irrespective of
the slope of the spectral phase. In fact, the linear phase
dependence is not surprising: as pair production depends
exponentially on jEj, the algorithm tends to maximize the

TABLE I. Characterization of the electric field pulse in 1D.

Pulse characteristics Value (QED units)

Minimum frequency (νmin ¼ ωmin=2π) 0.001
Maximum frequency (νmax ¼ ωmax=2π) 0.01
Sampling frequency (Δν) 0.0002
Pulse length (T ¼ 1=Δν) 5000
Number of spectral components (N þ 1) 46
Number of basis functions (Ns) 5=10
B-spline order (k) 3
Fluence (Uconst) 150.0

FIG. 2. The 1D momentum spectrum for three different fields:
optimal configuration with five amplitudes and phases [case (a)],
ten amplitudes with vanishing phases [case (b)], and a funda-
mental mode field (ν ¼ 0.001). The curve of the fundamental
mode spectrum appears thick because of very fast oscillations
owing to quantum interferences.
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field strength. The maximal field strength, however, occurs
if all phases are zero since the envelope is centered at t ¼ 0.
In Fig. 4 we display the optimal field configuration along
with the field of the fundamental mode.
Consequently, the solution ~J with a linear phase depend-

ence yields basically the same momentum spectrum as if all

phases are set to zero. In case (b), we hence neglected all
phases by setting a⃗ðϕÞ ¼ 0 in order to investigate the effect
of increasing the number of basis function BiðωÞ. The
larger number ofNs gives a higher resolution of the spectral
density ~EðωÞ, as shown in Fig. 3. Accordingly, there are
sizable changes in the spectral density. At the same time,
however, the optimal momentum distribution Fig. 2 and
the electric field Fig. 4 remain basically unchanged. This
indicates that essential features of the optimization problem
with N þ 1 ¼ 46 spectral components are already captured
by a B-spline expansion with only Ns ¼ 5 adjustable
parameters.
In Fig. 5 we display the spectral Keldysh parameter as

defined in Eq. (20). We clearly find that some modes are in
the nonperturbative regime (γi < 1) while others are in the
multiphoton regime (γi > 1). In this sense, the optimal field
configuration exhibits the features of the multimodal
dynamically assisted Schwinger mechanism, where the
combination of nonperturbative and multiphoton modes
enhance pair production. We note again, however, that the
meaning of the Keldysh parameter in multiscale problems
is not totally clear [19,57].
Our results indicate that there are three essential

mechanisms contributing to the maximization of the
particle number: (i) Optimal configurations tend to reduce
quantum interferences in order to suppress oscillations in
the momentum spectrum (see Fig. 2); (ii) Optimal con-
figurations realize the multimodal dynamically assisted
Schwinger mechanism where the pair production rate is
enhanced by multiphoton modes; (iii) Optimal configura-
tions show a large bandwidth in order to reduce the pulse
duration (see Figs. 3 and 4). As the integrated energy

FIG. 3. Spectral density ~EðωÞ and spectral phase ϕðωÞ ∼ ω for
the optimal field configuration, as a function of the frequency ν in
QED units. Despite the fact that the increase of the number of
basis functions BiðωÞ changes the details of EðωÞ, we find that
the momentum distribution Fig. 2 and the electric field Fig. 4
remain basically unchanged.

FIG. 4. Electric field EðtÞ for the optimal field configuration
with Ns ¼ 5 [case (a)] and Ns ¼ 10 [case (b)], as a function of
time t in QED units. For case (a), a time shift of Δt ≈ 46.2 is
applied to cancel the phase and to facilitate the comparison
between the two cases. The electric field changes only marginally
while the spectral density Fig. 3 shows sizable deviations. We
also display the electric field of the fundamental mode in
juxtaposition. Finally, the inset contains the difference in the
electric field of cases (a) and (b). The maximum difference is
approximately 3% of the maximum field value. Therefore, both
electric fields have very similar time dependences.

FIG. 5. Spectral Keldysh parameters γi for the optimal field
configuration with Ns ¼ 5 [case (a)] and Ns ¼ 10 [case (b)], as a
function of the frequency ν in QED units. The low-frequency
modes are still in the nonperturbative regime, whereas the
high-frequency modes belong to the multiphoton realm.
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density Uconst is fixed, we obtain higher field strengths and
hence a larger number of emitted pairs.

B. Optimization for arbitrary polarization in 2D

This section is devoted to the optimization of pair
production for 2D field configurations. We consider fields
of arbitrary polarization (linear, circular, elliptic) and
maximize the total number of produced particles in the
plane in which the field acts. Table II summarizes the data
that characterizes the laser pulse. Again, the pulse is in the
hard x-ray spectral range.
In comparison to the 1D case, we now use higher

frequencies ω ∈ ½ωmin;ωmax� for computational reasons:
(i) the maximum momenta up to which particles are
produced is reduced so that it suffices to choose a smaller
momentum window p2;3 ∈ ½−3; 3� to encompass all pro-
duced pairs; (ii) it suffices to choose a lower momentum
resolution Δp2;3 ¼ 0.006 to resolve the oscillations in the
particle spectrum due to quantum interferences. These
parameters, however, still account for a much larger
number of sampling points Np ¼ 106 which makes com-
putations in 2D much more expensive than in 1D. We
emphasize, however, that there are no fundamental restric-
tions for further decreasing the frequency and momentum
range given sufficient computational resources. On the
other hand, we choose the same optimization parameters
for DE (four islands with a population of ten individuals on
each island) and the local search algorithm (ten random
initial configurations) as in 1D.
We now choose three different instances of optimization

parameters to capture all possible polarizations:

(a) a⃗ðEÞ2 ; a⃗ðEÞ3 ∈ R5, a⃗ðϕÞ2 ∈ ½0; 2π�5, with fixed a⃗ðϕÞ3 ≡ 0
(elliptic polarization, 15-dimensional parameter space);

(b) a⃗ðEÞ2 ¼ a⃗ðEÞ3 ∈ R10 with fixed a⃗ðϕÞ ≡ 0 (linear polari-
zation, 10–dimensional parameter space);

(c) a⃗ðEÞ2 ¼ a⃗ðEÞ3 ∈ R10 with fixed a⃗ðϕÞ2 ≡ 0, a⃗ðϕÞ3 ≡ π=2
(circular polarization, ten-dimensional parameter
space).

Case (a) corresponds to an optimization problem with an
elliptic polarization. Based on the experience from the
previous section, we only account for the variation of five
relative phases which should capture the main features of

pair production. We also perform the optimization in the
limiting instances of linear polarization [case (b), fixed
relative phases 0] as well as circular polarization [case (c),
fixed relative phases π=2] for a higher number Ns of basis
functions.
We first analyze the results of the elliptically polarized

field. In Fig. 6, we display the iterative evolution of the
phase parameters a⃗ðϕÞ2 using the local search algorithm,
starting from a random initial configuration. Interestingly,

we find that all phases evolve toward the value a⃗ðϕÞ2 → π,
corresponding to an electric field that exhibits a linear
polarization in each mode. While previous work on short
Gaussian pulses with subcycle structure indicated that
elliptic or circular polarization might be advantageous at
certain high frequencies [33], we do not observe this
behavior for the multimodal electric field with an energy
constraint, as explained below.
The corresponding optimal momentum distribution,

which is found individually by both optimization methods,
is displayed in Fig. 7. Unlike the 1D case (see Fig. 3), we
now observe oscillations in the spectrum that are typical for
time-domain quantum interferences. This is possibly due to
the different spectral bandwidth in comparison to the 1D
case, and due to the fact that all spectral components
converge to the multiphoton regime with the chosen
parameters. Moreover, owing to the alignment of relative
phases, the electric field oscillates along the diagonal axis
while we still find the typical fast decay of the spectrum
along its orthogonal direction, due to the fact that the
transverse momentum acts as an effective mass that
increases the gap [70]. Finally, we note that other equiv-
alent optimal field configurations exist that are connected to
the distribution in Fig. 7 by a simple rotation in the 2D
plane of the field and pair density.

TABLE II. Characterization of the electric field pulse in 2-D.

Pulse characteristics Value (QED units)

Minimum frequency (νmin ¼ ωmin=2π) 0.02
Maximum frequency (νmax ¼ ωmax=2π) 0.03
Δν 0.0002
Pulse length (T ¼ 1=Δν) 5000
Number of spectral components (N þ 1) 51
Number of basis functions (Ns) 5=10
B-spline order (k) 3
Fluence (Uconst) 50.0

FIG. 6. Showcase iterative evolution of the phase parameters

a⃗ðϕÞ2 using the local search algorithm. Starting from random initial
values that correspond to arbitrary ellipticities, the optimal
configurations exhibit a linear polarization (relative phase 0 or π).
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To deepen the understanding of the linearly polarized
case, we fix the relative phases from the very beginning and
increase the number Ns of basis functions [case (b)]. We
then find that there are two nearly degenerate local maxima
in the total particle number. A cut in their respective
momentum spectra along the field direction is displayed
in Fig. 8(a). These two configurations mainly differ by their
oscillatory behavior: the optimum distribution shows a
maximum around zero momentum while the second-best
distribution is out of phase there. Although the overall
shape of these distributions shows similar features, their
spectral amplitudes differ sizably, as shown in Fig. 8(b).
In particular, high-frequency modes dominate for the
optimal configuration while the low-frequency modes are
enhanced for the second-best configuration. Accordingly,
these two configurations are well separated in parameter
space. These 2D configurations can also be compared to the
ones obtained in 1D, displayed in Fig. 3, for a different
bandwidth of the electric field. They show similar quali-
tative features with maximal values of the spectral density
in the neighborhood of the largest and lowest frequencies,
suggesting that this spectral shape is optimal for a large
class of field configurations. This type of spectrum max-
imizes the field strength while it reduces the effect of
quantum interferences, resulting in the maximal pair
production rate.
Finally, we also want to understand the absence of

circularly polarized modes in the general optimization
problem for elliptic polarization. Therefore, we fix again
the relative phases from the very beginning and increase the
number Ns of basis functions [case (c)]. The corresponding
optimum distribution is shown in Fig. 9, where we observe

the ring structure that is generic for circularly polarized
electric fields [34]. There are two important characteristics
that differ from the linearly polarized case in Fig. 7: First,
the maximum value of the distribution function is orders of
magnitude smaller in the circularly polarized case. Second,
the maximum value is on a ring structure with momentum
jpj ∼ 1.5 while it is peaked around zero momentum in the
linearly polarized case.
In our understanding, there are two reasons for this

behavior: (i) While the produced particles predominantly
reside in the vicinity of the origin for the linearly polarized
field in case (b), they are expelled to much higher momen-
tum for circular polarization in case (c). Accordingly, it
seems that a large part of the energy is used for this
acceleration rather than for particle production. (ii) The
peak electric field strength ratio between the linear and
circular cases is approximately Epeak

lin =Epeak
circ ∼

ffiffiffi
2

p
. This is

attributed to the fact that we are fixing the integrated energy
density to a given valueUconst, which can easily be checked

FIG. 7. The 2D momentum spectrum for the optimal configu-
ration [case (a)] is a linearly polarized electric field. We observe
characteristic oscillations along the field direction and a fast
decay perpendicular to it.

(a)

(b)

FIG. 8. (a) Momentum spectra along the linearly polarized
electric field for the optimal and the second-best configurations.
(b) Spectral amplitudes for the optimal and second-best configu-
rations as a function of the frequency ν in QED units.
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for a single mode. Since the particle production
depends exponentially on the field strength, the linear
configuration is superior in the number of generated
electron-positron pairs.

C. Performance of the numerical methods

We now analyze the performance of the numerical
methods that were used to obtain the results given in
previous sections. The optimization techniques are com-
pared first, followed by an analysis of the pair production
techniques.

1. Optimization techniques

The comparison of performance between local search
(see Sec. IVA) and DE (see Sec. IV B) can be carried out
by counting the number of objective function evaluations
that are required to reach a converged solution. This
number can fluctuate substantially from one calculation
to the other as some steps in both algorithms are random. In
particular, initial conditions are chosen randomly so that
they can be far from a maximum in parameter space or in a
region where the gradient is very small. Both are detri-
mental to the performance of optimization algorithms.
Moreover, the crossover and mutation in DE involve
random operations which may select a slower evolution
path. Finally, the parameter space dimension also has a
direct influence on the convergence of optimization meth-
ods: larger parameter spaces obviously demand more
objective function evaluations.
As a consequence, a rigorous comparison of the tech-

niques used in this article goes beyond the scope of this

work. Nevertheless, our calculation sample allows us to
infer some rough tendencies. In the current example with
ten random initial conditions, the local search method
required on average ≈80–100 objective function evalua-
tions per initial condition to converge to a local maximum,
i.e., ≈800–1000 to identify the global maximum. In
contrast, the DE needed on average ≈900–1300 objective
function evaluations to converge to the global maximum in
parameter space.
We hence conclude that the two methods perform

similarly on the current problem (note, however, that an
update step in the local search method is twice as expensive
as in the DE since the equations of motion need to be
evolved forward and backward in time to compute the local
gradient). The fact that a comparatively small number of
random initial conditions suffices in the local search
algorithm in order to identify a single maximum hints at
a small number of local extrema in the current problem. We
expect, however, that the DE outperforms the local search
algorithm for cost functions that exhibit a large number of
local extrema since a higher number of random initial
conditions would be required to safely identify the global
maximum.

2. Pair production calculation techniques

We also compare the computational performance of the
Dirac equation approach (see Sec. II A) to the kinetic
formulation (see Sec. II B). This test is performed by
looking at the numerical error in the pair density

ϵ ≔

R
Dp

d3pjfðtf;pÞ − fexactðtf;pÞjR
Dp

d3pfexactðtf;pÞ
; ð42Þ

as the number of time steps Nt is increased. Here,
fexactðtf;pÞ is the exact distribution function, whereas
fðtf;pÞ denotes the numerically determined approximate
solution. Obviously, the computation time grows as Nt is
increased for a fixed evolution time T ≔ tf − ti. At the
same time, however, the numerical error in the ODE solvers
decreases polynomially like OðN−q

t Þ, where q is the order
of convergence. In the current study, we used the second-
order split-operator method in the Dirac equation approach
(q ¼ 2) and a fourth-order Runge-Kutta method for the
quantum kinetic equation (q ¼ 4). In order to compare
the two methods, we compute the numerical error ϵ for the
optimal circularly polarized field configuration that was
found in Sec. V B upon variation of Nt ∈ ½2 × 104; 106�.
Following a standard procedure in numerical analysis,
fexact is obtained by a solution with a large number of
time steps (here, we choose Nt ¼ 2 × 106 which yields a
solution on the level of machine precision).
In Fig. 10 we display the numerical error as a function

of the average computation time per momentum point for
both computation methods. These results indicate a clear

FIG. 9. The 2D momentum spectrum for the optimal configu-
ration for circularly polarized fields [case (c)]. We observe the
characteristic ring structure while no particles are present around
zero momentum.

PULSE SHAPE OPTIMIZATION FOR ELECTRON- … PHYSICAL REVIEW D 96, 016012 (2017)

016012-13



advantage of the Dirac method in comparison to the kinetic
formulation in the regime of small values of Nt. For
instance, it suffices to take Nt≈2×104 in the split-operator
method while it requires a much larger value Nt ≈ 105 in
the kinetic formulation in order to obtain a numerical error
at the level of ϵ ¼ 10−3. Consequently, we observe a gain of
a factor of ≈5 in computational performance at this error
level. We surmise that this remarkable success of the Dirac
method is due to the inherent unitarity conservation of the
split-operator method, which allows for fine cancellations
when the wave function is projected over the positive
energy state. One clearly sees, however, that the kinetic
method catches up with the Dirac method for large values
of Nt owing to the higher convergence order.
We note that the performance of both methods can be

further improved in principle by resorting to more accurate
numerical schemes. For instance, a splitting scheme with
fourth order accuracy could be used to solve the Dirac
equation or higher order Runge-Kutta techniques could be
applied to solve the ODE system in the kinetic formulation.
These matters are left for future investigations.

VI. CONCLUSION

In this work, we performed a pulse shape optimization
procedure on multimodal homogeneous electric fields with
arbitrary polarization to maximize electron-positron pair
production. Our results demonstrate that the multimodal
character of the field is essential for the maximization of the
pair density. As a matter of fact, all the optimized pulses
that were found with our techniques have nonvanishing
spectral amplitudes over the whole bandwidth. As a
consequence, multimodal fields offer enough control for
canceling and controlling the emergence of interference

effects so that the resulting pair densities exhibit fewer
oscillations. Moreover, having a large bandwidth reduces
the pulse duration and compresses the available energy into
a short time interval, making for pulses with higher field
strengths. Finally, it allows for the possibility of having
certain spectral components in the Schwinger and multi-
photon regimes, realizing the multimodal dynamically
assisted Schwinger mechanism. All of these mechanisms
conspire to increase the pair production rate.
We also studied the effect of the field polarization on

electron-positron pair production. For a given integrated
energy density of the laser pulse, our results indicate that
linearly polarized electric field are superior over circular or
elliptically polarized ones. These findings could be useful
for experimental attempts to detect the Schwinger mecha-
nism at future high-intensity laser facilities such as the
Extreme Light Infrastructure (ELI) or the Exawatt Center
for Extreme Light Studies (XCELS).
In this work, we substantially extended previous inves-

tigations on the optimization of linearly polarized electric
fields [29–31] in several ways:

(i) We parametrized the field configurations in Fourier
space by using a polynomial basis expansion. Using
this approach, we showed that the number of
parameters that is required to characterize optimal
field configurations is much smaller than the number
of field modes itself. In fact, we found that correc-
tions due to the increase of parameter space are only
of the order of a few percent. Accordingly, we were
able to efficiently optimize a multimodal electric
field with up to 50 Fourier modes on much smaller
parameter spaces.

(ii) To this end, we employed both a local search
algorithm as well as population based metaheuris-
tics. We found that both methods have similar
computational performance in the current problem,
measured by the number of objective function
evaluations. This is largely due to the fact that the
objective function seems to have only a small
number of local extrema. However, we expect that
metaheuristic algorithms outperform the local search
method once objective functions exhibiting a larger
number of local extrema are considered, such as in
the inverse problem of Schwinger pair production
[31]. For electron-positron pair production, we were
able to safely identify a single maximum with the
metaheuristic algorithm and with the local search
algorithm by taking only ten random initial con-
ditions. Although there is no rigorous proof that this
is the global maximum, the fact that both methods
converge toward the same individual indicates that
there is a significant probability that we found the
optimal solution in the whole parameter space.

(iii) In order to optimize particle production in two-
dimensional electric fields, it was necessary to use

FIG. 10. Numerical error of both numerical methods as a
function of the average computation time per momentum point.
The computation time is normalized by the smallest measured
time, which corresponds to the Dirac method with Nt ¼ 2 × 104.
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efficient numerical schemes to compute the momen-
tum spectrum: one needs to solve repeatedly the
dynamic equations on Oð106Þ sampling points in
order to resolve the two-dimensional momentum
space. On the one hand, we derived the quantum
kinetic equations based on the DHW phase space
approach and solved them using a fourth-order
Runge-Kutta method. To this end, we explicitly
showed how to lift the redundancy of the previously
employed formalism (ten coupled ODEs) [16] in
order to obtain a system of only six coupled ODEs.
This formalism can be considered as the generali-
zation of the well-known quantum kinetic equation
for linearly polarized fields [50]. On the other hand,
we directly solved the Dirac equation by using a
split-operator method with second order conver-
gence. This method turned out to be the more
efficient approach, which showed a significant gain
in computational performance in comparison to the
quantum kinetic formulation.

The techniques that were developed and used in this
work may also be beneficial for different problems, such as
the reduction of the number of pairs for the shortcut to
adiabaticity [71], which may be important for particle-hole
generation in condensed matter systems, or the inverse
problem of Schwinger pair production [31]. Actually, the
employed methods are expected to be applicable for any
system that is well described by the Dirac equation. On the
other hand, the field parametrization is not restricted to
relativistic quantum mechanics. In fact, it could be useful
for the control of other physical systems, such as the
generation of harmonics in atomic and molecular physics,
as long as the system under consideration is coupled to a
spatially homogeneous but time-varying electric field.
To conclude, we made an attempt to (i) design field

configurations that approach realistic experimental setups
as much as possible, and (ii) push the computational
boundaries to investigate the pair production process. To

this end, we introduced electric field configurations with a
large bandwidth that were parametrized in Fourier space. In
fact, the large bandwidth allows for short pulses with high
field strength, which are typical in experimental proposals
for the detection of the Schwinger mechanism, while the
numerical methods allowed us to consider comparatively
long (from the computational point of view) pulses and
push the computational boundary. Still, our investigation
fell short on some aspects: we considered laser pulses that
have much higher field strength (≈0.5 × 1018 V=m) and
much shorter pulse duration (≈2.6 as) than those which
can be achieved experimentally with current technology
(field strengths of ≈1013−14 V=m and pulse duration of
≈10–20 fs). Moreover, unlike realistic tightly focused laser
beams, we neglected any spatial dependence and the effect
of magnetic fields. Nevertheless, our study still exhibits
important trends that are supposed to hold even if these
effects are taken into account, which is a crucial issue for
future investigations.
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