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The charge asymmetry due to higher-order QED corrections in elastic lepton-proton scattering is
estimated without employing the ultrarelativistic approximation. Our calculation is performed by
generalizing the soft-photon approximation approach suggested by Tsai. Corresponding loop integrals
that take a form of Passarino-Veltman scalar tree-point functions are calculated analytically without
neglecting the mass of the lepton. Our results provide model-independent charge asymmetry predictions for
scattering of unpolarized and massive leptons on proton targets. These predictions can be used in
corresponding experiments to determine the contribution coming from model-dependent hard two-photon
exchange processes.
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I. INTRODUCTION

Elastic lepton scattering off of a nucleus has proved to
be an efficient tool to study the structure of nucleons.
Electrons, which are the lightest known charged leptons in
nature, are used to the fullest extent from this perspective.
Experiments at JLab, MAMI, SLAC, DESY, Novosibirsk,
etc., performed unpolarized and/or polarized cross section
measurements by scattering elastically ultrarelativistic
electrons off hadron targets. As a result of these measure-
ments, the electric GN

E ðQ2Þ and magnetic GN
MðQ2Þ form

factors of the target nucleus (N) can be extracted. These
form factors describe charge and magnetization distribu-
tions within the nucleus.
Until recently, the Rosenbluth separation technique,

which can be applied to a scattering of unpolarized leptons,
has been used extensively to study the Q2 dependence of
the electric and magnetic form factors. However, this
technique has a substantial drawback: it leads to large
uncertainties at momentum transfers Q2 ≳ 1 GeV2. In this
kinematic region, cross section measurements become less
sensitive to the electric form factorGEðQ2Þ. To improve the
accuracy of the Rosenbluth separation technique, the idea
to employ a polarization transfer method was suggested in
Ref. [1]. Instead of measuring electric and magnetic form
factors separately, the authors put forward the idea to access
the GE-to-GM ratio by detecting the polarization of the
recoil nucleon in elastic scattering of polarized electrons off
of unpolarized nucleon targets. The unique feature of this
method is that it does not suffer from the dramatically
reduced sensitivity to the GE component.
The first accurate measurements of the ratio Gp

E=G
p
M by

employing the double polarization method [2,3] revealed a
considerable discrepancy in the ratio compared to the

results of the Rosenbluth separation. This discrepancy,
sometimes referred as the proton form factor puzzle, can
be explained to a large extent by the presence of “hard”
two-photon exchange (TPE) corrections [4,5]. Corres-
ponding theoretical calculations, in contrast to the “soft”
TPE estimations, take proton structure effects into consid-
eration. Therefore, these computations are model depen-
dent. In Refs. [4,6], the authors calculated hard TPE
using the hadronic framework that is usually justified at
Q2 ≲ 1 GeV2, whereas the authors of Refs. [5,7] estimated
TPE based on the partonic model that works well at
Q2 ≳ 1 GeV2. More recently, TPE corrections were con-
sidered using the dispersion relations formalism [8,9].
Despite all these significant theoretical efforts being
directed at understanding the physics of TPE, for the present,
there is no complete calculation valid at all kinematics.
The detailed information on the recent progress in studying
TPE can be found in reviews [10–13].
Besides affecting the Gp

E=G
p
M ratio, TPE is expected to

play an important role in a precise determination of the
charge radius of a nucleon. From this perspective, a genuine
interest in a better understanding of TPE effects is drawn
by the so-called proton radius puzzle problem [14,15].
According to Ref. [16], there is a large (∼7σ) discrepancy
between the electron- and muon-based charge radii of the
proton. The electron-based value rch ¼ 0.8775ð51Þ fm is
obtained following from the results of both hydrogen spec-
troscopy measurements and elastic electron-proton scatter-
ing data. The muon-based value rch ¼ 0.84087ð39Þ fm is
obtained following from the results of atomic spectroscopy
of a muonic hydrogen. Currently, there exists no precisely
determined value for rch extracted from elastic muon-
proton scattering. Supposedly, a better understanding of
muonic TPE can shed light on this discrepancy. As it is
discussed in Ref. [17], TPE contributes to the energy shift
in atomic systems, thereby affecting the radius of the proton
extracted from spectroscopy measurements. In addition,
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TPE needs to be taken into consideration to extract the
radius of the proton in future elastic muon-proton scattering
measurements.
The proton form factor and the proton radius puzzles

have triggered many experimental endeavors aimed at the
precise determination of TPE effects. From this perspec-
tive, TPE corrections can be directly accessed by studying
the asymmetry (or ratio) between elastic lþp and l−p
scattering cross sections. It appears that the interference
between one- and two-photon exchange amplitudes along
with the interference between lepton and proton brems-
strahlung radiation are the only charge-dependent contri-
butions to order α3. Modern facilities have recently
achieved a precision that enables us to measure effects
of this order. Recent experiments at VEPP-3, OLYMPUS,
and CLAS [18–20], which determined TPE using the
positron-to-electron scattering cross section ratio, provide
a valuable input for our understanding of TPE.
The recently performed PRad [21] and the future MUSE

[22] experiments will address the proton radius puzzle, and
they require radiative corrections analysis to be done on the
subpercent level. This means that TPE processes have to be
included in their analysis, as well. The distinct feature of
MUSE is that, simultaneously with a precise extraction of
the radius from elastic e�p scattering data, the radius is
going to be measured in elastic μ�p scattering. Incoming
electron and muon beam momenta there are going to be
115, 153, and 210 MeV. In this kinematics, an extra
theoretical complication comes out. Namely, a widely used
ultrarelativistic (UR) approximation cannot be employed in
MUSE to describe the scattering of muons. In other words,
the mass of the muon is going to be comparable to its
energy and thus cannot be neglected. This means that older
radiative corrections codes naturally using the UR limit to
describe the scattering of “light” electrons have to be
reconsidered. In particular, not only hard- but also soft-
photon contributions have to be revised.
Given the ongoing demand in including lepton mass

effects in radiative corrections calculations for elastic μ�p
scattering, as well as expecting these effects to play an
important role in precise e�p scattering measurements at
low energies, we perform a model-independent l�p charge
asymmetry calculation. This calculation is an opening
study aimed at modifying an existing radiative corrections
formalism to include the mass of the lepton in final
expressions. It should be mentioned here that the separation
of a photon’s phase space into the soft (model-independent)
and hard (model-dependent) regions is not unique. The
commonly accepted prescriptions are those of Tsai [23] and
Maximon and Tjon [24]. In their paper, Maximon and Tjon
removed many of the mathematical approximations of the
original work of Tsai. In particular, they calculated exactly
the bremsstrahlung interference contribution, whereas the
corresponding calculation of Tsai is approximate; for the
detailed discussion on the difference between the two

approaches, please see Ref. [25]. Despite many advantages
of the work of Maximon and Tjon, we believe that the work
of Tsai is more self-consistent in its definition of soft
photons. Briefly, in Ref. [24], the authors set the momen-
tum of the soft photon to be zero only in numerators of TPE
amplitudes, whereas the author of Ref. [23] sets it to be zero
in numerators and denominators of corresponding ampli-
tudes. In our opinion, the latter approach is preferable
because the momentum of soft photons appears in numer-
ators of those amplitudes due to simultaneous multiplica-
tion of numerators and denominators of intermediate
particles propagators by a factor that includes the momen-
tum of soft photons. That is why setting the momentum of
soft photons in both numerators and denominators of TPE
amplitudes seems to be more self-consistent. For this
reason, in our paper, we decided to follow the soft-photon
definition of Ref. [23]. Using this definition, we generalize
the entire approach to include the mass of the lepton and
perform calculations of soft TPE and bremsstrahlung
interference contributions without any additional approx-
imations that were made originally by Tsai.
The organization of the paper is as follows. In Sec. II, we

introduce the general lepton-proton scattering formalism
and provide corresponding beyond UR approximation
Born expressions. In addition, we identify higher-order
QED corrections that make a difference in the comparison
of elastic lþp vs l−p scattering. In Sec. III, we provide
details of the evaluation of two-photon exchange diagrams
using the soft-photon approximation. The corresponding
TPE contribution is expressed through Passarino-Veltman
three-point functions, the analytical form for which is given
in the Appendix. Section IV describes the soft-photon
bremsstrahlung contribution calculation required for can-
cellation of the infrared divergent result of Sec. III.
Section V provides the analytical result of the charge
asymmetry calculation and corresponding predictions for
the MUSE experiment. The conclusion is given in Sec. VI.

II. LEPTON-PROTON SCATTERING
FORMALISM

In this paper, we calculate the charge asymmetry in the
elastic lepton-proton scattering process that schematically
can be written as

l�ðk1Þ þ pðp1Þ → l�ðk2Þ þ pðp2Þ; ð1Þ

where, in the laboratory frame, the following notation is
chosen for the 4-momenta of incoming and outgoing
particles: k1 ¼ ðε1; k⃗1Þ, k2 ¼ ðε2; k⃗2Þ, p1 ¼ ðE1; p⃗1Þ, p2 ¼
ðE2; p⃗2Þ. Due to a finite detector resolution, this process is
always supplemented by the indistinguishable radiative
process

l�ðk1Þ þ pðp1Þ → l�ðk2Þ þ pðp2Þ þ γðkÞ; ð2Þ

OLEKSANDR KOSHCHII and ANDREI AFANASEV PHYSICAL REVIEW D 96, 016005 (2017)

016005-2



where the 4-momentum of the emitted photon in the lab
frame is given by k ¼ ðω; k⃗Þ.
The differential cross section for the unpolarized elastic

process (1), summed over the final and averaged over the
initial spin states, can be written as [26]

dσ ¼ 1

ð4πÞ2
1

4M2

k⃗22
jk⃗1jðjk⃗2j þ ε1

M jk⃗2j − ε2
M jk⃗1j cos θÞ

jM̄j2;

ð3Þ

whereM is the rest mass of the proton and θ is the lab frame
scattering angle. The energy ε2 of the scattered lepton of
mass m is given by [27]

ε2 ¼
ðε1 þMÞðε1M þm2Þ þ k⃗21 cos θ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 −m2sin2θ

p

ðε1 þMÞ2 − k⃗21cos2θ
:

ð4Þ

Most of our results will be presented in the invariant
form, for which we define

s ¼ ðk1 þ p1Þ2; q2 ¼ ðk1 − k2Þ2 ¼ −Q2;

u ¼ ðk1 − p2Þ2; bij ≡ 2ðki · pjÞ; i; j ¼ 1; 2: ð5Þ

Here, we should note that, due to the 4-momentum
conservation in the elastic scattering process (1), the
following identities are applied there:

b11 ¼ b22 and b12 ¼ b21: ð6Þ

The present calculation focuses on obtaining analytical
expressions for the leading-order charge-odd contributions
to the scattering amplitude M of Eq. (3). These contribu-
tions play a difference in the comparison of elastic lþ vs l−

scattering off of the proton, and this difference is

measurable in modern experiments. The respective
charge-dependent amplitudes, the Feynman diagrams for
which are shown in Fig. 1, can be written as

jMj2 ¼ 2Re½M†
1γ · ðMbox þMxboxÞ

þ ðMl
bi þMl

bfÞ† · ðMp
bi þMp

bfÞ� þOðα4Þ: ð7Þ

In our approach, both terms of Eq. (7) can be factorized
by the square of the one-photon exchange (Born) amplitude
M1γ , which is given by

M1γ ¼ z
ie2

Q2
ūðk2Þγμuðk1ÞŪðp2ÞΓμUðp1Þ; ð8Þ

where z ¼∓1 corresponds to the scattering of l�. In
addition, the on-shell proton vertex Γμ is defined as

ΓμðqÞ ¼ γμF1ðq2Þ þ
iσμνqν

2M
F2ðq2Þ; ð9Þ

where σμν ¼ i
2
½γμ; γν� and F1ðq2Þ and F2ðq2Þ are the Dirac

and Pauli form factors. The factorization of the scattering
amplitude (jMj2 ∼ jM1γj2) implies that by plugging Eq. (7)
into Eq. (3) one may obtain the following form for the
charge-dependent differential cross section,

dσ� ¼ dσ1γð1� δÞ; ð10Þ

where the asymmetry δ is defined to be

δ≡ dσþ − dσ−

dσþ þ dσ−
: ð11Þ

In addition, the Born cross section dσ1γ for the scattering of
the massive lepton off of the proton target has the following
form [28]:

(e)(d) (f) (g)

(b) (c)(a)

FIG. 1. Elastic lepton-proton scattering diagrams that contribute to the charge asymmetry to order α3.
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dσ1γ ¼
1

ϵmð1þ τÞ ½τG
2
MðQ2Þ þ ϵmG2

EðQ2Þ�dσM;

dσM ¼ α2

Q4

ð4ε1ε2 −Q2Þk⃗22
jk⃗1jðjk⃗2j þ ε1

M jk⃗2j − ε2
M jk⃗1j cos θÞ

;

ϵ−1m ¼ ðs − uÞ2 þQ2ð4M2 þQ2Þ − 4m2ð4M2 þQ2Þ
ðs − uÞ2 −Q2ð4M2 þQ2Þ :

ð12Þ
It should be noted here that in our paper we call the first

term of Eq. (7) the TPE contribution and the second term
of the same equation the bremsstrahlung contribution.
Whenever considered independently, these contributions
appear to be infrared divergent. The standard approach in
dealing with these divergences is to assign an infinitesi-
mally small mass λ to the photon and split the photon’s
phase space into soft and hard regions. Soft TPE and soft
bremsstrahlung contributions have to absorb the infrared-
divergent λ-dependence, whereas respective hard contribu-
tions have to be finite. The sum of soft pieces comes out to
be λ independent, and this result provides a physical
justification for the theory.

III. TWO-PHOTON EXCHANGE BOX AND
CROSSED BOX CONTRIBUTIONS

Feynman diagrams that represent TPE processes are
shown in Fig. 2. The corresponding amplitudes are given by

Mbox ¼
Z

d4k
ð2πÞ4

ð−iÞ
k2 − λ2

ð−iÞ
ðkþ qÞ2 − λ2

· ūðk2ÞðzieγνÞ
iðk1 þ kþmÞ
ðk1 þ kÞ2 −m2

ðzieγμÞuðk1Þ

· Ūðp2Þð−ieΓνÞ
iðp1 − kþMÞ
ðp1 − kÞ2 −M2

ð−ieΓμÞUðp1Þ;

Mxbox ¼
Z

d4k
ð2πÞ4

ð−iÞ
k2 − λ2

ð−iÞ
ðkþ qÞ2 − λ2

· ūðk2ÞðzieγμÞ
iðk2 − kþmÞ
ðk2 − kÞ2 −m2

ðzieγνÞuðk1Þ

· Ūðp2Þð−ieΓνÞ
iðp1 − kþMÞ
ðp1 − kÞ2 −M2

ð−ieΓμÞUðp1Þ:

ð13Þ

In our approach, the model-independent TPE contribu-
tion can be obtained by imposing two assumptions on the
matrix elements Eq. (13). The first assumption is that one of
the virtual photons in Fig. 2 is soft, i.e., it is transferring a
vanishingly small momentum. The respective algebraical
approximation has to be applied in the numerators and
denominators of Eq. (13). The second assumption is that
the off-shell proton vertices Γμ and Γν are given by their on-
shell expression Eq. (9). Based on these assumptions, a soft
proton vertex Γμð0Þ can be replaced by γμ. With this in
mind, let us now focus on the box diagram Fig. 2(a). We
denote M0

box to be the amplitude that corresponds to k → 0

and M00
box to be the amplitude that corresponds to

kþ q → 0. As a result, one may find

M0
box ¼ −z

α

2π
b11C0½ð−k1; mÞ; ðp1;MÞ�M1γ; ð14Þ

M00
box ¼ −z

α

2π
b22C0½ð−k2; mÞ; ðp2;MÞ�M1γ; ð15Þ

where C0½ðki; mÞ; ðpj;MÞ� is the Passarino-Veltman scalar
three-point function defined as

C0½ðki; mÞ; ðpj;MÞ�

≡
Z

d4k
iπ2

1

½k2 − λ2�½ðk − kiÞ2 −m2�½ðk − pjÞ2 −M2� :

ð16Þ

This means that Mbox ¼ M0
box þM00

box can be written as

Mbox ¼ −z
α

2π
ðb11C0½ð−k1; mÞ; ðp1;MÞ�

þ b22C0½ð−k2; mÞ; ðp2;MÞ�ÞM1γ: ð17Þ

In a similar fashion, one can find the matrix element of the
crossed box diagram Fig. 2(b),

Mxbox ¼ −z
α

2π
ðb12C0½ðk1; mÞ; ðp2;MÞ�

þ b21C0½ðk2; mÞ; ðp1;MÞ�ÞM1γ: ð18Þ

The analytical expressions for the scalar three-point func-
tions that appear in Eqs. (17) and (18) are provided in the
Appendix (corresponding ultrarelativistic limit formulas
can be found, e.g., in Ref. [29]). It can be easily seen from
those expressions that

C0½ð−k1; mÞ; ðp1;MÞ� ¼ C0½ð−k2; mÞ; ðp2;MÞ�;
C0½ðk1; mÞ; ðp2;MÞ� ¼ C0½ðk2; mÞ; ðp1;MÞ�:

Moreover, we remember that the condition Eq. (6) holds
true for the two-photon exchange processes shown in
Fig. 2. That is why

(b)(a)

FIG. 2. TPE box and crossed box diagrams.
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M2γ ¼ Mbox þMxbox

¼ −z
α

2π
ð2b11C0½ð−k1; mÞ; ðp1;MÞ�

þ 2b12C0½ðk1; mÞ; ðp2;MÞ�ÞM1γ: ð19Þ

It should be mentioned here that the imaginary part of the
two-photon exchange amplitude M2γ is contained solely in
the box diagram, whereas the crossed box diagram is
purely real.
Using the definition of Eq. (11), we find the correspond-

ing TPE correction to look like

δ2γ ¼
α

π
Reð2b11C0½ð−k1; mÞ; ðp1;MÞ�

þ 2b12C0½ðk1; mÞ; ðp2;MÞ�Þ: ð20Þ

The obtained result Eq. (20) is exact, and we did
not use an approximation ReðC0½ð−k1; mÞ; ðp1;MÞ�Þ ¼
−C0½ðk1; mÞ; ðp1;MÞ� made by Tsai.

IV. SOFT BREMSSTRAHLUNG
CONTRIBUTIONS

Bremsstrahlung diagrams Figs. 1(d)–1(g) are an inevi-
table part of charge asymmetry calculations. As it was
pointed out earlier, one needs to consider the bremsstrah-
lung interference contribution to cancel out the infrared
divergence of Eq. (20).
In our approach, similarly to the TPE case, we assume

that a vertex Γν that depicts the coupling of a real soft
photon to the proton Figs. 1(f) and 1(g) can be replaced by
γν. In addition, we neglect the 4-momentum k of the
corresponding photon. As a result, the expressions for all
four soft-bremsstrahlung matrix elements become alike and
can be factorized by the Born amplitude Eq. (8). For
example, the matrix element shown in Fig. 3 takes the
following form,

Mp
bf ¼ Ūðp2Þð−ieγνÞ

iðp2 þ kþMÞ
ðp2 þ kÞ2 −M2

ð−ieΓμÞUðp1Þϵ�νðkÞ

· ūðk2ÞðzieγμÞuðk1Þ
ð−iÞ

q2 − λ2
¼ e

ðp2 · ϵ�Þ
ðp2 · kÞ

M1γ;

ð21Þ

where ϵ�νðkÞ describes the polarization of the emitted
photon.
The rest of the graphs in Figs. 1(d)–1(g) can be found in

a similar way, and the resulting bremsstrahlung amplitude
can be written as

Mb ¼
�
z

�ðk1 · ϵ�Þ
ðk1 · kÞ

−
ðk2 · ϵ�Þ
ðk2 · kÞ

�
þ
�ðp2 · ϵ�Þ
ðp2 · kÞ

−
ðp1 · ϵ�Þ
ðp1 · kÞ

��

× eM1γ: ð22Þ
By taking the square of Eq. (22), summing over all
polarization states, and factoring out the Born contribution
Eq. (12), one may find the cross section for the brems-
strahlung process to look like

dσb ¼ −
α

4π2
½z2aΣ − zbΣ þ cΣ�dσ1γ; ð23Þ

where

aΣ ¼
X
i;j¼1;2

aijLki;kjθðkiÞθðkjÞ; aij ¼ ðki · kjÞ;

bΣ ¼
X
i;j¼1;2

bijLki;pj
θðkiÞθðpjÞ; bij ¼ 2ðki · pjÞ;

cΣ ¼
X
i;j¼1;2

cijLpi;pj
θðpiÞθðpjÞ; cij ¼ ðpi · pjÞ;

θðk1Þ ¼ θðp1Þ≡þ1; θðk2Þ ¼ θðp2Þ≡ −1 ð24Þ
and

Lki;pj
≡ Lij ¼

Z
d3k⃗
ω

1

ðki · kÞ
1

ðpj · kÞ
: ð25Þ

The expressions for Lki;kj and Lpi;pj
are defined identically

to Eq. (25); one just needs to replace there pj → kj and
ki → pi, correspondingly. The integral in Eq. (25) is
infrared divergent. Similarly to the TPE case, this diver-
gence can be regularized by assigning the mass λ to the

photon, so that ω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k⃗2 þ λ2

p
. After that, the integration

over the emitted photon’s phase space can be performed in
the R frame (sometimes called the S0 frame) to avoid in
Eq. (25) the dependence on the angle at which the photon is
emitted. The corresponding calculation has been performed
by ’t Hooft and Veltman [30], and their result was
summarized and rewritten in Ref. [24] using the metric
identical to ours.
In our calculations, we will mainly follow the derivation

of Ref. [30] but single out several Passarino-Veltman three-
point functions at final stages by using the following
identity:

Z1

0

dx
u2

ln

�
4Δε2

λ2

�
¼

Z1

0

dx
u2

ln

�
4Δε2

u2

�
þ
Z1

0

dx
u2

ln

�
u2

λ2

�
:

ð26ÞFIG. 3. Proton leg bremsstrahlung diagram.
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Such an approach (mentioned, e.g., in Ref. [31]) enables us
to completely absorb the infrared λ-dependence in three-
point functions. Given that TPE contributions are also
expressed in terms of infrared-divergent three-point func-
tions Eq. (20), it can be shown that the corresponding sum
is infrared free.
Using the identity Eq. (26), the result Eq. (4.13) of

Ref. [24] can be written as

Lij ¼
2π

γij
½Sð1Þij þ Sð2Þij �; ð27Þ

where one can find a modified form for Sð1Þij to look like

Sð1Þij ¼ 2αijγij
α2ijm

2 −M2

�
ln2

�
2Δϵ
M

�
− ln2

�
2Δϵ
αijm

��

− 2αijC0½ðαijki; αijmÞ; ðpj;MÞ� ð28Þ

with

αij ≡ ki · pj þ γij
m2

¼ bij þ 2γij
2m2

;

γij ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðki · pjÞ2 −m2M2

q
¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2ij − 4m2M2

q
: ð29Þ

The second term of Eq. (27) contains dilogarithm functions
Li2 that have a cut along the positive real axis starting at
x ¼ 1. This term is infrared free and does not require any
modifications,

Sð2Þij ¼ ln2
�

βi
mM

�
− ln2

�
δj
M2

�

þ Li2

�
1 −

βiðlij · p2Þ
γijM2

�
þ Li2

�
1 −

m2ðlij · p2Þ
γijβi

�

− Li2

�
1 −

δjðlij · p2Þ
M2αijγij

�
− Li2

�
1 −

M2ðlij · p2Þ
αijγijδj

�
;

ð30Þ

with

βi ≡ ðki · tÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðki · tÞ2 −m2t2

q
;

δj ≡ ðpj · tÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðpj · tÞ2 −M2t2

q
;

lij ≡ αijki;

t≡ p2 þ k ¼ p1 þ k1 − k2: ð31Þ

At this point, it is worth mentioning that Δϵ is the upper
limit of the integration over the photon energy in Eq. (25).
This quantity is chosen to be smaller than any of the other
energies of an experiment and serves as a parameter that
splits the photon’s phase space into the soft and hard
regions. The relevant discussions can be found in

Refs. [24,32]. Here, we just note that Δϵ is defined in
the R frame and one usually wants to be able to relate this
quantity to some energy scale that describes an experi-
mental setup. For example, in Ref. [24], the authors show
how to relateΔϵ to the final electron detector acceptance. In
our work, we chose to relate Δϵ to the frame-invariant
quantity that is called inelasticity and defined as

ν≡ ðp2 þ kÞ2 −M2 ¼ t2 −M2: ð32Þ

By using this definition and following the discussion on Δϵ
given in Ref. [24], one may find

ν ¼ 2
ffiffiffiffi
t2

p
Δϵ ≈ 2MΔϵ; ð33Þ

where the last equity is achieved by imposing the soft-
photon approximation k → 0.
The result of Eq. (33) enables us to combine our soft-

photon calculations with the hard-photon computations that
follow the procedure developed by Bardin and Shumeiko
[33], where the authors use the definition for inelasticity
identical to ours. It should be noted here that the approach
of Ref. [33] is advantageous over the approach of
Refs. [23,34], because the final result for the total radiative
correction (the sum of soft and hard contributions) appears
to be independent of the artificial parameter that separates
the photon’s phase space into soft and hard regions. In our
paper, we perform the model-independent part of the total
calculation and just mention that, due to complicated
detector geometry, the corresponding model-dependent
hard-photon computations are performed numerically
using Monte Carlo codes (see, e.g., Refs. [35,36]).
Let us comment on the inelasticity. This quantity, which

describes a 2 → 3 process Eq. (2), is limited by the
respective kinematic bound νmax that looks like [37]

νmax ¼
1

2m2

�
2γ11

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2ðQ2 þ 4m2Þ

q
−Q2ðm2 þ b11Þ

�
:

ð34Þ

Besides the kinematic bound of Eq. (34), the integration
over the photon’s phase space in Eq. (25) can be limited by
the properties of a detector system that sets the correspond-
ing cut value νcut on the inelasticity. For example, this cut
value can be set below the pion production threshold
(νcut ≃ 0.271). Another possible choice for the cut can
be dictated by the inability of the detector to register
scattered leptons of small energies. In this case, one usually
wants to relate ε2 to νcut. The corresponding lab frame
relation can be obtained from Eq. (32) and is given by

νcut ¼ b11 −Q2 − 2mε2: ð35Þ
As a result, in the presence of experimental cuts, the upper
integration limit in Eq. (25) has to be chosen based on the
following condition:
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ν ¼ Minðνcut; νmaxÞ: ð36Þ

At this point, we can write down an invariant form for the
charge-dependent soft-bremsstrahlung correction to the
cross section in accordance with definition of Eqs. (12)
and (23):

δb ¼ −
α

π
Re

�
b11
2γ11

ðSð2Þ11 þ Sð2Þ22 Þ −
b12
2γ12

ðSð2Þ12 þ Sð2Þ21 Þ

þ 2α11b11
α211m

2 −M2

�
ln2

�
ν

M2

�
− ln2

�
ν

α11mM

��

−
2α12b12

α212m
2 −M2

�
ln2

�
ν

M2

�
− ln2

�
ν

α12mM

��

− 2b11α11C0½ðα11k1; α11mÞ; ðp1;MÞ�

þ 2b12α12C0½ðα12k1; α12mÞ; ðp2;MÞ�
�
: ð37Þ

As intended, the λ-dependence is now solely “hidden” in
the last two terms of Eq. (37) that are given by scalar three-
point functions, the exact expressions for which are
provided in the Appendix. By assigning the fictitious mass
to the photon and by choosing m ≪ ε1, we confirmed that
the predictions of Eq. (37) are identical to those of
the Ref. [24].

V. RESULTS

The results given in Eqs. (20) and (37) may be added
together to give us the charge asymmetry in the soft-photon
approximation. It should be mentioned here that the direct
sum of these expressions has to be shifted by a constant
factor to provide a physically justified asymmetry that
implies zero asymmetry at Q2 ¼ 0. This asymmetry is
found to be

δ ¼ −
α

π

�
b12
γ12

�
1

2
lnðα12Þ · ln

�
4γ212

m4α12ð1 − α12Þ2
�
þ Li2

�
u

2γ12ð1 − α12Þ
�
− Li2

�
uα12

2γ12ð1 − α12Þ
��

−
b11
γ11

�
1

2
lnðα11Þ · ln

�
4γ211

m4α11ð1 − α11Þ2
�
þ Li2

�
2m2 þ 2M2 − s
2γ11ð1 − α11Þ

�
− Li2

�ð2m2 þ 2M2 − sÞα11
2γ11ð1 − α11Þ

��

þ 2α11b11
α211m

2 −M2

�
ln2

�
ν

M2

�
− ln2

�
ν

α11mM

��
−

2α12b12
α212m

2 −M2

�
ln2

�
ν

M2

�
− ln2

�
ν

α12mM

��

þ b11
2γ11

½Sð2Þ11 þ Sð2Þ22 � −
b12
2γ12

½Sð2Þ12 þ Sð2Þ21 �
�
: ð38Þ

FIG. 4. Charge asymmetry predictions for MUSE.
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In the limit Q2 → 0, the variables in Eq. (38) behave
as follows: ν → 0, b12 → b11, γ12 → γ11, α12 → α11. This
assures that the terms that contain singularities at Q2 → 0
cancel each other out.
The obtained result Eq. (38) can be used to provide

model-independent predictions for any lepton-proton scat-
tering experiment that requires lepton mass effects to be
taken into account. In particular, the respective predictions
in the kinematics of MUSE are shown in Fig. 4. The
electron-positron charge asymmetry there represents the
ultrarelativistic (massless) prediction, whereas the effects of
the lepton’s mass can be seen on the graph for the muon-
antimuon asymmetry.

VI. CONCLUSION

We have calculated analytically the charge asymmetry in
elastic lepton-proton scattering to order α3 by generalizing
the soft-photon approach of Tsai. The present calculation
improves the result of Tsai in three essential aspects. First,
we do not neglect the mass of the lepton as compared to
its energy. Second, we do not use the approximation
ReðC0½ð−k1; mÞ; ðp1;MÞ�Þ ¼ −C0½ðk1; mÞ; ðp1;MÞ� in an
evaluation of soft TPE. The corresponding exact expression
for C0½ð−k1; mÞ; ðp1;MÞ� is given in the Appendix. Finally,
the charge-dependent contribution from the emission of
real soft photons is calculated exactly without the approxi-
mation made by Tsai.
In the ultrarelativistic limit, if one corrects the result of

Tsai by the terms left out by his approximations, our
predictions coincide with those of Ref. [23]. The corre-
sponding ultrarelativistic analysis of a difference between
exact expressions and expressions of Tsai was done in
Ref. [25]. It should also be mentioned here that, unlike
Tsai, in the bremsstrahlung contribution calculation, we
isolate three-point functions that have a form different from

those three-point functions that are coming from the TPE
contribution. In other words, in our derivations, three-point
functions coming from the TPE contribution and three-
point functions coming from the bremsstrahlung contribu-
tion do not cancel each other out. However, as expected, the
sum of the bremsstrahlung and TPE contributions stays
independent of the chosen approach.
The obtained results in the kinematics of MUSE can

be compared to the TPE calculation of Tomalak and
Vanderhaegen [38] that was also performed without
neglecting the mass of the lepton. In addition, this calcu-
lation provides more confidence on the fact that soft photon
TPE and bremsstrahlung corrections that appear to be on
the order of a few tenths percent in the kinematics of MUSE
are about an order of magnitude larger than helicity-flip
contributions for muons, which were recently estimated in
Refs. [39,40].
Our analytical results can be combined with hard photon

calculations that take into account the mass of the lepton
to provide complete radiative corrections predictions for
elastic lepton-proton scattering experiments.
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APPENDIX: SCALAR THREE-POINT
FUNCTIONS

Using the approach described in Ref. [30], one may
derive the following expression for the scalar three-point
functions defined in Eq. (16):

C0½ðki; mÞ; ðpj;MÞ� ¼ −
1

2γij

�
ln

�
λ2

mM

�
ln

�
M
mαij

�
þ 1

2
lnðαijÞ ln

�
4γ2ijαij

m2M2ð1 − αijÞ2
�

− Li2

�
αijðm2 − bij þM2Þ

2γijð1 − αijÞ
�
þ Li2

�
m2 − bij þM2

2γijð1 − αijÞ
��

: ðA1Þ

The obtained result for C0½ðki; mÞ; ðpj;MÞ� is real for any combination of ki ¼ k1; k2 and pj ¼ p1; p2. The predictions of
Eq. (A1) were checked numerically in the kinematics of MUSE using the LOOPTOOLS [41] package.
Using the result of Eq. (A1), three-point functions that are coming from the bremsstrahlung contribution can be found to

have the following simple form:

C0½ðα11k1; α11mÞ; ðp1;MÞ� ¼ −
1

2α11γ11
ln

�
λ2

α11mM

�
ln

�
M

α11m

�
;

C0½ðα12k1; α12mÞ; ðp2;MÞ� ¼ −
1

2α12γ12
ln

�
λ2

α12mM

�
ln

�
M

α12m

�
: ðA2Þ

Three-point functions that are coming from the TPE contribution are found to be
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C0½ðk1; mÞ; ðp2;MÞ� ¼ −
1

2γ12

�
ln

�
λ2

mM

�
ln

�
M

mα12

�
þ 1

2
lnðα12Þ ln

�
4γ212α12

m2M2ð1 − α12Þ2
�

− Li2

�
α12u

2γ12ð1 − α12Þ
�
þ Li2

�
u

2γ12ð1 − α12Þ
��

;

C0½ð−k1; mÞ; ðp1;MÞ� ¼ −
1

2γ11

�
ln

�
λ2

mM

�
ln

�
M

mα011

�
þ 1

2
lnðα011Þ ln

�
4γ211α

0
11

m2M2ð1þ α011Þ2
�

þ 5π2

6
−
1

2
ln2

�
s

2γ11ð1þ α011Þ
�
þ iπ ln

�
s

λ2ð1þ α011Þ2
�

− Li2

�
−α011s

2γ11ð1þ α011Þ
�
− Li2

�
2γ11ð1þ α011Þ

s

��
; ðA3Þ

where

α011 ≡ −α−11 ¼ −
�
−k1 · p1 þ γ11

m2

�
¼ −

�
−b11 þ γ11

2m2

�
> 0: ðA4Þ
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