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We apply recent results on the probability distribution for quantum stress tensor fluctuations to the
problem of barrier penetration by quantum particles. The probability for large stress tensor fluctuations
decreases relatively slowly with increasing magnitude of the fluctuation, especially when the quantum
stress tensor operator has been averaged over a finite time interval. This can lead to large vacuum radiation
pressure fluctuations on charged or polarizable particles, which can in turn push the particle over a potential
barrier. The rate for this effect depends sensitively upon the details of the time averaging of the stress tensor
operator, which might be determined by factors such as the shape of the potential. We make some estimates
for the rate of barrier penetration by this mechanism and argue that in some cases this rate can exceed the
rate for quantum tunneling through the barrier. The possibility of observation of this effect is discussed.
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I. INTRODUCTION

In a recent paper [1], we showed how the one loop
radiative correction to potential scattering and to quantum
tunnelingmay be obtained from simple arguments involving
the vacuum fluctuations of the time-averaged quantized
electric field. In particular, the one loop enhancement of
the quantum tunneling rate obtained by Flambaum and
Zelevinsky [2] may be understood as the vacuum electric
field giving the particle an extra boost to get over the barrier.
The effects of vacuum electric field fluctuations on light
propagation in nonlinear materials were discussed in
Refs. [3,4].
In the present paper, we will discuss the effect of vacuum

radiation pressure fluctuations in enhancing tunneling rates.
Here we are dealing with fluctuations of the electromag-
netic stress tensor, rather than of the fields themselves. The
role of classical radiation pressure on electrons and atoms
in astrophysics has long been studied [5]. The variance of
the radiation pressure fluctuations in a coherent state, which
plays a role in laser interferometer detectors of gravity
waves, was calculated in Refs. [6–9]. The variance of the
time averaged radiation pressure fluctuations in the vacuum
state has been treated by several authors in the context of
Casimir force fluctuations [8,10,11]. Time averaging will
play a crucial role in our analysis as well. The fluctuations
of a quantum stress tensor operator at a single spacetime
point are not defined in the sense that all of the moments,
beyond the first moment, of such an operator diverge. In
general, time averaging of the quantum stress tensor is
needed to yield finite results for the moments. It is also true
that the correlation and n-point functions of a stress tensor
operator are finite provided that none of the spacetime

points involved are at null separations. The Fourier trans-
form of a correlation function yields a power spectrum,
which can be useful for the study of the variance of the
fluctuations. This approach was used in Refs. [12,13] to
study fluctuations of a mirror in the vacuum.
In the present paper, we will consider the effects of large

radiation pressure fluctuations in the vacuum state. By
“large,” we mean fluctuations which are much larger than
the root-mean-square value found in calculations of the
variance. The probability distributions for quantum stress
tensor vacuum fluctuations have been discussed in
Refs. [14–16]. These distributions contain the information
needed to go beyond calculations of the variance of the
fluctuations, a fact which was acknowledged by Barton [10].
The part of the probability distribution which describes large
fluctuations is determined by the higher moments (n ≫ 2) of
the time averaged operator. Thus approaches which focus
upon the variance or the power spectrum of the fluctuations,
such as were used in Refs. [6–13], are not particularly useful
for the study of large fluctuations. A key result is that the
distributions for stress tensor fluctuations fall relatively
slowly as the magnitude of the fluctuation increases, much
more slowly than does the Gaussian distribution which
describes time averaged electric field fluctuations. This
means that large radiation pressure fluctuations are not so
rare as one might have expected. This is especially the case
when the relevant stress tensor has been averagedover a finite
time interval [16], that is, with an averaging functionwhich is
strictly zero outside of a finite interval. Such an averaging
function may be viewed as describing a measurement made
over a finite time. Here we will explore the possible role of
large vacuum radiation pressure fluctuations in pushing a
particle over a barrier more quickly than it would tunnel
through the barrier.
It is well known that at finite temperature it is possible

for particles to acquire enough energy to fly over a barrier
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without tunneling, a process known as thermal activation.
The effect we will consider bears some similarities to
thermal activation, but can occur at zero temperature. Our
effect is also related to the noise-induced activation studied
by Antunes et al. in Ref. [17]. These authors treat a model
of a quantum particle in a double well potential which is
linearly coupled to a bath of quantum oscillators. They find
a form of activation at zero temperature which can be
ascribed to the quantum fluctuations of the oscillator bath.
A key difference between the model of Ref. [17] and that in
the present paper is that we assume the particle to be
coupled quadratically to the quantized electromagnetic
field through the stress tensor. This leads to the possibility
of large, non-Gaussian fluctuations.
The outline of this paper is as follows: The results of

Ref. [16] on probability distributions will be summarized in
Sec. II and extended to the specific case of electromagnetic
radiation pressure fluctuations. The effects of vacuum
radiation pressure fluctuations on barrier penetration by
charged particles will be examined in Sec. III. Estimates of
the magnitude of this effect will be given, and the
conditions under which it can dominate quantum tunneling
will be discussed. The possible role of radiation pressure
fluctuations in nuclear fusion will be treated in Sec. IV. The
effect of radiation pressure fluctuations on polarizable,
uncharged, particles will be discussed in Sec. V. Section VI
summarizes and discusses the main results of the paper.
Units in which ℏ ¼ c ¼ 1 and Lorentz-Heaviside units

for electromagnetic quantities will be used unless other-
wise noted.

II. PROBABILITY OF LARGE STRESS
TENSOR FLUCTUATIONS

In this section, we first review previous results on the
probability distribution function for quantum stress tensor
fluctuations, and then apply these results to the specific
case of vacuum pressure fluctuations of the quantized
electromagnetic field.

A. Finite duration measurements
and the probability distribution

Here we summarize the key results of Ref. [16] which
will be needed in the present paper. LetQðtÞ be an operator
which is a quadratic function of a free field operator and
define its time average with respect to fðtÞ by

T ¼
Z

∞

−∞
QðtÞfðtÞdt; ð1Þ

where Z
∞

−∞
fðtÞdt ¼ 1: ð2Þ

In general, it is the time average, T, rather than the local
operator, Q, which is observable in the sense that one may

assign a well-defined probability distribution to T, but not
toQ. The key idea is that measurements of a quantum stress
tensor which occur in a finite time interval should be
described by a sampling function of time, fðtÞ, which is
smooth and has compact support. Thus fðtÞ is taken to be a
C∞, but nonanalytic, function which is strictly zero outside
of a finite time interval whose width is approximately τ. The
Fourier transform of such a function will have an asymp-
totic form for large argument which falls faster than any
power but more slowly than an exponential function.
Define the Fourier transform by

f̂ðωÞ ¼
Z

∞

−∞
dt e−iωtfðtÞ: ð3Þ

A useful set of compactly supported sampling functions is
defined by

f̂ðωÞ ¼ e−jωjα ; ð4Þ

where 0 < α < 1. (Units in which τ ¼ 1, following the
notation in Ref. [16], are adopted temporarily. Later, we
return to general units for τ when needed for clarity.) The
corresponding functions of time, fðtÞ, are expressible in
terms of Fox H-functions [18,19]. For our purposes, we
only require that Eq. (4) hold asymptotically for ω ≫ 1.
This will be sufficient to give the switching behavior which
we now discuss. Wewill also require that f̂ðωÞ ≥ 0. We can
arrange for the initial switch-on of fðtÞ, to occur at t ¼ 0. In
this case, the functional form of fðtÞ as t → 0þ is

fðtÞ ∼ t−μe−wt
−ν
; ð5Þ

where

ν ¼ α

1 − α
; ð6Þ

μ ¼ 2 − α

2ð1 − αÞ ; ð7Þ

and

w ¼ ð1 − αÞαα=ð1−αÞ: ð8Þ
The switch-off at the end of the finite interval will have the
same functional form. The parameter α describes both
the rate of decrease of f̂ðωÞ, and the behavior of fðtÞ at the
switch-on and switch-off. A simple electrical circuit which
has a switch-on corresponding to α ¼ 1=2was described in
Ref. [16]. In this case, fðtÞ ∝ t−3=2e−1=ð4tÞ as t → 0þ.
The asymptotic form of the Fourier transform, f̂ðωÞ,

determines the rate of growth of the moments of the
sampled stress tensor and in turn, the probability for large
fluctuations. Let T be a normal-ordered quadratic operator
which has been averaged with the sampling function fðtÞ
and define its moments by
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μn ¼ h0jTnj0i: ð9Þ

We express T in a mode sum of creation and annihilation
operators as

T ¼
X
ij

ðAija
†
i aj þ Bijaiaj þ B�

ija
†
i a

†
jÞ; ð10Þ

where the coordinate spacemode functions are assumed to be
planewaves proportional to e−iωt. Now μn may be expressed
as a sumofnth degree polynomials in the coefficientsAij and
Bij. These coefficients have the functional forms

Aij ∝ ðωiωjÞðp−2Þ=2f̂ðωi − ωjÞ ð11Þ

and

Bij ∝ ðωiωjÞðp−2Þ=2f̂ðωi þ ωjÞ; ð12Þ

where p is an integer determined by the dimensions of the
operator T. In the case of stress tensor operators, which will
be our primary concern, p ¼ 3. However, we will consider
the possibility of larger values of p in Sec. V.
It was argued in Ref. [16] that there is one term in the

expression for μn which dominates for n ≫ 1. This term is

Mn ¼ 4
X
j1���jn

Bj1j2Aj2j3Aj3j4 � � �Ajn−1jnB
�
jnj1

: ð13Þ

The dominance of this term can be understood as arising
from the relative minus sign in the argument of the f̂ factor
in Aij, as compared to that in Bij. The dominant term
contains the maximum number of factors of Aij, which fall
more slowly with increasing ωi. In any case,Mn < μn as all
of the terms neglected in Mn are positive, because
f̂ðωÞ ≥ 0. Thus Mn gives a lower bound on the exact
moments. This will in turn give a lower bound on the
probability of large fluctuations. In the case where T is a
time average of ∶ _φ2∶, where φ is the massless scalar field,

Mn ¼ kn

Z
∞

0

dω1 � � � dωnðω1 � � �ωnÞpf̂ðω1 þ ω2Þ

× f̂ðω2 − ω3Þ � � � f̂ðωn−1 − ωnÞf̂ðωn þ ω1Þ; ð14Þ

where

kn ¼
1

ð2π2Þn ð15Þ

and p ¼ 3. For n ≫ 1, the asymptotic form ofMn becomes

Mn≃kn½2πfð0Þ�n−2
p!½ðn−1Þp�!
ðnpþ1Þ!

Z
∞

0

duf̂2ðuÞunpþ1;

ð16Þ

and if f̂ has the form given in Eq. (4), we have

Mn ≃ kn½2πfð0Þ�n−2
p!½ðn − 1Þp�!

αðnpþ 1Þ!2ðnpþ2Þ=α Γ
�ðnpþ 2Þ

α

�
:

ð17Þ

The last factor in this expression reveals that for large n, the
moments grow as ðpn=αÞ!.
This rapid rate of growth of the moments leads to a slow

decrease in the tail of the probability distribution. Now
return to arbitrary units for the sampling time τ and define
the dimensionless variable x ¼ Tτpþ1. Let PðxÞ be the
probability distribution describing the probability of find-
ing various values of T in a measurement. As explained in
Refs. [14,15], this probability distribution has a lower
bound at the quantum inequality bound on expectation
values of T in an arbitrary state, x ¼ −x0 < 0, but no upper
bound, so Z

∞

−x0
PðxÞdx ¼ 1: ð18Þ

The asymptotic form for PðxÞ for large x may be written as

PðxÞ ∼ c0xbe−ax
c
: ð19Þ

The constants c0, a, b, and c may be determined from
Eq. (17) to be [16]

c ¼ α

p
; ð20Þ

b ¼ c

�
2

α
− p − 1

�
− 1 ¼ 2 − α

p
− ðαþ 1Þ; ð21Þ

a ¼ 2½2πfð0ÞB�−α=p; ð22Þ

and

c0 ¼ caðbþ1Þ=cB0p!α−ðpþ2Þ2−ð2=αÞ½2πfð0Þ�−2: ð23Þ

Here the constants B0 and B are defined by

kn ¼ B0Bn: ð24Þ

Thus for the case of ∶ _φ2∶, we have B0 ¼ 1 and B ¼
1=ð2π2Þ.
Because the moments μn grow faster than n! as n → ∞,

the probability distribution PðxÞ cannot be uniquely deter-
mined by its moments. However, the average behavior of
the asymptotic form in Eq. (19) can be inferred from the
rate of growth of the moments, as was discussed in
Refs. [15,16]. It is of interest to seek alternative derivations
of the vacuum stress tensor probability distribution, PðxÞ.
One possibility is numerical diagonalization in a modified
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theory with a finite number of degrees of freedom. This
possibility is under investigation. It may also be possible to
apply functional approaches, such as the Schwinger-
Keldysh or closed time path method. However, so far this
type of approach has been used primarily in perturbative
treatments and would need to be extended to apply to
nonperturbative problems such as that of the probability
distribution.

B. Radiation pressure fluctuations

Now we wish to apply the results summarized in the
previous subsection to the case of vacuum electromagnetic
radiation pressure fluctuations. These are fluctuations of the
time averaged energy or momentum flux components of the
electromagnetic stress tensor. Consider the momentum flux
in the z direction

Ttz ¼ ðE ×BÞz ¼ ExBy − EyBx; ð25Þ

whereE andB are the quantized electric and magnetic field
operators, respectively. Let Sz be the momentum flux
sampled with fðtÞ

Sz ¼
Z

∞

−∞
Ttzðt;xÞfðtÞdt; ð26Þ

where the sampling is in time at a fixed spatial location.
Note that Ttz, and hence Sz are automatically normal
ordered, as h0jTtzj0i ¼ 0. The nth moment of Sz is

μn ¼h0jðSzÞnj0i¼
Z

∞

−∞
dt1fðt1Þ

Z
∞

−∞
dt2fðt2Þ � � �

×
Z

∞

−∞
dtnfðtnÞh0jTtz

1 T
tz
2 � � �Ttz

n j0i; ð27Þ

where Ttz
j ¼ Ttzðtj;xÞ. When n ≫ 1, we expect

μn ∼Mn ∼ Cn, where Cn is the nth connected moment.
We expect the high moments of the time averages of both

Ttz and of ∶ _φ2∶ to be of the form of Eq. (17) with p ¼ 3,
but with different values for the constants kn. We may relate
knðTtzÞ to knð∶ _φ2∶Þ, the latter of which are given by
Eq. (15), using a variation of the argument in Sec. III B of
Ref. [15]. The connected moments of ∶ _φ2∶ may be
expressed as a sum of the possible connected contractions
of the form

ð28Þ

where the subscripts label operators at different spacetime
points. Here the contraction of the form

ð29Þ

contributes a factor of h _φi _φji in the expression for Cnð _φ2Þ.
The number of terms in Cnð _φ2Þmay be counted as follows:
The first operator to contact has 2ðn − 1Þ possible partners
with which it may be contracted. After this is done, the next
operator has 2ðn − 2Þ possible partners. Thus the total
number of terms will be

½2ðn − 1Þ�½2ðn − 2Þ� � � � 2 ¼ 2n−1ðn − 1Þ!: ð30Þ

The corresponding calculation for the nth connected
moment of Sz, CnðSzÞ will involve

hðExBy − EyBxÞ1ðExBy − EyBxÞ2 � � � ðExBy − EyBxÞni:
ð31Þ

The contractions of the electric and magnetic field oper-
ators are related to those for _φ by the relations

hEiðtÞEjðt0Þi ¼ hBiðtÞBjðt0Þi ¼
2

3
δijh _φðtÞ _φðt0Þi; ð32Þ

and

hEiðtÞBjðt0Þi ¼ 0; ð33Þ

where all operators are at the same spatial point. This means
that Ex

1 can only contract with other E
x operators, etc. Thus

Ex
1 has n − 1 possible contractions, and By

1 can only
contract with other By operators whose associated Ex

operator is still uncontracted, as otherwise a disconnected
moment would result. This leads to n − 2 possibilities. The
next Ex operator has n − 3 possibilities, etc. Thus a total of
ðn − 1Þ! terms arise from ExBy, and an equal number from
EyBx, leading to a total of 2ðn − 1Þ! terms in CnðSzÞ.
Equation (32) tells us that each contraction of electromag-
netic field operators contributes a factor of 2=3 to CnðSzÞ,
compared to the contribution of a _φ contraction to Cnð _φ2Þ.
Thus, we may write

knðSzÞ ¼
�
2

3

�
n 2ðn − 1Þ!
2n−1ðn − 1Þ! knð _φ

2Þ ¼ 4

ð6π2Þn ; ð34Þ

where knð _φ2Þ is given by Eq. (15). This leads to

B0 ¼ 4 and B ¼ 1

6π2
ð35Þ

for Sz. This result may also be derived by an alternative
argument which involves direct evaluation of the vacuum
expectation value of a product of Sz operators.
As p ¼ 3 for Ttz, and hence for Sz, the probability

distribution PðxÞ is a function of x ¼ τ4Sz. However, unlike
the case of operators such as _φ2 or the energy density, there
is no lower bound, and the distribution is symmetric
Pð−xÞ ¼ PðxÞ. The normalization becomes
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Z
∞

−∞
PðxÞdx ¼ 1: ð36Þ

The asymptotic form for jxj ≫ 1 is still given by Eq. (19),
and the constants c, b, and a are given by Eqs. (20), (21),
and (22), respectively, with p ¼ 3 and B as in Eq. (35).
However, the constant c0 is now one-half of that given by
Eq. (23). The values of the parameters in the tail of the
radiation pressure probability distribution become

c ¼ α

3
; ð37Þ

b ¼ −
4αþ 1

3
; ð38Þ

a ¼ 2

�
fð0Þ
3π

�
−α=3

; ð39Þ

and

c0 ¼
1

4α4

�
fð0Þ
3π

�
2ð2α−1Þ=3

½2πfð0Þ�−2: ð40Þ

C. Cumulative probability distribution

Often we are more interested in a cumulative probability
distribution, rather than PðxÞ itself. Define

P>ðxÞ ¼
Z

∞

x
PðyÞdy; ð41Þ

which is the probability to find any value of y with y ≥ x in
a given measurement. If x ≫ 1, we may use the asymptotic
form for PðxÞ given in Eq. (19) to find

P>ðxÞ ≈
c0

a2=cc
Γ
�
2

c
; axc

�
≈
c0
ac

x1þb−ce−ax
c ¼ e−FðxÞ;

ð42Þ

where Γð2c ; axcÞ is an incomplete gamma function, and

FðxÞ ¼ axc − ð1þ b − cÞ ln x − ln

�
c0
ac

�
: ð43Þ

The constants a and c0 depend upon fð0Þ, the value of the
sampling function at t ¼ 0 in τ ¼ 1 units. Given that fðtÞ
has unit area and characteristic width τ, we expect fð0Þ to
be of order one. Simple choices, such as that illustrated in
Fig. 4 of Ref. [16], give a slightly larger value. For the
purposes of our estimates, wewill set fð0Þ ¼ π=2. Then the
coefficients which appear in Eqs. (19) and (42) for Sz

depend only upon the parameter α and are listed in Table I
for selected values of α.

D. Validity of the worldline approximation

The probability distributions treated in Ref. [16] and
reviewed earlier in this section involve only time averaging,
that is, averaging along the worldline of a point particle in
inertial motion. However, in realistic physical situations,
such as those to be discussed in the next section, some
averaging in space as well may occur. A systematic
treatment of the effects of both space and time averaging
will appear in Ref. [20], including a discussion of the range
of validity of the worldline approximation. This discussion
will be briefly summarized here. The effect of spatial
averaging can be described by a spatial sampling function
gðxÞ, with three-dimensional Fourier transform ĝðkÞ. Now
the expressions for the moments, such as Eq. (14), will
contain factors of ĝ in addition to those of f̂, and
integrations over d3kj. Let s ¼ l=τ denote the ratio the
characteristic scale of the spatial sampling, l, to the
temporal scale, τ, and assume s ≪ 1. In this case, we
expect the worldline approximation to hold for the lower
moments, and hence the inner part of the probability
distribution.
This statement can be made more quantitative as follows:

For ω≲ 1=s, we have ĝ ≈ 1. (Recall thatω is dimensionless
in τ ¼ 1 units.) The dominant contribution in ω to the nth
moment comes near the maximum of the integrand in
Eq. (16), which is

ωn ≈
�
n
2c

�
1=α

ð44Þ

if f̂ has the form in Eq. (4). Thus the worldline approxi-
mation gives an accurate estimate for the nth moment if

n≲ 2cs−α: ð45Þ

For n ≫ 1, we have

μn ¼
Z

∞

−∞
xnfðxÞdx ≈ 2c0

Z
∞

0

xnþbe−ax
c
dx; ð46Þ

for the case of the momentum flux Sz. The dominant
contribution to this integral comes near the maximum of its
integrand,

TABLE I. Coefficients for the radiation pressure probability
distribution.

α c b a c0 1þ b − c lnðc0acÞ
1
2

1
6

−1 2.70 0.0411 − 1
6

−2.39
1
3

1
9

− 7
9

2.44 0.310 1
9

0.132
1
4

1
12

− 2
3

2.32 1.19 1
4

1.82
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xn ≈
�
n
ac

�
1=c

: ð47Þ

We may now combine these results to infer that the
worldline result should give a good approximation to
PðxÞ for

x≲
�
2

a

�
s−p: ð48Þ

For the case of stress tensors such as Sz, where p ¼ 3 and
a ≈ 2, as illustrated in Table I, we find that the worldline
approximation gives an accurate estimate for PðxÞ when

x≲ s−3: ð49Þ

In addition, we need to have x ≫ 1, so that the asymptotic
probability distribution, Eq. (19), is valid. We will see
below that there is a large region where both conditions
may be satisfied.

E. Dependence upon the switching parameter α

A crucial feature of the asymptotic probability distribu-
tions given in Eqs. (19) and (42) is the sensitive dependence
upon the parameter α. A small decrease in the value of α can
cause a significant increase in the probability of a large
stress tensor fluctuation. Recall that this parameter was
defined in Eq. (4), which gives the asymptotic behavior of
the Fourier transform, f̂ðωÞ of a wide class of compactly
supportedC∞ sampling functions. The Fourier transform of
such a function must fall faster than any power, but slower
than an exponential, and Eq. (4) describes the simplest class
of functions with this behavior. The rate of decrease of
f̂ðωÞ for large ω is linked to the switch-on behavior of the
sampling function fðtÞ through Eqs. (5), (6), (7), and (8).
Recall that if f̂ðωÞ is exactly given by Eq. (4), then fðtÞ is a
Fox H-function, but we are considering a broader class of
functions for which Eq. (4) need only hold asymptotically.
Our view is that the specific form of the sampling function
should be determined by the details of the physical system.
Note that the variance of the vacuum radiation pressure
fluctuations. which was addressed in Refs. [8,10–13], is
much less sensitive to the details of the sampling function
than is the probability of a large fluctuation, which is the
topic addressed here. Note that Eq. (47) implies that the
probability distribution for a large value of x ≫ 1 is
determined by moments of order

n ≈ acxc ≫ 1: ð50Þ

This reiterates the point made earlier that studies of the
variance or the power spectrum are not adequate for
understanding large fluctuations.

III. BARRIER HOPPING

In this section, we will discuss the possible effects of
quantum radiation pressure fluctuations on barrier penetra-
tion by quantum particles. Consider the situation illustrated
in Fig. 1, where a particle of mass m and energy E0 is
incident upon a potential barrier VðzÞ, with classical
turning points at z ¼ z1 and z ¼ z2, where E0 ¼ Vðz1Þ ¼
Vðz2Þ. The probability of quantum tunneling through the
barrier is given in the WKB approximation by

PWKB ¼ e−G; ð51Þ

where

G ¼ 2

Z
z2

z1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m½VðzÞ − E0�

p
dz: ð52Þ

The mean value theorem implies the existence of zm, such
that z1 ≤ zm ≤ z2 and

G ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m½VðzmÞ − E0�

p
d; ð53Þ

where d ¼ z2 − z1 is a measure of the spatial width of the
barrier. Define a speed v1 by

v1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2½VðzmÞ − E0�=m

p
; ð54Þ

which is the speed of a nonrelativistic particle with kinetic
energy VðzmÞ − E0. Now we can express G as

G ¼ 2v1

�
d
λC

�
; ð55Þ

where λC ¼ 1=m is the reduced Compton wavelength of
the particle. Thus, the WKB tunneling probability
decreases as an exponential of the product of speed v1
as a fraction of the speed of light, and of the width of the
barrier as a multiple of the Compton wavelength.

dE E0 0

Z Z Z

V(z)

1 2

FIG. 1. A quantum particle with energy E0 tunnels through a
potential barrier VðzÞ. The classical turning points are at z ¼ z1
and z ¼ z2. The characteristic spatial width of the barrier is
d ¼ z2 − z1.
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A. The effect of large vacuum radiation
pressure fluctuations

Now consider the possibility that the particle, while still to
the left of the barrier in Fig. 2, is subjected to a radiation
pressure fluctuation in theþz direction. If themagnitude and
duration of this fluctuation are sufficiently large, it could
push the particle over the barrier. Let σ be the scattering cross
section for radiation by the particle, such as the Thompson
cross section for a nonrelativistic charged particle. The
average force exerted on the particle by the pressure
fluctuation is σSz, and the work done if the particle moves
a distance d to the right during the fluctuation will be

ΔE ¼ σSzd: ð56Þ
If ΔE > Vmax − E0, where Vmax is the maximum value of
the potential, then the particle will fly over the barrier, if the
duration of the fluctuation is sufficiently long. Let v0 be the
average speed of the particle as it goes over the barrier, and let

τ ¼ d
v0

ð57Þ

be the required duration (in arbitrary units). Here we assume
that the motion of the particle is nonrelativistic so that the
radiation pressure in the rest frame of the particle is approx-
imately equal to that in the rest frame of the potential barrier.
For the purpose of a rough estimate, assume that the
fluctuation is sufficiently large that ΔE is at least a few times
larger than Vz − E0 everywhere and take ΔE ≈ 1

2
mv20. Now

we may combine the above relations to write the dimension-
less x as

x ¼ τ4Sz ≈
md3

2σv20
: ð58Þ

Let the particle have an electric charge of q, so σ is the
Thompson cross section

σ ¼ σT ¼ q4

6πm2
: ð59Þ

Now we can write

x ≈
3πm3d3

q4v20
: ð60Þ

Note that if we hold all other variables fixed and increase
v0, and hence ΔE, then x decreases, so P>ðxÞ typically
increases, and the fluctuation becomes more probable. This
arises because the factor of 1=v40 coming from τ4 dominates
over the factor of v20 in ΔE.
If the cumulative probability P>ðxÞ is greater than PWKB,

or

FðxÞ < G; ð61Þ

then the radiation pressure fluctuations will dominate over
quantum tunneling. This can occur if d is sufficiently large,
as G ∝ d but F grows more slowly than linearly in d. For
example, if α ¼ 1=2, then F ∝

ffiffiffi
d

p
for large d. For smaller

values of α, the growth of F with increasing d becomes
even slower.
Recall that in Sec. II D, we argued that the validity of the

worldline approximation for stress tensor fluctuations
requires

xs3 ≲ 1; ð62Þ

where s is the ratio of the spatial to the temporal averaging
scales. In the case of a particle with a scattering cross
section σ, we will take the spatial scale to be of order

ffiffiffi
σ

p
,

and set

s ¼
ffiffiffi
σ

p
τ

¼ q2λCffiffiffiffiffiffi
6π

p
d
v0: ð63Þ

Now Eq. (62) becomes

xs3 ¼ q2

2
ffiffiffiffiffiffi
6π

p v0 ≲ 1; ð64Þ

where the factors of λC and d have canceled. Let q ¼ Ze,
and recall that e2=4π ≈ 1=137 is the fine structure constant
to write Eq. (64) as �

Z
10

�
2 ≲ 1

v0
: ð65Þ

This condition for the validity of the worldline approxi-
mation is generally satisfied for nonrelativistic (v0 ≪ 1)
elementary particles and smaller nuclei.
Consider the case of radiation pressure fluctuations on a

particle whose charge has a magnitude e such as an electron
or proton, so Z ¼ 1. For the purposes of an estimate,
assume that v1 ≈ v0. For given values of α and v0, we may
use Eqs. (43), (55), and (60), combined with the data in

E0E0
d

z

V(z)

FIG. 2. Here the particle temporarily receives extra energy from
a quantum radiation pressure fluctuation, which allows it to fly
over the barrier.
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Table I, to find the value of x and hence of d at which
FðxÞ ¼ G. A few examples are listed in Table II. As before,
we have estimated the spatial dimension of the worldtube of
the particle to be of order

ffiffiffi
σ

p
≈ 0.021λC, so the ratio of the

spatial to the temporal sampling lengths is

s ¼
ffiffiffi
σ

p
τ

≈
v0λC
47d

: ð66Þ

We can draw several inferences from the data in Table II.
First, as the characteristic speed v0 increases, the relative
effect of radiation pressure fluctuations increases. This
comes from the decrease in the sampling time τ and the
corresponding decrease in the parameter x. The value v0 ¼
0.5 is at the upper limit of validity of a nonrelativistic
treatment but gives a reasonable order of magnitude
estimate of the maximum effect attainable in this treatment.
For α ¼ 1=2, radiation pressure fluctuations only dominate
over quantum tunneling in a regime where both effects are
very small. For example, for α ¼ 1=2 and v0 ¼ 0.5, the
probability of both effects at the crossover point is of the
order of e−132. However, as α decreases, the relative effect
of radiation pressure fluctuations increases rapidly. For
α ¼ 1=4 and v0 ¼ 0.1, at the point that F ¼ G, the
probability of a particle being kicked over the barrier by
a vacuum fluctuation is e−3.8 ≈ 0.02, and for barriers with
width d > 19λC, radiation pressure fluctuations will domi-
nate. In all of the cases illustrated, xs3 ≪ 1, so the world-
line approximation seems to be valid. At the same time,
x ≫ 1, so the asymptotic form, Eq. (19), of the probability
distribution holds.

B. Sources of the switching

In this subsection, we will discuss possible physical
origins of the switching function, fðtÞ, which averages the
Ttz component of the electromagnetic stress tensor to
produce the averaged momentum flux on the particle.
We are working within the hypothesis that this function
must be determined by the details of the physical situation
or measurement. In the case of a quantum particle imping-
ing upon a potential barrier, one possibility is an interplay

between the shape of the particle’s wave packet, and the
geometry of the barrier. Consider a particle moving in one
space dimension with wave function ψðz; tÞ, and hence
probability density jψðz; tÞj2. It is reasonable to require this
to be a compactly supported function of t at fixed z, or at
least be strictly zero before some specified time. This will
always be the case if the source of the particle was switched
on at a finite time in the past. Although it is often
convenient to use Gaussian wave packets, or other func-
tions with infinite tails in both directions, these are
idealizations which imply a source in the infinite past.
Whether the potential VðzÞ needs to be a compactly

supported function of z is less clear. However, it seems
reasonable to consider such potentials, which describe
systems with a finite spatial extent. In this case, we might
suppose that the sampling of the quantum stress tensor by
the particle occurs while the probability density jψðz; tÞj2
and the potential VðzÞ overlap in space. In this case, fðtÞ
would be zero before the leading edge of the wave packet
reaches the potential, and drops again to zero after the wave
packet has split into transmitted and reflected components
which have left the region where VðzÞ ≠ 0. It is also
possible to consider potentials of the form Vðt; zÞ, with
explicit time dependence. Recall that a simple electrical
circuit with switch-on corresponding to α ¼ 1=2 was
discussed in Ref. [16].
Other possibilities can involve motion in more than one

space dimension, as illustrated in Fig. 3. Here the particle is
initially moving in the y direction in the local minimum of a
potential trough on the left. The detailed shape of the
potential as a function of y, as well as the shape of
the particle wave packet, define a switching function for
the components of the electromagnetic stress tensor,
including Ttz. This in turn creates an averaged force in
the þz direction, which can cause the particle to jump
over the local maximum of the potential to the trough
on the right of the barrier. The temporal switch-on might
be modulated by the shape of the potential in the y
direction.

TABLE II. Dominance of radiation pressure fluctuations. For
given α and v0, this table lists the value of the width d at which
radiation pressure fluctuations begin to dominate over quantum
tunneling.

α v0 G d=λC x s−3

1
2

0.5 132 132 1.0 × 1010 1.9 × 1012

1
2

0.1 1770 8880 7.8 × 1016 7.3 × 1019

1
3

0.5 12.5 12.5 8.8 × 106 1.6 × 109

1
3

0.1 54.1 271 2.2 × 1012 2.1 × 1015

1
4

0.5 0.64 0.64 1.2 × 103 2.2 × 105

1
4

0.1 3.8 19 7.6 × 108 7.0 × 1011 FIG. 3. A particle moves along a potential trough in the y
direction, which modulates the radiation pressure fluctuations in
the z direction. These fluctuations may in turn push the particle
over the barrier.
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IV. APPLICATIONS TO NUCLEAR FUSION

An example of barrier penetration by a charged particle
arises in nuclear fusion, where a smaller projectile nucleus
must penetrate theCoulomb barrier of a larger target nucleus.
For small projectile nuclei, a simple quantum tunneling
calculation gives reasonable agreement with experiment.
However, for larger projectile nuclei, such as 16O or 40A, the
simple calculation underestimates the fusion cross section,
often by many orders of magnitude [21,22]. This is usually
ascribed to effects such as deformation of the target nucleus.
However, we will explore the possibility that large vacuum
radiation pressure fluctuations could be large enough to
explain the observed cross sections.
We will consider as an example the fusion of 40A with

154Sm. At a center-of-mass energy of Ecm ¼ 113.7 MeV,
the experimentally measured cross section is [23]

σexp ¼ 0.51� 0.10 mb: ð67Þ

First, we review the theoretical calculation of the cross
section using quantum tunneling in a simple model [24].
Let μ be the reduced mass of the system and k ¼ ffiffiffiffiffiffiffiffiffiffiffi

2E=μ
p

be the wave number. The cross section may be expressed in
a partial wave expansion as

σðEÞ ¼ π

k2
X
l

ð2lþ 1ÞPl; ð68Þ

where Pl is the transmission probability through the barrier
for the lth wave. The potential for this wave can be modeled
by an inverted harmonic oscillator potential

VlðrÞ ¼ −
1

2
ω2
0μðr − R0Þ2 þ El; ð69Þ

where

El ¼ E0 þ
lðlþ 1Þ
2μR2

0

: ð70Þ

Here ω0, E0, and R0 are parameters which are determined
semiempirically. A fit to the proximity function given in
Ref. [25] leads to the values E0 ¼ 123.4 MeV,
R0 ¼ 12.26 fm, and ω ¼ 4.16 MeV. This potential models
Coulomb repulsion at larger distances and nuclear attractive
forces at shorter distances and is illustrated in Fig. 4. The
quantum tunneling probability, Pl, for this potential is
given by the Hill-Wheeler formula [26]

PlðEÞ ¼
1

1þ exp½2πðEl − EÞ=ω0�
: ð71Þ

If we evaluate the predicted cross section using Eqs. (68)
and (71), with the above choices for the parameters, the
result is

σHW ≈ 6 × 10−6 mb ≈ 10−5σexp: ð72Þ

Clearly, the model described above fails badly for below-
barrier energies, E < E0. However, it does give reasonable
results for the above-barrier case.
We now explore the hypothesis that the observed cross

section in the below-barrier case can be explained by large
vacuum radiation pressure fluctuations, described by the
tail of the cumulative probability distribution given in
Eq. (42). Let

Pl ¼ P>ðxlÞ ≈
c0
ac

x1þb−c
l e−ax

c
l ; ð73Þ

where

xl ¼
μd3l
2σTv20

: ð74Þ

Here σT is the Thompson cross section, Eq. (59), and dl is
the width of barrier for the lth partial wave, defined by

Vl

�
R0 �

1

2
dl

�
¼ E: ð75Þ

The solutions of this equation are

dl ¼ d0½1þ ξlðlþ 1Þ�1=2; ð76Þ

where

d0 ¼
2

ω0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðE0 − EÞ

μ

s
ð77Þ

and

FIG. 4. Sketch of Coulomb barrier for nuclear fusion. The solid
curve is the actual potential, which combines Coulomb repulsion
at large separation and attractive nuclear force at short separation.
The dashed curve is the inverted quadratic potential which is
tangent to the actual one at the maximum point. Here dl is the
effective width of the barrier at energy E.
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ξ ¼ 4

ðμω0R0d0Þ2
: ð78Þ

Define

S ¼ k2

π
σ; ð79Þ

so we have

S ¼ c0
ac

X∞
l¼0

ð2lþ 1Þfx0½ð1þ lðlþ 1Þξ�3=2g1þb−c

× e−afx0½1þlðlþ1Þξg3=2�c : ð80Þ

For the cases of interest here, this series converges well
when about 103 terms are included.
We take the parameters c, b, a, and c0 to be those given

by Eqs. (37)–(40), with fð0Þ ¼ π=2, and hence functions of
α alone. The quantities x0 and ξ are determined by the
parameters specific to the 40Aþ 154Sm system, and may be
expressed as

ξ ¼ 4.8 × 10−4 ð81Þ

and

x0 ¼ 6.0 × 107: ð82Þ

In addition, we have d0 ≈ 2.3 fm in this case. More
generally, we can write

ξ ¼ 7.4 × 10−4
�
4 MeV
ω0

�
2
�
32u
μ

�
2
�
2 fm
d0

�
2
�
12 fm
R0

�
2

ð83Þ

x0 ¼ 3.0 × 107
�
μ

u

�
3
�
Z
18

�
2
�

d0
2 fm

�
3
�
0.1
v0

�
2

ð84Þ

for any nuclear fusion case, where Z is the atomic number
of the incoming nucleus.
In the case of the 40Aþ 154Sm system, Z ¼ 18 and μ≈

32u. At a center-of-mass energy of Ecm≈ 1
2
μv20≈ 114MeV,

we have v0 ≈ 0.085. This leads to ðZ=10Þ2v0 ≈ 0.3. Thus the
criterion for the validity of the worldline approximation,
Eq. (65), is satisfied to fair accuracy. This should be adequate
for the order-of-magnitude estimates which we make.
If we replace the sum in Eq. (80) by an integral,

P∞
l¼0 →R∞

0 dl then S → SI, where SI may be expressed in terms of
an incomplete gamma function:

SI ¼
2c0

3c2ξx2=30

a−ð5þ3bÞ=ð3cÞΓ
�
5þ 3b − 3c

3c
; axc0

�
: ð85Þ

If axc0 ≫ 1, we have the asymptotic form

SI ∼ SIA ¼ 2c0
3a2c2ξ

x1þb−2c
0 e−ax

c
0 : ð86Þ

Now we wish to find the value of α which produces a
value of σ which agrees with the experimental value,
Eq. (67). This requires S ≈ 2.8 at E ¼ 113.7 MeV. The
choices which arise from our best estimates of the nuclear
parameters ξ ¼ 4.8 × 10−4 and x0 ¼ 6.0 × 107 lead to
α ≈ 0.27. The result for α is only weakly sensitive to the
values of ξ and x0, and tend to lie in the range
0.25≲ α≲ 0.30, with increases in either ξ or x0 leading
to smaller values for α. For example, ξ ¼ 10−4 and x0 ¼
107 lead to α ≈ 0.30, while ξ ¼ 10−2 and x0 ¼ 108 lead to
α ≈ 0.25. These results may be obtained from either the
sum S or the integral form SI , which agree very well with
each other. Thus vacuum radiation pressure fluctuations
with α≲ 0.3 seem to be large enough to explain the
observed cross section.

V. RADIATION PRESSURE FLUCTUATIONS
ON A POLARIZABLE PARTICLE

In this section, we will consider the effects of vacuum
radiation pressure fluctuations on an uncharged but electri-
cally polarizable particle, such as an atom or a neutron. We
will assume that the polarizability, α0, is approximately
independent of frequency. The Rayleigh scattering cross
section for scattering of a monochromatic electromagnetic
wave of angular frequency ω by such a particle is

σR ¼ α20
6π

ω4: ð87Þ

Thuswe canwrite the force in the z directionon the particle as

fz ¼ σRðE ×BÞz ¼ α20
6π

ðË × B̈Þz: ð88Þ

We will assume that the vacuum fluctuations of this force
arise from the fluctuations of the operator ðË × B̈Þz. More
precisely, they arise from the fluctuations of the time
averaged operator

Rz ¼
Z

∞

−∞
ðË × B̈ÞzfðtÞdt; ð89Þ

where the integrand is evaluated along the worldline of the
particle. This operator is very similar to the operator Sz

treated in Sec. II B, except for the additional time derivatives,
which lead to p ¼ 7 for Rz.
The dimensionless variable, x, in the probability

distribution PðxÞ for Rz is now x ¼ Rzτ8. The asymptotic
forms for PðxÞ and for the cumulative distribution
P>ðxÞ have the forms in Eqs. (19) and (42), respectively.
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The numerical constants are determined as before, using
B0 ¼ 4 and B ¼ 1=ð6π2Þ, as for Sz, but now using p ¼ 7.
The results are displayed in Table III. Note that here
c ¼ α=7, so PðxÞ and P>ðxÞ decrease very slowly with
increasing x and hence increasing averaged force.
The criterion for the validity of the worldline approxi-

mation, Eq. (48), now becomes

xs7 ≲ 1; ð90Þ
where

s ¼ r0
τ
; ð91Þ

and r0 ¼ α
1
3

0 is the characteristic size of the particle.
Consider the situation treated in Sec. III A, where the
particle can be pushed over a potential barrier by a vacuum
force fluctuation. Here we find

x ¼ 3πmd7

α20v
6
0

≈
10md7

r60v
6
0

; ð92Þ

and s ¼ v0r0=d. Hence xs7 ¼ 10mv0r0, and the worldline
approximation is valid when

v0 ≲ 1

10mr0
: ð93Þ

This condition is difficult to satisfy for atoms. For the case
of a hydrogen atom, for example, we would need
v0 ≲ 4 × 10−7, or E0 ≲ 8 × 10−8 eV, which corresponds
to a temperature below 0.1K.
The case of the neutron seems more promising, which

has a static electric polarizability of α0 ≈ 10−3 fm3 [27–29],
or a spatial size of r0 ≈ 0.1 fm. The validity of the world-
line approximation requires v0 ≲ 0.2. Here we will give
some estimates for the limiting case when v0 ≈ 0.2 and

x ≈ 7.8 × 1011
�

d
1 fm

�
7

: ð94Þ

Here

G ≈ 2

�
d

1 fm

�
ð95Þ

and F has the form in Eq. (43), with the coefficients
given in Table III. As before, vacuum radiation pressure

fluctuations dominate over quantum tunneling when
F < G. For the case α ¼ 1=2, this begins to occur when
d ≈ 80 fm, so F ¼ G ≈ 160, so the rates due to both
effects are very small. When α ¼ 1=3, we have F ¼ G
at d ≈ 12.5 fm, corresponding to P>¼ e−12.5≈3.7×10−6.
In the case α ¼ 1=4, we find that F < G for all values of d,
so the radiation pressure fluctuation effect dominates. For
all values of α < 1, for sufficiently large d, we have
F ∝ dα, and hence growing more slowly than G.

VI. SUMMARY AND DISCUSSION

In this paper, we have explored the hypothesis that large
vacuum radiation pressure fluctuations can sometimes
contribute noticeably to barrier penetration by quantum
particles with energies below the maximum of the barrier.
This barrier penetration is usually assumed to occur by
quantum tunneling, the rate for which decreases exponen-
tially with increasing barrier height or width. Our analysis
is based upon recent results on the vacuum probability
distributions for quantum stress tensor components aver-
aged in timewith a class of sampling function with compact
support [16]. We argue that such functions, which vanish
outside of a finite time interval, are more realistic descrip-
tions of physical processes than are functions with tails
extending into the infinite past and future. We also suggest
that the choice of the sampling function should be
determined by the details of the physical situation. Large
vacuum radiation pressure fluctuations of the quantized
electromagnetic field are described by a probability dis-
tribution which falls more slowly than exponentially, as an
exponential of a fractional power of the sampled pressure.
The relatively high probability of large vacuum radiation
pressure fluctuations leads to the possibility that these
fluctuations can temporarily give a particle enough energy
to fly over the barrier classically. The probability of a large
fluctuation increases with decreasing time duration of the
sampling function, which measures the time required for
the particle to traverse the barrier. Here we have studied the
class of sampling functions reviewed in Sec. II A, which are
described by the parameter α, which lies in the range
0 < α < 1. Smaller values of α are associated with a greater
probability of large fluctuations. For nonrelativistic charged
particles, the force exerted by radiation pressure is propor-
tional to the Thompson cross section.
Some estimates for the rate of this process were given in

Sec. III A. It was found that for sufficiently wide barriers,
the vacuum radiation pressure effect can always dominate
over usual quantum tunneling. Furthermore, for sufficiently
large incident energies, and hence short sampling times,
and for smaller values of α, the barrier penetration rate due
to vacuum fluctuation may be large enough to be observ-
able. In Sec. IV, we examined the possible role of vacuum
radiation pressure fluctuations in nuclear fusion, especially
heavy ion projectiles, where the observed fusion cross
sections are much larger than predicted by simple barrier

TABLE III. Coefficients for the probability distribution of Rz.

α c b a c0 1þ b − c lnðc0acÞ
1
2

1
14

− 9
7

2.27 8.86 − 5
14

4.00
1
3

1
21

− 23
21

2.18 319. − 1
7

8.03
1
4

1
28

−1 2.13 3784 − 1
28

10.8
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tunneling models. We find that radiation pressure fluctua-
tions with α≲ 0.3 could explain the observed cross
sections.
In Sec. V, we turned to force fluctuations on electrically

neutral, but polarizable, particles. Here the classical force is
proportional to the Rayleigh scattering cross section and is
proportional to the fourth power of the incident wave
frequency. We argued that the quantum force fluctuations
can be analyzed using the probability distribution for the
time average of the operator Ë × B̈, where E and B are the
quantized electric and magnetic field operators, respec-
tively. We find the asymptotic form of the probability
distribution for this operator averaged with the same class
of compactly supported sampling functions, and find that it
falls even more slowly than does the distribution for
averaged stress tensor components. We applied the result
to barrier penetration by polarizable particles, using the
neutron as an example. As in the case of charged particles,
it is possible for vacuum force fluctuation effects to
dominate over quantum tunneling.
In all cases, the effect is very sensitive to the details of

the switching function, particularly to the value of the
parameter α. This strong dependence is a new feature
of the large vacuum fluctuations being treated in this
paper, and does not appear when only the variance is

considered, as was the case in earlier work [8,10,11]. Our
view is that the functional form of the switching function
should be determined by the details of the physical
system being studied. Some progress in this direction has
been made in the context of nonlinear optical models for
lightcone fluctuations [3,4], where it was shown that the
density profile of a slab of nonlinear material defines the
relevant sampling function for electric field and squared
electric field fluctuations. In the context of barrier
penetration, we have conjectured in Sec. III B that a
combination of the shape of the wave packet of the
incident particle and the spatial dependence of the barrier
potential may also define the relevant sampling function.
However, it is not yet clear how to use this information to
explicitly determine a value for α. This is a topic for
future work. In the meantime, we may regard α as an
undetermined phenomenological parameter which might
be possible to determine by experiment.
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