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We show that the CPN model with an odd number of scalar fields and a V-shaped potential possesses
some finite energy compact solutions in the form of Q-balls and Q-shells. Such solutions were obtained in
3þ 1 dimensions. The Q-balls appear for N ¼ 1 and N ¼ 3, whereas the Q-shells are present for higher
odd numbers N. We show that the energy of the solutions behaves as E ∼ jQj5=6, where Q stands for the
Noether charge.
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I. INTRODUCTION

Field-theoretic models that admit soliton solutions
became popular in many branches of physics such as
cosmology, particle physics, nuclear physics, and con-
densed matter physics. Solitons are very special stable
field configurations whose properties are related to con-
served quantities. They are usually studied as solutions of
some effective classical nonlinear field models which are
expected to grasp the most relevant physical properties of
the underlying quantum theory. For instance, the Skyrme
model and the Skyrme-Faddeev (SF) model together with
their extensions are intensively studied in the context of a
description of nuclear matter and strong interactions [1].
Another important group of field-theoretic models is

formed by the CPN models, i.e., models on a complex
projective space [2]. The CPN models have a close relation
with so-called nonlinear sigma models which have appli-
cations in diverse areas of physics. For instance, the
simplest one in this group, the CP1 model, is related to
the model describing the Heisenberg ferromagnet [3], and it
is defined by the Lagrangian L0 ¼ 1

2
∂μϕ⃗ · ∂μϕ⃗, where the

triplet of real scalar fields ϕ⃗ ¼ ðϕ1;ϕ2;ϕ3Þ satisfies the
constraint ϕ⃗ · ϕ⃗ ¼ 1. The relation between the nonlinear
sigma model and the CP1 model is established by the
stereographic projection. An important point about
the Lagrangian L0 is that it appears as a part of the
Lagrangians of the Skyrme model [defined in terms of ϕ⃗ ∈
S2 instead of chiral fields U ∈ SUð2Þ] and of the SF model.
The general CPN model is defined by the Lagrangian
LCPN ¼ λ2ðDμZÞ†DμZ, where λ2 is a dimensional constant
andDμZ ≡ ∂μZ − ðZ† · ∂μZÞZ. The vectorZ has the form
Z ¼ ðZ1;…;ZNþ1Þ and satisfies the constraint Z†Z ¼ 1.
A set of independent complex fields is introduced as
Z ¼ ðu1;…; uN; 1Þ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u† · u

p
. Some more complex

models contain the CPN Lagrangian as one of the terms
in a total action. For instance, it takes place for the

extended SF model with a target space SUðN þ 1Þ=
SUðNÞ ⊗ Uð1Þ ¼ CPN ; see [4].
The existence of topological solutions of theCPN models

is closely related to the homotopy classes πkðCPNÞ, where k
is a dimension of the base space. According to Ref. [5], the
k ¼ 2 planar models on a coset space G=H possess the
homotopy class π2ðCPNÞ ¼ π1ðHÞG, where π1ðHÞG is a
subset of π1ðHÞ formed by closed paths in H which can be
contracted to a point inG. It follows that topological charges
of the CPN model are given by π1ðSUðNÞ ⊗ Uð1ÞÞSUðNþ1Þ
and they are equal to the number of poles of ui (including
those at infinity). It has been shown that the CPN model and
the extended SF model with the CPN target space possess
exact topological vortex solutions [4,6] and numerical vortex
solutions in the models containing a potential term [7].
Although such vortices were obtained in 3þ 1 dimensions,
their topological charge density and the energy density are
functions of merely two spatial coordinates. Unfortunately,
there are no corresponding solutions for k ¼ 3 and N > 1,
because the homotopy class π3ðCPNÞ is trivial [note that
π3ðCP1Þ ¼ Z]. It leads to the conclusion that models in three
spatial dimensions with theCPN target space, whereN > 1,
can have only nontopological solutions. Derrick’s scaling
theorem [8] provides further restrictions on solutions. It
implies the nonexistence of static solutions in the CPN

model. In order to avoid it, an explicit time dependence can
be introduced through theQ-ball ansatz, where one assumes
that the phases of all complex fields rotate with equal
frequencies ω. Such Q-ball configurations are given by
scalar fields proportional to the factor eiωt; see [9–11].
Some field-theoretic models with standard quadratic

kinetic terms possess Q-ball solutions; however, the exist-
ence of such solutions requires the inclusion of a potential
term into the Lagrangian. The form of the potential in the
vicinity of its minimum determines the leading behavior of
the scalar field near the vacuum solution. It has been shown
in Refs. [12–14] that there is a class of Q-ball solutions
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which approach the vacuum solution in a quadratic manner;
however, it requires a potential with nonvanishing left- and
right-hand side derivatives at the minimum. In other words,
such a potential is sharp at the minimum (V-shaped
potentials) [15]. The models with V-shaped potentials lead
to equations of motion containing certain discontinuous
terms. A typical field-theoretic model with this property is
the signum-Gordon model [12,13,16]. Solutions of such
differential equations have a precise mathematical meaning
within the formalism of generalized functions. They are so-
called weak solutions of differential equations [17].
Another very characteristic property of models with
V-shaped potentials is the existence of compactons, i.e.,
(solitonic) solutions that differ from a vacuum value on a
finite subspace of the base space. In other words, they
approach the vacuum at a finite distance and do not have
infinitely extended tails—typical for better-known solitons.
In spite of the unusual properties of compactons, they find
many applications: from condensed matter physics [18] to
nuclear physics [19] and cosmology [20]. In fact, the
Q-balls presented in Refs. [12–14] are examples of
compactons. A distinct approach to compact Q-balls based
on potentials containing fractional powers is presented
in Ref. [21].
In this paper, we shall construct some finite energy

compact solutions of the CPN model with a V-shaped
potential. We are interested in solutions in three spatial
dimensions. This work is motivated by an observation that
the vortex solutions in models with the CPN target space
defined in 3þ 1 dimensions have infinite total energy due to
the infinite length of the vortices (energy per unit of length is
finite). As we are interested in solutions with finite total
energy, the compactQ-balls are very good candidates. First,
the Q-ball ansatz allows for time-dependent fields. Second,
the compactness of solutions guarantees that the total energy
is given by the integral over a finite spatial region. In such a
case, there is no problemwith the convergence of the integral
at spatial infinity. Construction of such solutions in the CPN

model is an important step in searching for similar solutions
in effective models like the extended CPN SF model.
The paper is organized as follows. In Sec. II, we

introduce the model and its parametrization. Section III
is devoted to the study of compact Q-balls and Q-shells
which differ by the number of scalar fields. We compute the
Noether charges for such solutions and study how the
energy depends on these charges. In Sec. IV, we present an
analytic insight into solutions with a small amplitude (the
signum-Gordon limit). We obtain exact solutions for the
limit model and compare them with numerical solutions of
the complete nonlinear model. In the last section, we give
some final conclusions.

II. THE MODEL

We shall study a 3þ 1-dimensional model with the CPN

target space. The CPN space is a symmetric space [22], and

it can be written as a coset space CPN ¼ SUðN þ 1Þ=
SUðNÞ ⊗ Uð1Þ with the subgroup SUðNÞ ⊗ Uð1Þ being
invariant under the involutive automorphism ðσ2 ¼ 1Þ. The
CPN space has a nice parametrization in terms of the
principal variable X (see [23,24]), defined as

XðgÞ ≔ gσðgÞ−1; g ∈ SUðN þ 1Þ: ð1Þ

It satisfies XðgkÞ ¼ XðgÞ for σðkÞ ¼ k, where
k ∈ SUðNÞ ⊗ Uð1Þ. A parametrization of the CPN model
in terms of the variable X is presented in Ref. [25] and of
the extended SF model in Ref. [4]. The model we consider
here is just the CPN model extended by a potential
(nonderivative) term. As we show below, such a term is
crucial to have compactons. The model is given by the
Lagrangian

L ¼ −
M2

2
TrðX−1∂μXÞ2 − μ2VðXÞ; ð2Þ

whereM has the dimension of mass and the potential VðXÞ
shall be specified in a further part of the paper. It has been
pointed out in Ref. [26] that a term proportional to M2 is
just a Lagrangian of the CPN model. Note that the para-
metrization of the CPN model in terms of the principal
variable is as good as that in terms of the complex vector Z
defined in the introduction. The reason why we employ the
principal variable X instead of Z is that the extended CPN

SF model [4] has been defined in terms of this variable. In
such an approach, a further inclusion of quartic terms (with
the intention to search for compact Q-balls in the extended
CPN SF model) would be much easier.
We assume the (N þ 1)-dimensional defining represen-

tation in which the SUðN þ 1Þ valued group element g is
parametrized by the set of complex fields ui:

g≡ 1

ϑ

� Δ iu

iu† 1

�
; Δij ≡ ϑδij −

uiu�j
1þ ϑ

;

ϑ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u† · u

p
; ð3Þ

which leads to the following form of the principal
variable (1):

XðgÞ ¼ g2 ¼
�
1N×N 0

0 −1

�
þ 2

ϑ2

�
−u ⊗ u† iu

iu† 1

�
:

The Lagrangian (2) simplifies to the form

L ¼ −M2ημντνμ − μ2V; ð4Þ

where ημν ¼ diagð1;−1;−1;−1Þ and

τνμ≔−4
∂μu† ·Δ2 ·∂νu

ð1þu† ·uÞ2 ; whereΔ2
ij¼ϑ2δij−uiu�j : ð5Þ
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Variation of the Lagrangian with respect to fields u�i leads
to a set of equations of motion. All terms containing second
derivatives can be uncoupled with the help of the inverse of
Δ2

ij, which has the form Δ−2
ij ¼ 1

1þu†·u ðδij þ uiu�jÞ. It gives

∂μ∂μui − 2
ðu† · ∂μuÞ∂μui
1þ u† · u

þ μ2

4M2
ð1þ u† · uÞ

XN
k¼1

�
ðδik þ uiu�kÞ

δV
δu�k

�
¼ 0: ð6Þ

In order to construct compacton solitons, we have to
carefully chose the potential. We know from previous
investigations [15,27] that for theories with the usual
kinetic term (first derivatives squared) one needs a potential
which possesses a linear approach to the vacuum. For
example, we may use the following potential:

VðXÞ ¼ 1

2
½Trð1 − XÞ�12 ¼

�
u† · u

1þ u† · u

�1
2

; ð7Þ

which is the CPN generalization of the CP1 (or baby-
Skyrme) case [28]. The potential vanishes at ui ¼ 0, i.e.,
X ¼ 1. In the absence of the Skyrme term, the model
discussed in Ref. [28] became a 2þ 1-dimensional CP1

model with a potential. The model defined by (2) and (7) is
a 3þ 1-dimensional model with a V-shaped potential. As
has been already announced in the introduction, among the
remarkable properties of such models there is a nonvanish-
ing of the first derivative of the potential at the minimum
and the existence of compactons. Such compact solutions
consist of appropriately matched nontrivial partial solu-
tions and a constant vacuum solution. By partial solutions,
we mean solutions which hold only on some compact
support. Matching surfaces correspond with borders of
compactons. Unlike for differentiable potentials, the con-
stant vacuum solution does not satisfy an equation with a
nontrivial potential V but rather an equation in the model
without potential. The existence of constant solutions can
be deduced from the form of the energy density.
In particular, such solutions are almost straightforward in

the field-theoretic models which possess a mechanical
realization. For instance, in the case of the signum-
Gordon model with a single real scalar field, the potential
has the form V ∝ jϕj, so for V ≠ 0 the equation of
motion is of the form ∂μ∂μϕ� 1 ¼ 0. Such a model is
physically sound, because it can be obtained as a continu-
ous limit of a given mechanical system [15]. Moreover, it
became clear from its mechanical realization that ϕ ¼ 0
is a physical configuration that minimizes the energy
(vacuum solution). The vacuum solutions obeys the
equation ∂μ∂μϕ ¼ 0, and it can be formally included
via replacement of the original equation of motion by
∂μ∂μϕþ sgnðϕÞ ¼ 0, where sgnð0Þ ≔ 0.

In the model considered in this paper, the energy density
is given by the expression

H ≔
δL

δð∂0uiÞ
∂0ui þ

δL
δð∂0u�i Þ

∂0u�i − L

¼ −M2

�
τ00 þ

X3
a¼1

τaa

�
þ μ2V; ð8Þ

where the index a labels spatial Cartesian coordinates xa. It
vanishes for constant field configurations ui ¼ 0, where
i ¼ 1;…; N. The vacuum configuration satisfies the homo-
geneous CPN equation

∂μ∂μui − 2
ðu† · ∂μuÞ∂μui
1þ u† · u

¼ 0; ð9Þ

whereas a nonconstant partial solution must satisfy the
equation following from (6):

∂μ∂μui − 2
ðu† · ∂μuÞ∂μui
1þ u† · u

þ μ2

8M2

uiffiffiffiffiffiffiffiffiffiffiffi
u† · u

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u† · u

p
¼ 0:

ð10Þ

The parametrization (3) fixes the global UðN þ 1Þ
symmetry of the model to SUðNÞ ⊗ Uð1Þ. Its subgroup
Uð1ÞN is given by a set of transformations

ui → eiαiui; i ¼ 1; 2;…; N; ð11Þ

where αi are some global continuous parameters.
Symmetry transformation (11) of the model leads to
conserved Noether currents:

JðiÞμ ¼ −
4iM2

ð1þ u† · uÞ2
XN
j¼1

½u�iΔ2
ij∂μuj − ∂μu�jΔ2

jiui�: ð12Þ

Noether currents (12) satisfy the continuity equation

∂μJðiÞμ ¼ 0. If spatial components of currents (12) vanish
at spatial infinity, then the integration of this equation on
the region of spacetime ½t0; t00� ×R3 leads to conserved
charges

QðiÞ
0 ¼

Z
R3

d3JðiÞ0 : ð13Þ

The charges (13) are fundamental quantities in the analysis
of the stability of nontopological solutions. They constitute
the set of additive conserved quantities. If there is known a
relation between the energy of solutions and the Noether
charges, then one can evaluate whether splitting the
solution into smaller pieces is energetically favorable
or not.
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III. NONTOPOLOGICAL SOLUTIONS
OF THE CP2l + 1-TYPE MODEL

We shall restrict our consideration to the case of odd N.
The spherical harmonics form the finite representation of
eigenfunctions of the angular part of Laplace’s operator. In
such a case, each complex field can be chosen as propor-
tional to one of N ¼ 2lþ 1 spherical harmonics labeled by
l ¼ 0; 1;…. In the present paper, we shall deal with the
CP2lþ1 target space. For further convenience, we shall label
the set of 2lþ 1 complex fields by u−l;…; ul instead
of u1; u2;…; u2lþ1.
It is convenient to parametrize the model in terms of

dimensionless coordinates. They can be defined in the
following way: ~xμ ≔ r−10 xμ, where r0 is a constant param-
eter with the dimension of length. Such a constant can be
chosen as the inverse of the dimensional coupling constant
M, i.e., r0 ≡M−1. We consider the ansatz

umðt; r; θ;ϕÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
4π

2lþ 1

r
fðrÞYlmðθ;ϕÞeiωt; ð14Þ

where all coordinates ðt; r; θ;ϕÞ are dimensionless. They
are defined in the following way:

~x0 ¼ t; ~x1 ¼ r sin θ cosϕ;

~x2 ¼ r sin θ sinϕ; ~x3 ¼ r cos θ: ð15Þ

The integer number l is fixed for a given CP2lþ1 model,
whereas the index m takes values −l ≤ m ≤ l. Taking into
account that

P
l
m¼−l Y

�
lmðθ;ϕÞYlmðθ;ϕÞ ¼ 2lþ1

4π , we include

the factor
ffiffiffiffiffiffiffiffi
4π

2lþ1

q
in (14) to simplify the formulas. It follows

that u† · u ¼ f2ðrÞ depends only on the radial coordinate r.
Similarly, many other terms either vanish or depend only on
the radial coordinate; see the Appendix. The field equa-
tions (9) and (10) result in a single ordinary differential
equation:

f00 þ 2

r
f0 þ ω2

1 − f2

1þ f2
f −

lðlþ 1Þ
r2

f −
2ff02

1þ f2

¼ ~μ2

8
sgnðfÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ f2

q
; ð16Þ

where ~μ2 ≔ μ2=M4 and where we have adopted the
definition of the sgnðÞ function such that sgnðfÞ ≔ 1 for
f > 0 and sgnð0Þ ≔ 0. This is the main equation we will
further analyze in the paper.
The Hamiltonian density (8) can be written as

H ¼ M4H, where H is a dimensionless expression:

H ¼ −
�
τtt þ τrr þ

1

r2

�
τθθ þ

1

sin2θ
τϕϕ

��
þ ~μ2V:

For the class of solutions given by (14), we get a
dimensionless energy density which is a function of the
radial coordinate itself:

H ¼ 4

ð1þ f2Þ2
�
f02 þ

�
ω2 þ lðlþ 1Þ

r2
ð1þ f2Þ

�
f2
�

þ ~μ2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
f2

1þ f2

s
: ð17Þ

A total dimensionless energy is given by the integral

E ¼
Z
R3

dΩdrr2H ¼ 4π

Z
∞

0

drr2H: ð18Þ

Let us consider the Noether currents (12). Since in
dimensionless Cartesian coordinates ~xμ the partial deriva-
tives are of the form ∂

∂xμ ¼ M ∂
∂ ~xμ, one can define expres-

sions ~JðmÞ
μ as dimensionless quantities JðmÞ

μ ¼ M3 ~JðmÞ
μ ,

where the index i ¼ 1;…; 2lþ 1 has been replaced by
the index m ¼ −l;…; l. The complex fields um are func-
tions of the curvilinear dimensionless coordinates
ξμ → ft; r; θ;ϕg. The Noether currents written in depend-

ence of these coordinates, i.e., ~JðmÞ
μ ðξÞ, must satisfy the

continuity equation

1ffiffiffiffiffiffi−gp ∂μð
ffiffiffiffiffiffi
−g

p
gμν ~JðmÞ

ν ðξÞÞ ¼ 0;

where gμν ¼ diagð1;−1;− 1
r2 ;−

1
r2sin2θÞ and

ffiffiffiffiffiffi−gp ¼ r2 sin θ.
It turns out that there are only two nonvanishing compo-
nents of the Noether currents, namely,

~JðmÞ
t ðr; θÞ ¼ 8ω

ðl −mÞ!
ðlþmÞ!

f2

ð1þ f2Þ2 ðP
m
l ðcos θÞÞ2; ð19Þ

~JðmÞ
ϕ ðr; θÞ ¼ 8m

ðl −mÞ!
ðlþmÞ!

f2

1þ f2
ðPm

l ðcos θÞÞ2: ð20Þ

Note that both nonvanishing components depend neither on

t nor ϕ. It follows that the continuity equation ∂tJ
ðmÞ
t þ

1
r2sin2θ ∂ϕJ

ðmÞ
ϕ ¼ 0 is satisfied explicitly. The Noether

charges can be obtained by integrating the continuity
equation in the region ½t0; t00� ×R3:Z

t00

t0
dt
Z
R3

d3ξ½ ffiffiffiffiffiffi−g
p ∂t

~JðmÞ
t þ ∂að

ffiffiffiffiffiffi
−g

p
gab ~JðmÞ

b Þ� ¼ 0; ð21Þ

where a; b ¼ f1; 2; 3g. The second term can be written as a
surface integral at spatial infinity, and it gives no contri-

bution to the integral if ~JðmÞ
b vanish sufficiently quickly at

spatial infinity. The remaining term expresses equality of
the Noether charges:
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QðmÞ
t ≔

1

2

Z
R3

d3ξ
ffiffiffiffiffiffi
−g

p ~JðmÞ
t ðξÞ ð22Þ

at t0 and t00. The factor 1
2
has been introduced for further

convenience. Plugging (19) into (22), we get

QðmÞ
t ¼ ω

16π

2lþ 1

Z
∞

0

drr2
f2

ð1þ f2Þ2 : ð23Þ

All the Noether charges have the same value, because (23)
does not depend on m. Notice that the contribution to the
total energy which has an origin in τtt (proportional to ω2)
can be expressed in terms of the Noether charges as a sumP

l
m¼−l ωQ

ðmÞ
t . In fact, contributions to the energy which

have an origin in terms τθθ and τϕϕ can also be represented
in the form of the sum. We have already seen that spatial
components of the Noether currents do not contribute to the
charges; however, they are useful to define the integrals

QðmÞ
ϕ ≔

3

2

Z
R3

d3ξ
ffiffiffiffiffiffi
−g

p ~JðmÞ
ϕ ðξÞ
r2

: ð24Þ

Plugging (20) into (24) and making use of the standard
orthogonality relation for the associated Legendre func-

tions
R
1
−1 dxðPm

l ðxÞÞ2 ¼ 2
2lþ1

ðlþmÞ!
ðl−mÞ!, we get

QðmÞ
ϕ ¼ m

48π

2lþ 1

Z
∞

0

dr
f2

1þ f2
: ð25Þ

The total energy E can be expressed in terms of the Noether

charges QðmÞ
t and the integrals QðmÞ

ϕ , and it reads

E ¼ 4π

Z
∞

0

drr2
 

4f02

ð1þ f2Þ2 þ ~μ2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
f2

1þ f2

s !

þ
Xl
m¼−l

ðωQðmÞ
t þmQðmÞ

ϕ Þ; ð26Þ

where we have made use of the expressionP
l
m¼−l m

2 ¼ 1
3
lðlþ 1Þð2lþ 1Þ. In the subsequent part of

the paper, we shall construct some nontopological compact
solutions of Eq. (16).

A. Expansion at the center

Plugging the series expansion of fðrÞ at r ¼ 0,

fðrÞ ¼
X∞
k¼0

akrk; ð27Þ

into Eq. (16), we get

X∞
k¼0

bkrk−2 ¼ 0; ð28Þ

where the lowest three coefficients b0, b1, and b2 have the
form, respectively,

b0 ¼ lðlþ 1Þa0;
b1 ¼ ðl − 1Þðlþ 2Þa1;
b2 ¼ ðl − 2Þðlþ 3Þa2

þ ~μ2

8

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a20

q
þ
�
2ða21 þ a20ω

2Þ
1þ a20

− ω2

�
a0:

We have assumed sgnðfÞ ¼ 1, because we are looking for a
nontrivial solution. Equation (28) is fulfilled if ak are such
that all coefficients bk vanish. It turns out that the form of
expansion (27) is sensitive to the value of the number l, i.e.,
the number of complex scalar fields um, where
m ¼ −l;…; l. In the following part, we study some
qualitatively different forms of expansion for l ¼ 0,
l ¼ 1, and l ≥ 2.

1. Case l = 0

For l ¼ 0, Eq. (28) can be satisfied in the leading term of
expansion if a1 ¼ 0. A more detailed study shows that the
choice a1 ¼ 0 implies the vanishing of all odd-order
coefficients a2jþ1, where j ¼ 1; 2; 3;…. Indeed, one can
check that if for some fixed odd number n all odd lower-
order coefficients vanish a1 ¼ a3 ¼ � � � ¼ an−2 ¼ 0 (and
consequently vanish all odd-order coefficients up to bn−2),
then the next odd-order coefficient bn is of the form
bn ¼ anðl − nÞðlþ 1þ nÞ. Consequently, in order to put
bn ¼ 0, one has to set an ¼ 0. All even coefficients a2j are
uniquely determined by a0, which is a free parameter of the
expansion. The lowest-order terms of the expansion of the
function fðrÞ, given by (27), read

fðrÞ ¼ a0 þ
�
~μ2

48

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a20

q
−
a0ð1 − a20ω

2Þ
6ð1þ a20Þ

�
r2 þOðr4Þ:

ð29Þ

A value of the coefficient a0 can be determined only for a
complete solution that must be regular at the center and at
the boundary. A numerical analysis shows that a physically
relevant solution must have a2 < 0; otherwise, the solution
grows up infinitely with r. The coefficient a2 depends on
the parameter ω. It turns out that there is a lower bound
for ω. The region a2 < 0 has been sketched in Fig. 1. It
suggest the existence of a minimal value of ωm for which
there still exists a compact solution with finite energy. Note
that the border of the region plotted in Fig. 1 does not
determine a value ωm, but it rather constitutes its limitation.
The value of ωm can be obtained by performing a numerical
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integration of the radial equation (16). It follows from the
expansion of (17) at r ¼ 0,

HðrÞ ¼ a0

�
~μ2ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a20

p þ 4a0ω2

ð1þ a20Þ2
�
þOðr2Þ; ð30Þ

that the energy density for l ¼ 0 does not vanish at the
center of the Q-ball.

2. Case l = 1

For l ¼ 1, the coefficient a1 became a free parameter,
whereas a0 must vanish. The coefficient a2 is determined
by the strength coupling constant ~μ2. Except a2, all higher-
order coefficients ak contain a1. The next three coefficients
of the expansion read

a2¼
~μ2

32
; a3¼

a1
10

ð2a1−ω2Þ; a4 ¼
~μ2

576
ð12a21−ω2Þ:

ð31Þ

Although the radial function satisfies fðr ¼ 0Þ ¼ 0, the
energy density is still nonzero at the center. It can be seen
from

HðrÞ ¼ 12a21 þ 2~μ2a1rþ
�

7

128
~μ4 − 8a41

�
r2 þOðr3Þ:

ð32Þ

3. Case l ≥ 2

It follows from the expansion (28) that for l ¼ 2; 3;…
both coefficients a0 and a1 must vanish. Taking

a0 ¼ a1 ¼ 0, we get b2 ¼ ~μ2

8
, so the radial equation is

not satisfied. It follows that there is no nonvanishing
solution in the vicinity of r ¼ 0. However, it does not
mean that there is no solution at all. The radial function
cannot be nontrivial at the center, but it can be nontrivial at
some region r ∈ ðR1; R2Þ. Outside this region, i.e., at r ∈
½0; R1� and at r ∈ ½R2;∞Þ, the function fðrÞ must vanish
identically. A vacuum solution in the vicinity of r ¼ 0
corresponds with sgnðfÞ ¼ 0 in (16). A term in b2
containing ~μ2 is in fact proportional to sgnðfÞ, so it became
absent now. In such a case, the solution has the form of a
compact spherical shell. The discussion of the behavior of
the radial function fðrÞ at the inner R1 and the outer R2

radius is essentially the same. It is the subject of the next
paragraph.

B. Expansion at the boundary

As we consider compact solutions, the vacuum solution
fðrÞ ¼ 0 holds for r > R, which leads to the vanishing of
the energy density in this region. A symbol R stands for the
compacton radius in the case l ¼ 0, 1 and the outer
compacton radius R≡ R2 for l ¼ 2; 3;…. The continuity
of the energy density imposes conditions on the leading
behavior of the solution in the region r ≤ R. Such a
solution must satisfy the following conditions at the border:

fðRÞ ¼ 0; f0ðRÞ ¼ 0: ð33Þ

Plugging the expression fðrÞ ¼ AðR − rÞα þ � � � into (16),
one can find

−Aαðα − 1ÞðR − rÞα−2 þ ~μ2

8
þ � � � ¼ 0: ð34Þ

The leading term of (34) vanishes for α ¼ 2 and an
appropriate value of A. It suggests that solutions possess
a quadratic leading behavior at the border:

fðrÞ ¼
X∞
k¼2

AkðR − rÞk: ð35Þ

It turns out that all coefficients Ak are determined in terms
of the compacton radius R and parameters of the model.
The lowest three coefficients read

A2 ¼
~μ2

16
; A3 ¼

~μ2

24R
;

A4 ¼
~μ2

192R2
½lðlþ 1Þ þ 8 − R2ω2�: ð36Þ

It leads to the following expansion of the energy density at
the compacton boundary:

0.2 0.4 0.6 0.8 1.0
a0

0.5

1.0

1.5

2.0

2.5

3.0

FIG. 1. The region a2 < 0 in dependence on a0 and ω for the
case of l ¼ 0, where in addition we set ~μ ¼ 1.
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HðrÞ ¼ ~μ2

8
ðR − rÞ2 þ ~μ4

6R
ðR − rÞ3

þ ~μ4

96R2
½4lðlþ 1Þ þ 26 − R2ω2�ðR − rÞ4 þ � � � :

ð37Þ

The lowest-order terms do not depend on the integer
number l; i.e., they have the same form independently
of the number of complex scalar fields. The first term which
depends on l is proportional to ðR − rÞ4.
For the case l ≥ 2, i.e., when the solution has the form of

a shell-shaped compacton, the radial function possesses
expansion fðrÞ ¼ B2ðr − R1Þ2 þ � � � at the inner compac-
ton radius R1. The expansion coefficients are almost the
same as for the outer compacton radius, and they
read Bk ¼ ð−1ÞkAk.

C. Numerical solutions

We adopt a shooting method for the numerical integra-
tion of the radial equation (16). We impose the initial
conditions for numerical integration in the form of the first
few terms of a series expansion at r ¼ 0 for l ¼ 0, 1 or
r ¼ R for l ≥ 2. In the numerical computation, we sub-
stitute r ¼ 0 by r ¼ ε ¼ 10−4. There is only one free
parameter which determines the expansion series at the
center, namely, a0 for l ¼ 0 and a1 for l ¼ 1. On the other
hand, a series expansion at the boundary has also one free
parameter, which is the compacton radius R. There is
exactly one curve being a solution of the second-order

ordinary differential equation which simultaneously sat-
isfies conditions at the center and at the boundary. For a
chosen value of a0 or a1, we integrate numerically the radial
equation and determine a value of the radius R̄ such
that f0ðR̄Þ ¼ 0. A value of the expression fðR̄Þ is used
to modify an initial shooting parameter according to
fðR̄Þ → 0 for R̄ → R. The loop is interrupted when
jfðR̄Þj < 10−6. The examples of numerical solutions for
l ¼ 0 and different values of the parameter ω are presented
in Fig. 2. The compacton profile functions fðrÞ and their
first derivatives f0ðrÞ are sketched in Figs. 2(a)–2(c). The
respective energy densities are presented in Figs. 2(d)–2(f).
The energy density has a maximum at the center r ¼ 0.
The profile functions fðrÞ and the energy density plots

are shown in Fig. 3. The fundamental difference between
the cases l ¼ 1 and l ¼ 0 case is a form of the solution at
r ¼ 0. For l ¼ 1 the function fðrÞ vanishes at the center,
whereas its first derivative f0ðr ¼ 0Þ is finite. The energy
density does not vanish at the center r ¼ 0; however, Hð0Þ
is not a maximal value anymore. The maximum of HðrÞ is
reached at some finite distance from the center.
The shooting parameter for l ≥ 2 can be chosen as one of

the compacton radii R1 and R2. We fine-tune a smaller
radius R1 in order to minimize the solution at the larger
radius fðR̄Þ → 0 for R̄ → R2, where R̄ is a solution of the
equation f0ðR̄Þ ¼ 0. We interrupt the loop when accuracy
10−6 is reached. The function fðrÞ is bell-shaped, so each
um is nontrivial in the region given by a spherical shell
limited by the internal R1 and the external R2 radius. The
numerical values of the compacton radii grow with the

2 4
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(d) (e) (f)

6 8
r
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0.6
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f (r)f (r) f (r)
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r

0.02

0.04

0.06

0.08

0.10
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0.015
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FIG. 2. The radial function fðrÞ (upper curve), its derivative f0ðrÞ (bottom curve), and the energy density HðrÞ for l ¼ 0 and (a),(d)
ω ¼ 1.0, (b), (e) ω ¼ 5.0, and (c),(f) ω ¼ 10.0.
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model parameter l. It can be easily seen by comparing
Figs. 4 and 5. The compacton radii (l ≥ 2) are decreasing
functions of the parameter ω. A very similar behavior can
be observed for l ¼ 0; 1. In Fig. 6, we plot the compacton
size δR ≔ R2 − R1 in dependence on the parameter ω.

Clearly, R1 ≡ 0 for l ¼ 0; 1. For better transparency, we
plot a function ðδRÞ−1ðωÞ. The function ðδRÞ−1 has linear
asymptotic behavior for ω ≫ 1. For small values of the
parameter ω, the function ðδRÞ−1ðωÞ is not a linear func-
tion any longer; see Fig. 6(a). One of the simplest functions

2 4 6
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8 10
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r
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r
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FIG. 3. The radial function fðrÞ and the energy density HðrÞ for l ¼ 1 and (a),(d) ω ¼ 1.0, (b), (e) ω ¼ 5.0, and (c), (f) ω ¼ 10.0.
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FIG. 4. The radial function fðrÞ and the energy density HðrÞ for l ¼ 2 and (a), (d) ω ¼ 1.0, (b), (e) ω ¼ 2.0, and (c), (f) ω ¼ 3.0.
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that can be fitted to the numerical data is a rational
function

ðδRÞ−1ðωÞ ¼ aω2 þ bωþ c
dωþ e

: ð38Þ

The fit coefficients are presented in Table I.
Expression (38) has the following asymptotic form for

ω → ∞:

ðδRÞ−1ðωÞ ¼ a
d
ωþ bd − ae

d2
þOðω−1Þ: ð39Þ

We define the coefficients A1 ≔ a
d and B1 ≔ bd−ae

d2 . Their
numerical values are presented in Table II.
A very similar analysis can be performed for the

dimensionless energy of the compacton. We observe that
the expression E−1=5 is a linear function of ω for ω ≫ 1.
The plot of this function is shown in Fig. 7, where the

deviation from linear behavior is observed for small values
of ω. The curves that represent the fits are given by
rational functions E−1=5ðωÞ ¼ ð ~aω2 þ ~bωþ ~cÞ=ð ~dωþ ~eÞ.
We shall not present the numerical values of coefficients;
instead, we give in Table II the list of coefficients of the
asymptotic expressionE−1=5 ¼ A2ωþ B2 for ~μ ¼ 1,ω ≫ 1.
Another important point is an analysis of the Noether

charges and their relation to the energy of the solution. The
plot of these charges is presented in Fig. 8(a). We observe
that for ω ≫ 1 the charges behave as Qt ∝ ω−6. We shall
omit the index m, because the Noether charges do not
depend on it. In Fig. 8(b), we plot relation energy charge for
some Q-balls l ¼ 0; 1 and some Q-shells l ¼ 2. The
leading behavior of the function Q−1=6

t in the limit
ω ≫ 1 is given by Q−1=6

t ¼ A3ωþ B3. Numerical values
of the coefficients A3 and B3 are presented in Table III. We
also present the coefficients A4 and B4, which are related to

5 10 15
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r
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2 4 6 8 10 12
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0.08
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2 4 6 8
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FIG. 5. The radial function fðrÞ for l ¼ 10 and (a) ω ¼ 1.0, (b) ω ¼ 2.0, and (c) ω ¼ 3.0.
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0.1

0.2

0.3

0.4

(R2–R1)–1 (R2–R1)–1

2 4 6

(b)(a)
8 10

0.5

1.0

1.5

2.0

FIG. 6. The inverse of the compacton size δR ≔ R2 − R1 in dependence on ω for (from top to bottom) l ¼ 0, l ¼ 1, and l ¼ 2. The
inner radius is R1 ≡ 0 for l ¼ 0 and l ¼ 1.

TABLE I. The fit coefficients of (38).

a b c d e

l ¼ 0 2223.78 −1388.73 −357.34 10044.60 −6859.62
l ¼ 1 53.86 −36.61 53.86 39.62 −244.81
l ¼ 2 169.46 −118.27 −15.73 1316.28 −960.93

TABLE II. Coefficients of oblique asymptotes δR−1 ¼ A1ωþ
B1 and E−1=5 ¼ A2ωþ B2.

A1 B1 A2 B2

l ¼ 0 0.221 0.012 0.369 0.014
l ¼ 1 0.158 0.006 0.287 0.004
l ¼ 2 0.128 0.004 0.243 0.005
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the expression E−1=5 ¼ A4Q
−1=6
t þ B4. One can conclude

from Fig. 8(b) that the relation between the energy E−1=5

and the Noether charges Q−1=6
t is linear with a very good

accuracy, even though in the region of small ω. It means

that the energy of compactons behaves as E ∝ Q
5
6
t in the

whole range of ω. The value of the power suggests that the
splitting of a single Q-ball solution into two Q-balls
is not energetically favorable, because EðQ1 þQ2Þ <
EðQ1Þ þ EðQ2Þ. This argument is usually presented in
the discussion of the stability of Q-ball solutions [12].
Finally, we plot the medium radius of some compact

shells R0 ≔ 1
2
ðR1 þ R2Þ in dependence on l. Figure 9(a)

shows R0 for l ¼ 2; 3;…; 10 and for three different values
of ω ¼ 1.0, ω ¼ 2.0, and ω ¼ 3.0. The medium radius
of compactons grows linearly with l. A linear fit gives

R0 ≈ 1.31þ 2.06l for ω ¼ 1.0, R0 ≈ 0.44þ 0.79l for
ω ¼ 2.0, and R0 ≈ 0.29þ 0.52l for ω ¼ 3.0. The medium
radius R0 decreases as ω grows.
In Fig. 9(b), we show the square root of the energy of

compactons in dependence on l. The linear fits are given byffiffiffiffi
E

p
≈ 15.13þ 18.38l for ω ¼ 1.0,

ffiffiffiffi
E

p
≈ 1.59þ 2.23l for

ω ¼ 2.0, and
ffiffiffiffi
E

p
≈ 0.56þ 0.80l for ω ¼ 3.0. Note that

linear regression is useful for the extrapolation of the
functions R0ðlÞ and

ffiffiffiffiffiffiffiffiffi
EðlÞp

to higher integers l, whereas
interpolation to noninteger values is meaningless.

IV. THE SIGNUM-GORDON LIMIT

According to our numerical results, the size of the
compactons, their energy, and the Noether charges behave
in the limit ω → ∞ as some powers of ω. In this section, we
shall study this problem from an analytic point of view.
There are many exact results which can be obtained for a
model which is a limit version of the CPN-type model (4).
A numerical analysis shows that the maximal values of

the functions fðrÞ and jf0ðrÞj tend to zero as ω increases.
Clearly, in this limit the model can be approximated by the
complex signum-Gordon–type model with the equation of
motion
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FIG. 7. The compacton energy function in dependence on ω for (from top to bottom) l ¼ 0, l ¼ 1, and l ¼ 2.
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FIG. 8. (a) Noether charge Qt for (from top to bottom) l ¼ 0, l ¼ 1, and l ¼ 2 in dependence on ω. (b) A relation between Noether
charges and the energy of the solution for (from top to bottom) l ¼ 0, l ¼ 1, and l ¼ 2.

TABLE III. Coefficients of oblique asymptotes Q−1=6
t ¼

A3ωþ B3 and E−1=5 ¼ A4Q
−1=6
t þ B4.

A3 B3 A4 B4

l ¼ 0 0.504 0.017 0.731 0.003
l ¼ 1 0.491 0.008 0.584 0.001
l ¼ 2 0.466 0.009 0.522 0.001
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∂2ui þ
μ2

8M2

uiffiffiffiffiffiffiffiffiffiffiffi
u† · u

p ¼ 0 ð40Þ

for ui ≠ 0 and ∂2ui ¼ 0 for ui ¼ 0. To be more precise,
Eq. (40) is the complex signum-Gordon equation of motion
only for l ¼ 0, i.e., for the model that possesses exactly one
complex field u. For l ≥ 1, the model is parametrized by
2lþ 1 complex fields coupled via a potential term. For this
reason, we call it the signum-Gordon–type model. The
solutions of the model described by (40) can be seen as
some limit solutions juij ≪ 1 of the CPN-type model
discussed above. In the further part of this section, we
show that the proportionality relations δR ∝ ω−1 and
E ∝ ω−5 are exact for the signum-Gordon–type model.
Next we shall discuss the relation between the energy and
the Noether charges.
The equations of motion (40) for the ansatz (14) is

reduced to a single radial equation. In terms of new radial
variable x ≔ ωr, the radial equation takes the form

~f00ðxÞ þ 1

x
~f0ðxÞ þ

�
1 −

lðlþ 1Þ
x2

�
~fðxÞ ¼ α2sgnð ~fðxÞÞ;

ð41Þ

where ~fðxÞ ≔ fðxωÞ≡ fðrÞ, ~f0ðxÞ≡ d ~f
dx, α

2 ≔ ~μ2

8ω2, and ~μ2 ≔
μ2

M4 is a dimensionless coupling constant defined in the same
way as for the CPN-type model. The energy density is
given by

H ¼ 4ω2

��
d ~f
dx

�2

þ
�
1þ lðlþ 1Þ

x2

�
~f2
�
þ ~μ2j ~fj: ð42Þ

Equation (41) is a spherical Bessel equation, nonhomo-
geneous for sgnð ~fÞ ¼ 1 and homogeneous for sgnð ~fÞ ¼ 0.
The radial equation possesses exact solutions. The compact
solutions consist of some nontrivial solutions of the
nonhomogeneous equation which are matched with the

vacuum solution ~f ¼ 0. In the case sgnð ~fÞ ¼ 1, the
solution is a sum of a general solution of the homogeneous
equation and any particular solution ~fpðxÞ of the nonho-
mogeneous equation, i.e.,

~fðxÞ ¼ AjlðxÞ þ BnlðxÞ þ ~fpðxÞ; ð43Þ

where A and B are free constants. The spherical Bessel
functions jlðxÞ and the spherical Neumann functions nlðxÞ
form linearly independent solutions of the spherical Bessel
equation, so their Wronskian is different from zero:

WðxÞ ¼ jlðxÞn0lðxÞ − j0lðxÞnlðxÞ ¼
1

x2
≠ 0: ð44Þ

The particular solution can be determined by the method of
variation of parameters; i.e., it is of the form

~fpðxÞ ¼ aðxÞjlðxÞ þ bðxÞnlðxÞ; ð45Þ

where aðxÞ and bðxÞ must be such that they satisfy the
equations a0ðxÞjlðxÞ þ b0ðxÞnlðxÞ ¼ 0 and a0ðxÞj0lðxÞþ
b0ðxÞn0lðxÞ ¼ α2. They have the solutions a0ðxÞ ¼
− α2nlðxÞ

WðxÞ and b0ðxÞ ¼ α2jlðxÞ
WðxÞ , which after integration read

aðxÞ¼−α2
Z

dxx2nlðxÞ; bðxÞ¼ α2
Z

dxx2jlðxÞ: ð46Þ

The particular solutions ~fpðxÞ are given in terms of spherical
Bessel functions, the sine integral SiðxÞ ≔ R

x
0 dt

sin t
t , and the

cosine integral CiðxÞ ≔ −
R
∞
x dt cos tt . The first five particular

solutions labeled by l ¼ 0;…; 4 have the form

~fðl¼0Þ
p ðxÞ ¼ α2; ð47Þ

~fðl¼1Þ
p ðxÞ ¼ α2

�
1þ 2

x2

�
; ð48Þ
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FIG. 9. (a) The medium radius R0 ¼ 1
2
ðR1 þ R2Þ of compact shells in dependence on l ¼ 2;…; 10. From top to bottom: ω ¼ 1.0,

ω ¼ 2.0, and ω ¼ 3.0. (b) The compacton energy square root in dependence on l ¼ 2;…; 10.
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~fðl¼2Þ
p ðxÞ ¼ α2

�
1þ 9

x2

�
þ 3α2½CiðxÞj2ðxÞ þ SiðxÞn2ðxÞ�;

ð49Þ

~fðl¼3Þ
p ðxÞ ¼ α2

�
1þ 12

x2
þ 120

x4

�
; ð50Þ

~fðl¼4Þ
p ðxÞ ¼ α2

�
1þ 25

2x2
þ 1575

2x4

�

þ 15α2

2
½CiðxÞj4ðxÞ þ SiðxÞn4ðxÞ�: ð51Þ

A solution with l ¼ 0 must take some nonzero value at
the center x ¼ 0. This condition can be satisfied for B ¼ 0.
The remaining free parameters, which are the constant A
and the compacton radius xR, can be determined from
fðxRÞ ¼ 0 and f0ðxRÞ ¼ 0. It gives xR ¼ x11, where x11 ¼
4.49341 is a first nontrivial zero of the spherical Bessel
function j1ðxÞ. The trivial zero is just x10 ¼ 0. The profile of
the compacton is given by

~fðxÞ ¼ α2
�
1 −

j0ðxÞ
j0ðx11Þ

�
: ð52Þ

Since α2 ¼ ~μ2

8ω2, the radial profile function behaves as
~fðxÞ ¼ fðrÞ ∝ ω−2. From the definition of the variable
x ¼ ωr, one gets

R−1 ¼ ω

x11
≈ 0.22254ω: ð53Þ

This formula allows us to interpret the coefficient A1 for
l ¼ 0 in Table II as the inverse of the first nontrivial zero
of j1ðxÞ.
For themodel with l ¼ 1, the profile function reaches zero

at x ¼ 0 and has a nonvanishing first derivative at the center.
It gives B ¼ 2α2 in (43). In order to satisfy the boundary
conditions at the compacton border, one has to choose A ¼
2πα2 and xR ¼ 2π. The solution is then of the form

~fðxÞ ¼ α2
�
1þ 2

x2
þ 2πj1ðxÞ þ 2n1ðxÞ

�
; ð54Þ

where j1ðxÞ ¼ sinðxÞ
x2 − cosðxÞ

x and n1ðxÞ ¼ − cosðxÞ
x2 − sinðxÞ

x . The
profile function is proportional to ω−2, and the compacton
radius obeys the relation

R−1 ¼ ω

2π
≈ 0.15915ω; ð55Þ

which allows us to interpret A1 for l ¼ 1 in Table II
as A1 ¼ 1

2π.

Let us consider the model with l ¼ 2. The compacton
radii x1 and x2 where x1 < x2 are such that ~fðx1Þ ¼ 0,
~f0ðx1Þ ¼ 0 and similarly ~fðx2Þ ¼ 0, ~f0ðx2Þ ¼ 0. The boun-
dary conditions at x1 allow us to determine the constantsA
and B in (43). The solution takes the form

~fðxÞ ≔ α2
�
1þ 9

x2

�
þ α2ð4 cosx1 þ x1 sin x1

þ 3½CiðxÞ −Ciðx1Þ�Þj2ðxÞ
þ α2ð4 sinx1 − x1 cos x1 þ 3½SiðxÞ− Siðx1Þ�Þn2ðxÞ:

ð56Þ

The compacton radii x1 and x2 are determined by the
conditions ~fðx2Þ ¼ 0 and ~f0ðx2Þ ¼ 0. It gives x1 ¼
0.193871 and x2 ¼ 7.944507which leads to the compacton
size δx ¼ 7.750640. It follows that

δR−1 ¼ ω

δx
≈ 0.12902ω: ð57Þ

This result constitutes a quite good approximation of the
coefficient A1 for l ¼ 2, which is presented in Table II.
Because of the complexity of the solution (56), we cannot
give an expression for the coefficient A1.
Finally, we shall discuss the relation between the energy

and the Noether charges. The solutions (52), (54), and (56)
have the form

fðrÞ ¼ ~fðxÞ ¼ α2gðxÞ; ð58Þ

where gðxÞ does not depend on ω.
The energy density (42) can be cast in the form

H ¼ ~μ4

8ω2

�
1

2

�
g02 þ

�
1þ lðlþ 1Þ

x2

�
g2
�
þ jgj

�
≡ ~μ4

8ω2
GðxÞ;

ð59Þ

where g0ðxÞ ¼ dg
dx ðxÞ. A total energy E ¼ 4π

R
∞
0 drr2HðrÞ

reads

E ¼ ε1
~μ4

ω5
; where ε1 ≔

π

2

Z
∞

0

dxx2GðxÞ ð60Þ

is a numerical constant which does not depend on ω. A
contribution to ε1 comes from the region where GðxÞ is
different from zero, i.e., from the support ½0; x2� for Q-balls
and from ½x1; x2� for Q-shells. The proportionality of E−1=5

to ω in (60) is a consequence of the relation fðrÞ ∝ ω−2.
The Noether charges are given by the expression

Qt ¼ ε2
~μ4

ω6
; where ε2 ≔

π

4ð2lþ 1Þ
Z

∞

0

dxx2g2 ð61Þ

is another numerical constant which does not depend on ω.
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In Table IV, we present numerical values of coefficients
ε1 and ε2. In particular, expressions ðε1Þ−1=5 constitute
good approximations for the coefficients A2 presented in
Table II. Similarly, expressions ðε2Þ−1=6 are qualitatively
good approximations of the coefficients A3 in Table III. In
the case of Q-shells, the concordance is not as good as for
Q-balls.
The relations (60) and (61) imply that the relation

between the energy and the Noether charge is of the form

E ¼ ε1 ~μ
2
3

�
Qt

ε2

�5
6

: ð62Þ

The power 5=6 suggests that the energy of twoQ-balls (orQ-
shells) with the chargesQ1 andQ2 is higher than the energy
of a single Q-ball (Q-shell) that has the charge Q1 þQ2.

V. SUMMARY

We have shown that the CP2lþ1 model with the V-shaped
potential possesses nontopological compact solutions with
finite energy in 3þ 1 dimensions. The solutions have the
form of Q-balls for l ¼ 0; 1 and the form of Q-shells for
l ≥ 2. The Q-ball solution l ¼ 0 is spherically symmetric;
however, the field configurations containing more than one
scalar field are not. Note that the energy density is
spherically symmetric in all cases. The configuration of
fields um with l ≥ 1 possesses some nonzero angular
momentum. One can imagine that the existence of such
angular momentum is associated with mutual motion of the
fields um. It is consistent with the fact that the configuration
containing a single scalar field has vanishing angular
momentum l ¼ 0. The energy of the solutions is propor-
tional to the Noether charge raised to the power 5

6

approximately. It suggests that the solutions have no
tendency to spontaneously decay into a higher number

of smallest Q-balls. This power is exact for solutions of the
limit model obtained for ω ≫ 1. The limit model is
recognized as the signum-Gordon–type model which
possesses a characteristic V-shaped nonlinearity. Unlike
for the original model, there is no lower bound for the
parameter ωc in the case of the signum-Gordon–type
model. In fact, all its solutions are proportional to ω−2.
Although solutions of the signum-Gordon–type model
exist for all ω > 0, only those with ω ≫ 1 are sufficiently
close to solutions of the original CP2lþ1-type model.
The compact solutions considered in this paper can be

composed together so they form some multi-Q-ball solu-
tions. Such a composition is possible due to the compactness
of the individual solutions. This property results in the
absence of the interaction between individualQ-balls unless
their supports overlap. Moreover, since the model possesses
the Lorentz symmetry, acting with the Lorentz boost on the
Q-ball solution one gets a Q-ball in motion. Although we
have not presented the explicit form of such solutions in this
paper, it is quite straightforward that their construction can be
performed in the same way as for compactons in the version
of the model with two V -shaped minima [29].
This work can be continued in many directions; however,

two of them seem to be essential. The first direction would
be considering the CPN-type models with an even number
of scalar fields. It requires an adequate ansatz which would
allow one to reduce the N equations of motion to a single
radial equation. This problem is still open and requires
some further studies. The second direction, which is our
original motivation, is searching for compactons in the
CPN SF-type model with the potential. Our ansatz works
properly for the model with an odd number of scalar fields.
An inclusion of further quartic terms in the Lagrangian
would result in some new terms in the radial equation. With
each such quartic term, there is associated one coupling
constant. Consequently, the number of free parameters of
the model would certainly increase. This work is already in
progress, and we shall soon report on the results.
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APPENDIX: REDUCTION TO A RADIAL FORM

The ansatz gives

u† · ∂tu ¼ iωf2; u† · ∂ru ¼ f0f; u† · ∂θu ¼ 0; u† · ∂ϕu ¼ 0;

∂θu† · ∂θu ¼ lðlþ 1Þ
2

f2; ∂ru† · ∂ru ¼ f02; ∂tu† · ∂ru ¼ −iωf0f; ∂θu† · ∂ϕu ¼ 0;

∂ϕu† · ∂ϕu ¼ lðlþ 1Þ
2

sin2θf2; ∂tu† · ∂tu ¼ ω2f2; ∂ru† · ∂αu ¼ 0; ∂tu† · ∂αu ¼ 0;

where α ¼ fθ;ϕg.

TABLE IV. Numerical constants ε1 and ε2.

ε1 ðε1Þ−1=5 ε2 ðε2Þ−1=6
l ¼ 0 142.511 0.371 59.379 0.506
l ¼ 1 508.072 0.287 70.565 0.492
l ¼ 2 1050.90 0.248 160.813 0.428
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