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We present a full one-loop renormalization of the Higgs sector of the next-to-minimal-supersymmetric-
Standard-Model (NMSSM) and its implementation within SloopS, a code for the automated computations of
one-loop processes in theories beyond the Standard Model. The present work is the sequel to the study we
performed on the renormalization of the sectors of the NMSSM comprising neutralinos, charginos, and
sfermions, thereby completing the full one-loop renormalization of the NMSSM. We have investigated
several renormalization schemes based on alternative choices (on-shell or DR) of the physical parameters.
Special attention is paid to the issue of the mixing between physical fields. To weigh the impact of the
different renormalization schemes, the partial widths for the decays of the Higgs bosons into super-
symmetric particles are computed at one loop. In many decays large differences between the schemes are
found. We discuss the origin of these differences. In particular, we study two contrasting scenarios. The first
model is MSSM-like with a small value for the mixing between the doublet and singlet Higgs superfields
while the second model has a moderate value for this mixing. We critically discuss the issue of the
reconstruction of the underlying parameters and their counterterms in the case of a theory with a large
number of parameters, such as the NMSSM, from a set of physical parameters. In the present study this set
corresponds to the minimum set of masses for the implementation of the on-shell schemes.
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I. INTRODUCTION

The discovery of a Standard Model-like Higgs boson at
the LHC [1,2] has raised some concerns with one of the
favorite extensions of the Standard Model (SM), the
minimal supersymmetric Standard Model (MSSM). A
Higgs mass of 125 GeV, near the maximum value achiev-
able in this model, requires some fine-tuning [3]. In a
minimal singlet extension of the model with a Z3 sym-
metry, the next-to-MSSM (NMSSM), additional Higgs
quartic couplings allow one to raise the tree-level mass
of the SM-like Higgs [4,5], hence reducing both the amount
of radiative corrections required from the top/stop sector
and the amount of fine-tuning [6–8]. In addition, this model
provides a natural explanation for the scale of the Higgsino
parameter μ, by relating it to the vacuum expectation value
(VEV), of the scalar singlet, thus solving the little hierarchy
problem of the MSSM.
The computation of higher-order corrections to Higgs

production at the LHC as well as its decay rates has been a
field of intense activity for the past two decades, in particular
for the SM Higgs; for an update see [9–12]. The bulk of the
corrections have to do with QCD corrections. For the
MSSM, the best example for the importance of the higher
order corrections in the Higgs sector is the correction to the

Higgs mass [13,14]. Without these corrections driven by the
top mass, the MSSM would not have survived for so long
[15–18]. Many of these computations have been extended
and/or adapted to the case of the NMSSM, in particular for
the Higgs masses [19–25] with improvements including
several two-loop effects [26–30]. Adaptations of the com-
putations of higher order corrections for Higgs production at
the LHC from the SM and the MSSM to the NMSSM have
been performed [31]. One-loop corrections to Higgs decays
in the NMSSM have also been considered with varying
degrees of generalization and approximation depending on
the final state. Full QCD/supersymmetric-QCD (SUSY-
QCD) corrections to decays to SM fermions [32] have been
performed, as well as electroweak and QCD corrections to
channels such as the decays of CP-odd Higgses into stops
[33] and Higgs self-couplings [34], while many other
channels such as decays to neutralinos and charginos have
been adapted from the MSSM [35]. Some electroweak
corrections are still not fully systematically included for
all decays. Many of these one-loop (or in the case of masses
beyond one-loop) corrections have been incorporated into
several public codes for the NMSSM: NMSSMTools [36,37],
SPheno [38,39], NMSDECAY [40], SoftSUSY [41], NMSSMCALC

[35], and FlexibleSUSY [42]. Most of these computations are
based on a DR scheme or on a mixed DR=on-shell (OS)
scheme as in NMSSMCALC [35]. In principle an automated
implementation of two-body decays in DR of the NMSSM
could be attempted for the NMSSM along the lines
described in [43]. A full OS scheme at one loop for the
NMSSM has not been studied.
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One of the aims of this paper is to precisely implement
different renormalization schemes including a few variants
of a full OS scheme in order to perform complete one-loop
corrections for any process in the NMSSM.We have shown
in a previous paper [44] how such a program is applied to
the renormalization of the neutralino/chargino and sfermion
sectors of the NMSSM, and we extend it here to cover the
Higgs sector. Because of the role played by the effective μ
parameter in the NMSSM, or in other words, the doublet-
singlet λ mixing, there is a strong interconnection between
the chargino/neutralino sector and the Higgs sector, which
warrants a common and overall coherent approach to the
complete one-loop renormalization of the NMSSM. This
work is a natural extension of the work done for the MSSM
in [45,46] where, after performing the complete renorm-
alization of the MSSM, one-loop corrections to masses,
two-body decays, and production cross sections at colliders
were computed together with one-loop corrections for
various dark matter annihilation processes [47–49]. The
fact that one is able to perform one-loop corrections to a
host of processes is made possible by the implementation of
the theoretical setup for the one-loop renormalization in
SloopS, a code for the automated generation and evaluation
of any cross section. The one-loop theoretical setup will be
detailed here. As a prerequisite for SloopS, one first needs to
read amodel file. Themodel file, theNMSSM in this case, is
obtained automatically with an improved version of
LanHEP [50–52] that allows for the generation of the
counterterms and the corresponding Feynman rules. The
code then relies on FeynArts [53], FormCalC [54], and LoopTools

for the automatic computation of one-loop processes
[55], including both electroweak and QCD corrections.
Preliminary applications of SloopS to the NMSSM dealt with
computing one-loop induced decays into photons: (i) neu-
tralino annihilations into photons, the gamma-ray lines for
dark matter indirect detection [56,57], and (ii) Higgs decays
to photons at the LHC [58,59]. These processes do not call
for counterterms or renormalization at one loop, yet an
important part of the machinery of SloopS is called for.
The NMSSM is a typical beyond the SM theory with

many parameters, fields, and mixings where the different
sectors are intertwined. The vast majority of its parameters,
as they appear at the level of the Lagrangian, are not directly
measurable in experiments in the sense that there is not a
straightforward linear mapping between these parameters
and an observable such as a mass. The reconstruction of
these parameters is a real challenge even when attempted at
tree level. Renormalization being tightly linked to the choice
of input parameters to be extracted from experimental
measurements, having currently no sign of supersymmetry,
leaves this choice with no clear guidance. However, the
current extensive program of precision measurements of the
Higgs couplings at the LHC requires nonetheless precise
theoretical predictions making the renormalization of the
Higgs sector of the NMSSM highly desirable. As for the

neutralino/chargino sector that we studied in [44], different
schemes are possible. We use mostly on-shell schemes
where input parameters are taken from the masses of the
neutralino/chargino and from the Higgs sectors. In such
schemes, based on two-point functions only, the task of
renormalizing the model boils down to choosing a minimal/
sufficient set of physical masses as input parameters. In this
work, we have adopted several sets of input parameters and
discussed how efficiently each set can constrain the needed
counterterms to keep the radiative corrections under control.
Moreover, the renormalization procedure induces additional
mixing, not only among the Higgs physical states but also
new gauge-Higgs and Goldstone-Higgs transitions in the
pseudoscalar and charged sector appear. Such mixing must
vanish for on-shell physical states by imposing appropriate
conditions on the wave function renormalization constants,
which have to satisfy Ward-Slavnov-Taylor (WST) iden-
tities. In doing so we have rederived the WST identities
governing the A0

i Z
0=H�W� mixing in the NMSSM.

The dependence on the renormalization scheme is then
illustrated in numerical computations of observables. Full
one-loop electroweak corrections to decays of Higgs par-
ticles are computed. The scheme dependence for Higgs to
Higgs decays and for decays involving charginos/neutrali-
nos is carefully examined. Note that while the Higgs mass
computation is not as accurate as in other codes (only one-
loop corrections are included), we nevertheless stress that
our approach allows for a consistent treatment of on-shell
renormalization and one-loop corrections tomasses, decays,
and scattering processes. This is of importance given the
very precise experimental measurements achieved both for
the Higgs and for dark matter waobservables.
The paper is organized as follows. Section II contains a

description of the Higgs sector of the NMSSM and
enumerates the number of fields and parameters that will
need renormalization. The needed counterterms to obtain
ultraviolet finite results are introduced in Sec. III, and in the
following section the issue of mixing in the Higgs sector
through the self-energies is discussed. Section V presents
the different renormalization schemes that enable a
reconstruction of the counterterms of the underlying param-
eters the NMSSM with a special attention to those of the
Higgs sector. Section VI presents how the numerical results
are checked and how the scheme dependence can be
quantified in order to gain insights on the theoretical
uncertainties. In Sec. VII we present two scenarios for
which, in Sec. VIII, we compute numerically several Higgs
partial widths and discuss their scheme dependence. Finally
our conclusions are made in Sec. IX.

II. THE HIGGS SECTOR OF THE NMSSM

A. Fields and potential

The NMSSM contains three Higgs superfields: two
SUð2ÞL doublets Ĥu and Ĥd, as in the MSSM, and one
additional gauge singlet Ŝ
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Ĥu ¼
�
Ĥþ

u

Ĥ0
u

�
; Ĥd ¼

�
Ĥ0

d

Ĥ−
d

�
; Ŝ: ð2:1Þ

In the Z3 implementation that we will assume, the Higgs
superpotential is made up of two operators, associated with
the dimensionless couplings λ and κ,

WHiggs ¼ −λŜĤd · Ĥu þ
1

3
κŜ3; ð2:2Þ

where Ĥd · Ĥu ¼ ϵabĤ
a
dĤ

b
u and ϵab is the two-

dimensional Levi-Cività symbol with ϵ12 ¼ 1. The
two parameters λ and κ of the superpotential will, by
construction, affect the phenomenology of both the
Higgs and chargino/neutralino sectors. The five neutra-
linos of the NMSSM will be an admixture of the
(i) SUð2Þ, ~w, and Uð1Þ, ~b, neutral gauginos; (ii) the
two neutral Higgsinos, ~hu;d, the fermionic components
of two superfields Ĥu;d; and (iii) the singlino, ~s, the
fermionic component of Ŝ. λ in particular is crucial; it
not only is necessary in order to induce the μ term but it
also gives rise to mixing in the neutralino sector as well
as in the Higgs sector between the Higgs doublets and
the new singlet. In passing we recall that μ sets the mass
scale for the Higgsinos; see [44] for more detail. For the
purpose of parameter counting and of the renormaliza-
tion of the Higgs sector at one loop there is no need to
go over the Yukawa superpotential which we have given
in the previous paper [44]. However, we do need to

clearly specify again the soft SUSY breaking
Lagrangian, in particular the part relating to the
Higgs sector,

−Lsoft;scalar ¼ m2
Hu
jHuj2 þm2

Hd
jHdj2 þm2

SjSj2

þ
�
λAλHu ·HdSþ 1

3
κAκS3 þ H:c:

�
: ð2:3Þ

The first two terms in the first line represent the soft
mass terms for the Higgs doublets and the third, not
present in the MSSM, of the singlet. The second line,
not present in the MSSM also, represents the NMSSM
trilinear Higgs couplings Aκ, Aλ. Aλ affects the mixing
between the Higgs doublets and the singlet, beside the
mixing introduced by λ. This parameter plays an
important role in the phenomenology of the Higgs
sector in the NMSSM; note that it gives rise to a
Higgs trilinear coupling HuHdS. No source of CP
violation is assumed.
We are now in a position to write the Higgs potential

whose parameters will need to be renormalized. With g, g0
being, respectively, the SUð2Þ weak and Uð1Þ hypercharge
gauge couplings and specifying the components of the
doublets,

Hd ¼
�
H0

d

H−
d

�
Hu ¼

�
Hþ

u

H0
u

�
;

the potential reads

VHiggs ¼ jλðHþ
u H−

d −H0
uH0

dÞ þ κS2j2 þ ðm2
Hu

þ jλSj2ÞðjH0
uj2 þ jHþ

u j2Þ þ ðm2
Hd

þ jλSj2ÞðjH0
dj2 þ jHþ

d j2Þ

þ g2 þ g02

8
ðjH0

uj2 þ jHþ
u j2 − jH0

dj2 − jH−
d j2Þ2 þ

g2

2
jHþ

u H0�
d þH0

uH−�
d j2 þm2

SjSj2

þ
�
λAλðHþ

u H−
d −H0

uH0
dÞSþ 1

3
κAκS3 þ H:c:

�
: ð2:4Þ

Electroweak symmetry breaking occurs for appropriate
values of the soft terms. The Higgs fields are expanded
around their vacuum expectation values,

Hd ¼
�
vd þ h0dþia0dffiffi

2
p

h−d

�
; ð2:5Þ

Hu ¼
� hþu

vu þ h0uþia0uffiffi
2

p

�
; ð2:6Þ

S ¼ sþ h0s þ ia0sffiffiffi
2

p : ð2:7Þ

The vacuum expectation values, vu, vd, s are chosen to be
real and positive. As in the MSSM we define

v2¼ v2uþv2d; tanβ≡ tβ ¼ vu=vd ðvu;d ¼ vsβ;vcβÞ;
ð2:8Þ

such that the W mass is

M2
W ¼ g2v2=2: ð2:9Þ

The nonvanishing value of the VEV of S also gives a
solution to the so-called μ problem of the MSSM by
generating this parameter dynamically,

μeff ¼ λs: ð2:10Þ

We define μeff ¼ μ in the following and will take it as an
independent parameter, where comparison with the MSSM
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will then be easier. In addition to μ, we take λ and κ as
independent parameters while s is kept as a shorthand
notation for μ=λ in the same way as we use cW as a
shorthand notation forMW=MZ. It is useful to introduce the
combinations

Λv ¼ λv and

mκ ¼ κs ¼ ðκ=λÞμ: ð2:11Þ

With these parameters, the MSSM limit is obtained
by taking κ; λðΛvÞ → 0, while keeping μ fixed such that
the mass of the Higgsinos is jμj. The reason we take mκ is
that the mass of the singlinolike neutralino is a substitute
for mκ. Indeed, in the MSSM limit, the singlino mass is
(see [44])

m~s ¼ 2mκ: ð2:12Þ

At the minimum of the potential, the part of the potential
linear in any of the CP-even Higgs fields has to vanish,
∂VHHiggs

=∂h0i ¼ 0. It can be written in terms of the tree-level
tadpoles,

T h0d

2vd
¼ −μtβðAλ þmκÞ þ Λ2

vs2β þ ðm2
Hd

þ μ2Þ þM2
Z

2
c2β;

T h0u

2vu
¼ −

μ

tβ
ðAλ þmκÞ þ Λ2

vc2β þ ðm2
Hu

þ μ2Þ −M2
Z

2
c2β;

T h0s

2s
¼ mκðAκ þ 2mκÞ þ Λ2

v

�
1 − s2β

Aλ þ 2mκ

2μ

�
þm2

S:

ð2:13Þ

The conditions on the vanishing of the three tadpoles
allow us to express the soft mass terms m2

Hd
; m2

Hu
; m2

S in
terms of the tadpoles.
The quadratic part of the Higgs potential, bilinear

in the fields, gives rise to the mass terms for the Higgs
sector,

Vmass ¼
1

2
ðh0ÞT ·M2

S · h
0 þ 1

2
ða0ÞT ·M2

P · a0

þ h− ·M2
� · hþ; ð2:14Þ

with

ðh0ÞT ¼ ð h0d h0u h0s Þ; ð2:15Þ

ða0ÞT ¼ ð a0d a0u a0s Þ; ð2:16Þ

ðh�ÞT ¼ ð h�d h�u Þ; ð2:17Þ

and where M2
S, M

2
P, and M2

� are, respectively, the mass
matrices for the CP-even, the CP-odd, and the charged
Higgs bosons.

The charged Higgs
The mass matrix for the charged Higgs, M2

�, reads

M2
� ¼ 1

2

0
BB@

T h0
d

vd
0

0
T h0u
vu

1
CCAþ

�
μðAλþmκÞþ

s2β
2
ðM2

W −Λ2
vÞ
�

×

�
tβ 1

1 1=tβ

�
: ð2:18Þ

With the tadpoles set to zero [using the tree-level condition in
Eq. (2.13)], we have DetM2

� ¼ 0which signals the presence
of a massless charged Goldstone boson. The mass of the
physical charged Higgs boson is given by the trace of M2

�,

M2
H� ¼ 2μ

s2β
ðAλ þmκÞ|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

M2
A¼M2

A;MSSM

þ ðM2
W − Λ2

vÞ: ð2:19Þ

The MSSM limit is obtained by letting Λv to 0 in the
above, while all other parameters are fixed. What is denoted
MA is the equivalent of the pseudoscalar mass in the MSSM
limit. Note that if mκðκÞ;ΛvðλÞ; μ, and tβ have been
extracted from the chargino/neutralino sector, the meas-
urement of the charged Higgs mass reconstructs Aλ. As
explained in [44], for this to work efficiently tβ should not
be too large and in all cases should be well measured. The
charged Higgs mass could also serve for the measurement
of tβ if Aλ is determined from the other Higgs masses.
The diagonalizing matrix, UðβÞ, to obtain the Goldstone

and physical charged Higgs is defined as

H� ≡
�
G�

H�

�
¼ Uβh� ¼ Uβ

�
h�d
h�u

�
; ð2:20Þ

with

Uβ ¼
�
cβ −sβ
sβ cβ

�
: ð2:21Þ

The pseudoscalars
The pseudoscalar mass matrix,M2

P, decomposes into the
following elements:

M2
P11

¼
T h0d

2vd
þ μtβðAλ þmκÞ;

M2
P22

¼ T h0u

2vu
þ μ

tβ
ðAλ þmκÞ;

M2
P33

¼ T h0s

2s
þ Λ2

v
Aλ þ 4mκ

2μ
s2β − 3mκAκ;

M2
P12

¼ M2
P21

¼ μðAλ þmκÞ;
M2

P13
¼ M2

P31
¼ ΛvðAλ − 2mκÞsβ;

M2
P23

¼ M2
P32

¼ ΛvðAλ − 2mκÞcβ: ð2:22Þ
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As expected, upon setting the tadpole to zero, DetM2
P ¼ 0.

This reveals the neutral Goldstone boson. With the 2 × 2

submatrix, m2
12

m2
12 ¼ sβcβM2

A;MSSM

�
tβ 1

1 1=tβ

�
;

Trðm2
12Þ ¼ M2

A;MSSM; ð2:23Þ

in the MSSM limit (Λv → 0) we have

M2
P →

�
m2

12 0

0 −3mκAκ

�
: ð2:24Þ

The Goldstone boson can be isolated through the 3 × 3
extension of the matrix Uβ encountered for the charged
Higgs sector

Uð3ÞðβÞ ¼

0
B@ cβ −sβ 0

sβ cβ 0

0 0 1

1
CA: ð2:25Þ

In this new basis where the Goldstone boson is separated,
the pseudoscalar mass matrix simplifies to

Uð3ÞðβÞM2
PU

ð3ÞðβÞ† ¼

0
B@ 0 0 0

0

0
M2

P
^

1
CA; ð2:26Þ

where the (2 × 2) mixing matrix between the two pseudo-
scalar bosons is given by

M̂2
P ¼

 
M2

A ΛvðAλ−2mκÞ
ΛvðAλ−2mκÞ Λ2

v
Aλþ4mκ

2μ s2β−3mκAκ

!
: ð2:27Þ

The MSSM limit is clearly exhibited. Diagonalization of
this matrix is then performed through a 2 × 2 matrix P̂a
which we can parametrize as

P̂a ¼
�
cp −sp
sp cp

�
: ð2:28Þ

Putting everything together the pseudoscalar mass matrix is
diagonalized through the matrix Pa,

Pa ¼

0
B@ 1 0 0

0

0
P̂a

1
CA

|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
P̂ð3Þ
a

Uð3ÞðβÞ ¼

0
B@ cβ −sβ 0

cpsβ cpcβ −sp
spsβ spcβ cp

1
CA;

ð2:29Þ

such that

P0 ≡
0
B@G0

A0
1

A0
2

1
CA ¼ Paa0 ¼ Pa

0
B@a0d

a0u
a0s

1
CA: ð2:30Þ

It is important to remember that

ðPaÞ13 ¼ ðP−1
a Þ31 ¼ 0 and that

ðPaÞ1i ¼ ðUð3ÞðβÞÞ1i for i ¼ 1; 2: ð2:31Þ

We will also set ðP0Þ1 ≡ A0
0 ≡G0 for the identification

of the neutral Goldstone Boson.
The CP-even scalars
The elements of the scalar mass matrix, M2

S, read

M2
S11

¼
T h0d

2vd
þM2

Zc
2
β þM2

As
2
β;

M2
S22

¼ T h0u

2vu
þM2

Zs
2
β þM2

Ac
2
β;

M2
S33

¼ T h0s

2s
þ Λ2

vAλ
cβsβ
μ

þmκðAκ þ 4mκÞ;

M2
S12

¼ M2
S21

¼ ð2Λ2
v −M2

Z −M2
AÞsβcβ;

M2
S13

¼ M2
S31

¼ Λvð2μcβ − ðAλ þ 2mκÞsβÞ;
M2

S23
¼ M2

S32
¼ Λvð2μsβ − ðAλ þ 2mκÞcβÞ: ð2:32Þ

To get the physical eigenstates, we introduce the orthogonal
matrix Sh, such that

0
B@h01

h02
h03

1
CA ¼ Sh

0
B@h0d

h0u
h0s

1
CA: ð2:33Þ

We can make the MSSM limit more apparent by writing the
diagonalizing matrix of the CP-even Higgs mass matrix,
Sh ¼ ŜhUð3ÞðβÞ. After rotation by Uð3ÞðβÞ an upper limit
for the nonsinglet and CP-even lightest neutral Higgs mass
is contained in an element of the mass matrix. The upper
bound on this mass is

M2
h0
1

< M2
Z

�
c22β þ

Λ2
v

M2
Z
s22β

�
≡M2

Z

�
1þ

�
Λ2
v

M2
Z
− 1

�
s22β

�
:

To have a tree-level mass that is higher than MZ, Λv needs
to be larger than MZ (λ >

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 þ g02

p
=2). Moreover, the

largest tree-level mass corresponds to moderate values of
tβ. We need to keep this in mind when we discuss our
benchmark points.
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It is also useful to write

M2
h0i
¼
X3
j;k¼1

ShijShikM
2
Sjk
; M2

A0
i
¼
X3
j;k¼1

Paðiþ1ÞjPaðiþ1ÞkM
2
Pjk

:

ð2:34Þ
The properties of the physical states depend critically on

the mixing matrices Sh for the parity-even Higgses and on
Pa for the parity-odd Higgses. These mixing matrices,
which stem from the nondiagonal nature of the mass
matrices/bilinear terms, introduce a highly nonlinear
dependence of the couplings involving the Higgses on
the underlying parameters of the theory, whereas before
mixing, in so to speak the current basis, the functional

dependence of the Higgs couplings on the underlying
parameters is quite simple, linear or quadratic. This can
be seen from the Higgs potential in Eq. (2.7). For example,
before these rotation matrices are introduced, the coupling
between three different CP-even neutral Higgses (h0dh

0
uh0s)

is proportional to λAλ þ 2κμ ¼ ΛvðAλ þ 2mκÞ=v and hence
directly proportional to λ. After moving to the physical
basis, the h01h

0
2h

0
3 coupling is much more complicated since

it involves the product of three Sh. Therefore the depend-
ence of this coupling on the underlying parameters is more
difficult to track. Since the triple Higgs couplings will enter
some of the decays we will study, we write them below for
the CP-even Higgs sector,

ffiffiffi
2

p
vgh0i h0j h0k ¼

M2
Z

2
ðcβðΠSÞ1;1;1i;j;k þ sβðΠSÞ2;2;2i;j;k Þ þ

�
Λ2
v −

M2
Z

2

�
ðcβðΠSÞ1;2;2i;j;k þ sβðΠSÞ2;1;1i;j;k Þ

þ Λ2
v

��
cβ −

mκ

μ
sβ

�
ðΠSÞ1;3;3i;j;k þ

�
sβ −

mκ

μ
cβ

�
ðΠSÞ2;3;3i;j;k

�

þ Λv

�
μððΠSÞ3;1;1i;j;k þ ðΠSÞ3;2;2i;j;k Þ − ðAλ þ 2mκÞðΠSÞ3;1;2i;j;k þmκ

μ

Aκ þ 6mκ

3
ðΠSÞ3;3;3i;j;k

�
; ð2:35Þ

where the ΠS represent the product of three Sh,

ðΠSÞa;b;ci;j;k ¼ ShiaðShjbShkc þ ShjcShkbÞ
þ ShibðShjaShkc þ ShjcShkaÞ
þ ShicðShjaShkb þ ShjbShkaÞ: ð2:36Þ

In the case where mixing is neglected in Sh we have

ðΠSÞa;b;ci;j;k ¼ δiaðδjbδkc þ δjcδkbÞ þ δibðδjaδkc þ δjcδkaÞ
þ δicðδjaδkb þ δjbδkaÞ;

ðΠSÞa;b;ci;i;i ¼ 6δiaδibδic;

ðΠSÞa;a;ai;j;k ¼ 6δiaδjaδka;

ðΠSÞa;b;bi;j;k ¼ 2δiaδjbδkb þ 2δibðδjaδkb þ δjbδkaÞ:

It is important to realize that with our choice of the
independent parameters all triple Higgs couplings involv-
ing the singlet are proportional to λ or λ2. This should not be
the case for the coupling between three singlets, which gets
contributions from S3 and jS2j2 terms. In Eq. (2.35) this is
proportional to λmκ=μ ¼ κ. The fact that this coupling
exhibits a λ dependence is due to our choice of inputs mκ

and μ, which are more directly related to the mass of the
singlino and the Higgsino; see Eq. (2.11).

B. Counting parameters and fields

Let us take stock and summarize the situation as regards
the number of (physical) parameters and fields in the Higgs

sector of the NMSSM. The physical scalar fields consist of
three neutral CP-even Higgs bosons, h01; h

0
2; h

0
3, two CP-

odd Higgs bosons, A0
1; A

0
2, and a charged Higgs boson,H

�.
The NMSSM contains, of course, the SM gauge fields (and
fermions). In particular, the SM gauge parameters

g; g0 and v ¼ v2u þ v2d ð2:37Þ

are traded for the following physical input parameters:

e; MW; MZ: ð2:38Þ

For these parameters we will apply the usual OS renorm-
alization scheme. In particular, e will be defined in the
Thomson limit. The Thomson limit, q2 → 0, may not be the
most appropriate scale for the NMSSM processes whose
loop corrections we will study; however, one can easily
quantify the effect of using a running αe:m: at the scale of the
process. Besides these standard model parameters, the
NMSSM introduces an additional set of nine parameters
from the Higgs sector alone. From the Higgs potential,
Eq. (2.4), it is clear that the Higgs sector of the NMSSM
depends on the parameters,

tβ; λ; κ; μ|fflfflfflfflffl{zfflfflfflfflffl}
in ~χ sector also

; Aλ; Aκ; mHd
; mHu

; mS; ð2:39Þ

where the first four parameters are also involved in the
characterization of the neutralino/chargino sector, which
we studied at length in the sister paper [44]. Alternatively
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the last three soft Higgs masses can be traded for the
tadpoles of the neutral Higgs which need to be constrained
to zero to impose that the potential is at its minimum. The
latter are therefore considered as physical observables,

tβ; λ; κðmκÞ; μ|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
in ~χ sector also

; Aλ; Aκ; ðT Hd
; T Hu

; T SÞ: ð2:40Þ

The first six parameters above are not unambiguously
defined in a simple mapping to an observable. We will
discuss at length the choice and definitions of the input
parameters that will construct the set of these six param-
eters. This issue is directly related to the renormalization
scheme.
The parameters and fields of the neutralino/chargino

sector were described in [44]. The parameters of this sector
are the Uð1Þ and SUð2Þ gaugino soft masses, M1, M2 in
addition to tβ, λ; κ; μ.

III. RENORMALIZATION OF THE
HIGGS SECTOR

A. A word about the gauge fixing

In this work we have restricted ourselves to the simplest
gauge fixing; namelywe take a linear gauge fixing constraint
with a ’t Hooft-Feynman parameter set to 1. Only the SM
fields (including the necessary) Goldstone bosons appear,
namely

LGF ¼ −j∂μWþ
μ þ iMWGþj2 − 1

2

����∂μZ0
μ þ i

MZ

2
G0

����2
− j∂μAμj2: ð3:1Þ

It is important to stress that all fields and parameters in
Eq. (3.1) are understood to be renormalized.

B. Parameters, fields, and self-energies

What is also considered as renormalized are all the
rotation matricesUðβÞ; Pa; Sh. This is an approach we have
consistently applied in all our work on the renormalization
of supersymmetric models starting from the MSSM and
imposed in all the sectors of the models where mixing
between fields occurs, not only in the Higgs sector but also
in the sfermion, neutralino, and chargino sectors [44–46].
In the MSSM a similar approach has also been considered
for the chargino/neutralino [60] and sfermion [61] sectors.
While one-loop corrections do reintroduce mixing, the use
of wave function renormalization constants, with judicious
choices of conditions imposed at scales corresponding to
the physical masses of the particles, will ensure that even at
one-loop transitions between particles with the same
quantum numbers will vanish when these particles are
on their mass shell.
With the exception of LGF; UðβÞ; Pa, and Sh all fields

and parameters encountered so far are bare quantities. All

bare quantities (X0) are then decomposed into renormalized
(X) and counterterms (δX) quantities. First, the SM
parameters are shifted such that

g → gþ δg; g0 → g0 þ δg0; v → vþ δv; ð3:2Þ

which are tantamount to

e→ eþδe; MW →MWþδMW; MZ →MZþδMZ:

ð3:3Þ

The same procedure applies to the NMSSM parameters
in Eq. (2.39) or equivalently Eq. (2.40) with

tβ; λ; mκ; μ; Aλ; Aκ → tβ þ δtβ; λþ δλ; mκ þ δmκ;

μþ δμ; Aλ þ δAλ; Aκ þ δAκ;

T Hd
;T Hu

; T S → T Hd
þ δT Hd

; T Hu

þ δT Hu
; T S þ T S: ð3:4Þ

For the fields all shifts are directly encoded in the wave
function renormalization constants, so that mass eigenstates
are expressed in terms of the current eigenstates in the same
manner at one loop and at tree level. By current eigenstates
we mean the states with definite electric charge, weak, and
hypercharge quantum numbers before mixing occurs [see
Eq. (2.5)] and diagonalization is performed. For the gauge
fields we performWμ → Z1=2

W Wμ while the system ðAμ; Z0
μÞ

involves a matrix with four entries δZγγ; δZγZ; δZZγ; δZZZ

(see [62]). For the NMSSM Higgs sector, this entails that
the three wave function renormalization matrices ZS, ZP,
and ZC, are introduced such that0
B@ h01

h02
h03

1
CA

0

¼ Z1=2
S

0
B@h01

h02
h03

1
CA;

0
B@G0

A0
1

A0
2

1
CA

0

¼ Z1=2
P

0
B@G0

A0
1

A0
2

1
CA;

�
G�

H�

�
0

¼ Z1=2
C

�
G�

H�

�
; ð3:5Þ

where the index 0 is attached to the bare fields while the
renormalized fields do not have an index. The elements
of the wave function renormalization matrices can be
written as

Z1=2
C ¼

 
1þ 1

2
δZG� 1

2
δZG�H�

1
2
δZH�G� 1þ 1

2
δZH�

!
; ð3:6Þ

Z1=2
P ¼

0
BBB@

1þ 1
2
δZG0

1
2
δZG0A0

1

1
2
δZG0A0

2

1
2
δZA0

1
G0 1þ 1

2
δZA0

1

1
2
δZA0

1
A0
2

1
2
δZA2G0

1
2
δZA0

2
A0
1

1þ 1
2
δZA0

2

1
CCCA; ð3:7Þ
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Z1=2
S ¼

0
BBB@

1þ 1
2
δZh0

1

1
2
δZh0

1
h0
2

1
2
δZh0

1
h0
3

1
2
δZh0

2
h0
1

1þ 1
2
δZh0

2

1
2
δZh0

2
h0
3

1
2
δZh0

3
h0
1

1
2
δZh0

3
h0
2

1þ 1
2
δZh0

3

1
CCCA: ð3:8Þ

C. One-point functions and tadpoles

Once shifts on all parameters of the models including the
tadpole terms [Eq. (3.4)] and wave function renormalization
of the fields have been performed, we concentrate on the
terms that are linear in the scalar fields and combine them
with the one-loop contribution to these tadpoles. The tree-
level condition on the tadpole is now elevated to the one-
loop level so that minimization of the potential is realized.
At one loop, the linear part of the potential can be written

Vð1Þ
lin ¼ ð−T loop

h0d
þ δT h0d

Þ h
0
dffiffiffi
2

p þ ð−T loop
h0u

þ δT h0uÞ
h0uffiffiffi
2

p

þ ð−T loop
h0s

þ δT h0s Þ
h0sffiffiffi
2

p ; ð3:9Þ

where the first terms in the parentheses are the pure loop
contributions and the second ones are the counterterms. We
observe that because of the condition on the tree-level
tadpoles, wave function renormalization of the Higgses does
not enter. Our first renormalization condition is that these
linear terms cancel. The loop contributions for the gauge
eigenstates tadpoles are obtained from the mass eigenstates
tadpoles with the use of the diagonalization matrix Sh,0

BBBB@
T loop

h0d

T loop
h0u

T loop
h0s

1
CCCCA ¼ S−1h

0
BBBB@

T loop
h0
1

T loop
h0
2

T loop
h0
3

1
CCCCA: ð3:10Þ

The minimum condition then gives simply

δT h0i
¼ T loop

h0i
; i ¼ d; u; s: ð3:11Þ

IV. BILINEARS AND TWO-POINT FUNCTION
SELF-ENERGIES

A. Mass counterterms for the Higgs sector

We now turn to the bilinear terms in the Higgs fields and
perform shifts in the parameters according to Eqs. (3.3) and
(3.4). These shifts are performed on each of the underlying
parameters (including the tadpoles) of the mass matrices
M2

�;M
2
P;M

2
S in Eqs. (2.18), (2.22), (2.32). Since our

approach is to use the same tree-level diagonalizing mass
matrices, namely Uβ, Pa, Sh, to convert to the physical
fields, after the shifts the “physical” fields will now mix.
Therefore apart from the induced diagonal counterterms

δM2
Hþ ; δM2

A0
1;2
; δM2

h0
1;2;3

, spurious counterterms to the

Goldstones δM2
G0;G� are generated as well as nondiagonal

mass mixings such as δM2
h0
1
h0
2

and transitions such as

δM2
G�H� . Therefore, we need to enforce appropriate con-

ditions to the one-loop wave function renormalization
matrices such that a correct on-shell definition and nor-
malization of the external particles is ensured. This is
obtained by imposing that the residue of each (diagonal)
propagator is equal to 1 (as is done in any theory without
mixing). Strictly speaking, if we were only interested in
having finite S-matrix elements and not finite Green’s
functions, wave function renormalization would not be a
must. Still, the residues of the propagators of the external
particles must be set to 1 to correctly normalize the S
matrix, and this can be achieved by introducing finite wave
function correction normalization factors to prevent non-
vanishing transitions on the external legs.
Since the contributions of the tadpoles is very important,

let us summarize how the shifts in the underlying param-
eters affect the mass matrices. Generically, in the bases d, u,
s, the Higgs mass matrix M2 [M2

� for the charged Higgs
Eq. (2.18),M2

P for the pseudoscalars Eq. (2.22), andM2
S for

the CP-even Higgses Eq. (2.32)] can be decomposed into a
diagonal tadpole matrix TM and a nontadpole matrix, which
we denote M2

M, such that

M2 ¼ TM þM2
M: ð4:1Þ

At tree level all TM are set to zero, and the diagonalizing
matrix U (U ¼ Uβ; Pa; Sh) is such that

M2
D ¼ UM2

MU
−1 ð4:2Þ

is diagonal with eigenvalues being the tree-level physical
masses. In our notation, for the charged and pseudoscalar
sectors the Goldstones are the (11) entries, and hence
ðMDÞ11 ¼ 0. The shifts entail the counterterm mass matrix

δM2 ¼ δTM þ δM2
M: ð4:3Þ

In our approach, in all sectors of the NMSSM, to move to
the (physical) basis A0

i ; G
0
i ;… we use the same matrix as

the one at tree level. From Eq. (4.3), the counterterm to this
matrix is therefore

δM2
Ph ¼ UδTMU−1 þUδM2

MU
−1 ð4:4Þ

(the subindex Ph generically denotes the mass matrix in the
physical basis). In other words, M2

Ph is to be understood as
being sandwiched between physical states (A0

i ; G
0
i ;…).

These are the mass counterterms that will be used to define
the self-energies. In the code these counterterms are
generated according to Eq. (4.4). As explained above
due to these shifts δM2

Ph is no longer diagonal, and hence
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the need for wave function renormalization is defined in
such a way that when the physical states are on shell, no
mixing occurs and the propagators have residue 1.
Equation (4.4) does not reveal some important properties

of δM2
Ph, especially that the matrices U do not necessarily

have a simple analytic expression. In particular, we would
like to emphasize that there are some simple algebraic
expressions pertaining to the mixing between the Higgses
and the Goldstones. These mixings will be needed when we
write the importantWard identities between the Higgses and
the gauge bosons in Sec. IV C. To arrive at a more trans-
parent formula, it is more enlightening to express the above
counterterms through the variation (counterterm) in M2

D
rather than M2

M by using the relation for the mass eigen-
values according to Eq. (4.2) (note that there is no tadpole
here). δM2

D is a diagonal matrix that consists of the counter-
terms to the physical masses. Since M2

D is a function of U
andMM, it is important to realize that shifts inMD should be
understood as shifts in all parameters that define MD
through Eq. (4.2) and in particular those entering U (and
MM). The fact that at this stage δU terms appear is not
contrary to the procedure of using the same matrix U to
move to the physical basis from the ðu; d; sÞ basis. If an
analytic formula for U in terms of all the underlying
parameters existed, the variation/counterterm for all the
elements of δU would correspond to taking the variation/
counterterms for all these parameters. However, here, we do
not need the exact analytic formula for U in terms of the
underlying parameters; we will only exploit the unitarity of
U, δðUÞU−1 þ UδðU−1Þ ¼ 0. Doing so we obtain

δM2
Ph ¼ UδTMU−1 þ δM2

D

þ ðUðδU−1ÞM2
D þM2

DðδUÞU−1ÞÞ;
ðδM2

PhÞij ¼ ðUδTMU−1Þij þ ðδMDÞ2i δij
þ ðδðUÞU−1ÞijððMDÞ2i − ðMDÞ2jÞ: ð4:5Þ

Equation (4.5) shows that for the diagonal elements
ðδM2

PhÞii, the terms in δU vanish. As a special case, the
counterterms to the Goldstones for both the charged and the
pseudoscalar, δM2

G (for i ¼ j ¼ 1), is a pure tadpole term
as it should be. For the pseudoscalar case, we further
exploit the important properties of Pa given in Eq. (2.31).
We find that δM2

G� ¼ δM2
G0 . The mixing between a

Goldstone and a non-Goldstone field is proportional to
the (tree-level) mass of the associated non-Goldstone
physical field. As stated at different occasions, because
δM2

Ph is no longer diagonal, Goldstone-Higgs mixing mass
counterterms are generated and are given by the simple
formulas for both the charged and pseudoscalar Higgses

δM2
H�G∓ ¼ δM2

G∓H� ¼ s2β
2

�
δT þM2

H�
δtβ
tβ

�
; ð4:6Þ

δM2
A0
i G

0 ¼ δM2
G0A0

i
¼ s2β

2

�
δT þM2

A0
i

δtβ
tβ

�
; ð4:7Þ

where

δT ¼ 1

vs2β

X3
i¼1

ðsβSh;i1 − cβSh;i2ÞδT h0i
; ð4:8Þ

and the need for the wave function renormalization
becomes evident in order to counterbalance the appearance
of these transitions especially when the particles are on
their mass shell.

B. Two-point functions from the Higgs potential

Implementing the wave function renormalization directly
in the basis, we can write the renormalized self-energies,
with the “non-hatted” expression as the result of the one-
loop unrenormalized self-energy, while the δZ’s are the
result of the wave function renormalization. The mass shifts
correspond exactly to the elements of δM2

Ph (which include
tadpoles). For the CP-even scalars we obtain ði; j ¼ 1; 2; 3Þ

Σ̂h0i h
0
j
ðp2Þ ¼ Σh0i h

0
j
ðp2Þ þ δM2

h0i h
0
j
−
1

2
ðp2 −M2

h0i
ÞδZh0i h

0
j

−
1

2
ðp2 −M2

h0j
ÞδZh0j h

0
i
; ð4:9Þ

while for the CP-odd scalars we get ði; j ¼ 1; 2Þ

Σ̂G0G0ðp2Þ ¼ ΣG0G0ðp2Þ þ δM2
G0 − p2δZG0 ;

Σ̂A0
i G

0ðp2Þ ¼ ΣA0
i G

0ðp2Þ þ δM2
A0
i G

0 −
1

2
p2δZG0A0

i

−
1

2
ðp2 −M2

A0
i
ÞδZA0

i G
0 ;

Σ̂A0
i A

0
j
ðp2Þ ¼ ΣA0

i A
0
j
ðp2Þ þ δM2

A0
i A

0
j
−
1

2
ðp2 −M2

A0
i
ÞδZA0

i A
0
j

−
1

2
ðp2 −M2

A0
j
ÞδZA0

jA
0
i
; ð4:10Þ

and the charged scalars

Σ̂G�G�ðp2Þ ¼ ΣG�G�ðp2Þ þ δM2
G� − p2δZG� ;

Σ̂G�H�ðp2Þ ¼ ΣG�H�ðp2Þ þ δM2
G�H� −

1

2
p2δZG�H�

−
1

2
ðp2 −M2

H�ÞδZH�G� ;

Σ̂H�H�ðp2Þ ¼ ΣH�H�ðp2Þ þ δM2
H� − ðp2 −M2

H�ÞδZH� :

ð4:11Þ

The aim now is to determine all the counterterms
entering these expressions. Note that the Goldstones will
mix, and we have singled out their appearance. Recall that
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the Goldstone bosons are not physical; they cannot appear
in initial or final states of a physical process. Thus, we do
not need to renormalize their wave function, and we can set
δZG0 ¼ δZG� ¼ 0. Moreover, δZA0

i G
0 and δZH�G� can also

be set to 0 since they also correspond to transitions where a
Goldstone boson is on an external leg.

C. H�W� and A0
1;2Z

0 transitions

At tree level the gauge fixing eliminates mixing between
the gauge bosons and their corresponding Goldstone
bosons therefore compensating for such a mixing that
emerges from the gauge sector, LGV (the gauge covariant
kinetic term of the Higgs fields). We follow an approach
where the gauge fixing is unrenormalized. As a result of
shifting (both fields and parameters) in LGV , the massive
gauge bosons and the pseudoscalars (as well as the
Goldstones) will mix. Gauge invariance relates the
gauge-pseudoscalar transitions and the corresponding
Goldstones-pseudoscalar transition that we studied previ-
ously. Therefore we need to consider these transitions.
To get the remaining counterterms involving Goldstones,

δZG0A0
i
and δZG�H� , one also has to deal with new

transitions between gauge bosons and CP-odd or charged
Higgses. The expansion of the covariant derivative in the
kinetic part of the scalar Lagrangian gives the following
interaction terms:

LGV ¼ MZðcβ∂μa0d − sβ∂μa0uÞZ0
μ

−MWðiðcβ∂μh−d − sβ∂μh−u ÞWþ
μ þ H:c:Þ: ð4:12Þ

At tree level the combination of the scalar fields makes
up the Goldstone bosons, the first component of the
corresponding Higgs fields, namely

cβa0d − sβa0u ≡ ðPaa0Þ1 ¼ ðP0Þ1 ¼ G0;

cβh−d − sβh−u ≡ ðUðβÞh−Þ1 ¼ ðH−Þ1 ¼ G−: ð4:13Þ

Take, for example, the case of the pseudoscalar/neutral
Goldstones. Before applying the wave function renormal-
ization, the shifts amount to

ðPaa0Þ1 → ððδPaÞa0Þ1 ¼ ððδPaÞP−1
a P0ÞÞ1

¼ ððδPaÞP−1
a Þ1iðP0Þi: ð4:14Þ

This shift alone, prior to wave function renormalization,
will introduce A0

i Z
0 transitions, but not G0Z0. This is easy

to see. With Pa ¼ P̂ð3Þ
a UðβÞð3Þ and using the fact that

ðP̂ð3Þ
a Þ1i ¼ δ1i allows one to write

X3
i¼1

ððδPaÞP−1
a Þ1iðP0Þi

¼ −
X2
i¼1

A0
i

s2β
2

ðcβPa;ðiþ1Þ2 þ sβPa;ðiþ1Þ1Þ
δtβ
tβ

¼ −
X2
i¼1

A0
i

s2β
2

P̂a;i1
δtβ
tβ

: ð4:15Þ

Including the wave function renormalization, we obtain

δLGV
neutral ¼

MZ

2

	�
δZZZ þ δZG0 þ δM2

Z

M2
Z

�
∂μG0Z0

μ

þ δZZγ∂μG0Aμ

þ
X2
i¼1

�
δZG0A0

i
− s2βP̂a;i1

δtβ
tβ

�
∂μA0

i Z
0
μ



:

ð4:16Þ
The first line of the equation above is the usual SM term.
However, there remains nonvanishing transitions between
pseudoscalars and the Z0 boson, leading to the following
self-energies:

Σ̂A0
i Z

0ðp2Þ ¼ ΣA0
i Z

0ðp2Þ þMZ

2

�
δZG0A0

i
− s2βP̂a;i1

δtβ
tβ

�
:

ð4:17Þ

Following the same steps, the transition between the
charged Higgs and the W� boson is given by

Σ̂H�W�ðp2Þ ¼ ΣH�W�ðp2Þ þMW

2

�
δZG�H� − s2β

δtβ
tβ

�
:

ð4:18Þ

In the linear gauge we have used, there is a simple Ward
identity that we derived in [45] starting from the Becchi-
Rouet-Stora-Tyutin variation on the correlator between the
Z-boson ghost and the pseudoscalar h0jc̄ZðxÞA0

i ðyÞj0i. In
theMSSM this identity was also formally set up at all orders
in perturbation theory in [63]. The identity can readily be
extended to theNMSSMusing the unitarity properties of the
matrix P̂a. This induces an identity that sets the following
strong constraints:

p2Σ̂H�W�ðp2ÞþMW�Σ̂H�G�ðp2Þ

¼−
MW�

2
ðp2−M2

H�Þ
�
δZH�G� þ s2β

δtβ
tβ

−F�ðp2Þ
�
;

p2Σ̂A0
i Z

0ðp2ÞþMZ0 Σ̂A0
i G

0ðp2Þ

¼−
MZ0

2
ðp2−M2

A0
i
Þ
�
δZA0

i G
0 þ s2βP̂a;i1

δtβ
tβ

−F 0ðp2Þ
�
;
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where

F�ðp2Þ ¼ α

8πs2W

X3
i¼1

�
c2βSh;i1Sh;i2 þ

s2β
2

ðS2h;i2 − S2h;i1Þ
�

× B0ðp2;M2
W;M

2
h0i
Þ; ð4:19Þ

F 0ðp2Þ ¼ α

2πs22W
P̂a;i1

X3
i¼1

�
c2βSh;i1Sh;i2

þ s2β
2

ðS2h;i2 − S2h;i1Þ
�
B0ðp2;M2

Z;M
2
h0i
Þ; ð4:20Þ

withB0ðp2;M2
V;M

2
h0i
Þ the scalar two point function [64] and

V ¼ W, Z.
The importance of these identities is that the H�G� and

H�W� transitions (and their neutral counterparts) are
not independent. In particular, we will be interested in
setting an on-shell renormalization scheme whereby,
on the mass shell, a transition between the charged
Higgs and the charged Goldstone, and any of the neutral
pseudoscalars and the neutral Goldstone boson, does not
occur at one loop. In doing so, the identification that is
made for these states at tree level is maintained. The
previous identities show that at p2¼M2

H� and p2 ¼ M2
A0
i
,

transitions between these physical scalars and the corre-
sponding gauge bosons do not occur either. It means that
one can simultaneously set

Σ̂H�W�ðM2
H�Þ ¼ Σ̂H�G�ðM2

H�Þ ¼ 0;

Σ̂A0
i Z

0ðM2
A0
i
Þ ¼ Σ̂A0

i G
0ðM2

A0
i
Þ ¼ 0: ð4:21Þ

From Eqs (4.17), (4.18), and (4.21) we derive

δZG�H� ¼ s2β
δtβ
tβ

−
2

MW�
ΣH�W�ðM2

H�Þ;

δZG0A0
i
¼ s2βP̂a;i1

δtβ
tβ

−
2

MZ
ΣA0

i Z
0ðM2

A0
i
Þ: ð4:22Þ

The Higgs masses that appear as arguments of the
two-point function in the equations above are taken as
the tree-level masses in order to be consistent with a fully
one-loop treatment. These equations allow one to fix all
wave function renormalization constants pertaining to the
Goldstone bosons, and this will then leave us to deal with
the system of the physical Higgses: the charged Higgs, the
pair of pseudoscalars A0

i , and the three CP-even neutral
Higgses h0i . Likewise we deal with the gauge bosons whose
renormalization goes now exactly the same way as the
renormalization of the gauge sector within the SM. For
the latter we follow the on-shell scheme adopted in [62].
Note that although this procedure permits us to decouple
the Goldstones from the physical fields, to fully determine

the values of δZG�H� and δZG0A0
i
we still need to define a

renormalization condition on δtβ. This will need an input
from the physical Higgses to which we now turn.

D. Renormalization conditions from the
Higgs self-energies

With the Goldstone bosons now set aside, the renor-
malized self-energies of the Higgses in Eqs. (4.9), (4.10),
and (4.11) take the same form, allowing for one-loop
transitions between them. Again, we require that the mixing
between any two particles of the same CP parity must
vanish at the mass of any physical particle (on-shell
condition). The mass is defined as the pole mass of the
real part of the renormalized inversed propagator. In case of
mixing this requires solving a 3 × 3 (for the CP-even) and
2 × 2 (for the CP-odd) Higgs system of an inverse
propagator. At one loop, these equations are linearized
(see [45]). In this case, starting with a tree-level Higgs
mass, Mi;tree (i generically denotes h01;2;3; A

0
1;2; H

�), the
corrected one-loop mass is the solution of the equation

p2 −M2
i;tree − ReΣ̂iiðp2Þ ¼ 0 p2 ¼ M2

i;1 loop; ð4:23Þ
which, in the one-loop approximation, reads

M2
i;1 loop ¼ M2

i;tree þ ReΣ̂iiðM2
i;treeÞ

¼ M2
i;tree þ δM2

i þ ReΣiiðM2
i;treeÞ: ð4:24Þ

The above equation can be used in two ways. If all
counterterms entering in δM2

i have been fixed (and hence
are known), the above equation calculates the finite
correction to the tree-level mass. The ultraviolet finiteness
of the corrected mass is a very powerful check on the
implementation of the one-loop setup. We may also use one
or some of the masses of the Higgses as input parameters in
order to solve for one or some of the counterterms to the
underlying parameters that enter in δM2

i . In this case

M2
i;1 loop ¼ M2

i;tree ≡M2
i;input → δM2

i ¼ −ReΣiiðM2
i;treeÞ:

ð4:25Þ
For instance, taking the charged Higgs mass MH� as an
input parameter gives

δM�
H ¼ −ΣH�H�ðM2

H�Þ: ð4:26Þ

We also impose that the residue of the propagators for an
on-shell physical field be equal to one such that

ReΣ̂0
iiðM2

i;treeÞ ¼ 1 with
∂Σ̂0

iiðp2Þ
∂p2

¼ Σ̂0
iiðp2Þ; ð4:27Þ

which then fixes the diagonal entries of the wave function
renormalization constants such that
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δZi¼ReΣ0
iiðM2

i;treeÞ ðfor example;δZh0i
¼ReΣ0

h0i h
0
i
ðM2

h0i
ÞÞ:

ð4:28Þ

We also impose that no mixing occurs between two
same-parity fields when any of them is on shell. This
condition translates into

ReΣ̂0
ijðM2

i;treeÞ ¼ ReΣ̂0
ijðM2

j;treeÞ ¼ 0 for i ≠ j; ð4:29Þ

which then fixes the nondiagonal elements of the wave
function renormalization matrices such that

δZij ¼ 2
ReΣijðM2

j;treeÞ þ δM2
ij

M2
j;tree −M2

i;tree
i ≠ j: ð4:30Þ

An example of the latter is

δZh0i h
0
j
¼ 2

ReΣh0i h
0
j
ðM2

h0j
Þ þ δM2

h0i h
0
j

M2
h0i
−M2

h0j

i ≠ j: ð4:31Þ

V. RENORMALIZATION SCHEMES

The definition of the underlying counterterms involves
solving a system of coupled equations that, moreover,
depends crucially on the choice of the input parameters, for
example, which set of physical masses or other observables
one chooses as input. In this respect, the wave function
renormalization constants are somehow easy to evaluate.
They involve a one-to-one relation and are independent
from each other. Their expression is independent of the
scheme.
We have also already specified; see Sec. II B for how the

SM parameters, g; g0; v ↔ MW;MZ; e that enter also in the
NMSSM, are renormalized.
The reconstruction of the counterterms of the nine

underlying parameters of the Higgs sector in Eq. (2.40) is
more complicated. Indeed, most of these parameters
contribute to more than one Higgs mass (and char-
gino/neutralino mass) or Higgs observable. Apart from
the tadpoles, defined from Eq. (3.11), it is not obvious
what the optimal set of the nine input parameters should
be in order to reconstruct these underlying parameters.
Leaving the tadpole aside, there remain six parameters to
determine in the Higgs sector. In principle, it is possible
to use only masses as inputs since the Higgs sector does
furnish six different Higgs masses, h01;2;3; A

0
1;2; H

�.
Technically, this requires the computation of the self-
energies. Note that four of these parameters, tβ, λ; μ; κ,
could also just as well be determined from the neutralino/
chargino sector. However, as we argued in detail in [44],
one cannot solve for the latter four parameters alone since
the chargino/neutralino system involves also the under-
lying parameters M1, M2 [the Uð1Þ and SUð2Þ gaugino

soft masses]. The two parameters Aλ and Aκ can only be
defined in the Higgs sector. The CP-even and CP-odd
masses depend on both these parameters, while the
charged Higgs mass depends on Aλ only. Because of
the intrinsic interdependence of the NMSSM observables
related to the Higgs sector (and the corresponding
neutralino/chargino sector), in all generality we need to
consider a system of counterterms for the eight under-
lying parameters that in a vector notation reads

p ¼
�

tβ; λ; κðmκÞ; μ|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
in ~χ andHiggs sectors

; Aλ; Aκ|fflffl{zfflffl}
Higgs

;M1;M2|fflfflfflffl{zfflfflfflffl}
~χ

�
; ð5:1Þ

for which we need to select eight input parameters with
at least two from the chargino/neutralino sector and at
least two from the Higgs system. Let us recall the
procedure and the most important points that we detailed
in [44] for reconstructing all eight counterterms. Injecting
eight input parameters we have to solve for0

BBB@
δinput1

� � �
� � �

δinput8

1
CCCA ¼ P8;paramδpþR8;residual; ð5:2Þ

where P8;param is an 8 × 8 matrix, and Rn;residual contains
other counterterms, such as gauge couplings, that are
defined separately. Using the physical mass of one of the
Higgs bosons as an input [see Eq. (4.26)] is a possible
choice in an OS scheme. Not all inputs need to be OS.
For an efficient resolution of Eq. (5.2), i.e., determining
the δp vector, one should break up the connecting matrix
P8;param into as many, possibly smallest rank, matrices as
possible,

P8;param ¼ Pm;param ⊕ Pp;param ⊕ � � � ; mþ pþ � � � ¼ 8:

ð5:3Þ
The choice of the input parameters will determine how
one can build the P8;param from smaller independent
blocks, and each choice will define a renormalization
scheme. It is important to seek a scheme where the
determinant of each submatrix Pp;param is not too small
(δp ∝ 1=DetP) in order not to introduce large coefficients
that would lead to large radiative corrections solely from
a bad choice of inputs. We will pursue the comparisons
between different schemes in the applications to Higgs
decays in Sec. VIII.

A. Mixed OS-DR schemes

Realizing that tβ is ubiquitous, it even enters the
determination of the wave function renormalization matri-
ces of the Higgses, a practical possibility is to take a DR
condition for tβ. In this case, the sectors for the Higgs, the
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neutralinos, and the charginos can be solved independently.
The counterterms for μ and the SUð2Þ gaugino mass term
M2 can be extracted from both chargino masses. Then, the
counterterms for the self-interacting singlet coupling κ
(through mκ), the Uð1Þ gaugino mass term M1, and the
singlet-doublet coupling λ can be obtained from the masses
of the neutralinos that should be chosen to represent the
mainly singlino, bino, and Higgsino neutralinos. We have
commented at length about the issue of a knowledge of the
nature (content) of the neutralinos in [44]. As concerns Aλ,
Aκ, a possibility is, for example, to use both CP-odd Higgs
bosons as inputs, δM2

A0
i
¼ ReΣA0

i A
0
i
ðM2

A0
i
Þ; i ¼ 1, 2. This

breakup corresponds to

P8;param ¼ P1;param|fflfflfflffl{zfflfflfflffl}
DR;tβ

⊕ P2;param|fflfflfflffl{zfflfflfflffl}
OS;M

χ�
1;2

⊕ P3;param|fflfflfflffl{zfflfflfflffl}
OS;M

χ0
1;2;3

⊕ P2;param|fflfflfflffl{zfflfflfflffl}
OS;MA0

1;2

:

ð5:4Þ
TheDRcondition for tβ in this scheme is anextensionof the

Dabelstein-Chankowski-Pokorski-Rosiek scheme [65–68],
used in the context of the MSSM, to the NMSSM [25],

δtβ
tβ

¼ 1

2
ðδZHu

− δZHd
Þj∞; ð5:5Þ

where δZHu
and δZHd

are the wave function renormalization
constants of the Hu and Hd doublets. The infinity symbol
indicates thatweonly take thedivergentpart of theexpression.
δZHu

and δZHd
are related to the wave function renormaliza-

tion constants δZhihi [Eqs. (3.8)] through

δZHd
¼ 1

R

X3
i;j;k¼1

ϵijkSh;j3Sh;k2δZhihi ;

δZHu
¼ 1

R

X3
i;j;k¼1

ϵijkSh;j1Sh;k3δZhihi ;

R ¼ −
X3
i;j;k¼1

ϵijkS2hi1S
2
h;j2S

2
h;k3; ð5:6Þ

where ϵijk is the fully antisymmetric rank 3 tensor
with ϵ123 ¼ 1.
In a DR scheme only the divergent part of the counter-

term is defined; i.e., any finite term is set to 0. Nonetheless,
the scheme and the one-loop result is still not fully defined
unless one specifies the renormalization scale μ̄. The latter
is the remnant scale introduced by the regularization
procedure, dimensional reduction. This class of renormal-
ization schemes will be denoted as tijkA1A2

. The letters i, j, k
refer to the neutralinos whose mass has been taken as input.
A1A2 is a reminder that the masses of the two physical
pseudoscalars have also been used as input.
This disentangled scheme is rather simple to implement

but can lead to a poor extraction of δλ, since this parameter
is present only in nondiagonal entries of the neutralino

mass matrix. A solution is to take another Higgs mass as
input to get this counterterm, but in this case the neutralino
and the Higgs sectors are no longer disassociated.

B. Fully on-shell schemes

For these schemes, the set of eight counterterms,
including tβ, are obtained from OS conditions based on
inputs taken from physical masses. As for the previous
scheme, δμ and δM2 will mainly be reconstructed from the
two chargino masses but not fully since there is still some
mixing introduced by tβ. In addition, it is natural to take the
neutralino that is mainly bino to extract δM1. The param-
eters δλ and δmκ can be extracted from either the neutralino
or the Higgs sector. As before, δAλ and δAκ have to be
extracted from two masses from the Higgs sector including
at least a mostly singlet Higgs. Finally, it is much better to
obtain δtβ from an additional Higgs input than from the
neutralino masses, as was shown in [44]. We are then left
with a system of eight equations, whose inversion will give
all these counterterms.
Different classes of such (fully) on-shell renormalization

schemes are possible. For instance, one can take one
example from the general class where the masses of the
two charginos are exploited. This furnishes a system of two
equations. One can then have variations on this scheme
depending on which source provides the other parameters.

(i) One scheme could use the masses of three neutra-
linos as well as the masses of both pseudoscalar
Higgses and the mass of the charged Higgs. This
choice is referred to as OSijkA1A2Hþ where i; j; k ¼
1;…; 5 designates the three chosen neutralinos,
usually a bino, a singlino, and a Higgsino.

(ii) Another choice could be based on the masses of
(only) two neutralinos, both pseudoscalar Higgses,
the charged Higgs, and an additional CP-even Higgs
different from the SM-like Higgs. This subclass is
labeled as OSijh{̂A1A2Hþ where i; j ¼ 1;…; 5 and
{̂ ¼ 1, 2, 3.

(iii) The third possibility is to use the mass of one
neutralino, the bino, and the masses of five Higgses,
in the obvious notation, OSih{̂hĵA1A2Hþ where i ¼
1;…; 5 and {̂; ĵ ¼ 1, 2, 3.

The numerical examples we will consider are based on
the OSijh{̂A1A2Hþ with an optimal choice for the neutralinos.

VI. CHECKS ON THE RESULTS AND TRACKING
THE SCHEME DEPENDENCE

To check the validity of our numerical results, we
perform several tests. The most powerful test consists in
checking the absence of ultraviolet divergences on all the
observables that we calculate. Ultraviolet divergences
appear in many intermediate steps of the calculations
and get canceled out by the counterterms for the underlying
parameters and/or among many diagrams. The ultraviolet
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divergences are encoded in the parameter CUV defined in
dimensional reduction as CUV ¼ 2=ϵ − γE þ lnð4πÞ where
ϵ ¼ 4 − d (d being the number of dimensions) and γE is the
Euler constant. We systematically check that the numerical
results, for one-loop corrections to masses or to decay
processes, are independent of CUV by varying this param-
eter from 0 to 107. We require that the numerical results
agree for at least seven digits (SloopS uses double precision).
Thus we ensure that physical processes are finite for all
renormalization schemes.
Finally, in schemes where at least one parameter is taken

to be DR, a dependence on the renormalization scale μ̄
remains, this can be used to quantify the scale dependence.

A. The β functions and the scale dependence

In order to gain a qualitative understanding of the
differences in the results for the one-loop corrections to
the decay processes we have studied in different schemes, it
is interesting to recall some simple arguments related to the
counterterms. The infinite (CUV) part of any counterterm is
obviously the same regardless of the renormalization
scheme, and this is one of the reasons our checks show
finiteness for the calculated observable for all schemes. The
finite part of the counterterm is, however, scheme depen-
dent. The difference in this finite part for a particular
parameter can be large between two schemes. This differ-
ence may get amplified in the computation of an observable
that depends strongly on this particular parameter. This
parametric dependence that can be derived from the study
of the observable at tree level is therefore an important
ingredient also. Take a parameter pi, and its counterterm,
within some scheme Qpi , reads

δpi=pi ¼ βpiðCUV þ lnðμ̄2=Q2
piÞÞ: ð6:1Þ

μ̄ is the scale introduced by dimensional reduction. βpi as
defined here is the one-loop β constant for the parameter pi.
It is scheme independent. Q2

pi encodes the scheme depend-
ence. In this notation, different schemes correspond to
different values of Q2

pi . Q
2
pi is the square of some mass

scale that represents both external momenta (corresponding
to the choice of the subtraction points) and internal masses
typical of two-point functions. All our renormalization
schemes are based on two-point functions. If Q2

pi is
dominated by a mass mP much larger than all other scales
in the problem, then Qpi

∼mP. Note, however, that these
two-point functions can also involve nonlog constant terms;
in our definition these nonlog terms are lumped into Qpi .
Within the same scheme, Q2

pi , the difference in the value of
the counterterm due to a change in the regularization scale μ̄
is a measure of βpi ,

Δμ2−μ1δpi=pi ¼ δpiðμ̄2Þ=pi − δpiðμ̄1Þ=pi ¼ βpi lnðμ̄22=μ̄21Þ:
ð6:2Þ

In our code this is how we determine βpi numerically. In our
numerical analysis in Sec. VIII these β constants have been
checked against the β functions given in [4]. Perfect agree-
ment has been found when specializing to the one-loop
result. This is a nontrivial check on our renormalization
procedure. For the so-called DR scheme, we set the
corresponding counterterm to

δDRpi=pi ¼ βpiCUV; ð6:3Þ

which in effect corresponds to choosing a scale Qpi ¼ μ̄.
The one-loop correction to an observable involves

calculating all the virtual two-point, three-point, …,
n-point functions that are specific for a given amplitude
(regardless of the scheme) and then including the counter-
terms for all parameters on which the amplitudeO depends
to obtain a finite result. The dependence of the amplitude
on a specific parameter pi, the parametric dependence
alluded to earlier, is obviously also very important. If at tree
level we slightly change the value of the parameter pi by an
amount δpi, we define the percentage change on the
observable as

δO
O

¼
X
i

κpi
δpi

pi
: ð6:4Þ

The sum is over all the independent parameters of the
model. If an observable is independent of a particular
parameter pi, then the corresponding κpi is κpi ¼ 0.1 In this
definition of the parametric dependence we are assuming
small, infinitesimal, δpi as is generally the case when δpi
stand for one-loop counterterms or else that the dependence
in the parameter pi is linear. With this proviso and to make
the discussion simple, if all counterterms are defined on
shell, or at some subtraction point according to Eq. (6.1),
then the virtual corrections for the amplitude can be written
in a very compact way as

δOOS=O ¼
X
i

βpiκpi lnðQ2
Δ=Q

2
piÞ: ð6:5Þ

The correction can be large if some β constants are large.
The corrections could also be amplified if the parametric
dependence on the parameter κpi is large and/or if there is a
large difference between some subtraction scale in defining
a particular parameter, namely Q2

pi and the scale that
defines the observable QΔ. QΔ can have contributions
not only from two-point functions but also from n-point
functions that we have lumped in its definition. In par-
ticular, our parametrization of QΔ can take into account
nonsingle logarithms (dilogarithms,…). In particular, some

1Strictly speaking the sum applies to each Lorentz structure
and/or helicity amplitude.
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one-loop dynamics may entail large genuine corrections
that are then translated here as large values of QΔ.
In a scheme where all counterterms are defined à la DR,

δODR=O ¼ lnðQ2
Δ=μ̄

2Þ
X
i

βpiκpi : ð6:6Þ

There is now a scale dependence that quantifies the
uncertainty in the one-loop calculation. The correction is
minimized for μ̄ ∼QΔ. Again if the virtual corrections are
dominated by single logs with an argument corresponding
to the largest scale/mass of the process, the corrections are
minimized for μ̄ corresponding to this highest scale.
In a mixed scheme such as the one we have taken with

p0 ¼ tβ and withQp0 the effective scale that defines the OS
definition of tβ, the result for the correction to the same
observable can be written as2

δOmixed=O ¼ δOOS=Oþ βp0κp0 lnðQ2
p0=μ̄

2Þ: ð6:7Þ

The β functions can also be derived from an analysis of
the renormalization group. The system of coupled equa-
tions at two loop is given in [4]. Specializing to one loop
and keeping only the dominant Yukawa coupling contri-
butions, the system is rather simple and can help under-
stand some features of the full one-loop calculation. With ht
the top-Yukawa coupling, the dominant contributions to the
running of the underlying couplings of the NMSSM, can be
cast as

1

h2t

dh2t
dτ

¼ 1

At

dAt

dτ
¼ 2

λ2
dλ2

dτ
¼ 2

μ2
dμ2

dτ
¼ 6h2t and

1

Aλ

dAλ

dτ
¼ 3h2t

At

Aλ
; ð6:8Þ

with τ ¼ ln μ̄2=16π2. What this shows is that if At ≫ Aλ,
then βAλ

can be quite large. Remember that a large At is
needed for inducing a large one-loop correction to the
MSSM-like CP-even Higgs (in the MSSM limit). Note that
Aκ and s ¼ μ=λ do not have top-Yukawa enhanced running.

B. Infrared divergences

Many of the Higgs processes we will study at the one-
loop level, will give rise to infrared divergences when
electrically charged particles are involved in the external
legs. The treatment of these divergences requires the
computation of real photon emission as described in
[44]. In a nutshell, for these 1 → 2 decays it is sufficient
to take an infinitesimally small photon mass as a regulator.
For more details see [44].

VII. THE BENCHMARK POINTS

Wewill concentrate on two quite distinct scenarios of the
NMSSM. The first scenario, Point A, is chosen with a very
small value of the mixing parameter λ in order to study the
MSSM limit. Point B has a much larger value of λ
exhibiting large mixing between the singlet and doublet
components.
Point A is defined through practically the same param-

eters that we chose to set the benchmark Point 3 in our
previous work [44] on the renormalization of the chargino/
neutralino sector. The defining parameters of Point A are
listed in Table I. An alert reader would have noticed that the
difference between Point 3 in [44] and Point A is that
the values of the stop masses were modified to ensure that
the one-loop corrected mass for the SM-like Higgs would
be compatible with the value observed at the LHC. Because
of the small value of λ, we are in the MSSM limit, which
requires us to take a fairly large value of the trilinear
parameter, At, in the stop sector. Observe that the value of
At is very large compared to Aλ with At=Aλ ∼ 27. This will
have important side effects apart from giving large correc-
tions to the lightest CP-even neutral Higgs. We have also
listed the value of the one-loop corrected mass for the SM-
like Higgs. We see that it is compatible with the mass of the
Higgs discovered at the LHC. Table I gives the value of this

TABLE I. Parameters for the benchmark Point A (in GeV for all dimensionful parameters). Qsusy is calculated as
Qsusy ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M~t1M~t2

p ¼ 1117.25 GeV. The derived values for the tree-level masses of all Higgses, charginos, and neutralinos are also
given. For this benchmark, the top mass, crucial for the computation of the Higgs mass in particular, is taken as Mt ¼ 175 GeV.

M1 700 λ 0.1 Aκ 0 m ~Q3
1740 m ~D; ~U1;2

1000

M2 1000 mκ (κ) 120 (0.1) At 4000 m ~U3
800 m ~L3

1000
M3 1000 μ 120 Ab 1000 m ~D3

1000 m~l3
1000

tβ 10 Aλ 150 Al 1000 m ~Q1;2
1000 m ~L;~l1;2

1000

ðMχþ
1
;Mχþ

2
;M ~χ0

1
;Mχ0

2
;M ~χ0

3
;M ~χ0

4
;Mχ0

5
Þ¼ð117.95;1006.61;112.77;123.80;241.57;702.82;1006.64Þ ðMH� ;MA0

1
;MA0

2
;Mh0

1
;Mh0

2
;Mh0

3
Þ¼

ð577.33;12.64;572.06;88.47;240.07;572.48Þ. The one-loop corrected SM-like Higgs mass is calculated to be 125.45 GeV in the
OS34h2A1A2Hþ and 126.47 GeV in the DR scheme with a scale at Qsusy. This difference is solely due to the scheme dependence.

2In a scheme where all parameters are defined on shell
according to Eq. (6.1), the numerical extraction of the β constants
through the μ variation is quite simple, it relies on the combi-
nation ðCUV þ ln μ̄2Þ. In a mixed scheme such as the one where tβ
is DR and the other underlying parameters are reconstructed from
solving a coupled system based on on-shell quantities through
masses as input, there may be a mismatch between the coefficient
multiplying CUV and ln μ̄2.
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mass in two schemes. The scheme difference is within
1 GeV. For more details on the correction to the Higgs
masses and tuned comparisons with other calculations we
refer to [69].
For the second benchmark, we borrowed parameters

very similar to Point TP4 in [69]. Benchmark B is defined
in Table II.
One notable difference between the two benchmark

points is the value of λ (6 times larger for Point B), such
that for Point B, Λv > MZ. As a consequence, for Point B
the tree-level value for the mass of the SM-like Higgs is
larger thanMZ, which is not the case for Point A. This is the
reason why for Point B the value of tβ is ∼2 and more
importantly At=Aλ ∼ 2.5 only. Still, one needs radiative
corrections to lift the mass of the SM-like Higgs from
103 GeV at tree level to about 125 GeV.
Because we will study Higgs decays either to other

Higgses or to neutralinos and charginos, the field content
(in terms of the current, unmixed, fields) is very important.
The field content or the purity of the physical fields, at tree
level, is given in Table III. If we arrange the physical fields
in terms of their dominant component, then for

Point A

ð~χ01; ~χ02; ~χ03; ~χ04; ~χ05; ~χþ1 ; ~χþ2 Þ ∼ ð ~H0; ~H0; ~S0; ~B0; ~W0
3; ~H

þ; ~WþÞ;
ðh01; h02; h03;A0

1; A
0
2Þ ∼ ðh0u; h0s ; h0d; a0s ; a0dÞ: ð7:1Þ

For Point A the states have a very high degree of purity.
Given the fact that ~χ01 is mostly Higgsino, ~χ03 is mostly
singlino, and ~χ04 mostly bino, this justifies the use of the
t134A1A2

mixed OS-DR renormalization scheme, following
the notation of Sec. VA, and the OS34h2A1A2Hþ renormal-
ization scheme, following the notation of Sec. V B, to
compute the one-loop corrections. Indeed, as discussed in
[44], in choosing the input masses, one should preferably
include the bino and singlino from the neutralino sector,
and the Higgsino when a third neutralino is to be used.
For Point B, there is strong mixing and only the lightest

physical pseudoscalar field can be described as pure;
nonetheless, we can write the dominant components,

TABLE II. Parameters for the benchmark Point B (in GeV for all dimensionful parameters). Qsusy is calculated as
Qsusy ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M~t1M~t2

p ¼ 753.55 GeV. The derived values for the tree-level masses of all Higgses, charginos, and neutralinos are also given.

M1 120 λ 0.67 Aκ 0 m ~Q3
750 m ~D; ~U1;2

1500

M2 300 mκ (κ) 59.7 (0.2) At 1000 m ~U3
750 m ~L3

1500
M3 1500 μ 200 Ab 1000 m ~D3

1500 m~l3
1500

tβ 1.92 Aλ 405 Al 1000 m ~Q1;2
1500 m ~L;~l1;2

1500

ðMχþ
1
;Mχþ

2
;M ~χ0

1
;Mχ0

2
;M ~χ0

3
;M ~χ0

4
;Mχ0

5
Þ¼ ð159.63;342.70;89.99;143.90;196.18;235.64;344.98Þ ðMH� ;MA0

1
;MA0

2
;Mh0

1
;Mh0

2
;Mh0

3
Þ ¼

ð469.09; 111.59; 481.56; 102.92; 142.84; 479.00Þ. The one-loop corrected SM-like Higgs mass is calculated to be 124.44 GeV in
the OS12h2A1A2Hþ and 121.62 GeV in the DR scheme with a scale atQsusy. To calculate the Higgs mass we have taken a running top mass
at the scale Qsusy ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M~t1M~t2

p
with Mt ¼ 146.94 GeV. This difference is solely due to the scheme dependence.

TABLE III. Components of the mass eigenstates for benchmark
Points A and B. The dominant component is highlighted.

Point A Point B

h01 h0d 1.1% 22.5%
h0u 98.6% 67.4%
h0s 0.3% 10.1%

h02 h0d 0.1% 0.%
h0u 0.3% 12.5%
h0s 99.6% 87.5%

h03 h0d 98.8% 77.5%
h0u 1.1% 19.7%
h0s 0.1% 2.8%

A0
1 a0d 0% 1.8%

a0u 0% 0.5%
a0s 100% 97.7%

A0
2 a0d 99.0% 76.9%

a0u 1.0% 20.8%
a0s 0.0% 2.3%

~χ01 ~B0 � � � 56.6%
~W0 � � � 32.3%
~h0 98.4% 10.3%
~S0 0.77% 0.8%

~χ02 ~B0 � � � 4.0%
~W0 � � � 2.6%
~h0 99.5% 19.3%
~S0 � � � 74.0%

~χ03 ~B0 � � � 10.1%
~W0 � � � � � �
~h0 0.9% 78.9%
~S0 99.1% 11.0%

~χ04 ~B0 99.6% 18.1%
~W0 � � � 12.3%
~h0 � � � 55.8%
~S0 � � � 13.7%

~χ05 ~B0 � � � 11.2%
~W0 99.3% 52.8%
~h0 0.69% 35.7%
~S0 � � � 0.4%
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Point B

ð~χ01; ~χ02; ~χ03; ~χ04; ~χ05; ~χþ1 ; ~χþ2 Þ ∼ ð ~B0; ~S0; ~H0; ~H0; ~W0
3; ~H

þ; ~WþÞ;
ðh01; h02; h03;A0

1; A
0
2Þ ∼ ðh0u; h0s ; h0d; a0s ; a0dÞ: ð7:2Þ

We will therefore use the t123A1A2
and OS12h2A1A2Hþ

renormalization schemes to compute the radiative
corrections.

VIII. HIGGS DECAYS

As an application to our setup for the renormalization of
the Higgs sector and its implementation in SloopS we
consider Higgs decays. This covers decays of Higgses into
neutralinos and charginos, final states with a single gauge
boson, as well as decays into lighter Higgses. These
channels also serve to test the most critical aspects of
the renormalization of the Higgs sector in the NMSSM. We
have not computed decays involving sfermions since the
sfermion sector does not introduce much novelty compared
to the MSSM, nor did we consider here decays into SM
fermions and pairs of gauge bosons. Note that we have
computed decays of the neutral Higgs scalars to γγ and Zγ
in an earlier publication [59]; however, these loop induced
decays do not require renormalization.
The importance of the radiative corrections and the choice

of the renormalization scheme underline the importance of
studying the parametric dependence. To gain an under-
standing, at least qualitatively, of the results of some of the
radiative corrections for the most prominent decays of the
Higgses, wewill first show, for both Points A andB, how the
value of the corresponding tree-level partial width changes
when one of the underlying parameters is modified around
each one of the reference points that define the model. As
discussed in Sec. VI A this will give us an insight on the
parametric dependence and an approximate extraction of the
coefficients κpi (see Eq. (6.4) when specializing to small
variations. We will, in fact, only show the variations of the
square of the coupling involved in the decay. This quantity
represents the square of the amplitude for the partial width,
leaving the phase space factor out. The rationale for doing
this is that a variation of the underlying parameters changes
also the values of themasses, which in turn change the phase
space and hence introduce another source of change in the
partial width. In the renormalization process some of the
masses of the particles taking part in the process are taken as
input parameters with a value fixed at all orders.
Before giving the results for the full one-loop corrections

to the decays, we will first extract the universal βpi for each
parameter pi as explained in Sec. VI A. For each scheme
we will also give the value of the finite term [see Eq. (6.1)]
of the counterterm to the parameter pi,

δpi

pi

����
finite

¼ βpi
lnðμ̄2=Q2

piÞ; ð8:1Þ

evaluated at a value of μ̄ that we will specify. For later
reference, observe that a large value of βpi will most certainly
entail a large value for the finite part of the corresponding
counterterm, unless μ̄2 ∼Q2

pi . Remembering our discussion
in Sec. VI A [see also Eqs. (6.5) and (6.6)], the βpi and the
finite part of the counterterms in a given scheme, together
with what we will have learned about the parametric
dependence, will help gain some understanding of the results
of the full one-loop corrections, the scheme dependence.One
could also learn whether there may be large genuine
corrections that stem from the two- and three-point functions
or even from the real corrections (bremmstrahlung).

A. Point A

For this point we will compute the full electroweak
corrections to the partial decay widths of CP-even, CP-
odd, and charged Higgs into other Higgses and super-
symmetric particles. For the latter, only neutralinos and
charginos are kinematically accessible. We will only
include the channels for which the branching ratio is above
1% as they are the only potentially relevant ones. Note that
the lightest CP-even and CP-odd Higgs decay only into
SM particles and that the components of the heavy doublet
Higgs (h03; A

0
2) also decay mainly into SM particles, in

particular bb̄. Only the singlet h02 decays dominantly in
the pair of singlets A0

1A
0
1. The partial widths of all the

channels considered are of the same order at tree level,
about 10−2 GeV.

1. Tree level. Parameter dependence on some
couplings in Higgs decays

As promised, and before going to the loop results, we
first look at the parametric dependence of some of the
decays we will study. The analysis of the parametric
dependence relies on the tree-level behavior of the observ-
ables as the underlying parameters are varied. Results of
these variations are shown in Fig. 1. The first general
observation is the smooth and almost linear dependence on
all the (independent) parameters, for all the coupling across
the whole range of the variations,�20%. This can easily be
understood if we recall that this point is characterized by
very small mixing λ where the physical states have a high
degree of purity, whereby the Higgs states h02; A

0
1 and the

neutralino χ03 are essentially singlet states. With this small λ
scenario, it is instructive to subdivide these decays into
three classes of decays

(i) All particles involved in the decay are predominantly
singlets, h02 → A0

1A
0
1.

(ii) None of the particle taking part in the decay is
singletlike with characteristics close to the MSSM
and with very little dependence on λ. Two examples
are shown in Fig. 1, A0

2 → ~χþ1 ~χ
−
1 and A0

2 → ~χ01 ~χ
0
1. In

the one-loop calculation we will also con-
sider h03 → ~χþ1 ~χ

−
1 .
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(iii) Decays involving both singlets and MSSM-like
particles. h03→h02h

0
1;A

0
2→Z0h02 [and its SUð2Þ equiv-

alent Hþ → Wþh02], and h03 → ~χ01 ~χ
0
3. These decays

are therefore sensitive to the mixing parameters due
to the addition of the singlet in theNMSSM. Formost
decays thismixingparameter is essentially λwhile for
h03h

0
2h

0
1 and A0

2 → Z0h02, Aλ is also crucial.
We first look at the decays which involve only singlets and
then none of them.

(i) h02 → A0
1A

0
1.

Similar to the self-coupling of the three CP-even
neutral Higgs singlets in Eq. (2.35), with Aκ ¼ 0 (at
tree level), theh02A

0
1A

0
1 interaction stems from the term

κ2S4 of the Higgs potential, Eq. (2.4). This trilinear
coupling is controlled by κ2s ∝ m2

κ=s ∝ λ=μm2
κ. The

relative variation of the square of the coupling

ΔG2
h0
2
A0
1
A0
1

G2
h0
2
A0
1
A0
1

∼ 2

�
Δλ
λ

þ 2
Δmκ

mκ
−
Δμ
μ

�
ð8:2Þ

is well rendered by this simple observation and
corresponds very well to the variations shown in
Fig. 1. The small ΔAκ variation in Fig. 1 can be
explained similarly from the Higgs potential. Con-
sidering that this coupling is solely within the singlet
sector, it is important to stress that the λ dependence
here is due to our choice ofmκ (rather than κ), λ, μ as
independent parameters.

(ii) A0
2 → ~χ01 ~χ

0
1 and A0

2 → ~χþ1 ~χ
−
1 .

A0
2 → ~χþ1 ~χ

−
1 is a MSSM-like decay with a very

small dependence on the mixing λ scenario and
practically independent of all other parameters.
h03 → ~χþ1 ~χ

−
1 shares these same features. A0

2 → ~χ01 ~χ
0
1

is quite similar, however, with some small depend-
ence that creeps in from the mixing between the
neutralinos. Still, as seen from Fig. 1 the λ depend-
ence is 4 times smaller, Δλ=2λ, as compared to the
situation when a singlet state is involved in the
decay. One can also note a small dependence on μ
(recall that the lightest neutralino is Higgsino-like)
as well as some tβ dependence. Overall the parametric

FIG. 1. Parameter dependence of (the square) of the couplings that enter some important decays, which we will study at one loop. We
look at the variation in the parameters tβ, λ; mκ; Aκ; Aλ, and μ. Plotted is the percentage variation measured from the reference point,
defined in Table I. We allow variations of �20% for these parameters apart from Aκ whose reference value, Aκ ¼ 0, is varied smoothly
up to 40 GeV. The solid (blue) lines represent the h03h

0
2h

0
1 coupling, the dash-dot-dot-dotted (purple) lines the A0

2Z
0h02 coupling, the

dotted (green) lines the h03 ~χ
0
1 ~χ

0
3 coupling, the dashed (red) lines the h02A

0
1A

0
1 coupling, the dash-dotted (turquoise) lines the A0

2 → ~χ01 ~χ
0
1

coupling, and the long-dashed (gray) lines the A0
2 ~χ

þ
1 ~χ

−
1 coupling.
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dependence for the decay A0
2 → ~χ01 ~χ

0
1 can be approxi-

mated as

ΔG2
A0
2
~χ0
1
~χ0
1

G2
A0
2
~χ0
1
~χ0
1

∼
1

2

�
Δλ
λ

þ Δμ
μ

−
Δmκ

mκ
−
1

2

Δtβ
tβ

�
: ð8:3Þ

We now turn to the decays that involve a mixture of
singlets/doublets states.

(i) h03 → h01h
0
2.

This decay is triggered from the coupling h0uh0dh
0
s

whose strength is controlled by λðAλ þ 2mκÞ; see the
term (3,1,2) in Eq. (2.35). With the values of mκ and
Aλ, this dependence gives a relative variation

ΔG2
h0
3
h0
1
h0
2

G2
h0
3
h0
1
h0
2

∼ 2

�
Δλ
λ

þ Aλ

Aλ þ 2mκ

ΔAλ

Aλ

þ 2mk

Aλ þ 2mκ

Δmκ

mκ

�

∼ 2

�
Δλ
λ

þ 0.38
ΔAλ

Aλ
þ 0.6

Δmκ

mκ

�
; ð8:4Þ

which is extremely well exhibited in Fig. 1.
(ii) h03 → ~χ01 ~χ

0
3.

This coupling is practically independent of the
dimensionful parameters; it is not generated in the
Higgs potential. The coupling is essentially dependent
only on themixing λ, with a very small tβ dependence,
as confirmed by Fig. 1. Thevariation, for the square of
the coupling, can be parametrized as

ΔG2
h0
3
~χ0
1
~χ0
3

G2
h0
3
~χ0
1
~χ0
3

∼ 2
Δλ
λ
: ð8:5Þ

(iii) A0
2 → h02Z

0.
The coupling responsible for this decay derives in

part from h0sa0dZ
0, and therefore the singlet-doublet

mixing is an essential ingredient. It is not a surprise
that the λ dependence is the same as with all other
decays in this class. As with the Higgs self-
couplings, the Aλ mixing is not negligible as well
as the tβ and μ dependences that enter through the
mixing in the CP-odd and CP-even Higgs sectors.
Apart from the λ dependence, deriving an analytical
formula for the relative variation is difficult. Ap-
proximately we get

ΔG2
ZA0

2
h0
2

G2
ZA0

2
h0
2

∼ 2

�
Δλ
λ

− 0.3
ΔAλ

Aλ
−
Δtβ
tβ

þ 0.4
Δmκ

mκ
− 1.2

Δμ
μ

�
: ð8:6Þ

This is in good agreement with the behavior seen in
Fig. 1. For later reference, observe also that it is this
coupling and the h01h

0
2h

0
3 that are most sensitive to a

variation in Aλ, albeit with opposite trends.

2. Point A: Finite part of the counterterms
and their β constant

The βpi
constants that we extract numerically (see

Sec. VI A) are given in units of 10−3,

βμ ¼ 5.70; ð8:7Þ

βtβ ¼ 8.44; ð8:8Þ

βλ ¼ 5.83; ð8:9Þ

βmκ
¼ 0.510; ð8:10Þ

βAλ
¼ 548.74: ð8:11Þ

Since Aκ ¼ 0, βAκ
is not amenable to a numerical extrac-

tion. However, we have checked that δAκ never plays a
significant role, so we will omit it from our discussion. The
most striking observation is that βAλ

is very large; it is
practically 2 orders of magnitude larger than the β of all the
other parameters. In sharp contrast, note the tiny βmκ

. When
we recall that for this point the ratio At=Aλ is very large,
At=Aλ ∼ 27, these findings are not surprising [see
Eqs. (6.8)]. We therefore expect a large scale dependence
in the DR scheme and probably a large correction for those
branching ratios that are most sensitive to Aλ. A glance at
Fig. 1 indicates thath03 → h01h

0
2 andA

0
2 → Zh02 [and its SU(2)

equivalent Hþ → Wþh02] are two such observables.
We have also derived the finite parts of the correspond-

ing counterterms. For this benchmark we take μ̄ ¼ Qsusy ¼
1117.25 GeV [see Eq. (8.1)]. As mentioned in Sec. VII, to
ensure an a priori good extraction of the finite parts, we
computed these finite parts in the schemes t134A1A2

and
OS34h2A1A2Hþ. The results are given in Table IV.
We note that at the level of the counterterms, the scheme

dependence in μ and mκ is extremely small (less than 1%)
and that in both schemes the values of these two counter-
terms are quite small. This is no surprise since μ can be
extracted almost directly from one of the chargino masses
while mκ was chosen as an independent parameter precisely
because it is an almost direct measure of the singlino mass in
this small λ limit. As for the counterterms for Aλ, λ, and tβ
we have large corrections. In the OS scheme δAλ=Aλ is more
than 100% and δtβ=tβ is also large. One would think that the
use of MHþ as an input in the OS scheme would have
constrained δAλ=Aλ far better. In fact, as can be derived from
the expression of the charged Higgs mass, Eq. (2.19), in
the limit of small λ and rather large tβ, as is the case
here, δM2

Hþ=M2
Hþ ∼ ðδAλ=Aλ þ 1.8δtβ=tβÞ=2. Therefore it
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is only the combination ðδAλ=Aλ þ 1.8δtβ=tβÞ of these two
counterterms that is well constrained. This is corroborated
by the values of these two counterterms in Table IV. This
issue with tβ is similar to the one encountered in the MSSM
where the Higgs masses alone are not efficient to reconstruct
tβ [45]. The good extraction of δAλ=Aλ in the t134A1A2

scheme is therefore a result of the DR condition δtβ=tβ ¼ 0.
This said, the t134A1A2

scheme gives a bad reconstruction of
δλ=λ. As argued in [44], in this small λ limit, the chargino/
neutralino masses are not sensitive to λ. This leads to a large
uncertainty on δλ=λ. The Higgs system with the inclusion of
the singlet dominated h02 in the OS scheme fares better as
demonstrated in Table IV.
To summarize, we foresee (i) in the DR scheme, a large

scale variation for decays and couplings that feature a non-
negligible dependence on Aλ (h03 → h01h

0
2, A

0
2 → Zh02, and

Hþ → Wþh02). The correction should minimize for
μ̄ ¼ Qsusy, (ii) in the t134A1A2

scheme the corrections should
be mainly driven by δλ. Since βλ is small, the scale
dependence in this mixed scheme is negligible. All decays
are affected expect those not involving any singlet state,
(iii) in the OS scheme one should pay special attention to
those observables where the Aλ dependence is important
and to a lesser extent the tβ dependence.

3. Full one-loop results

Full one-loop results for a variety of Higgs decays are
shown in Table V. For each decay we give the result for the
mixed t134A1A2

scheme, the on-shell scheme OS34h2A1A2Hþ ,
and the full DR scheme. For the t134A1A2

scheme we set the
scale at Qsusy ¼ 1117.25 GeV. For the DR scheme we
consider an implementation both with a scale at Qsusy and
with a scale QM that corresponds to the mass of the
decaying Higgs. For the important decays of h03; A

0
2; H

þ,
QM ∼Qsusy=2. A quick glance at the table reveals that the
corrections in the DR scheme at Qsusy are quite small in
practically all channels. The same results at the scale QM

are within 2% except for the notable decays h03 → h01h
0
2,

A0
2 → Zh02, and Hþ → Wþh02 as a consequence of the very

large βAλ
. The results in the mixed scheme show a very

large and almost common correction of order 120%! (due
to the large δλ=λ ∼ 62% in this scheme) except for
h03 → ~χþ1 ~χ

−
1 , A

0
2 → ~χþ1 ~χ

−
1 , and A0

2 → ~χ01 ~χ
0
1. The corrections

in the OS scheme are small to moderate except for the same

notable decays where the scale dependence in the DR
scheme is large, h03 → h01h

0
2, A

0
2 → Zh02, and Hþ → Wþh02.

Following our discussion on the parametric dependence
and the values of the counterterms, as well as the β
functions, these results are easily understood. In fact, this
is in perfect agreement with the arguments we summarized
at the end of the preceding subsection.
The smallness of the radiative corrections in the DR

scheme seems to indicate that μ̄ ∼Qsusy is the effective
scale for all the decays in this model. This is also indicative
that genuine corrections beyond the running of the param-
eters are quite small. We can be more quantitative about the
differences between the schemes and the scale dependen-
cies by combining the parametric dependencies derived
from tree-level considerations in Eqs. (8.2)–(8.6) with the
values of the finite parts of the counterterms in Table IV,
which is Δpi → δpi. Let us go through the results of some
of the decays.

(i) h02 → A0
1A

0
1.

The scheme dependence of the relative correction
to the decay is contained in 2ðδλ=λþ 2δmκ=mκ −
δμ=μÞ ∼ 2δλ=λ. This contribution from the finite part
of the counterterms gives practically the full one-
loop correction in all the schemes; for instance, in
the OS scheme this contribution returns a −11.4%
correction by using the values given in Table IV.
This is another manifestation that genuine correc-
tions from three-point function contributions are
negligible. The scale dependence for the DR scheme
is tiny, indeed with the negligible βmκ

and with βλ ∼
βμ the difference in the correction between the scale
Qsusy andmh0

2
[using the general formula of Eq. (6.6)

for the amplitude] is 2ðβλ þ 2βmκ
− βμÞ lnðm2

h0
2

=

Q2
susyÞ ∼ −0.7%. This difference is an excellent

approximation to the full one-loop result.
(ii) A0

2 → ~χ01 ~χ
0
1, A

0
2 → ~χþ1 ~χ

−
1 , and h03 → ~χþ1 ~χ

−
1 .

We classified these decays in the second category
where all particles involved in these decays are
MSSM-like though with a very small singlet com-
ponent for the neutralino case. We note that for these
decays the scheme dependence is much smaller as
compared to the other categories. In particular, these
are the only decays where the relative one-loop
corrections are under control in the t134A1A2

scheme.
The largest correction in this class shows up for
A0
2 → ~χ01 ~χ

0
1 in the t134A1A2

scheme driven essentially
by the large value of δλ despite the small parametric
dependence of this parameter. Indeed, Eq. (8.3)
when interpreted in terms of counterterms is an
excellent explanation of the results we find for the
full corrections and the scheme dependence.

(iii) h03 → h01h
0
2.

Apart from the DR scheme with a scale at Qsusy

where the correction ismodest, all other schemes lead

TABLE IV. Finite parts of the various counterterms that play a
role in the parametric dependence of the partial widths computed
at μ̄ ¼ Qsusy ¼ 1117.25 GeV.

Scheme δμ=μ δtβ=tβ δλ=λ δmκ=mκ δAλ=Aλ

t134A1A2
−2.42% 0 62.26% −0.67% −5.49%

OS34h2A1A2Hþ −1.57% −80.69% −7.88% 0.3% 134%
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to large corrections. We verify, based on the para-
metric dependence in Eq. (8.4) and on the fact that
βAλ

≫βλ≫βmκ
, that the difference between the scales

inDR is indeed given by 2 × 0.38βAλ
lnðm2

h0
3

=Q2
susyÞ∼

−54%. The values for the corrections in the OS
scheme and the mixed scheme are also very well
approximated by the parametric dependence upon
replacing the variations by the corresponding coun-
terterms found in Table IV. In the OS scheme the
correction is driven essentially by the poor extraction
ofAλ while in themixed scheme it is again essentially
the imprecise input δλ=λ that is behind the large
correction.

(iv) A0
2 → Z0h02 and the equivalent Hþ → W−h02.
Because of the large running Aλ, it is sufficient to

consider Aλ when comparing the results in the DR
scheme at the two scales. The parametric dependence,
Eq. (8.6), explains very well the ∼40% difference
between the two scales in the DR scheme. The
difference between the OS scheme and the DR at
Qsusy is driven essentially by the determination of Aλ

and tβ, both of which are badly derived in the OS
scheme,whereas the discrepancy in themixed scheme
comes once again from a bad reconstruction of λ.

(v) All the remaining decays of Table IVare those where
the Higgses (CP-even, CP-odd, or charged) are
decaying into neutralinos/charginos involving the
mostly singlet ~χ03. These decays would vanish in the

λ → 0 limit. We studied the parametric dependence
of a representative of these decays earlier,
h03 → ~χ01 ~χ

0
3. We verified the strong λ dependence,

and noted a small tβ dependence (which takes place
in the neutralino/chargino sector). Translated in
terms of counterterms, the parametric dependence
is 2δλ=λ, which again explains extremely well the
almost uniform large correction, ∼120%, in the
t134A1A2

scheme. In the OS scheme, the corrections
are much smaller but the residual tβ dependence in
some of these decays is not totally negligible.

Point A is somehow pathological in the sense that it is
MSSM-like and the amount of mixing is small. This makes
it difficult to reconstruct all the parameters rather precisely.
The OS scheme would perform well if it were not penalized
by a very imprecise reconstruction of tβ, which impacts
badly on the reconstruction of Aλ. The mass of the charged
Higgs as an input only constrains a very specific combi-
nation of these two parameters. The MSSM is fraught with
the same problem of a reconstruction of tβ from the
Higgs masses alone. We have shown that in the MSSM
a very good scheme for extracting tβ relied on the decay
A0 → τ−τ− [45]. In the NMSSM, this issue needs to be
investigated in depth and is left for a future work.

B. Point B

The most crucial features to keep in mind when
reviewing the results for Point B, especially after what
we have seen for Point A, is the fact that λ is large (and
tβ small) and Aλ is smaller than At by only a factor of 2.
The last observation should mean that βAλ

should not be
excessively large. With such a value of λ (and Aλ) this
point constitutes a genuine example of the NMSSM, and
the branching ratios for the decays we consider here are
at least an order of magnitude larger than in Point A.
The difficulty now is that the notion of an almost singlet
(and MSSM-like) state will be lost, couplings between
the physical states will depend strongly on the pattern of
the mixing matrices. The study of the parametric
dependence of the couplings, and hence the decays,
on the underlying parameters is here even more impor-
tant. This is what we look at, at tree level, for a few
decays for which we have calculated the full one-loop
corrections.

1. Tree-level. Parameter dependence
on some couplings

Figure 2 shows the variations of some couplings when
some of the underlying parameters are perturbed within
�20%. For Point B we have also examined variations inM1

and M2, which we do not show in Fig. 2 to avoid clutter.
The most striking difference with Point A is the fact that for
the trilinear Higgs couplings, h03h

0
1h

0
2, h

0
3h

0
2h

0
2, and h

0
1A

0
1A

0
2,

the dependence on almost all parameters is large and highly

TABLE V. Partial decay widths of Higgs bosons in other Higgs
bosons and/or neutralinos, charginos, and gauge bosons at tree
level (in MeV) and the percentage relative full one-loop correc-
tion, in the mixed schemewhere only tβ is taken DR (t134A1A2

), the
evaluation is made at the scale Qsusy, the full OS scheme and full
DR at two scales, QM is taken to be the mass of the decaying
particle (see text for details of the schemes).

One loop

Tree level
[MeV] t134A1A2

OS34h2A1A2Hþ DRQM DRQsusy

h02→A0
1A

0
1

47.9 128% −12% 0.4% −0.4%
h03→h01h

0
2

22.1 116% 79% 52% −1.7%
h03→ ~χ01 ~χ

0
3

35.2 122% −3% 2% 0.3%

h03→ ~χ02 ~χ
0
3

33.8 126% −35% 3% 1.1%

h03→ ~χþ1 ~χ
−
1

45.5 1% −11% −9% −7.4%
A0
2→Z0h02 18.6 120% 80% −56% −14.5%

A0
2→ ~χ01 ~χ

0
1

33.0 28% 13% 0.3% −1.6%
A0
2→ ~χ01 ~χ

0
3

24.4 130% −31% 8% 6.2%

A0
2→ ~χ02 ~χ

0
3

30.2 122% −5% −0.4% −1.9%
A0
2→ ~χþ1 ~χ

−
1

55.1 −10% −1.5% −6% −8%
Hþ→Wþh02 20.1 119% 79% −56% −16%
Hþ→ ~χþ1 ~χ

0
3

64.0 125% −18% 3% 1.1%
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nonlinear even for parametric variations of about 10%. For
example, a 10% change in Aλ around its reference value
gives a variation of almost 100% on the trilinear Higgs
couplings. Recall here that tβ is small, but we can see that
small changes in this parameter give rise to dramatic
changes in the trilinear coupling. Decays involving two
Higgses and a gauge boson, one such coupling is
A0
1H

þW−, show also large deviations though not as
dramatic as for couplings involving three Higgses.
Decays of the Higgs into neutralinos/charginos such as
A0
2 → χþ1 χ

−
1 show much more moderate variations with

practically an almost linear dependence. Although not
shown in these figures, for decays into charginos and
neutralinos the effect of a change in the gaugino masses
M1, M2 is not totally negligible. For most decays the
parameters that lead to the largest changes are Aλ, λ; μ,
and tβ. Considering the highly nonlinear behavior of
these variations, a linear parametrization is justified only
for small variations. We will therefore first check whether
the finite parts of the counterterms in this model are small
enough. If so, we will give the parametrization as befits a

one-loop correction where the counterterms enter only at
first order.
In view of these preliminary observations, the two-body

decays studied here can be classified into three categories
depending on how many Higgses are taking part in
the decay:

(i) a single Higgs for decays into neutralinos and chargi-
nos, the amplitude will then involve the matrix Sh.

(ii) two Higgses and a gauge boson where in this case
the Higgses are of opposite parity hence involving
the product of the diagonalizing matrices Sh × Pa.

(iii) three Higgses where in the case of three neutral CP-
even Higgs the elements of ðShÞ3 enter and in the
case of a CP-even Higgs decaying into two pseu-
doscalars the amplitudes call for Sh × P2

a.
The dependence of these mixing matrices on the underlying
parameters, in particular λ; Aλ, is highly nonlinear when λ is
not small. In the latter case one expects that when more and
more Higgses are involved, as, for instance, in the case of
the Higgs self-couplings, the mixing matrices introduce
highly nontrivial dependencies.

FIG. 2. Parameter dependence on (the square) of the couplings that enter some important decays that we will study at one
loop. We look at the variation in the parameters tβ, λ; mκ; Aκ; Aλ, and μ. Plotted is the percentage variation measured from the
reference point. We allow variations of �20% for these parameters apart from Aκ whose reference value, Aκ ¼ 0, is varied smoothly
up to 40 GeV. The solid (blue) lines represent the h03h

0
2h

0
1 coupling, the long dash-dotted (purple) lines the HþW−A0

1 coupling, the
dotted (green) lines the A0

2A
0
1h

0
1 coupling, the dashed (red) lines the h03h

0
2h

0
2 coupling, and the dash-dotted (turquoise) lines the A0

2 ~χ
þ
1 ~χ

−
1

coupling.
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2. Point B: Finite part of the counterterms
and their β constant

We first list the β functions; in units of 10−3 they are

βμ ¼ 7.13; ð8:12Þ

βtβ ¼ −8.81; ð8:13Þ

βλ ¼ 10.22; ð8:14Þ

βmκ
¼ 6.19; ð8:15Þ

βAλ
¼ 61.36: ð8:16Þ

As expected, since the ratio At=Aλ has decreased by about a
factor of 10 compared to Model A, the value of βAλ

has
decreased by almost an order of magnitude; see Eq. (6.8).
Yet, this is still the largest β constant (6% rather than 1% for
the others).
The finite part of the counterterms (evaluated at

Qsusy ∼ 754 GeV) that we extract are given in Table VI.
All counterterms are of the same order, none exceeding 7%,
and in any case they are much smaller than some of the
large values we found for Point A. This rather precise
extraction has to do with the fact that, because of the not so
small mixing, a large number of observables, in particular
masses, are quite sensitive to the underlying parameters.
The fact that these values are not very large justifies
parametrizing the variation at first order in the counterterm.
The first derivative of the variation, at the origin, gives the
infinitesimal parametrization.

3. One-loop results and analysis of scheme dependence

A quick inspection of the results in Table VII reveals that,
if we leave out the decays of the category involving the
trilinear Higgs couplings, in particular the CP-even
h03 → h01h

0
2; h

0
2h

0
2, the radiative corrections are moderate,

especially compared to Point A. Overall, the OS scheme
performs quite well. In particular, the OS scheme returns the
smallest corrections for the problematic decays h03 →
h01h

0
2; h

0
2h

0
2. Still, in most cases the scheme dependence is

not negligible. This is not surprising considering the abrupt
variations we observed at tree level on the Higgs trilinear
couplings.

(i) Decays into charginos and neutralinos (A0
2 → ~χþ1 ~χ

−
1 ,

A0
2 → ~χ01 ~χ

0
1).

First observe that the scale dependence in these
decays is never larger than 2%. This is due in a large
part to the fact that the couplings involved in these
decays are insensitive to Aλ, a parameter that comes
with the largest β. The β constants for the other
parameters are all smaller than 1%. Besides, as
Fig. 2 confirms for A0

2 → ~χþ1 ~χ
−
1 , the parametric

dependence is quite small for these decays compared
to those where more than one Higgs is involved. We
can write

δΓA0
2
→~χþ

1
~χ−
1

Γ0
A0
2
→χþ

1
χ−
1

∼ 0.67
δλ

λ
þ 0.55

δμ

μ
− 0.3

δtβ
tβ

: ð8:17Þ

The differences between schemes are within about
10%, and the smallest corrections are usually ob-
tained in the DR scheme. The scheme dependence is
quite small for all the decays in this category apart
from the special case of A0

2 → ~χ01 ~χ
0
1. ~χ01 here is

dominated by the bino component but with a large
wino and Higgsino component. In this case we have
worked out the parametric dependence including the
M1 and M2 counterterms,

TABLE VI. Finite parts of the various counterterms that play a
role in the parametric dependence of the partial widths computed
at μ̄ ¼ Qsusy ¼ 753.55 GeV.

Scheme δμ=μ δtβ=tβ δλ=λ δmκ=mκ δAλ=Aλ

t123A1A2
−1.04% 0 3.71% −1.5% 6.85%

OS12h2A1A2Hþ −1.63% 6.50% 5.94 −1.52% 3.40%

TABLE VII. Partial decay widths of Higgs bosons in other
Higgs bosons and/or neutralinos, charginos, and gauge bosons at
tree level (in GeV) and the percentage relative full one-loop
correction, in the mixed scheme where only tβ is taken DR
(t134A1A2

) at the scale Qsusy, the full OS scheme, and the full DR
schemes at two scales.QM is taken to be the mass of the decaying
particle.

One loop

Tree level
[GeV] t123A1A2

OS12h2A1A2Hþ DRQM DRQsusy

h03→ ~χ01 ~χ
0
2

0.726 13.3% 14% 5% 3%

h03→A0
1Z

0 0.613 13% 3% −3% 8%

h03→h02h
0
1

0.341 −142% −25% −106% −50%
h03→h02h

0
2

0.514 51% 6% 13% −28%
A0
2→ ~χþ1 ~χ

−
1

1.523 9% 7% 2% 1%

A0
2→ ~χ01 ~χ

0
1

0.723 19% 32% 2% 2%

A0
2→Z0h02 0.638 −10% 12% −16% −9%

A0
2→A0

1h
0
1

0.415 −43% −0.3% −32% −17%
Hþ→ ~χþ1 ~χ

0
2

1.056 10% 6% 10% 8%

Hþ→Wþh02 0.609 −11% 11% −18% −10%
Hþ→WþA0

1
0.603 12% 2% −3% −9%

Hþ→ ~χþ1 ~χ
0
1

0.561 14% 21% 9% 9%
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δΓA0
2
→~χ0

1
~χ0
1

Γ0
A0
2
→~χ0

1
~χ0
1

∼ 1.1
δλ

λ
− 2.4

δμ

μ
þ 0.9

δtβ
tβ

þ 2.6
δM1

M1

− 0.9
δM2

M2

− 0.9
δmκ

mκ
: ð8:18Þ

The ∼10% difference between the t123A1A2
and the

OS scheme is essentially due to the tβ definition in
the two schemes. The relatively large correction of
32% in the OS scheme is, in fact, due to the addition
of many smaller contributions including M1, M2

(and μ), which all affect the neutralino sector.
(ii) Higgs decays into a vector boson and another Higgs

(A2→Z0h02;H
þ→Wþh02;H

þ→WþA0
1;h

0
3→A0

1Z
0).

The pattern of the corrections for these decays is
quite similar. In all the schemes, the one-loop
corrections aremoderate. They are, in absolute terms,
within 20% with a scheme difference that can attain
30%. In DR the scale dependence is about 6% when
we compare the values obtained at Qsusy ∼ 754 GeV
and at a scale about the mass of the decaying Higgs
∼480 GeV. For Hþ → WþA0

1, this is accounted for
by the Aλ running κHWA

Aλ
βAλ

lnðQ2
SUSY=M

2
H�Þ with

κHWA
Aλ

∼ 1 as can be inferred from Fig. 2.
(iii) h03 → h02h

0
1.

With three Higgses involved in the process, the
parametric dependence becomes very important.
Because of the large value of βAλ

compared to all
other β’s, one still expects the running to be
dominated by this parameter. Indeed, the corrections
in the DR schemes are not only quite large, −50% at
Qsusy ∼ 754 GeV, but they are also very sensitive to
the choice of scale since at the scale MHþ , which is
not even halfQsusy, the corrections more than double
to −106%. This is driven by the large variation due
to Aλ as observed in Fig. 2. One can approximate the
variation as 10βAλ

lnðQ2
SUSY=M

2
h0
3

Þ ∼ 60%. In fact,

the dependence in the counterterms can be worked
out more precisely,

δΓh0
3
h0
2
h0
1

Γ0
h0
3
h0
2
h0
1

∼ 1.3
δλ

λ
þ 16

δμ

μ
þ 11

�
1.15

δtβ
tβ

−
δAλ

Aλ

�

þ 0.2
δmκ

mκ
: ð8:19Þ

With the extracted values of the counterterms in the
OS and mixed schemes (written for μ̄ ¼ Qsusy) we
recover the differences shown in Table VII between
the OS and DR and t schemes. Note also the
“compensation” between the variation in tβ and Aλ

in the parametric dependence, which is effective in
keeping the correction in theOS schememanageable.
Although the scheme dependence is well under-

stood, the fact that the corrections in the DR scheme

at the scale Qsusy are large indicates that this scale is
not the most appropriate effective scale that mini-
mizes the correction. In this respect the OS scheme
gives a more “perturbative” prediction. Nonetheless,
a scale of Qeff ∼ 1.5Qsusy gives a correction of only
about 1%. An effective scale ∼1.2Qsusy reproduces
the result of the OS scheme. This shows that small
changes in the scale (aroundQsusy) reduce the results
quite significantly. This is driven mostly by the large
sensitivity in some of the parameters, essentially Aλ

whose β constant is the largest.
(iv) h03 → h02h

0
2.

The parametric dependence that tracks the dom-
inant variations are also very large here as we
remarked earlier. It can be approximated as

δΓh0
3
h0
2
h0
2

Γ0
h0
3
h0
2
h0
2

∼ 4
δλ

λ
− 8

�
δμ

μ
þ 1

2

δtβ
tβ

−
δAλ

Aλ

�
þ 0.3

δmκ

mκ
:

ð8:20Þ

Wenote that although theAλ dependence is large, it is
not as large as the one found for the h01h

0
2h

0
3 coupling.

Indeed, before performing the diagonalization to the
physical basis, this coupling would stem from the
h0sh0sh0d part of the potential whose strength is
λ2vd ∝ λ2cβ. This also explains the quartic depend-
ence on λ of the coupling. Even though the parametric
dependence on Aλ is more moderate than for h03h

0
2h

0
1,

it remains a strong parametric dependence in this
decay also.Add to this the fact that βAλ

is the largest of
all β, the large scale dependence is driven essentially
by βAλ

. For the coupling responsible for this decay, an
effective scale about twice lower thanwhatwas found
in h03h

0
2h

0
1 is required to bring the corrections to a

negligible level. Varying again by 30%Qsusy brings
the DR corrections in par with the correction in the
OS scheme. Equation (8.20)when combinedwith the
values of the finite part of the counterterms in the OS
scheme given in Table VI reproduce very well the
difference between the OS scheme and the DR
scheme.

(v) A0
2 → A0

1h
0
1.

For this decay the parametric dependence can be
approximated by

δΓA0
2
→A0

1
h0
1

ΓA0
2
→A0

1
h0
1

∼ 0.9
δλ

λ
þ 8.4

�
δμ

μ
þ 9

16

δtβ
tβ

−
7

16

δAλ

Aλ

�

− 1.1
δmκ

mκ
: ð8:21Þ

Once again, the correction for this trilinear Higgs
coupling is smallest in the OS scheme. The scale
dependence that can be seen from the two values in
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the DR scheme is not small. As has been a pattern
for other trilinear Higgs couplings, the rather large
scale dependence is also a sign of a large correction
in the mixed t123A1A2

scheme. The scale dependence
is driven essentially by βAλ

. Qeff ∼ 1.5Qsusy is the
effective scale where the corrections vanish in the
DR scheme. Note that this is the same effective
scale we found for h03 → h01h

0
1. The small correction

in the OS scheme is a result of a cancellation
between the contribution of the Aλ and tβ counter-
terms. Because in the t scheme, tβ is defined in DR,
this cancellation is not operative and again the
correction is dominated by Aλ.

To summarize the results for Model B, it is worth
stressing that in decays of Higgs into Higgses the OS
scheme performs quite well in the sense that it gives very
small corrections. There is a large scale dependence for
these decays, but the effective scale where the correction
vanishes in DR is, after all, not that much different from
Qsusy. Although βAλ

is about 6%, a value 10 times smaller
than in Model A, the parametric dependence in Model B is
strong, thus enhancing the loop correction. Decays into
charginos and neutralinos being much less sensitive to Aλ

do not show much scheme and scale dependence.

IX. CONCLUSIONS

With the renormalization of the Higgs sector, it is now
possible to compute full one-loop electroweak and QCD
corrections to masses, decays, and scattering processes in
the NMSSM with SloopS. This is particularly relevant as
experiments are improving the precision in the measure-
ments of Higgs and dark matter observables. Our compu-
tation of partial decay widths illustrates the importance of
pure electroweak corrections for Higgs decays into super-
symmetric particles and highlights the choice of the
renormalization scheme. Our setup allows us to choose
between the DR scheme, different on-shell schemes, and
“mixed” schemes whereby some conditions are imposed on
on-shell quantities and others taken as DR. This variety of
schemes has been implemented within SloopS. Comparing
different renormalization schemes is crucial to weigh the
theoretical uncertainties and the possible necessity of
higher order corrections. For this purpose, we discussed
at length how the choice of the minimal set of physical
masses to reconstruct the underlying parameters can affect
the numerical results and their reliability. We have found
large radiative corrections for some observables. Some of
these large corrections appear only in certain renormaliza-
tion schemes. In this case, when the scheme dependence is

large, this can also be accompanied by a large scale
dependence in the DR scheme. These large scheme
dependencies and large scale variations are due to a large
value of some β constants for some specific underlying
parameters and/or are associated with a large parametric
dependence of the observable upon this specific param-
eter. The latter situation occurs in a NMSSM with a
moderate λ. In the small λ scenarios, this parametric
dependence is not as large; however, many counterterms
are poorly reconstructed precisely because they are
extracted from a set of input masses with little sensitivity
on some of the underlying parameters. It has to be stressed
that, although easier to implement, taking only masses as
inputs may not be the optimal choice to renormalize the
model. When new particles are discovered, not only their
masses will be measured but so will the strength of their
production modes and their decays. These observables
will thus offer new possibilities for reconstructing the
fundamental parameters of the model that will not require
the knowledge of the complete particle spectrum. It
remains to be seen whether a more cleverly chosen
renormalization scheme, for example, one that uses the
partial width of a heavy Higgs decay as a renormalization
condition, would lead to better controlled corrections. In
the MSSM we have shown [45] that the decay of the
pseudoscalar Higgs to a pair of τ’s is an excellent
definition of tβ. Some of the large corrections we found
are also pathological in the sense that they are due to a
rather large value of At compared to the NMSSM
parameter Aλ. Such a discrepancy between At and Aλ is
responsible for a large βAλ

, which will then propagate into
the corrections of many Higgs observables, in particular
those for the Higgs self-couplings. A natural NMSSM
should not require very large values of At as what is
required for MSSM-like models (with λ ≪ 1); in this case
the one-loop corrections are contained and an on-shell
scheme is a quite judicious choice.
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