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If one removes any ad hoc symmetry assumptions, the general two-Higgs-doublet model should have
additional Yukawa interactions independent from fermion mass generation, in general involving flavor-
changing neutral Higgs couplings. These extra couplings can affect the discovered Higgs boson h through
fermion loop contributions. We calculate the renormalized hZZ coupling at the one-loop level and evaluate
the dependence on heavy Higgs boson mass and extra Yukawa coupling ρtt. Precision measurements at
future colliders can explore the parameter space, and can give stronger bounds on ρtt than the current bound
from flavor experiments. As a side result, we find that if ρtt cos γ < 0, where cos γ is the exotic Higgs
component of h, the ρtt-induced top loop contribution cancels against bosonic loop contributions, and one
may have alignment without decoupling, namely sinð−γÞ≃ 1, but exotic scalar bosons could have masses
of several hundred GeV.
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I. INTRODUCTION

The LHC has firmly established the 125 GeV Higgs
boson (h), and all data so far are consistent [1,2] with the
predictions of the Standard Model (SM). But, within
measurement errors, this certainly does not mean that
the Higgs sector must be minimal within SM. There is
no theoretical principle that requires the Higgs sector to be
composed of only one weak isodoublet, and it may well be
extended beyond the minimal.
With the existence of one doublet established, the

two-Higgs-doublet model (2HDM) is one of the sim-
plest and most reasonable extensions of the Higgs
sector, and often appears in beyond-SM new physics
models, such as supersymmetry (SUSY). There are
various types of 2HDMs; the most popular are those
with a softly broken Z2 symmetry [3], which forbids
flavor-changing neutral Higgs (FCNH) couplings. The
so-called 2HDM II, where each charge type of quarks
receives mass from its own separate Higgs doublet,
automatically arises with SUSY. In part because of this,
theoretical and phenomenological properties of 2HDMs
with Z2 symmetry have been studied extensively in
the literature [4]. However, since the Z2 symmetry is
ad hoc, the Yukawa matrices may become too restrictive
“artificially.” In the LHC era, the additional Yukawa
interactions should not be determined by such ad
hoc symmetries, but by experiments in a bottom-up
approach. After all, so far there is no indication of
SUSY at the LHC.
If the Higgs sector is extended to two Higgs doublets,

Φ and Φ0, there are in general two Yukawa interaction
matrices for each type of fermion charge. As one can
always rotate to the basis where only one scalar doublet
develops a vacuum expectation value (VEV), the Yukawa

matrix for the Higgs field with a nonzero VEV gives the
mass matrix, and hence gets automatically diagonalized,
and these masses and Yukawa couplings are now well
measured. However, the second Yukawa matrix (ρfij with
f ¼ u, d, e)—i.e., the Yukawa matrix for the scalar field
without a VEV—gives rise to additional Yukawa inter-
actions of the exotic scalar doublet, which would
naturally contain FCNH couplings. While it was the
latter couplings that led Glashow and Weinberg to impose
discrete symmetries [3] to forbid them, it was sub-
sequently pointed out that nature exhibits a fermion
flavor and mass pattern [5,6] that may not forbid
FCNH couplings involving the third generation [7],
and 2HDM without Z2 symmetry was called 2HDM
III. We shall just call it the general 2HDM. Some of the
most striking signatures of the scenario are t → ch [7,8]
or h → μτ decays [9].
Most components of the second Yukawa matrices have

been strongly constrained by various flavor experiments.
However, some components are still allowed to be Oð1Þ.
For example, the strongest constraint on ρtt ≡ ρu33 is
given by B̄0

d;s − B0
d;s mixing, but ρtt ∼ 1 is allowed

[10]. In this paper, we do not address FCNH couplings,
but would like to suggest indirect detection of the
additional Yukawa interactions via precision measure-
ments of Higgs boson h couplings at future colliders. The
effect of additional Yukawa interactions such as ρtt
appears as deviations in Higgs boson couplings from
SM prediction. Measurement accuracies will be dramati-
cally improved in the future, first at the high-luminosity
LHC (HL-LHC), and subsequently at the International
Linear Collider (ILC). For example, the expected uncer-
tainty (1σ) of the hZZ coupling is Oð1%Þ [11,12] and
Oð0.1%Þ [11] at the HL-LHC and ILC, respectively.
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Such precision measurements can probe coupling devia-
tions due to the extra Yukawa interactions.
We calculate the renormalized hZZ coupling at the

one-loop level in the on-shell and minimal subtraction
scheme. Although the one-loop corrections to Higgs
boson couplings have been well studied in the 2HDMs
with Z2 symmetry [13–20], such is not the case for
the general 2HDM. We evaluate not only fermion loop
contributions, but also scalar and vector boson loop
contributions. This paper focuses on the top quark
loop contributions to the hZZ couplings as a simple
first step. We evaluate numerically the dependence of
hZZ coupling on the heavy Higgs boson mass and the
additional Yukawa coupling parameter ρtt, and elucidate
“alignment without decoupling” [21–23] that the general
2HDM could harbor. That is, when the top loop
contribution cancels against the bosonic loop contribu-
tions, one could have alignment (h is close to SM
Higgs) without pushing the extra Higgs bosons to
become superheavy. We illustrate what parameter space
in ρtt the HL-LHC and ILC precision measurements can
explore for several heavy Higgs boson masses. We
discuss whether the precision measurements can give
a stronger bound on ρtt than the current bound from B0

d
and B0

s mixings, and the constraint from future prospects
for new scalar boson searches at the LHC.
This paper is organized as follows: In Secs. II and III,

we briefly review the tree-level properties of the 2HDM
Higgs potential and the Yukawa interaction, respectively, to
fix notation and motivate our study. We present our
calculational scheme in Sec. IV for one-loop corrections
to the Higgs boson couplings in the general 2HDM. In
Sec. V, we numerically study the deviation in hZZ coupling
as a function of ρtt and extra scalar boson masses, as well
as dependence on Higgs mixing, and then compare with
future precision measurement sensitivities. Conclusion is
given in Sec. VI, while various formulas are collected in the
Appendix.

II. HIGGS POTENTIAL

The Higgs potential of the general two-Higgs-doublet
model (2HDM) is given by

V ¼ μ211jΦj2 þ μ222jΦ0j2 − ðμ212Φ†Φ0 þ H:c:Þ
þ η1

2
jΦj4 þ η2

2
jΦ0j4 þ η3jΦj2jΦ0j2 þ η4ðΦ†Φ0ÞðΦ0†ΦÞ

þ
�
η5
2
ðΦ†Φ0Þ2 þ ðη6jΦj2 þ η7jΦ0j2ÞðΦ†Φ0Þ þ H:c:

�
;

ð1Þ

where μ212, η5, η6 and η7 can be complex, while the latter
two are absent from 2HDM with Z2 symmetries. The two-
doublet fields can be parametrized as

Φ ¼
� Gþ

1ffiffi
2

p ðϕ1 þ vþ iG0Þ
�
;

Φ0 ¼
� Hþ

1ffiffi
2

p ðϕ2 þ iAÞ
�
; ð2Þ

where, without loss of generality [24,25], Φ is taken as the
one with a nonzero vacuum expectation value (VEV), while
Φ0 has no VEV.
After imposing the minimization conditions, μ211 and μ212

are expressed in terms of other parameters as

μ211 ¼ −
η1
2
v2; μ212 ¼

η6
2
v2; ð3Þ

and the mass terms of the Higgs potential become

Vmass ¼ ðϕ1;ϕ2ÞM2
even

�
ϕ1

ϕ2

�
þ ðG0; AÞM2

odd

�
G0

A

�

þ ðG−; H−ÞM2
�

�
Gþ

Hþ

�
; ð4Þ

where the CP-odd M2
odd and the charged M2

� matrices are
diagonal, with nonzero eigenvalues given by

m2
A ¼ μ222 þ

v2

2
ðη3 þ η4 − η5Þ; ð5Þ

m2
H� ¼ μ222 þ

η3
2
v2: ð6Þ

For the CP-even M2
even matrix, one has

M2
even ¼

�
η1v2 η6v2

η6v2 μ222 þ v2
2
ðη3 þ η4 þ η5Þ

�
; ð7Þ

which is diagonalized by the rotation matrix R with mixing
angle γ,

RTðγÞM2
evenRðγÞ ¼

�
m2

H 0

0 m2
h

�
;

RðγÞ ¼
�
cos γ − sin γ

sin γ cos γ

�
; ð8Þ

where we keep the convention of 2HDM II, and H, h are
CP-even mass eigenstates. The mixing angle γ is expressed
by

sin 2γ ¼ 2η6v2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½v2ð2η1 − η3 − η4 − η5Þ=2 − μ222�2 þ 4ðη6v2Þ2

p :

ð9Þ

The isospin states ϕ1 and ϕ2 are related to the mass
eigenstates H and h by
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�
ϕ1

ϕ2

�
¼ RðγÞ

�
H

h

�
; ð10Þ

where h is the 125 GeV boson, and sin γ → −1 corresponds
to the SM, or alignment limit. For the decoupling limit in
which the extra Higgs bosons are much heavier than the
electroweak scale, i.e., ε≡ v2=m2

H;A;H� ≪ 1, the mixing
angle γ can be approximated by

cos γ ≃ FSignεþOðε2Þ; ðdecouplingÞ ð11Þ

where FSign is the sign of sin γ.
In summary, some parameters in the Higgs potential of

Eq. (1) are rewritten with physical parameters as

η1 ¼
1

v2
ðm2

Hc
2
γ þm2

hs
2
γÞ; ð12Þ

η3 ¼ −
2

v2
ðμ222 −m2

H�Þ; ð13Þ

η4 ¼
1

2v2
ð2m2

A − 4m2
H� þm2

h þm2
H

þ ðm2
h −m2

HÞc2γÞ; ð14Þ

η5 ¼
1

2v2
ð−2m2

A þm2
h þm2

H þ ðm2
h −m2

HÞc2γÞ; ð15Þ

η6 ¼
sγcγ
v2

ð−m2
h þm2

HÞ; ð16Þ

where sγ ¼ sin γ (and likewise for cγ, c2γ), and

μ211 ¼ −
1

2
ðm2

hs
2
γ þm2

Hc
2
γÞ; ð17Þ

μ212 ¼ −
s2γ
4
ðm2

h −m2
HÞ: ð18Þ

Note that η2, η7 and μ222 remain as free parameters, as they
cannot be expressed in terms of mass and mixing param-
eters as above. Altogether, there are nine independent
parameters in the potential.
Dimensionless parameters of the Higgs potential are

restricted by theoretical constraints. In this paper, we take
into account the following constraints:
(1) Perturbativity: The perturbative bound requires

that all dimensionless parameters be smaller than
some criterion constants, i.e., ηi ≤ ξi, i ¼ 1�7. In all
analyses in this paper, we take ξi ¼ 2. While some-
what arbitrary, the point is to keep Higgs parameters
in the perturbative realm.

(2) Vacuum stability: The vacuum stability bound
means the potential should be bounded from below
in all field directions. This requires the value of the
potential to be positive at large jΦj and jΦ0j. In the

analyses of this paper, we use the vacuum stability
condition given in Ref. [26].

III. YUKAWA INTERACTIONS

In this section, we discuss the Yukawa interaction.

A. Exotic Yukawas and the alignment limit

The general Yukawa Lagrangian for 2HDM is

−LYukawa ¼ Q̄L;iðV†
CKMÞilðκuluj ~Φþ ρuluj

~Φ0ÞuR;j
þ Q̄L;iðκdidjΦþ ρdidjΦ

0ÞdR;j
þ L̄L;iðκeiejΦþ ρeiejΦ

0ÞeR;j þ H:c:; ð19Þ

with

QL;i ¼
� ðV†

CKMÞijuL;j
dL;i

�
; LL;i ¼

� ðV†
MNSÞijνL;j
eL;i

�
;

ð20Þ

where VCKM and VMNS are the Kobayashi-Maskawa and
Maki-Nakagawa-Sakata matrices, respectively. In Eq. (19),
κfifj multiplied by v corresponds to the mass matrix as

mij ¼ δijκfifiv=
ffiffiffi
2

p
, because only Φ gives a VEV. On the

other hand, ρfifj are the additional Yukawa interactions of
the exotic doublet Φ0, which are in general not diagonal.
Rather than imposing a Z2 symmetry [3] to eliminate off-
diagonal FCNH couplings, the viewpoint promoted here is
that they should be as constrained by data, which is why we
call this the general 2HDM.
If ρfifj are Hermitian matrices, the interaction terms in

the mass basis are

LYukawa ¼ f̄iλhfifjhfj þ f̄iλHfifjHfj þ if̄iλAfifjAγ5fj

− ½ūiðVCKMρ
dPR − ρu†VCKMPLÞijHþdj

þ ν̄L;iðVMNSρ
eÞijHþeR;j þ H:c:�; ð21Þ

where

λhfifj ¼ −
mfi

v
sinð−γÞδij −

ρfifjffiffiffi
2

p cos γ; ð22Þ

λHfifj ¼ −
mfi

v
cos γδij þ

ρfifjffiffiffi
2

p sinð−γÞ; ð23Þ

λAff ¼
ρfifjffiffiffi

2
p : ð24Þ

As all evidence supports h being consistent with the
Higgs boson of the SM, we consider Yukawa coupling
constants close to the alignment limit. That is, we introduce
a parameter x defined as
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γ ¼ −
π

2
þ x; ð25Þ

where x → 0 corresponds to the alignment limit. In this
limit, the coefficients λϕfifj of the Yukawa interaction

vertex ϕf̄ifj can be approximated by

λhfifj ¼ −
mfi

v
δij −

xffiffiffi
2

p ρfifj þOðx2Þ; ð26Þ

λHfifj ¼
1ffiffiffi
2

p ρfifj −
mfi

v
δijxþOðx2Þ; ð27Þ

λAfifj ¼
1ffiffiffi
2

p ρfifjγ5 þOðx2Þ: ð28Þ

While h does pick up a small component of exotic
couplings (including FCNH), in this paper, we shall mostly
be interested in the extra ρtt coupling of exotic Higgs
bosons, where we have dropped the u quark superscript.
Wewould like to mention the difference between x and ε,

which is introduced in the previous section. While x → 0 is
the alignment limit, the limit ε → 0 means the decoupling
of the heavy exotic bosons. As can be seen from Eq. (11),
decoupling is a special case of alignment.

B. Experimental constraints on ρtt
Elements of ρfij for down-type quarks and charged

leptons are constrained rather strongly by various B-meson
decay and lepton flavor-violation processes [27]. One
should, however, keep an eye on ρe23 ≡ ρμτ, which can
generate h → μτ [9] with Yukawa coupling strength ρμτx
via Eq. (26). A hint from 8 TeV data by CMS [28] might
reappear in the 2016 data set at 13 TeV that is much larger
than that obtained in 2015. Similarly, ρu23 ≡ ρct may
generate t → ch decay [7,8], which is being pursued at
the LHC [29,30]. We note that if these decays are absent, it
does not necessarily imply small ρμτ and ρct, but may
reflect the alignment limit of x ∼ 0.
We are mainly interested in the extra diagonal coupling

ρtt of the exotic Higgs H, as the SM Yukawa coupling
λt ≡ κtt ≃ 1 for h is the largest known coupling. The
current bound on ρtt comes mainly from Bd;s mixing
and B → Xsγ. It is found [10] that the latest Bs mixing
data gives the 95% C.L. bound jρttj < 1 (−0.35 <
ρtt < 0.2) for ρct ¼ 0 (ρct ¼ 0.1), for charged Higgs boson
mass mHþ ¼ 500 GeV. For mHþ ¼ 500 GeV and ρct ¼ 0,
the region with ρtt < −1 and 0.6 < ρtt for ρbb ¼ κbb has
been excluded by data on the B → Xsγ process. However, if
jρbbj is less than about 0.005, ρtt is practically not con-
strained. In any case and for our purpose, if we consider the
situation where all components of ρfij matrices are zero
except for ρtt, the strongest bound is jρttj < 1 [10] (for
mHþ ¼ 500 GeV), which comes from Bs mixing. It is

intriguing that the second top Yukawa coupling could be as
strong as the SM Higgs boson.
Collider experiments can in principle provide constraints

on ρtt by direct search of the heavy scalar bosons.
Unfortunately, while mass bounds on exotic vector bosons
have been pursued in tt̄ resonance searches [31,32], the
situation is unclear when it comes to heavy scalars. This is
due to interference with the production of such a boson,
which involves the top quark in the triangle loop as a
consequence of ρtt ≠ 0.
The situation for a heavy Higgs boson search through the

gg → S → tt̄ process at the LHC has been assessed recently
in Ref. [33], where the expected 95% C.L. exclusion limits
on the top quark Yukawa coupling of additional CP-even
and CP-odd scalar bosons are evaluated assuming several
LHC scenarios. Although the simplified model in Ref. [33]
is not the same as the general 2HDM, for cos γ ≃ 0, i.e.,
x≃ 0, the results can be applied to the general 2HDM. For
the LHC at 13 TeV collision energy and with an integrated
luminosity of 30 fb−1 (i.e., 2016 data), one could survey
the region of ρtt > 2.4 by using the A → tt̄ process for
mA ¼ 500 GeV. For 300 fb−1, the expected bound is
improved to ρtt > 1.4 (ρtt > 2.6) for mA ¼ 500 GeV
(1 TeV) using conservative assumptions for efficiency
and systematic uncertainty, and to ρtt > 0.5 (ρtt > 0.9)
formA ¼ 500 GeV (1 TeV) using more aggressive assump-
tions. In the case where A is heavier, the exclusion limit on
ρtt becomes further relaxed.
It is in part this difficulty of probing ρtt directly at the

LHC via tt̄ scalar resonances that motivates our indirect,
precision measurement approach.

IV. RENORMALIZATION

We now discuss the renormalization of the scalar sector
towards the indirect, precision measurement approach.

A. Parameter shift

As mentioned in Sec. II, there are nine independent
parameters,

m2
h; m2

H; m2
A; m2

H� ; γ; v; μ222; η2; η7;

ð29Þ

which get shifted by

m2
ϕ → m2

ϕ þ δm2
ϕ; ðϕ ¼ h;H; A; andH�Þ; ð30Þ

γ → γ þ δγ; v → vþ δv; μ222 → μ222 þ δμ222; ð31Þ

η2 → η2 þ δη2; η7 → η7 þ δη7: ð32Þ

The CP-even, CP-odd and charged components of the
doublet fields are corrected by
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�
ϕ1

ϕ2

�
→ ~Zeven

�
ϕ1

ϕ2

�
;

�
G0

A

�
→ ~Zodd

�
G0

A

�
;

�
G�

H�

�
→ ~Z�

�
G�

H�

�
; ð33Þ

where ~Zeven, ~Zodd and ~Z� are real 2 × 2 matrices. We here
define ~Zodd and ~Z� as follows:

~Zodd ¼
�
1þ 1

2
δZG0 δCGA

δCAG 1þ 1
2
δZA

�
; ð34Þ

~Z� ¼
�
1þ 1

2
δZG� δCGH

δCHG 1þ 1
2
δZH�

�
: ð35Þ

For CP-even states, from Eqs. (10) and (33), the relation
between bare mass eigenstates and renormalized mass
eigenstates can be derived as

�
H

h

�
B

¼ Rð−γÞB ~Zeven

�
ϕ1

ϕ2

�

¼ Rð−δγÞRð−γÞ ~ZevenRðγÞ
�
H

h

�

¼ Rð−δγÞZeven

�
H

h

�
; ð36Þ

where Zeven is defined as

Zeven ¼
�
1þ 1

2
δZH δCHh

δChH 1þ 1
2
δZh

�
: ð37Þ

Therefore, CP-even mass eigenstates are shifted as

�
H

h

�
→

�
1þ 1

2
δZH δCHh þ δγ

δChH − δγ 1þ 1
2
δZh

��
H

h

�
: ð38Þ

We emphasize that the mixing counterterms δCXY are not
symmetric, i.e., δCHh ≠ δChH.
In addition to the above parameters, the counterterms of

two tadpoles for ϕ1 and ϕ2 should be introduced at higher
order:

T1 → T1 þ δT1; T2 → T2 þ δT2; ð39Þ

where T1 and T2 on the right-hand sides have to become
zero by minimization conditions of the Higgs potential.
Therefore, the renormalized tadpoles are

T̂1 ¼ δT1 þ T1PI
1 ; ð40Þ

T̂2 ¼ δT2 þ T1PI
2 ; ð41Þ

where T1PI
i are the one-particle irreducible (1PI) diagram

contributions to the tadpole of ϕi. Explicit forms of their
fermion loop contributions are given in the Appendix.

B. Renormalized two-point functions

The renormalized two point functions Π̂XY are expressed
as

Π̂hh½p2� ¼ ðp2 −m2
hÞδZh − δm2

h þ
s2γ
v
δT1

−
2sγcγ
v

δT2 þ Π1PI
hh ½p2�; ð42Þ

Π̂HH½p2� ¼ ðp2 −m2
HÞδZH − δm2

H þ c2γ
v
δT1

þ 2sγcγ
v

δT2 þ Π1PI
HH½p2�; ð43Þ

Π̂AA½p2� ¼ ðp2 −m2
AÞδm2

A − δm2
A þ Π1PI

AA ½p2�; ð44Þ

Π̂HþH− ½p2� ¼ ðp2 −m2
H�ÞδZH� − δm2

H� þ Π1PI
HþH− ½p2�:

ð45Þ

Renormalized scalar mixing effects are given by

Π̂hH½p2� ¼ p2ðδChH þ δCHhÞ þm2
hðδγ − δChHÞ

−m2
Hðδγ þ δCHhÞ

−
sγcγ
v

δT1 þ
c2γ
v

δT2 þ Π1PI
hH ½p2�; ð46Þ

Π̂AG½p2� ¼ p2ðδCAG þ δCGAÞ −m2
AδCAG þ 1

v
δT2

þ Π1PI
AG½p2�; ð47Þ

Π̂HG½p2� ¼ p2ðδCHG þ δCGHÞ −m2
H�δCHG þ 1

v
δT2

þ Π1PI
HG½p2�: ð48Þ

C. Renormalization conditions

In this section, we discuss how the counterterms can be
determined by the renormalization conditions.
We determine the counterterms of tadpoles by the

following conditions:

T̂h ¼ 0; T̂H ¼ 0; ð49Þ

hence

δTh ¼ −T1PI
h ; δTH ¼ −T1PI

H ; ð50Þ

where δTh;H are related to δT1;2 as
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�
δT1

δT2

�
¼ RðγÞ

�
δTH

δTh

�
: ð51Þ

Mass counterterms are determined by imposing on-shell
conditions to renormalized two-point functions [Eqs. (42)–
(45)], as follows:

Π̂ϕϕ½m2
ϕ� ¼ 0: ð52Þ

The counterterms are then given by

δm2
h ¼

s2γ
v
δT1 −

2sγcγ
v

δT2 þ Π1PI
hh ½m2

h�; ð53Þ

δm2
H ¼ c2γ

v
δT1 þ

2sγcγ
v

δT2 þ Π1PI
HH½m2

H�; ð54Þ

δm2
A ¼ Π1PI

AA ½m2
A�; ð55Þ

δm2
H� ¼ Π1PI

HþH− ½m2
H��: ð56Þ

By imposing the conditions

d
dp2

Π̂ϕϕ½p2�jp2¼m2
ϕ
¼ 0;

d
dp2

Π̂G0G0 ½p2�jp2¼m2

G0
¼ 0;

d
dp2

Π̂GþG− ½p2�jp2¼m2

G�
¼ 0; ð57Þ

wave function renormalization is fixed as

δZϕ ¼ −
d

dp2
Π1PI

ϕϕ ½p2�jp2¼m2
ϕ
; ð58Þ

δZG0 ¼ −
d

dp2
Π1PI

G0G0 ½p2�jp2¼m2

G0
; ð59Þ

δZG� ¼ −
d

dp2
Π1PI

G�G�½p2�jp2¼m2

G�
: ð60Þ

We impose the following conditions on mixing two-
point functions of renormalized fields:

Π̂AG½m2
A� ¼ Π̂AG½0� ¼ 0; Π̂HG½m2

H�� ¼ Π̂HG½0� ¼ 0;

ð61Þ

such that mass eigenstates are diagonalized on mass shell.
This determines the renormalization conditions for δCAG,
δCGA, δCHG and δCGH:

δCAG ¼ 1

m2
A

�
δT2

v
þ Π1PI

AG½0�
�
; ð62Þ

δCGA ¼ 1

m2
A

�
−
δT2

v
− Π1PI

AG½m2
A�
�
; ð63Þ

δCHG ¼ 1

m2
H�

�
δT2

v
þ Π1PI

HG½0�
�
; ð64Þ

δCGH ¼ 1

m2
H�

�
−
δT2

v
− Π1PI

HG½m2
H��

�
: ð65Þ

For the CP-even states, as in the case of the CP-odd
states, we should impose the on-shell condition on the
two-point function,

Π̂hH½m2
h� ¼ Π̂hH½m2

H� ¼ 0; ð66Þ

which leads to the relations between δγ, δChH and δCHh:

δA ¼ 1

m2
H −m2

h

�
−
2sγcγ
v

δT1 þ
2c2γ
v

δT2

þ Π1PI
hH ½m2

h� þ Π1PI
hH ½m2

H�
�
; ð67Þ

δB ¼ 1

m2
H −m2

h

ðΠ1PI
hH ½m2

h� − Π1PI
hH ½m2

H�Þ; ð68Þ

where

δA≡ 2δγ − δChH þ δCHh; δB≡ δChH þ δCHh: ð69Þ

In order to fix the three counterterms δγ, δChH and δCHh,
an additional condition is required. We employ a minimal
subtraction renormalization condition to the three-point
functions, which requires δChH to absorb only the divergent
part of the HZZ vertex at the one-loop level for p2

1 ¼ m2
Z,

p2
2 ¼ m2

Z, q
2 ¼ m2

H:

Γ̂1
HZZ½m2

Z;m
2
Z;m

2
H�jdiv:part ¼ 0; ð70Þ

where Γ̂1
HZZ is the scalar part of theHZZ vertex function, as

defined through

Γμν
φZZ¼Γ1

φZZg
μνþΓ2

φZZ
pμ
1p

ν
2

m2
Z
þ iΓ3

φZZϵ
μνρσ

p1;ρp2;σ

m2
Z

: ð71Þ

By using Eqs. (67), (68) and the minimal subtraction
condition given in Eq. (70), we obtain explicit formulas
for δγ, δChH and δCHh:

δγ ¼ 1

2
ðδA − δBþ 2δChHÞ; ð72Þ

δChH ¼ −
NC

f sγ
32π2v2

fcγð−2m2
f þ ρ2ffv

2 þ 2v2ρijρjiÞ

− 2
ffiffiffi
2

p
vsγmfρffgΔ; ð73Þ

δCHh ¼
1

m2
H −m2

h

ðΠ1PI
hH ½m2

h� − Π1PI
hH ½m2

H�Þ − δChH; ð74Þ

where Δ≡ 1=ϵ − γE þ ln 4π þ ln μ2.
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D. Renormalized vertices

The renormalized scalar form factor of the ϕZZ vertex
(ϕ ¼ h, H) is composed of the tree-level contribution, the
counterterms, and 1PI diagram contributions:

Γ̂1
ϕZZ½p2

1; p
2
2; q

2� ¼ Γtree
ϕZZ þ δΓϕZZ þ Γ1;1PI

ϕZZ ½p2
1; p

2
2; q

2�:
ð75Þ

The counterterms are given by

δΓ1
hZZ ¼ 2m2

Z

v2
sinð−γÞ

�
δm2

Z

m2
Z
−
δv
v
þ 1

2
δZh þ δZZ

�

þ 2m2
Z

v
cos γδCHh; ð76Þ

δΓ1
HZZ ¼ 2m2

Z

v
cos γ

�
δm2

Z

m2
Z
−
δv
v
þ 1

2
δZH þ δZZ

�

þ 2m2
Z

v
sinð−γÞδChH; ð77Þ

where δm2
Z and δZZ are the mass counterterm and wave

function renormalization of the Z boson, respectively, and
their explicit formulas are given in Ref. [15]. We note that
Eqs. (76) and (77) have no δγ dependence, the reason of
which can be traced to Eq. (38).
We here define the renormalized scaling factor of the

hZZ couplings in the following way:

κZ ¼ Γ1
hZZ½ðmh þmZÞ2; m2

Z;m
2
h�

Γ1
hZZ;SM½ðmh þmZÞ2; m2

Z;m
2
h�
; ð78Þ

where Γ1
hZZ;SM is the renormalized hZZ coupling function

in the SM. We will numerically evaluate the deviation of κZ
from 1, defined as ΔκZ ≡ κZ − 1.
Before we enter numerical calculations, in order to

understand the parameter dependence of ΔκZ, we give
an approximate formula for the one-loop corrected hZZ
coupling that is effective in the decoupling limit—i.e., the
limit of ε ≪ 1. We further expand ΔκZ in ε:

ΔκZ ≃ ðsinð−γÞ − 1Þ − 1

6

1

16π2
X

φ¼H;A;H�
cφ

m2
φ

v2

�
1 −

μ222
m2

φ

�
2

þ
ffiffiffi
2

p
NC

t

16π2
mt

v
ρtt cos γsin2γ

�
ð2 − ln½m2

H�Þ

− 2½B0½m2
h;mt;mt� − 4m2

t
d

dp2
B0½p2;mt;mt�jp2¼m2

h
� þ 2½ðv2f þ a2fÞP1 − ðv2f − a2fÞP2�

�

≃ −
η26
2
ε2 −

1

6

1

16π2
X

φ¼H;A;H�
cφ

m2
φ

v2

�
1 −

μ222
m2

φ

�
2

−
ffiffiffi
2

p
NC

t

16π2
mt

v
ρttη6ε

�
ð2 − ln½m2

H�Þ − 2½B0½m2
h;mt;mt�

− 4m2
t

d
dp2

B0½p2;mt;mt�jp2¼m2
h
� þ 2½ðv2f þ a2fÞP1 − ðv2f − a2fÞP2�

�
þ 1

16π2
Oðε2Þ; ð79Þ

where cφ ¼ 2 (1) for φ ¼ H� (H, A), NC
t ð¼ 3Þ is the color

factor of t, B0 is a Passarino-Veltman loop function [29],
and P1;2 are combinations of various Passarino-Veltman
loop functions, defined as

P1 ≡ B0½ðmh þmZÞ2;mt;mt� þ B0½m2
Z;mt;mt�

þ 2B0½m2
h;mt;mt� þ ð4m2

t −m2
h − 2mhmZÞ

× C0½ðmh þmZÞ2; m2
Z;m

2
h;mt;mt;mt�

− 8C24½ðmh þmZÞ2; m2
Z;m

2
h;mt;mt; mt�

≃ −22.4; ð80Þ

P2 ≡ B0½ðmh þmZÞ2;mt;mt� þ B0½m2
Z;mt;mt�

þ ð4m2
t −m2

hÞC0½ðmh þmZÞ2; m2
Z;m

2
h;mt;mt; mt�

≃ −22.6: ð81Þ

The first, second and third terms in Eq. (79) correspond
to the tree-level, extra scalar boson loop and fermion loop

contributions, respectively. Small ε is the decoupling limit,
which is a special case of alignment.
For the top quark loop contributions enclosed by fg in

Eq. (79), the first, second and third terms come from
diagrams (a), (b) and (c) in Fig. 1, respectively. Besides ρtt
dependence, these dominant fermion loop contributions
have the mixing suppression factor cos γ (or ε). Other con-
tributions coming from fermion loops, such as ρfij (i ≠ j)
contributions, have square or higher power of cos γ (ε)
suppression. Thus, contributions from off-diagonal ele-
ments of the ρ matrices are subdominant in the alignment
limit. In addition, the contributions from all kinds of
fermion (f0) loops except the top quark are suppressed
by mf0=v, so that they are also subdominant.
To facilitate our numerical study, let us utilize Eq. (79) to

discuss the radiative corrections to κZ and sinð−γÞ. The
tree-level contribution to the scaling factor κZ is

κtreeZ ¼ sinð−γÞ; ð82Þ
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which is keeping just the first term in Eq. (79), and tree
level means arising from the renormalized Higgs potential,
such that sinð−γÞ is a renormalized quantity. The other
terms in Eq. (79) come from bosonic and fermionic loops;
hence we define the radiative shift due to loops,

Δloop ≡ κZ − sinð−γÞ ¼ Δbosonic
loop þ Δρtt

loop; ð83Þ

where κZ is the renormalized scaling factor of Eq. (78), and
one can identify the bosonic- vs ρtt-induced top loop terms
in Eq. (79). ThatΔloop contains both extra scalar boson loop
and ρtt-induced top loop contributions is a general result,
not just in the decoupling limit of Eq. (79).
Let us comment briefly on extra scalar boson loop

contributions to Δloop. As we can see from Eq. (79), the
magnitude of the extra scalar loop correction strongly
depends on the ratio of μ22 and v. If jμ22j is comparable
to v, the loop effect provides a quadratic powerlike effect as
m2

φ. On the other hand, for jμ22j2 ≫ v2, the loop effect
reduces as 1=m2

φ according to the decoupling theorem.
Details of the nondecoupling effect of extra scalar loop
corrections are explained in Ref. [15].
Finally, it is useful to discuss the sign for each con-

tribution. The tree-level and extra Higgs boson loop
contributions decrease the hZZ coupling from the SM
prediction. However, for the top quark loop effect induced
by ρtt, whether the contribution attenuates or amplifies the
value of the hZZ coupling depends on the sign of ρtt cos γ.
If ρtt cos γ is negative, the top quark loop contribution

becomes the only one that increases the hZZ coupling as a
main correction. But if it is positive, it further decreases the
hZZ coupling.

V. NUMERICAL CALCULATION

In our numerical calculation, we take the following
parameter values as input [34]:

mZ ¼ 91.1876 GeV; GF ¼ 1.16638 × 10−5 GeV−2;

α−1EM ¼ 137.035999; ΔαEM ¼ 0.06635;

mt ¼ 173.34 GeV; mb ¼ 4.66 GeV;

mc ¼ 1.27 GeV; mτ ¼ 1.77686 GeV;

mh ¼ 125 GeV: ð84Þ

Although we should investigate effects from all kinds of
ρfifj , in this paper we concentrate on investigating con-
tributions from ρtt to the hZZ vertex for simplicity. Namely,
we set ρff ¼ 0 for f ¼ u; c; d; s; b; e; μ; τ, and ρfifj ¼ 0 for
i ≠ j. Contributions from the matrix components ρfifj
(i ≠ j) and ρff are subdominant, as mentioned at the
end of Sec. IV D. In the following numerical calculation,
we set ρtt to be real for simplification of numerical
calculation. We should also take into account the constraint
from electroweak parameters S, T, U [35]. It is known that
when mass differences of both extra neutral scalar bosons
(H, A) and the charged scalar boson H� are too large, it
conflicts with the data on the T parameter [36]. Therefore,
we hold mA ¼ mH ¼ m�

H in the following numerical
calculation. In addition, too large a deviation from 1 of
sinð−γÞ conflicts with constraints from the electroweak
parameters. However, since we consider only the case of
sinð−γÞ > 0.98, parameter regions considered in this
paper never conflict with the constraints of the S, T, U
parameters.
We illustrate in Fig. 2 the range of variation for

Δloop by scanning mH and μ22 within the constraints of

FIG. 1. One-loop diagrams contributing to the renormalized
hZZ vertex.
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FIG. 2. Δloop vs mH in the alignment limit 0.99 ≤ sinð−γÞ ≤ 1, and under perturbativity and vacuum stability constraints. The red,
green and blue regions in the left (right) panel correspond to ρtt ¼ 0.5, 1.0, 1.5 (−0.5;−1.0;−1.5), respectively.
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perturbativity and vacuum stability. We also scan sinð−γÞ,
but we limit the range to 0.99 ≤ sinð−γÞ ≤ 1, as we are
interested in the ρtt effect in the alignment limit. In the left
(right) panel, the red, green and blue regions indicate the
results for ρtt ¼ 0.5, 1.0, 1.5 (−0.5;−1.0;−1.5), respec-
tively. Let us try to understand the features.
The peaking of jΔloopj at mH ∼ 950 GeV in the right

panel of Fig. 2 can be understood through the approximate
formula, Eq. (79). By the nondecoupling effect of the extra
scalar bosons within the perturbative bound, the strength of
jΔbosonic

loop j (ρtt ¼ 0 case) can increase as m2
H for moderate

mH values. But when mH reaches 950 GeVand beyond, the
perturbativity constraint (ηi <2) cuts in, and large mH
becomesdominatedby large jμ22j; henceΔloop shrinks toward
0 in the decoupling limit of m2

H ≫ v2. Thus, the value of
950 GeV reflects our somewhat arbitrary choice of perturba-
tivebound, jηij < 2, forHiggsself-couplings.As for the effect
of ρtt, since ρtt cos γ > 0, a stronger ρtt simply allows the
negative Δbosonic

loop effect to become even more negative.
More interesting is Fig. 2 (left), where ρtt cos γ < 0. For

this case, the ρtt effect is opposite in sign to the bosonic
loop contribution, and moves Δloop to be more positive. For
weak ρtt ¼ 0.5, one sees similar peaking in negative values
for Δloop as in Fig. 2 (right), but for mH ≲ 700 GeV, one
has Δloop ≳ 0 as ρtt’s effect takes over. For larger ρtt values
such as 1 or higher, Δloop is almost bound to be positive for
the fullmH range, and it can reach a few percent for lowmH
values. For large mH, decoupling again sets in, but more
swiftly than in Fig. 2 (right). All these features reflect the
fact that, for ρtt cos γ < 0, the ρtt effect competes and
cancels against the bosonic loop effect, and Δloop ∼ 0 is
allowed, which means κZ could still have the value
κtreeZ ¼ sinð−γÞ.
The last statement brings about an interesting point,

which we elucidate further. The properties of the 125 GeV
boson h are in remarkable agreement with those of the SM
Higgs boson, and in the 2HDM context this means we are
close to alignment, i.e., cos γ ≃ 0. The alignment limit is
usually understood in terms of the decoupling limit of
m2

H ≫ v2, which makes extra Higgs boson searches more
difficult. But could we have “alignment without decou-
pling” [21–23], such that the exotic Higgs bosons are not so
heavy, making them more amenable to search? We find
from our current study that with potentially large ρtt and
sizable exotic Higgs couplings, their effects could mutually
cancel for ρtt cos γ < 0, such that alignment is indeed
“accidental,” or it is nature’s design to keep the exotic
Higgs doublet well hidden.
We plot Δloop vs mH in Fig. 3 for 0.985 ≤ sinð−γÞ ≤

0.995 (solid band) and 0.95 ≤ sinð−γÞ ≤ 0.96 (dashed
band), where even sinð−γÞ≃ 0.955 is still close to align-
ment, with j cos γj≃ 0.3. The difference from Fig. 2 is that
sinð−γÞ ¼ 1 is excluded, so cos γ cannot vanish. One now
sees the trend that, as mH increases, Δloop extends to

more negative values, until the bands are cut off by the
perturbativity constraint. For the less aligned case of
sinð−γÞ ∼ 0.955, the drop can be as much as −0.07, while
for the closer-to-aligned case of sinð−γÞ ∼ 0.98, the drop is
milder and can be of order−0.04. The point is that we could
have Δloop ≃ 0 and sinð−γÞ≃ 1, but for moderate mH

values—alignment without decoupling. We note that, with
sinð−γÞ determined by the renormalized Higgs potential,
with parameters largely not measured yet, we are far from
knowing its true value, except that alignment seems to hold
to good extent.
With Δloop better understood, we turn to study

numerically

ΔκZ ≡ κZ − 1 ¼ ½sinð−γÞ − 1� þ Δloop; ð85Þ

the deviation of the κZ observable of Eq. (78) from 1. First,
we reiterate that, e.g. for ρtt ¼ 1 and for the case of 0.985 ≤
sinð−γÞ ≤ 0.995 in Fig. 3, one has jΔκZj≲ 0.01, which
is rather close to the alignment limit, but the full range of
mH up to the TeV scale is allowed. We illustrate in Fig. 4
the ρtt dependence of ΔκZ for mH ¼ 500 GeV, and for
sinð−γÞ ¼ 0.995, 0.99, 0.98 and 0.95, taking into account
constraints from perturbativity and vacuum stability on
Higgs sector parameters. For ρtt ¼ 0, the hZZ coupling is
affected by the tree-level mixing effect sinð−γÞ − 1, and the
bosonic loop contributions Δloop ¼ Δbosonic

loop . As discussed
at the end of Sec. IV D, these contributions reduce the value
of the hZZ coupling from the SM [15]. For cos γ < 0, the
top loop contributions with negative ρtt reduce further
the value of the hZZ coupling. However, if ρtt is positive,
the top loop effects increase the value of the hZZ coupling;
i.e., it works against the bosonic contributions. The value of
ΔκZ for sinð−γÞ ¼ 0.995, 0.99 and 0.98 turns positive at
ρtt ∼ 0.5, 0.7 and 1, respectively, for cos γ < 0. For
cos γ > 0, the inclination of ΔκZ is opposite to that of
the cos γ < 0 case.
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FIG. 3. Δloop vs mH near alignment 0.985 ≤ sinð−γÞ ≤ 0.995
(solid band) and 0.95 ≤ sinð−γÞ ≤ 0.96 (dashed band), with
settings the same as in Fig. 2.

PROBING EXTRA YUKAWA COUPLINGS BY PRECISION … PHYSICAL REVIEW D 96, 015033 (2017)

015033-9



If the hZZ coupling can be determined by experiment
with some precision, we can obtain the value of ρtt for a
given sinð−γÞ value. The combined LHC run 1 data [2] give
the 1σ range of −6% ≤ ΔκZ ≤ 13% for the hZZ coupling,
which is not yet discriminating enough to obtain informa-
tion on the value of ρtt, although it does disfavor sinð−γÞ ≲
0.95 for ρtt cos γ > 0, i.e., an expression for alignment.
With full HL-LHC data, and at future colliders such as the
ILC and the Compact LInear Collider (CLIC) [37], κZ
is expected to be measured with higher accuracy as
follows:[11,38]

σðκZÞ≃ 2% HL-LHC ½11�; ð86Þ

σðκZÞ≃ 0.5% ILC500 ½11�; ð87Þ

σðκZÞ≃ 0.8%CLIC350 ½39�: ð88Þ

Here ILC500 means the combination of a
ffiffiffi
s

p ¼ 250 GeV
run with Lðintegrated luminosityÞ ¼ 250 fb−1 and a

ffiffiffi
s

p ¼
500 GeV run with L ¼ 500 fb−1, while CLIC350 is the
staged CLIC [37] with

ffiffiffi
s

p ¼ 350 (and 380) GeV and
L ¼ 500 fb−1. With such precision obtainable in the future,
one could extract information on ρtt within uncertainties.
For example, formH ¼ 500 GeV, if ΔκZ is measured at the
central value of −5% at the HL-LHC (ILC500), jρttj≃
−0.74� 0.87 (�0.29) and þ0.42� 1.16 (�0.30) are
implied for sinð−γÞ ¼ 0.95 and 0.98, respectively, where
errors reflect both measurement and theoretical uncertain-
ties. Therefore, indirect detection by hZZ coupling mea-
surements can probe jρttj for a given value of sinð−γÞ, while
B physics experiments can place only an upper bound. We
have also made clear the usefulness of an ILC, even if the
energy is below the H production threshold.
It is difficult to compare the constraints from indirect

search with those from the direct search for H studied in
Ref. [33]—i.e., a heavy scalar search through the gg →
H=A → tt̄ process at the HL-LHC—because the latter
study corresponds to sinð−γÞ ¼ 1 in a 2HDM. Let us
compare the alignment limit [such as sinð−γÞ ¼ 0.995]
with the result of Ref. [33]. Suppose the measured central
value is ΔκZ ¼ 0 at the ILC500. In that case, as can be read
from Fig. 4, the 2σ constraint from the ILC is −0.1 <
ρtt < 1 for cos γ < 0 (−1 < ρtt < 0.1 for cos γ < 0). The
hZZ coupling precision measurement would complement
the direct search bound at the LHC, which gives ρtt < 0.5
[33], as it is hampered by complications from interference
with the tt̄ background. Our comparison, however, is based
on rough estimates, and we expect much progress by the
time these measurements are made.
For a final perspective, we display in Fig. 5 the range of

ΔκZ for a given value of ρtt, for mH ¼ 500 GeV (blue
shaded) and 1000 GeV (red shaded), and close to align-
ment, 0.98 ≤ sinð−γÞ ≤ 1. We take into account perturba-
tivity and vacuum stability bounds. For mH ¼ 500
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(1000) GeV, regions outside the dot-dashed (dotted) ver-
tical lines are excluded by Bs mixing data. The dependence
of ΔκZ on ρtt and sinð−γÞ are as shown in Fig. 4. Thus, as
ΔκZ for a given value of ρtt becomes more negative,
sinð−γÞ deviates more from 1 [see Eq. (85)].
We see fromFig. 5 (left) that, for sinð−γÞ > 0.98, themost

negative value for ΔκZ is about −7.5% for mH ¼ 500 GeV
and jρttj ¼ 1, with a similar number for mH ¼ 1000 GeV
and jρttj ¼ 1.5. Such reduction of hZZ coupling can be
uncovered by the HL-LHC [Eq. (86)] and would be quite
interesting. However, from Fig. 4 we see that, if sinð−γÞ is
smaller in value than 0.98, such negative values forΔκZ can
be realizedbynondecoupledbosonic loopeffects forρtt ¼ 0.
Without a clear handle on sinð−γÞ (except that it is close to
alignment), which depends onmany parameters, one cannot
really determine ρtt. Further measurements involving the
exotic Higgs sector may help. In the other direction, i.e., for
ΔκZ > 0, the situation is somewhat different.
We have commented that ρtt-induced top loop

effects would cancel against bosonic loop effects for
ρtt cos γ < 0, which could give rise to alignment without
decoupling, and hence they are of special interest. In order to
discuss the region where ΔκZ ≳ 0, as the possible range is
narrower, we give a zoomed-in view in Fig. 5 (right).
Whether mH ¼ 500 GeV or 1000 GeV, in part because of
the Bs mixing constraint, the hZZ coupling can at most be
∼1% larger than the SM prediction, which the HL-LHC does
not have the resolution to resolve (although it can confirm a
rather SM-like coupling, further supporting alignment).
The hZZ coupling, however, cannot be enhanced above

the SM without the ρtt effect of top loop diagrams.
Therefore, if such deviation is measured in future precision
measurements such as at the ILC500, it can probe the ρtt
coupling in the general 2HDM. For example, suppose ΔκZ
is measured with a central value þ1.5% at the ILC500 or
CLIC350. We mark this as a purple horizontal solid line in
Fig. 5 (right), with dashed and dot-dashed horizontal lines
indicating 2σ error bars at the ILC500 and CLIC350
[Eqs. (87) and (88)], respectively. In this case, jρttj ≲
0.65 (0.9) is excluded by 2σ for mH ¼ 500 (1000) GeV by
the ILC500, pointing towards an extra ρtt Yukawa inter-
action. Of course, if the central value falls at 1.0, then more
data would be needed. We remark that the comparison of
CLIC350 with ILC500 is also an issue of optimizing
collision energy and run time. If an evident deviation in
the hZZ coupling is not measured by the future precise
measurement, we are hopeful for exploration of ρtt by
additional Higgs boson searches using the signal gg →
H=A → tt̄ at the HL-LHC experiment [33].

VI. CONCLUSION

We have calculated the renormalized hZZ coupling at
the one-loop level by the on-shell and minimal subtraction
scheme in the general 2HDM without Z2 symmetry. We
numerically evaluated the one-loop corrected scaling factor

of the hZZ coupling, in order to investigate the possibility
of indirect detection of extra Yukawa interactions with
future Higgs boson coupling measurements. In this paper,
we focused on the top quark loop contributions and heavy
scalar boson loop contributions for simplicity.
By deriving an approximate formula for the renormal-

ized scaling factor κZ of the hZZ coupling, we make
explicit that the value of κZ is determined by ρtt, the mass of
extra scalar bosonsmφ, sinð−γÞ and the sign of cos γ. Since
κZ would be sinð−γÞ if one considers only the renormalized
Higgs potential, we evaluate how much κZ − sinð−γÞ is
shifted by radiative corrections in the alignment limit of
sinð−γÞ≃ 1. We scan mH and μ22, keeping the assumption
mH ¼ mA ¼ mH� under the constraints of perturbativity
and vacuum stability for some representative ranges for
sinð−γÞ. We find that the bosonic one-loop corrections
always shift κZ − sinð−γÞ in the negative direction, while
the top loop correction induced by ρtt depends on the sign
of ρtt cos γ. For ρtt cos γ > 0, the ρtt effect also shifts κZ −
sinð−γÞ in the negative direction, but for ρtt cos γ < 0, the
top loop effect shifts κZ − sinð−γÞ in the positive direction,
and can cancel against the bosonic effect. We have checked
numerically that the magnitude of radiative shift tends to
vanish in the decoupling limit of mφ → ∞.
The cancellation effect mentioned above illustrates

alignment without decoupling. With κZ − sinð−γÞ kept
small by this cancellation, even when both jρttj and extra
Higgs self-couplings are Oð1Þ or larger, the observed
“alignment” may be accidental, and exotic Higgs bosons
could be around several hundred GeV in mass, rather than
the usual perception that alignment is realized by the
decoupling limit of very heavy exotic Higgs. This makes
the general 2HDM rather interesting.
Future precision measurements such as those at the ILC

(and even the HL-LHC) can survey jρttj when the hZZ
coupling is significantly lower than 1, for each value of
sin γ andmφ, while B physics experiments and direct search
of heavy scalar bosons at the LHC can place only upper
bounds on jρttj. However, given that bosonic corrections
reduce the hZZ coupling also, if sinð−γÞ is less than, say,
0.98, one may not be able to tell apart a purely bosonic
effect, or that from ρtt. But we have numerically shown that
the hZZ coupling cannot be larger than the SM predicted
value without the ρtt-induced top quark loop effect,
although the effect is at the percent level. If the hZZ
coupling turns out to be 1% or more larger than the SM
value, the deviation can be sensed by the precision
measurement at the ILC, and would be definite evidence
of the extra Yukawa interaction. But the run time
needed may exceed the definition of ILC500. Of course,
a higher-energy ILC (or CLIC) could possibly discover the
exotic heavy Higgs bosons directly, in this interesting case
of alignment without decoupling.
Although we took into account the effect of extra

Yukawa interaction for only the top quark, other fermion
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loop effects arising from extra Yukawa interactions should
also be evaluated. For example, the effect of ρcc has not
been explored much by B physics and LHC experiments.
Furthermore, we should investigate not only the effects of
the real part of ρij, which is what is studied in this paper for
simplicity, but we should also explore the impact of the
imaginary part. The imaginary parts, or CP phases of ρij,
could be of essential importance for the generation of the
matter-antimatter asymmetry of the Universe.
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APPENDIX: 1PI DIAGRAM CONTRIBUTIONS

We give fermion loop contributions to the tadpoles, the
two-point functions and the three-point functions at the
one-loop level by using Passarino-Veltman functions [39]
whose notation is the same as those in Ref. [40]. Explicit
forms of 1PI bosonic loop contributions necessary for the
renormalized hZZ coupling are given in Ref. [15].
The 1PI tadpole diagrams for h, H are calculated by

T1PI
h;F ¼

X
f

4NC
f

16π2
λhffmfA½mf�; ðA1Þ

T1PI
H;F ¼

X
f

4NC
f

16π2
λHffmfA½mf�; ðA2Þ

where NC
f indicates the color factor of f, and explicit

formulas of λϕff are given in Eqs. (22) and (23).
The two-point function of h and h-H mixing are

corrected by the following 1PI diagrams:

Π1PI
hh;F½p2� ¼ −

4NC
f

16π2

�
ðλhffÞ2A½mf�

þ 1

2
ðλhffÞ2½4m2

f − p2�B0½p2;mf;mf�

−
1

2
ðδhfÞ2½2A½mf� − p2B0½p2;mf;mf��

�

−
NC

i cos
2γ

32π2
f2ρAijmimjB0½p2;mi;mj�

þ ρBij½A½mi� þ A½mj�
þ ðm2

i þm2
j − p2ÞB0½p2;mi;mj��g; ðA3Þ

Π1PI
hH;F½p2� ¼ −

4NC
f

16π2

�
λhffλHffA½mf�

þ 1

2
λhffλHff½2m2

f − p2�B0½p2;mf;mf�

−
1

2
δhfδ

H
f ½2A½mf� − p2B0½p2;mf;mf��

�

−
NC

i

32π2
sin γ cos γf2ρAijmimjB0½p2;mi;mj�

þ ρBij½A½mi� þ A½mj�
þ ðm2

i þm2
j − p2ÞB0½p2;mi;mj��g; ðA4Þ

where (i ≠ j)

δhf ¼ −
cos γ

2
ffiffiffi
2

p ðρff − ρ�ffÞ; ðf ¼ t; b; c; s; u; dÞ ðA5Þ

δHf ¼ −
sin γ

2
ffiffiffi
2

p ðρff − ρ�ffÞ; ðf ¼ t; b; c; s; u; dÞ ðA6Þ

ρAij ¼ ρijρji þ ρ�ijρ
�
ji; ðA7Þ

ρBij ¼ ρijρ
�
ij þ ρjiρ

�
ji: ðA8Þ

The 1PI diagram contributions to the hZZ and HZZ
vertex form factors defined in Eq. (71) are given by

Γ1;1PI
ϕZZ ðp2

1; p
2
2; q

2Þ

¼ −
X
F

8NC
fmf

16π2
m2

Z

v2
λϕff

× fðv2f þ a2fÞ½ð3p2
1 þ p1 · p2ÞC11 þ ð3p1 · p2 þ p2

2ÞC12

þ 2p2
1C21 þ 2p2

2C22 þ 4p1 · p2C23 þ 2ðD − 2ÞC24�
− ðv2f þ a2fÞ½ðp2

1 þ p1 · p2ÞC11 þ ðp1 · p2 þ p2
2ÞC12

þ p2
1C21 þ p2

2C22 þ 2p1 · p2C23 þ ðD − 2ÞC24�g;
ðA9Þ

where D ¼ 4 − ϵ=2, Cij ≡ Cij½p2
1; p

2
2; q

2;mt�, and vf ¼
If − sin2 θWQf and af ¼ If are the vector and axial vector
coupling coefficients of the Zf̄f vertex.
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