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In this paper, we consider the Standard Model (SM) with one family of vectorlike (VL) leptons, which
couple to all three families of the SM leptons. We study the constraints on this model coming from the
heavy-charged lepton mass bound, electroweak precision data, the muon anomalous magnetic moment,
lepton flavor violation, Higgs boson decay constraints, and a recently measured lepton nonuniversality
observable, RK�0 , along with RK . We find that the strongest constraints are coming from the muon g − 2,
Rμμ ¼ Γðh → μμÞ=Γðh → μμÞSM, Rγγ and BRðμ → eγÞ. Although VL leptons couple to all three families

of the SM leptons, the ratio of electron-VL to muon-VL coupling is constrained to be hλe=λμi≲ 10−4. We
also find that this model cannot fit the lepton nonuniversality discrepancies.
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I. INTRODUCTION

The Standard Model (SM) is a highly successful theory
in predicting and fitting many experimental measurements
with few exceptions. One of the discrepancies between the
SM prediction and experimental measurement that has been
known for a long time, is the muon anomalous magnetic
moment. The experimentally measured muon anomalous
magnetic moment and the SM prediction are given by [1]

aexpμ ¼ 11659209.1ð5.4Þð3.3Þ × 10−10;

aSMμ ¼ 11659180.3ð0.1Þð4.2Þð2.6Þ × 10−10: ð1Þ

The discrepancy between the experimental and theoretical
values is [1]

Δaμ ¼ aexpμ − aSMμ ¼ 288ð63Þð49Þ × 10−11: ð2Þ

A simple extension of the SM that is able to explain this
discrepancy is the SM with one family of VL leptons.
Dermíšek et al. showed that such a model with VL leptons
coupling exclusively to the muon is sufficient to explain
this discrepancy [2]. In a more natural theory, however, the
VL leptons would couple to all three families of the SM
leptons, which have been studied extensively in the
literature [3–6]. Due to the lepton flavor violating nature
of this model, the SM-VL couplings are known to be highly
constrained.
In this paper, we try to provide a holistic point of view of

the model in which the SM is extended by one family of VL
leptons and the VL leptons have nonzero couplings to all
three families of the SM leptons. We are interested in the
constraints on this model coming from satisfying the

heavy-charged lepton mass bound, electroweak precision
data, the muon g − 2, lepton flavor violation (LFV), Higgs
boson decay constraints, and a recently measured lepton
nonuniversality observable, RK�0 , along with RK . We find
that this model cannot simultaneously satisfy electroweak
precision measurements and the lepton nonuniversality
discrepancies. As for the other observables, we find that
the most constraining observables are the muon g − 2,
Rμμ ¼ Γðh → μμÞ=Γðh → μμÞSM, Rγγ and BRðμ → eγÞ.

II. MODEL

The model that we study is the SM with one generation
of VL leptons. The particles in the leptonic sector and their
corresponding quantum numbers are given in Table I, and
the leptonic sector Lagrangian is given by

L ⊃ −l̄LiyeiieRiH − l̄Liλ
E
i ERH − L̄Lλ

L
i eRiH

− L̄LλERH − ĒLλ̄LRH† −MLL̄LLR

−MEĒLER þ H:c:; ð3Þ
where i ¼ 1, 2, 3 is the SM family index.

A. Lepton mass matrix

Without loss of generality, we assume that the SM lepton
Yukawa matrix, ye, is already diagonalized. Thus, the
lepton mass matrix is

ð ēLi L̄−
L ĒL Þ

0
B@
yeiiv 0 λEi v

λLi v ML λv

0 λ̄v ME

1
CA
0
B@
eRi
L−
R

ER

1
CA≡ ēLaMeRa;

ð4Þ

where a ¼ 1;…; 5. Let UL and UR be unitary matrices that
diagonalize the charged lepton mass matrix,
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U†
LMUR ¼

0
B@

Mei 0 0

0 Me4 0

0 0 Me5

1
CA≡Mdiag; ð5Þ

and the mass bases are

½êL;R�a ¼ ½U†
L;R�a;a0 ½eL;R�a0 : ð6Þ

In this model, neutrinos are assumed to only obtain a VL
mass term, ML.

B. Z-lepton couplings

The Z-lepton couplings are

L⊃
g
cW

Zμ½ēLaγμðT3
aþ s2WÞeLaþ ēRaγμðT3

aþ s2WÞeRa�; ð7Þ

where sW ¼ sin θW , cW ¼ cos θW and T3
a is the SU(2)

generator where

T3
aeLa ¼ −

1

2
diagð1; 1; 1; 1; 0ÞeLa ≡ T3

LeLa ð8Þ

T3
aeRa ¼ −

1

2
diagð0; 0; 0; 1; 0ÞeRa ≡ T3

ReRa: ð9Þ

Since these matrices are not proportional to the identity
matrix, when we rotate to the lepton mass basis, the
Z-lepton couplings are not diagonal,

L ⊃ Zμ½ ¯̂eLaγμgZLabêLb þ ¯̂eRaγμgZRabêRb�; ð10Þ

where gZL;R ¼ ðg=cWÞ½U†
L;RðT3

L;R þ s2WÞUL;R�. Hence, this
model has LFV Z boson decays.

C. W-lepton couplings

The W-lepton couplings are

L ⊃
gffiffiffi
2

p Wþ
μ ½ν̄LaγμeLa þ ν̄RaγμeRa� þ H:c:; ð11Þ

where

νLa ¼
0
@ νLi

L0
L

0

1
A; and νRa ¼

0
@ 0i

L0
R

0

1
A: ð12Þ

Hence, in the charged lepton mass basis, we have

L ⊃ Wþ
μ ½ν̄LaγμgWLabêLb þ ν̄RaγμgWRabêRb� þ H:c:; ð13Þ

where gWL ¼ðg= ffiffiffi
2

p Þdiagð1;1;1;1;0ÞUL and gWR ¼ðg= ffiffiffi
2

p Þ×
diagð0;0;0;1;0ÞUR.

D. Higgs-lepton couplings

The couplings between the physical Higgs boson and the
leptons are

L ⊃ −
1ffiffiffi
2

p hēLaYe
abeRb þ H:c:; ð14Þ

where

Ye ¼
0
@ yeii 0 λEi

λLi 0 λ

0 λ̄ 0

1
A: ð15Þ

In the mass basis, we have

L ⊃ −
1ffiffiffi
2

p h ¯̂eLaŶ
e
abêRb þ H:c:; ð16Þ

where

Ŷe ¼ U†
LY

eUR: ð17Þ

This Yukawa matrix is nondiagonal because Yev ¼
M − diagð0; 0; 0;ML;MEÞ. Hence,

Ŷe ¼ Mdiag=v −U†
Ldiagð0; 0; 0;ML;MEÞUR=v; ð18Þ

where the second term is nondiagonal.

TABLE I. The quantum numbers of leptonic sector particles. i ¼ 1, 2, 3 is SM family index. The electric charge is
given by Q ¼ T3 þ Y=2 and the Higgs vacuum expectation value is 174 GeV. The fields h, ϕþ, and ϕ0 are the
physical Higgs boson and the would-be Nambu-Goldstone bosons, respectively, which give the W� boson and Z
boson mass.

SM VL

lLi ¼
�
νLi
eLi

�
eRi H ¼

� ϕþ

vþ ðhþ iϕ0Þ= ffiffiffi
2

p
�

LL;R ¼
�
L0
L;R

L−
L;R

�
EL;R

SUð2ÞL 2 1 2 2 1
Uð1ÞY −1 −2 1 −1 −2
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E. Lepton nonuniversality

To calculate the effect of this model on lepton non-
universality, we consider the following Hamiltonian [7,8]

Heff ¼ −
4GFffiffiffi

2
p VtbV�

ts
e2

16π2
X
j¼9;10

CjOj; ð19Þ

where

O9 ¼ ðs̄LγμbLÞð ¯̂eaγμêaÞ; ð20Þ

O10 ¼ ðs̄LγμbLÞð ¯̂eaγμγ5êaÞ: ð21Þ

The new physics (NP) contribution to these two Wilson
coefficients are coming from the box diagrams in Fig. 1
(see the appendix for calculation [9])

CNP
9 ¼ −

1

s2W

1

4
½Uþ

1 ðx; yÞg1ðx; yÞ þ Uþ
0 ðx; yÞg0ðx; yÞ�;

CNP
10 ¼ 1

s2W

1

4
½U−

1 ðx; yÞg1ðx; yÞ þ U−
0 ðx; yÞg0ðx; yÞ�; ð22Þ

where x ¼ M2
t =M2

W , y ¼ M2
L=M

2
W ,

YνL ≡
0
B@

yeii 0 λEi
λLi 0 λ

0 0 0

1
CA; ð23Þ

YνR† ≡
0
@ 0 0 0

0 0 0

0 λ̄ 0

1
A; ð24Þ

g1ðx; yÞ ¼
1

x − y

�
x2

ðx − 1Þ2 log x −
y2

ðy − 1Þ2 log y

−
1

x − 1
þ 1

y − 1

�
; ð25Þ

g0ðx; yÞ ¼
1

x − y

�
x

ðx − 1Þ2 log x −
y

ðy − 1Þ2 log y

−
1

x − 1
þ 1

y − 1

�
; ð26Þ

and

U�
1 ðx;yÞ ¼ j½UL�4aj2�j½UR�4aj2

þ 1

4

v2

M2
L
xyðj½YνRUL�4aj2�j½YνLUR�4aj2Þ; ð27Þ

U�
0 ðx;yÞ ¼−

v
ML

xyð½UL�4a½YνR�U�
L�4aþ½U�

L�4a½YνRUL�4a
�½UR�4a½YνL�U�

R�4a�½U�
R�4a½YνLUR�4aÞ: ð28Þ

III. PROCEDURE

The analysis of this paper is similar to that in [2]. A new
feature of this paper is that VL leptons are not assumed to
couple exclusively to muons. Instead, VL leptons couple to
all three families of SM leptons, and we are interested in the
constraints of the 10 model parameters: VL Masses, ML;E;
VL-VL couplings, λ, λ̄; and SM-VL couplings, λL;Ee;μ;τ. ye;μ;τ
are not free parameters because ye;μ;τ are chosen such that
me;μ;τ are the central values in Particle Data Group (PDG)
[1]. We considered ML;E ∈ ð100; 1000Þ GeV and
λ; λ̄ ∈ ð−1; 1Þ. As for the SM-VL couplings, we considered

λL;Ee;μ;τv
ML;E

∈ ð−0.09; 0.09Þ: ð29Þ

The ranges of the SM-VL couplings are chosen to satisfy
the electroweak constraints.1

The constraints that we consider in this paper are from
the heavy charged lepton mass bound, precision electro-
weak data, the muon g − 2, LFV, Higgs decays, and lepton
nonuniversality observables. See Table II for the complete
list of observables. All of the experimental values, other
than lepton nonuniversality observables, are taken from the
PDG [1]. The experimental value for RK is taken from
Ref. [10], while RK�0 is recently measured by LHCb [11].

(a) (b)

(c) (d)

FIG. 1. Box diagrams contributing to b → sêaêa.

1With our upper limit on ML;E ¼ 1000 GeV, this implies an
upper bound on the dimensionless couplings λL;Ee;μ;τ ≲ 0.5.

VECTORLIKE LEPTONS: MUON g − 2 ANOMALY, … PHYSICAL REVIEW D 96, 015032 (2017)

015032-3



The heavy charged lepton mass bound quoted by the
PDG,M > 100.8 GeV, is from the LEP experiment. There
are more recent bounds on the mass of VL leptons obtained
from reinterpreting ATLAS and CMS experiments [12–15].
If the lightest VL lepton is predominantly EL;R, then the
bound is similar to the LEP bound. However, if the lightest
VL lepton is predominantly LL;R, then the bound can be
more stringent. For example, Falkowski et al. showed that
if the VL lepton decays only to e and μ, then the bound is
Me4 ≳ 450 GeV [12]. On the other hand, Kumar et al.
showed that if the VL lepton decays only to τ, then the
bound may only be Me4 ≳ 275 GeV [15]. Due to the
sampling method that we explain below, VL leptons in this
model can either be predominantly EL;R or LL;R, depending
on model parameters. In addition, VL leptons of this model
can decay to all three SM leptons. Hence, reinterpretations
of the ATLAS and CMS analyses are needed to obtain the
bound on this model. To be conservative, we have decided
to use the LEP bound in this paper while keeping in mind
that more stringent bounds may exist.
All theoretical calculations are performed at leading

order, that is, all observables other than Δaμ,
BRðl → l0γÞ, Rγγ , RK , RK�0 are calculated at tree level.
The effect of one-loop calculations are expected to be
small. The theoretical calculation of the VL contribution to
the muon g − 2 is taken from Ref. [2]. The calculation for
BRðl → l0γÞ and Rγγ are performed at one-loop [16,17].
Since all calculations are performed at leading order, we
have included a 1% theoretical error when ensuring that the
calculated observables satisfy the current experimental
bounds. As for the lepton nonuniversality analysis, we
have used flavio, a very versatile program that calculates
b-physics observables written by Straub et al. [18]. To
calculate the NP effects of the observables implemented in

flavio, one only has to specify the NP contribution to the
Wilson coefficients.
In the analysis, we obtain scatter plots by sampling from

the parameter space and checking to see if the sampled
points satisfy the constraints mentioned above. To ensure
that we cover all regions in this vast parameter space, we
divide VL masses into four different regions: ML;E ∈
½100; 150Þ; ½150; 250Þ; ½250; 500Þ; ½500; 1000Þ GeV, and
the VL-VL couplings into two different regions2:
jλj; jλ̄j ∈ ½0; 0.75Þ; ½0.75; 1Þ. As for the muon-VL cou-
plings, we considered jλL;Eμ v=ML;Ej ∈ ½0; 0.06Þ; ½0.06;
0.09Þ. For each of these regions, we sampled 10,000 points
satisfying the heavy charged lepton mass bound and the
electroweak precision observables. The total number of
simulated points is 2.56 millions points. The parameters
ML;E, λ, λ̄, λ

L;E
μ are sampled from a uniform distribution

while jλL;Ee;τ v=ML;Ej ∈ ½10−10; 0.09Þ are sampled from a log-
uniform distribution. The electron-VL and tau-VL
couplings are sampled from a log-uniform distribution,
because we expect these couplings to be highly constrained
by LFV observables and we are interested in determining
the degree of fine-tuning of these two parameters in order to
be consistent with the flavor violation constraints.

IV. RESULTS

In this section, we present the results of our numerical
analysis. For all plots in this section, we have classified the
simulated points into two groups. This classification is
based on whether a point satisfies all observables listed in
Table II other than the plotted observables and the lepton

TABLE II. List of observables. Δaμ is the discrepancy of the measured muon g − 2 and the SM prediction.

Ae;μ;τ is the electron, muon, and tau left-right asymmetry in Z decay. Að0eÞ;ð0μÞ;ð0τÞ
FB is the electron, muon, and tau

forward-backward asymmetry in Z decay. Rμμ ¼ Γðh → μμÞ=Γðh → μμÞSM and similarly for Rττ and Rγγ . RK ¼
ΓðBþ → KþμμÞ=ΓðBþ → KþeeÞ while RK�0 ¼ ΓðB0 → K�0μμÞ=ΓðB0 → K�0eeÞ. Lepton nonuniversality exper-
imental values are take from LHCb measurements [10,11] while the other experimental values are taken from
PDG [1].

Muon g − 2 μ Δaμ
Heavy charged leptons e4 Me4

Electroweak precision

Z Ae;μ;τ, A
ð0eÞ;ð0μÞ;ð0τÞ
FB

BRðZ → eeÞ, BRðZ → μμÞ, BRðZ → ττÞ
W BRðW → eνeÞ, BRðW → μνμÞ, BRðW → τντÞ
μ BRðμ → eν̄eνμÞ
τ BRðτ → eν̄eντÞ, BRðτ → μν̄eντÞ

Lepton flavor violation

Z BRðZ → eμÞ, BRðZ → eτÞ, BRðZ → μτÞ
μ BRðμ → eγÞ, BRðμ → 3eÞ
τ

BRðτ → eγÞ, BRðτ → μγÞ
BRðτ → 3eÞ, BRðτ → 3μÞ

Higgs h Rμμ, Rττ, Rγγ , BRðh → μτÞ
Lepton nonuniversality B meson RK , RK�0

2These couplings can be positive or negative. The quoted
ranges are the magnitude. Similarly for SM-VL couplings.
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nonuniversality observables. The lightly shaded points do
not satisfy one or more of these observables, while the solid
colored points satisfy all of these observables.
Figure 2 shows plots of Δaμ versus Rμμ. The four plots

have different ranges of ML, which is a meaningful
discriminator because the VL contribution to the muon g −
2 from the W boson loop is due to the SU(2) doublet VL
neutrinos, L0

L;R, which have a mass ML [2]. The dashed
lines show the 1σ and 2σ bounds of Δaμ, and the upper
bound of Rμμ. The solid lines show the central value of Δaμ
and Rμμ ¼ 1.3 From this figure, we see that this model can
be ruled out in the future if future measurements of the
muon g − 2 and Rμμ have much smaller uncertainties, and

Rμμ is measured to be SM-like, while the muon g − 2 is
measured to have a similar central value.
Figure 2 also shows that the there are no points with

250 GeV < ML < 400 GeV that fit the muon g − 2 within
1σ.4 This observation is further illustrated in Fig. 3, which
shows plots ofΔaμ versusML. The two plots have different
ranges of λ̄. This figure shows that for λ̄ < 0.25, this model
requires eitherML < 250 GeV orML > 600 GeV to fit the
muon g − 2 within 1σ. On the other hand, this model
requiresML > 400 GeV for λ̄ > 0.25. This plot also shows
that the allowed parameter space for ML ≲ 250 GeV can
potentially be eliminated by the upcoming Fermilab E989

FIG. 2. Plots of the muon g − 2 discrepancy, Δaμ, versus Rμμ ¼ Γðh → μμÞ=Γðh → μμÞSM. The four plots have different ranges of
ML. The gray points are ruled out. The dashed lines show the 1σ and 2σ bounds ofΔaμ and the upper bound of Rμμ. The solid lines show
the central value of Δaμ and Rμμ ¼ 1.

FIG. 3. Plots ofΔaμ versusML. The two plots have different ranges of λ̄. The gray points are ruled out. The dashed lines are the 1σ and
2σ bounds of Δaμ while the solid line is the central value of Δaμ.

3Notice that there is no measurement of Rμμ yet. There is only
an upper bound.

4The bounds on parameter space obtained are not strict
because the analysis is performed by random sampling from
the vast parameter space. Our sampling method attempts to cover
the whole parameter space, but there might still be regions that are
missed by the sampling method.
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experiment if the muon g − 2 central value stays the same
while the uncertainties decrease by a couple factors [19].
In general, as the VL masses increase, the new physics

effects should approach zero. However, Fig. 3 seems to
violate this fact. The muon g − 2 does not approach zero as
ML increases because other parameters, such asME, λ̄, and
λL;Eμ , are not fixed. In fact, if all of the other parameters are
fixed, then the muon g − 2 approaches zero as ML
increases.
Figure 4 shows a plot of Δaμ versus Rγγ . The points in

this plot are separated into different colors based on Me4.
As expected, for heavier VL mass eigenstates, Rγγ is
clustered around one. This plot shows that Me4 >
500 GeV is a more robust region than regions with smaller
Me4 because a larger percentage of simulated points are
within the experimental bounds. Avery interesting scenario

will arise if the central value of Rγγ stays and uncertainties
in the measurement decrease as more data are collected. In
this scenario, we will have the potential to place an upper
bound on the mass of the lightest VL mass eigenstate
because there are no points with Me4 > 500 GeV
and Rγγ ≳ 1.1.
In Fig. 5, which shows plots of Δaμ versus Rγγ , the

points are separated into four different plots based on
different values of

∥λμ∥≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
λLμv

ML

�
2

þ
�
λEμv

ME

�
2

s
: ð30Þ

∥λμ∥ is a meaningful variable because muon-VL couplings
play a significant role in fitting Δaμ, and this variable
captures the norm of the muon-VL coupling normalized by

0.6 0.8 1.0 1.2 1.4 1.6
Rγγ

−6

−4

−2

0

2

4

6

Δ
a

μ

×10−9

105 GeV < Me4 < 150 GeV

150 GeV < Me4 < 250 GeV

250 GeV < Me4 < 500 GeV

500 GeV < Me4 < 1000 GeV

FIG. 4. Plot ofΔaμ versus Rγγ . The lightly shaded points are ruled out. The dashed lines show the 1σ and 2σ bounds ofΔaμ, and the 1σ
bound of Rγγ . The solid lines show the central value of Δaμ and that of Rγγ .

FIG. 5. Plots of Δaμ versus Rγγ . The gray points are ruled out. The dashed lines show the 1σ and 2σ bounds of Δaμ, and the 1σ bound
of Rγγ . The solid lines show the central value of Δaμ and that of Rγγ . This model requires ∥λμ∥ > 0.03 to fit Δμ and ∥λμ∥ < 0.09
to fit Rγγ .
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the VL masses. From this figure, we see that this model
requires ∥λμ∥ > 0.03 to fit Δaμ within 1σ and ∥λμ∥ < 0.09
to fit Rγγ .
Figure 6 shows a plot of λLμ versus λEμ . The gray points are

all simulated points. The red points satisfy Δaμ within 1σ,
while the blue points are consistent with Δaμ and Rγγ .

5 To
satisfy Δaμ, the muon-VL couplings need to satisfy
approximately the following condition,

				 λEμvME

λLμv

ML

				≳ 7 × 10−4; ð31Þ

which is shown by the solid lines. This bound is not an
exact bound, but is an empirically obtained bound satisfied
by most simulated points. On the other hand, to satisfy both
Δaμ and Rγγ , the muon-VL couplings need to satisfy
approximately the following condition,

�
λEμv

ME

�
2

þ 1

1.08

�
λLμv

ML

�
2

≲ 0.082; ð32Þ

which is showed by the dashed black lines. Similarly, this is
not an exact bound.
Figure 7 shows a plot of Δaμ versus BRðμ → eγÞ, which

gives the strongest LFV constraint. The points in this plot
are separated into four colors based on ranges of the ratio of
electron-VL to muon-VL couplings,



λe
λμ

�
≡ 1

2

�
λLe
λLμ

þ λEe
λEμ

�
: ð33Þ

The dashed lines show the 1σ and 2σ bounds of Δaμ, and
the upper bound of BRðμ → eγÞ. The solid line shows the
central value of Δaμ. This figure shows that simultaneously
satisfying BRðμ → eγÞ and Δaμ to within 1σ require
hλe=λμi ≲ 10−4.6 This figure shows that this model requires
some level of fine-tuning.
The most stringent constraints for the tau-VL coupling is

from electroweak observables. The sampling range for tau-
VL couplings, λL;Eτ v=ML;E ∈ ð−0.09; 0.09Þ, is based on
electroweak constraints. The next strongest constraint for
the tau-VL coupling is BRðτ → μγÞ. This constraint,
however, does not rule out any value of the tau-VL
couplings within the sampling range. Finally, BRðh →
μτÞ does not constrain the parameter space at all. This is in
agreement with a previous analysis by Falkowski et al.,
which shows that the constraint from LFV Higgs decays is
at least four orders of magnitude smaller than that from
BRðl → l0γÞ [12].
As for the lepton nonuniversality measurements, the

calculated values of RK and RK�0 do not deviate from the
SM predictions because the Wilson coefficients contain
the SM-VL mixing matrices squared, which are highly
constrained by electroweak precision measurements. The
ranges of Wilson coefficients in this model are

−0.08 −0.06 −0.04 −0.02 0.00 0.02 0.04 0.06 0.08
λL

µv

ML

−0.08

−0.06

−0.04

−0.02

0.00

0.02

0.04

0.06

0.08

λ
E µ
v

M
E

All points

Pass Δaμ

Pass Δaμ,Rγγ

FIG. 6. Plot of the muon-VL couplings, λEμv=ME versus λLμv=ML. The solid and dashed black lines are the approximate empirical
bounds on the muon-VL couplings. These bounds are not exact, but are obtained empirically (see text for more discussions).

5The square shape in Fig. 6 is unphysical and is due to our
choice of sampling range.

6Out of all simulated points, four points that violate this bound
with the largest violation being hλe=λμi ¼ 2 × 10−4.
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−3.21 × 10−11 ≤ CNP
9 ðeÞ ≤ 7.26 × 10−12;

−3.21 × 10−11 ≤ CNP
10 ðeÞ ≤ 7.26 × 10−12;

−7.88 × 10−3 ≤ CNP
9 ðμÞ ≤ 2.21 × 10−3;

−7.86 × 10−3 ≤ CNP
10 ðμÞ ≤ 2.18 × 10−3: ð34Þ

As a comparison, to fit all the CP-conserving b → sμþμ−
anomalies along with RK and RK�0 , the Wilson coefficients
need to have values CNP

9 ðμÞ ¼ −1.20� 0.20 and CNP
9 ðeÞ ¼

CNP
10 ðeÞ ¼ CNP

10 ðμÞ ¼ 0, or CNP
9 ðμÞ¼−CNP

10 ðμÞ¼−0.68�
0.12 and CNP

9 ðeÞ ¼ CNP
10 ðeÞ ¼ 0 [20].

V. CONCLUSION

In this paper, we considered a very simple extension of
the SM in which the SM is extended with one family of VL
leptons; where the VL leptons couple to all three families of
SM leptons. We studied the constraints on this model
coming from the heavy charged lepton mass bound,
electroweak precision data, the muon g − 2, lepton flavor
violation, Higgs decays and lepton nonuniversality observ-
ables. See Table II for the complete list of observables
considered in this paper. All experimental values, other
than lepton nonuniversality observables, are taken from the
PDG [1]. The experimental value for RK is taken from
Ref. [10], while RK�0 is recently measured by LHCb [11].
All theoretical calculations are performed at leading order,
while the lepton nonuniversality observables are calculated
using flavio [18].
In this paper, we showed that this model can fit all but

the lepton nonuniversality measurements. The most con-
straining observables are the muon g − 2, Rμμ, Rγγ and the
BRðμ → eγÞ. We find that if Rμμ is measured to be SM-like,
then this model cannot simultaneously fit both the muon
g − 2 within 1σ and Rμμ (see Fig. 2). In addition, we also
find that the SU(2) doublet VL mass is required to satisfy
ML ≲ 250 GeV orML ≳ 400 GeV in order to fit the muon
g − 2 within 1σ (see Fig. 3). If the heavy charged lepton

mass bound increases to be aboveML ≳ 250 GeV, then the
muon g − 2 can produce a stronger mass bound. Fitting to
the muon g − 2 requires ∥λμ∥ > 0.03 while fitting to Rγγ

requires ∥λμ∥ < 0.09. Hence, the muon-VL coupling is
constrained to be within 0.03 < ∥λμ∥ < 0.09. Although we
allow the VL leptons to couple to all three families of the
SM leptons, by simultaneously fitting the muon g − 2 and
BRðμ → eγÞ, the ratio of the electron-VL coupling to
muon-VL coupling is constrained to be hλe=λμi≲ 10−4.
Hence, this model requires some level of fine-tuning. On
the other hand, the strongest constraints on the tau-VL
coupling is coming from electroweak precision observ-
ables. The recently measured BRðh → μτÞ is less con-
straining than the electroweak precision observables. We
also find that this model cannot explain the B physics
lepton nonuniversality measurements.
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APPENDIX A: BOX DIAGRAM CALCULATION

In this appendix, we calculate four box diagrams that
have NP contributions to the decay of b → sll. As shown
in Fig. 1, the NP contributions of these diagrams are due to
VL leptons in the loop. The NP contribution enters via
Wilson coefficients C9 and C10. The calculation in the
appendix is done in the ‘t Hooft-Feynman gauge.

1. Feynman rules

To see all the Feynman rules explicitly, we start by
rewriting the Lagrangian that is relevant to our calculation.
The definition of the fields and their corresponding
quantum numbers are given in Table I. The Lagrangian
of the leptonic sector is given in Eq. (3).

FIG. 7. Plot ofΔaμ versus BRðμ → eγÞ, which gives the strongest LFV constraint. The lightly shaded points are ruled out. The dashed
lines show the 1σ and 2σ bounds of Δaμ, and the upper bound of BRðμ → eγÞ. The solid line shows the central value of Δaμ.
Simultaneously satisfying BRðμ → eγÞ and Δaμ to within 1σ requires hλe=λμi≲ 10−4.
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a. W-lepton Couplings

From Eq. (13), we have

L ⊃
gffiffiffi
2

p ½Wþ
μ ν̄aγ

μð½ ~UL�abPL þ ½ ~UR�abPRÞêb
þW−

μ
¯̂ebγμð½ ~U�

L�abPL þ ½ ~U�
R�abPRÞνa�; ðA1Þ

where PL;R are projection operators and

~UL ¼ diagð1; 1; 1; 1; 0ÞUL ðA2Þ
~UR ¼ diagð0; 0; 0; 1; 0ÞUR: ðA3Þ

Notice that ½UL�4a ¼ ½ ~UL�4a, where a ¼ 1;…; 5. Similarly
for UR.

b. Higgs-lepton couplings

Rewriting the Lagrangian, Eq. (3), in terms of the
physical Higgs and the would-be Nambu-Goldstone bosons
gives

L ⊃ −
�
vþ hffiffiffi

2
p

�
ēLa

Ye
abeRb

−
iϕ0ffiffiffi
2

p ēLa
Yeϕ0

ab eRb

− ϕþν̄Lb
YνL
baeRa

− ϕ−ēLa
YνR†
ab νRb

þ H:c:: ðA4Þ
where Ye, YνL , and Yν†R are given by Eq. (15), Eq. (23), and
Eq. (24) respectively, and

Yeϕ0 ≡
0
B@

yeii 0 λEi
λLi 0 λ

0 −λ̄ 0

1
CA: ðA5Þ

In the charged lepton mass basis, we have

L ⊃ −
�
vþ hffiffiffi

2
p

�
¯̂eLa

Ŷe
abêRb

−
iϕ0ffiffiffi
2

p ¯̂eLa
½U†

LY
eϕ0

UR�abêRb

− ϕþν̄Lb
½YνLUR�baêRa

− ϕ− ¯̂eLa
½U†

LY
νR†�abνRb

þ H:c::

ðA6Þ

So, the Feynman rules for the coupling in diagrams (b)–(d)
in Fig. 1 involving the charged would-be Nambu-
Goldstone bosons are

ϕþ∶ − ið½YνLUR�4aPR þ ½YνRUL�4aPLÞ; ðA7Þ
ϕ−∶ − ið½YνL�U�

R�4aPL þ ½YνR�U�
L�4aPRÞ: ðA8Þ

Since all the calculations are performed in the charged
lepton mass basis, to simplify notation, we will drop ^ in the
rest of this appendix.

2. Loop calculations

Before we start to evaluate the four diagrams in Fig. 1,
let’s consider two loop integrals that we will be using.
These loop integrals are performed easily with Package-
X developed by Patel [21].

AαβðMi;MLÞ≡
Z

d4q
ð2πÞ4

qαqβ
ðq2 −M2

WÞ2ðq2 −M2
i Þðq2 −M2

LÞ
¼ −

i
64π2M2

W
g1ðxi; yÞgαβ; ðA9Þ

BðMi;MLÞ≡
Z

d4q
ð2πÞ4

1

ðq2 −M2
WÞ2ðq2 −M2

i Þðq2 −M2
LÞ

¼ −
i

16π2M4
W
g0ðxi; yÞ; ðA10Þ

where xi ¼ M2
i =M

2
W , y ¼ M2

L=M
2
W and

g1ðx; yÞ ¼
1

x − y

�
x2

ðx − 1Þ2 log x −
y2

ðy − 1Þ2 log y

−
1

x − 1
þ 1

y − 1

�
; ðA11Þ

g0ðx; yÞ ¼
1

x − y

�
x

ðx − 1Þ2 log x −
y

ðy − 1Þ2 log y

−
1

x − 1
þ 1

y − 1

�
: ðA12Þ

a. Diagram (a)

□
ðaÞ ¼

�
gffiffiffi
2

p
�

4 X
i¼u;c;t

VibV�
is

Z
d4q
ð2πÞ4

�
−i

q2 −M2
W

�
2
�
s̄γμPL

iðqþMiÞ
q2 −M2

i
γνPLb

�

×

�
ēað½U�

L�4aγνPL þ ½U�
R�4aγνPRÞ

iðqþMLÞ
q2 −M2

L
ð½UL�4aγμPL þ ½UR�4aγμPRÞea

�

¼ g4

4

X
i¼u;c;t

VibV�
is

Z
d4q
ð2πÞ4

1

ðq2 −M2
WÞ2ðq2 −M2

i Þðq2 −M2
LÞ

½s̄γμPLðqþMiÞγνPLb�

× ½ēað½U�
L�4aγνPL þ ½U�

R�4aγνPRÞðqþMLÞð½UL�4aγμPL þ ½UR�4aγμPRÞea�:
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The last two square brackets can be written as

qαqβ½s̄γμγαγνPLb�½ēaγνγβγμðj½UL�4aj2PL þ j½UR�4aj2PRÞea�;

where we have dropped terms linear in q. Using Eq. (A9),

□
ðaÞ ¼ g4

4

X
i¼u;c;t

VibV�
isAαβðMi;MLÞ½s̄γμγαγνPLb�½ēaγνγβγμðj½UL�4aj2PL þ j½UR�4aj2PRÞea�:

Using gαβ from Aαβ, the last two square brackets can be written as

½s̄γμγαγνPLb�½ēaγνγαγμðj½UL�4aj2PL þ j½UR�4aj2PRÞea�:

Using the following Dirac matrix identity,

γμγαγν ¼ gμαγν þ gανγμ − gμνγα − iϵβμανγβγ5;

we can rewrite the last two square brackets as

4½s̄γμPLb�½ēaγμðj½UL�4aj2PL þ j½UR�4aj2PRÞea�:

Putting all these together, we have

□
ðaÞ ¼ −i

4GFffiffiffi
2

p
X
i¼u;c;t

VibV�
is

e2

16π2
1

s2W

1

2
g1ðxi; yÞ½s̄γμPLb�½ēaγμðj½UL�4aj2PL þ j½UR�4aj2PRÞea�:

Hence, the contributions of this diagram to the Wilson coefficients are

CNPðaÞ
9 ¼ −

1

s2W

1

4
ðj½UL�4aj2 þ j½UR�4aj2Þg1ðxi; yÞ;

CNPðaÞ
10 ¼ 1

s2W

1

4
ðj½UL�4aj2 − j½UR�4aj2Þg1ðxi; yÞ: ðA13Þ

b. Diagram (b)

□
ðbÞ ¼

�
gffiffiffi
2

p
�

4 X
i¼u;c;t

VibV�
is

Z
d4q
ð2πÞ4

�
−i

q2 −M2
W

�
2
�
s̄γμPL

iðqþMiÞ
q2 −M2

i

Mi

MW
PLb

�

×

�
ēa

−vð½YνL�U�
R�4aPL þ ½YνR�U�

L�4aPRÞ
MW

iðqþMLÞ
q2 −M2

L
ð½UL�4aγμPL þ ½UR�4aγνPRÞea

�

¼ g4

4

X
i¼u;c;t

VibV�
is

Z
d4q
ð2πÞ4

1

ðq2 −M2
WÞ2ðq2 −M2

i Þðq2 −M2
LÞ

�
s̄γμPLðqþMiÞ

Mi

MW
PLb

�

×

�
ēa

−vð½YνL�U�
R�4aPL þ ½YνR�U�

L�4aPRÞ
MW

ðqþMLÞð½UL�4aγμPL þ ½UR�4aγμPRÞea
�
:

The last two square brackets can be written as

−
vM2

i ML

M2
W

½s̄γμPLb�½ēaγμð½UL�4a½YνR�U�
L�4aPL þ ½UR�4a½YνL�U�

R�4aPRÞea�;

where we have dropped terms linear in q. Using Eq. (A10),
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□
ðbÞ ¼ −

g4

4

X
i¼u;c;t

VibV�
isBðMi;MLÞ

vM2
i ML

M2
W

½s̄γμPLb�½ēaγμð½UL�4a½YνR�U�
L�4aPL þ ½UR�4a½YνL�U�

R�4aPRÞea�:

Putting all these together, we have

□
ðbÞ ¼ i

4GFffiffiffi
2

p
X
i¼u;c;t

VibV�
is

e2

16π2
1

s2W

1

2

v
ML

xiyg0ðxi; yÞ½s̄γμPLb�½ēaγμð½UL�4a½YνR�U�
L�4aPL þ ½UR�4a½YνL�U�

R�4aPRÞea�:

Hence, the contributions of this diagram to the Wilson coefficients are

CNPðbÞ
9 ¼ 1

s2W

1

4

v
ML

xiyð½UL�4a½YνR�U�
L�4a þ ½UR�4a½YνL�U�

R�4aÞg0ðxi; yÞ;

CNPðbÞ
10 ¼ −

1

s2W

1

4

v
ML

xiyð½UL�4a½YνR�U�
L�4a − ½UR�4a½YνL�U�

R�4aÞg0ðxi; yÞ: ðA14Þ

c. Diagram (c)

□
ðcÞ ¼

�
gffiffiffi
2

p
�

4 X
i¼u;c;t

VibV�
is

Z
d4q
ð2πÞ4

�
−i

p2 −M2
W

�
2
�
s̄
Mi

MW
PR

iðqþMiÞ
q2 −M2

i
γμPLb

�

×

�
ēað½U�

L�4aγμPL þ ½U�
R�4aγμPRÞ

iðqþMLÞ
q2 −M2

L

−vð½YνLUR�4aPR þ ½YνRUL�4aPLÞ
MW

ea

�

¼ g2

4

X
i¼u;c;t

VibV�
is

Z
d4q
ð2πÞ4

1

ðq2 −M2
WÞ2ðq2 −M2

i Þðq2 −M2
LÞ

�
s̄
Mi

MW
PRðqþMiÞγμPLb

�

×

�
ēað½U�

L�4aγμPL þ ½U�
R�4aγμPRÞðqþMLÞ

−vð½YνLUR�4aPR þ ½YνRUL�4aPLÞ
MW

ea

�
:

The last two square brackets can be written as

−
vM2

i ML

M2
W

½s̄γμPLb�½ēaγμð½U�
L�4a½YνRUL�4aPL þ ½U�

R�4a½YνLUR�4aPRÞea�;

where we have dropped terms linear in q. Using Eq. (A10),

□
ðcÞ ¼ −

g4

4

X
i¼u;c;t

VibV�
isBðMi;MLÞ

vM2
i ML

M2
W

½s̄γμPLb�½ēaγμð½U�
L�4a½YνRUL�4aPL þ ½U�

R�4a½YνLUR�4aPRÞea�:

Putting all these together, we have

□
ðcÞ ¼ i

4GFffiffiffi
2

p
X
i¼u;c;t

VibV�
is

e2

16π2
1

s2W

1

2

v
ML

xiyg0ðxi; yÞ½s̄γμPLb�½ēaγμð½U�
L�4a½YνRUL�4aPL þ ½U�

R�4a½YνLUR�4aPRÞea�:

Hence, the contributions of this diagram to the Wilson coefficients are

CNPðcÞ
9 ¼ 1

s2W

1

4

v
ML

xiyð½U�
L�4a½YνRUL�4a þ ½U�

R�4a½YνLUR�4aÞg0ðxi; yÞ;

CNPðcÞ
10 ¼ −

1

s2W

1

4

v
ML

xiyð½U�
L�4a½YνRUL�4a − ½U�

R�4a½YνLUR�4aÞg0ðxi; yÞ: ðA15Þ
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d. Diagram (d)

□
ðdÞ ¼

�
gffiffiffi
2

p
�

4 X
i¼u;c;t

VibV�
is

Z
d4q
ð2πÞ4

�
−i

q2 −M2
W

�
2
�
s̄
Mi

MW
PR

iðqþMiÞ
q2 −M2

i

Mi

MW
PLb

�

×

�
ēa

vð½YνL�U�
R�4aPL þ ½YνR�U�

L�4aPRÞ
MW

iðqþMLÞ
q2 −M2

L

vð½YνLUR�4aPR þ ½YνRUL�4aPLÞ
MW

ea

�

¼ g4

4

X
i¼u;c;t

VibV�
is

Z
d4q
ð2πÞ4

1

ðq2 −M2
WÞðq2 −M2

i Þðq2 −M2
LÞ

�
s̄
Mi

MW
PRðqþMiÞ

Mi

MW
PLb

�

×

�
ēa

vð½YνL�U�
R�4aPL þ ½YνR�U�

L�4aPRÞ
MW

ðqþMLÞ
vð½YνLUR�4aPR þ ½YνRUL�4aPLÞ

MW
ea

�
:

The last two square brackets can be written as

qαqβ
v2M2

i

M4
W

½s̄γαPLb�½ēaγβðj½YνRUL�4aj2PL þ j½YνLUR�4aj2PRÞea�;

where we have dropped terms linear in q. Using Eq. (A9),

□
ðdÞ ¼ g4

4

X
i¼u;c;t

VibV�
isAαβðMi;MLÞ

v2M2
i

M4
W

½s̄γαPLb�½ēaγβðj½YνRUL�4aj2PL þ j½YνLUR�4aj2PRÞea�:

Putting all these together, we have

□
ðdÞ ¼ −i

4GFffiffiffi
2

p
X
i¼u;c;t

VibV�
is

e2

16π2
1

s2W

1

8

v2

M2
L
xiyg1ðxi; yÞ½s̄γμPLb�½ēaγμðj½YνRUL�4aj2PL þ j½YνLUR�4aj2PRÞea�:

Hence, the contributions of this diagram to the Wilson coefficients are

CNPðdÞ
9 ¼ −

1

s2W

1

16

v2

M2
L
xiyðj½YνRUL�4aj2 þ j½YνLUR�4aj2Þg1ðxi; yÞ;

CNPðdÞ
10 ¼ 1

s2W

1

16

v2

M2
L
xiyðj½YνRUL�4aj2 − j½YνLUR�4aj2Þg1ðxi; yÞ: ðA16Þ

e. Total contributions

The sum of the Wilson coefficients from these four diagrams (Eq. (A13)–Eq. (A16)) is the total NP Wilson coefficients,

CNP
9 ¼ −

1

s2W

1

4
½Uþ

1 ðx; yÞg1ðx; yÞ þUþ
0 ðx; yÞg0ðx; yÞ�;

CNP
10 ¼ 1

s2W

1

4
½U−

1 ðx; yÞg1ðx; yÞ þ U−
0 ðx; yÞg0ðx; yÞ�; ðA17Þ

where x ¼ M2
t =M2

W , y ¼ M2
L=M

2
W ,

g1ðx; yÞ ¼
1

x − y

�
x2

ðx − 1Þ2 log x −
y2

ðy − 1Þ2 log y −
1

x − 1
þ 1

y − 1

�
; ðA18Þ

g0ðx; yÞ ¼
1

x − y

�
x

ðx − 1Þ2 log x −
y

ðy − 1Þ2 log y −
1

x − 1
þ 1

y − 1

�
; ðA19Þ
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and

U�
1 ðx; yÞ ¼ j½UL�4aj2 � j½UR�4aj2 þ

1

4

v2

M2
L
xyðj½YνRUL�4aj2 � j½YνLUR�4aj2Þ; ðA20Þ

U�
0 ðx; yÞ ¼ −

v
ML

xyð½UL�4a½YνR�U�
L�4a þ ½U�

L�4a½YνRUL�4a � ½UR�4a½YνL�U�
R�4a � ½U�

R�4a½YνLUR�4aÞ: ðA21Þ
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