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We introduce fully SUSic grand unified theories (SGUTs), supersymmetry (SUSY) grand unified
theories that, upon symmetry breaking through the Higgs mechanism, decompose into a visible sector and
an extra sector where the dynamics of the extra sector gauge group is responsible for SUSY breaking. Fully
SGUTs thus have the important feature that all gauge groups of the visible sector and the extra sector unify
into a simple gauge group at the SGUT scale, therefore generalizing the successful minimal SUSic
Standard Model (MSSM) gauge coupling unification to all the gauge couplings of the theory. By focusing
on the Intriligator, Seiberg, and Shih (ISS) SUSY-breaking mechanism in the extra sector, we show that it is
impossible to reproduce the MSSM matter content when there exists a metastable ISS SUSY-breaking
state.
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I. INTRODUCTION

As of this writing, the Standard Model (SM) of particle
physics seems to explain all physics up to the energy scale
probed by the Large Hadron Collider (LHC). Experimental
observations and theoretical arguments suggest, however,
that the SM is not the full story. For example, the SM
cannot account for neutrino masses, and it does not have a
suitable dark matter candidate. Moreover, the electroweak
scale seems highly fine-tuned unless an appropriate mecha-
nism is found to explain its smallness compared to the
Planck scale. One such mechanism is supersymmetry
(SUSY) [1], where the introduction of SUSic partners,
or superpartners, stabilizes the electroweak scale [2–4].
SUSY must, however, be spontaneously broken in our
Universe, and for the electroweak scale to be naturally
small, superpartners must be relatively light, in apparent
tension with their nonobservation at the LHC [5]. Although
the LHC puts strict constraints on the superpartner spec-
trum, somewhat discrediting SUSY as a solution to the
hierarchy problem, with its theoretical consistency SUSY is
still one of the best theories of beyond-the-SM physics.
Actually, one of the most intriguing properties of the

minimal SUSic SM (MSSM) [6] is gauge coupling uni-
fication [7], suggesting a SUSic grand unified theory
(SGUT) [3,8]. Indeed, that the extra SUSic partners
contribute to the MSSM gauge coupling β functions in
such a way that the three gauge couplings meet relatively
well at the SGUT scale ΛSGUT ≈ 1016 GeV points toward
the possibility that the three MSSM gauge groups merge
into a larger gauge group, such as SUð5Þ or SOð10Þ,
leading to a SGUT.

SUSY must also be spontaneously broken, and there are
several avenues to accomplish this. One interesting pos-
sibility is to introduce a SUSY-breaking sector with an
extra gauge group GSB and extra matter fields where SUSY
is spontaneously broken dynamically [9]. The breaking is
then gauge-mediated to the MSSM sector with the help of
some messenger fields, i.e. SUSY-breaking sector fields
charged under the MSSM gauge group. In this framework,
it seems odd that gauge coupling unification occurs for the
MSSM gauge couplings but not necessarily for the extra
GSB gauge coupling, leading to a partial (instead of a
complete) unification of the forces of nature.
In this paper we investigate the idea that an extra sector

with gauge group GSB, the dynamics of which are respon-
sible for spontaneous SUSY breaking, unifies with the
MSSM gauge group GSM, leading to what we call a fully
SGUT with simple gauge group GSGUT ⊃ GSB ×GSM. In
order to obtain a consistent fully SGUT, several problems
must be properly addressed. First, it is necessary that the
spontaneous breaking of the simple gauge group GSGUT
into its subgroups GSM ×GSB can occur through a given
mechanism, such as the Higgs mechanism with an appro-
priate scalar potential, and not all symmetry breaking
patterns are guaranteed to occur [10]. It is also required
that the (anomaly-free) matter content in the fully SGUT
breaks into the MSSMmatter content as well as appropriate
matter fields in the extra sector. The latter must include
fields that lead to spontaneous SUSY breaking as well as
fields that play the role of the messenger fields mediating
SUSY breaking to the MSSM. Then, from the bottom-up
perspective it is necessary that all the gauge groups unify at
the SGUT scale, which is highly dependent on the matter
content of the theory. From the top-down point of view, this
puts some constraints on the dynamics of the extra sector,
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which must nevertheless exhibit spontaneous SUSY break-
ing. Finally, although there is not much renormalization
group flow running from the SGUT scale to the Planck
scale, it would be preferable that the gauge group GSGUT is
asymptotically free to avoid Landau poles, and this is again
dependent on the matter content of the theory.
Before attacking these problems, we must focus on a

particular implementation of fully SGUTs to make it more
tractable. More specifically, we introduce the idea of fully
SGUT, where all gauge groups unify at the SGUT scale
ΛSGUT, with the extra gauge group of the extra sector being
SUðNcÞ, SOðNcÞ, or Spð2NcÞ. Moreover, the extra gauge
group is responsible for spontaneous SUSY breaking
through a metastable state à la Intriligator, Seiberg, and
Shih (ISS) [11], arguably one of the easiest ways to
spontaneously break SUSY. Finally, to allow for complex
representations, the fully SGUT gauge group is chosen to
be SUðNÞ or SOðNÞ.1 A sketch of our framework is shown
in Fig. 1.
Hence the fully SGUT gauge group must be GSGUT ¼

SUðNÞ or GSGUT ¼ SOðNÞ, the gauge group GSM must
have rank at least 4 to accommodate the MSSM, and the
irreducible representations of the matter fields in GSGUT
must at the very least result in the MSSM matter content
(the three generations and the Higgs sector) upon sponta-
neous symmetry breaking. This last statement can be stated
concisely in mathematical terms since the decomposition of
an irreducible representation R in GSGUT into the subgroup
GSB ×GSM can be written as

R ↓ ⨁
i
mir

GSB
i × rGSM

i ; ð1:1Þ

where rGi is an irreducible representation of G and mi is
the multiplicity. We are thus looking for irreducible

representations R that contain in their decomposition the
MSSM matter content. Note that it would be more
appropriate here for the irreducible representations that
contain the MSSM particles to be singlets under the extra
gauge group that ultimately breaks SUSY. Indeed, upon
confinement charged fields usually acquire a mass of the
order of the confinement scale, apart from the Goldstone
bosons (pseudo-Goldstone bosons) which stay massless
(light), and therefore cannot play the role of the MSSM
matter fields. More important, too many matter fields from
the point of view of the extra gauge groupGSB could render
it infrared free instead of asymptotically free, forbidding
the existence of the SUSY-breaking vacuum. Hence the
MSSM matter content should not be charged under the
extra gauge group.
For the metastable SUSY-breaking vacuum to reliably

exist, it is necessary that the extra gauge group GSB is
asymptotically free and that the dual magnetic theory is
infrared free to exhibit the SUSY-breaking minimum. The
first condition implies that the one-loop β-function con-
tribution b to the extra gauge coupling is larger than zero.
This translates into

(i) b ¼ 3Nc − Nf > 0 for GSB ¼ SUðNcÞ,
(ii) b ¼ 3ðNc − 2Þ − Nf > 0 for GSB ¼ SOðNcÞ,
(iii) b ¼ 3ðNc þ 1Þ − Nf > 0 for GSB ¼ Spð2NcÞ,

where Nc (and Nc − 2 and Nc þ 1 for different Lie groups)
is the number of colors given by the quadratic Casimir C2

of the adjoint representation and Nf is the generalized
number of flavors to be defined shortly. The second
condition demands that the dual magnetic theory is in
the free magnetic range [11], which leads to

ðiÞ Nc þ 1 ≤ Nf <
3

2
Nc for GSB ¼ SUðNcÞ; ð1:2Þ

ðiiÞ Nc − 2 ≤ Nf <
3

2
ðNc − 2Þ for GSB ¼ SOðNcÞ;

ð1:3Þ

ðiiiÞ Nc þ 1 ≤ Nf <
3

2
ðNc þ 1Þ for GSB ¼ Spð2NcÞ;

ð1:4Þ
such that the first condition is trivially satisfied when the
second criterion is verified. Here, the generalized number
of flavors Nf is defined as the sum of the Casimirs CðrÞ for
each irreducible representation r in GSB. It can be com-
puted explicitly from the SGUT gauge group matter content
using the formalism of (1.1) as

Nf ¼
X
R

X
i

mi dimðrGSM
i ÞCðrGSB

i Þ þ � � � ; ð1:5Þ

where dimðrGSM
i Þ is the dimension of the irreducible

representation rGSM
i . Because of their large mass, the

FIG. 1. Sketch of the fully SGUT framework with metastable
SUSY breaking.

1Complex representations exist also for the exceptional Lie
algebra E6, but it is clearly too small for our purpose.
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massive gauge bosons generated through the Higgs mecha-
nism are not included in the generalized number of flavors,
hence the ellipses. It is also assumed that all the irreducible
representations rGSB

i are light and thus contribute to the
generalized number of flavors.

In this paper, we will show that fully SGUTs are not
possible in the specific framework described above. Indeed,
apart from all the problems one has to address before
studying the phenomenology of such models, successfully
implementing fully SGUTs with metastable SUSY break-
ing requires that the matter content of the extra sector leads
to a dual magnetic theory in the free infrared range, the
appropriate window of colors and flavors necessary for
the existence of the metastable SUSY-breaking state.
Therefore, even before we can address the points men-
tioned above, we demonstrate that it is not possible to have
an ISS metastable SUSY-breaking state in the extra sector
while having the MSSMmatter content in the visible sector.
We prove the no-go theorem with the help of several

relations between the Casimirs of different irreducible
representations in GSGUT and thus find all irreducible
representations which satisfy the condition for the existence
of a metastable SUSY-breaking vacuum. We finally show
that the MSSM matter content cannot be recovered from
these irreducible representations. Specifically, the allowed
irreducible representations lead to specific symmetry
breaking patterns for which the branching rules cannot
accommodate three SM families.
Hence we show that for an appropriate number of

generalized flavors Nf such that a SUSY-breaking mini-
mum appears through the ISS mechanism, it is not possible
to get the MSSM matter content for any of the possible
symmetry breaking patterns permitted by the allowed
irreducible representations. Our no-go theorem is therefore
general, being based only on the generalized number of
flavors (assuming all matter fields generated by the
spontaneous symmetry breaking are light), the rank of
the SM, and the assumption that the symmetry breaking of
GSGUT occurs through the Higgs mechanism where a Higgs
field acquires a vacuum expectation value (VEV).
In view of the previous observations, we conclude that

the specific framework of fully SGUTs with metastable
SUSY breaking à la ISS cannot occur. It would be
interesting to find a successful example of fully SGUT
using model-building techniques to give large masses to
some unwanted matter fields or using another mechanism
for spontaneous SUSY breaking. The phenomenology of
such models could give valuable insights on the super-
partner spectrum and maybe shed some light on the
hierarchy problem and/or the reason why superpartners
have not been observed at the LHC yet (if nature is SUSic).
This paper is organized as follows: Section II proves an

identity between the generalized number of flavors for an
irreducible representation R of GSGUT and the Casimir of R
in the fully SGUT gauge group. To obtain the complete set

fRg of irreducible representations that allow for the ISS
SUSY-breaking mechanism to occur, another relation
between the Casimirs of different irreducible representa-
tions inGSGUT is also proven. Section III then demonstrates
the no-go theorem for GSGUT ¼ SUðNÞ and GSGUT ¼
SOðNÞ gauge groups. Section IV concludes with a dis-
cussion of the no-go theorem while some of the compu-
tations are shown in the Appendix.

II. PRELIMINARIES

In this section we prove an identity between the
generalized number of flavors and the Casimir of the
irreducible representations. By studying chains of maximal
subgroups, we then determine the less restrictive constraint
on the generalized number of flavors. We also introduce an
ordering in function of the Casimirs which will be helpful
in restricting the irreducible representations allowed by our
framework.

A. Considerations on the ISS conditions

The ISS conditions put strong constraints on the matter
field irreducible representations allowed in our framework.
Since different SGUT gauge group symmetry breaking
patterns lead to different ISS conditions, it is necessary to
understand what happens to the ISS conditions under
symmetry breaking. To cover all possibilities allowed by
our framework, it is important to determine the less
stringent upper bound on the generalized number of flavors
to ensure that all irreducible representations permitted by
the ISS conditions are studied. Indeed, it will be shown that
the ISS upper bounds become more stringent after sym-
metry breaking.
The two quantities of interest in the ISS conditions (1.2),

(1.3), and (1.4),Nf andNc, are related to the Casimir C and
the quadratic Casimir C2 of their relevant group. There
exist several equivalent definitions of the Casimirs for an
irreducible representation R of a given Lie group G. For
example, from the definitions [12] we obtain

trðtARtBRÞ ¼ CðRÞδAB; tARt
A
R ¼ C2ðRÞ · 1; ð2:1Þ

where the tAR are the generators of the group G in the
irreducible representation R. The set ftAg forms a basis for
the Lie algebra g of G. The Casimir C provides a
normalization of the generators such that once it is set
for a particular irreducible representation, all the Casimirs
of the other irreducible representations are fixed. For
convenience, we also use g to express the adjoint repre-
sentation of G.
From these group theoretic quantities, we can uniquely

express an upper bound on the generalized number of
flavors (without symmetry breaking) as

NO-GO THEOREM FOR FULLY SUPERSYMMETRIC GUTS … PHYSICAL REVIEW D 96, 015025 (2017)

015025-3



Nf <
3

2
C2ðgSBÞ; ð2:2Þ

where C2ðgSBÞ ¼ Nc for SUðNcÞ, Nc − 2 for SOðNcÞ, and
Nc þ 1 for Spð2NcÞ. The three ISS conditions (1.2), (1.3),
and (1.4) are thus simultaneously satisfied by this inequal-
ity. It is clear from (2.1) that the quadratic Casimir of the
adjoint representation is equal to the Casimir of the adjoint
representation. Hence the common ISS condition (2.2) can
be reexpressed solely in terms of Casimirs C as

Nf <
3

2
CðgSBÞ: ð2:3Þ

This form of the ISS condition is the most convenient to
study the effects of symmetry breaking.
Since any subgroup of a given classical Lie group falls

within a chain of relatively maximal subgroups, it is only
necessary to study maximal subgroups of general Lie
groups. Although the complete list of maximal subgroups
will not be needed, we nevertheless present all maximal
subgroups of classical Lie groups, knowing that more
elaborate subgroups, and hence any symmetry breaking
pattern, can be achieved by using maximal subgroups
recursively. To ensure all possible irreducible representa-
tions are taken into account, we find the largest upper
bound on Nf (1.5) allowed by the ISS condition (2.3) from
these maximal subgroups.
All maximal subgroups of classical Lie groups were

found by Dynkin [13]. They form two categories, the
nonsimple and the simple subgroups, which will be
denoted as embeddings of the first and the second kinds,
respectively.
The nonsimple ones are exhausted by the following list,

where regular and special embeddings are included with no
differentiation:

(i) SUðNÞ ↓ SUðN −MÞ × SUðMÞ ×Uð1Þ,
(ii) SUðNMÞ ↓ SUðNÞ × SUðMÞ,
(iii) SOðNÞ ↓ SOðN −MÞ × SOðMÞ,
(iv) SOðNMÞ ↓ SOðNÞ × SOðMÞ,
(v) SOðNÞ ↓ SUð⌊N=2⌋Þ ×Uð1Þ,
(vi) SOð4MNÞ ↓ Spð2NÞ × Spð2MÞ,
(vii) Spð2NÞ ↓ Spð2N − 2MÞ × Spð2MÞ,
(viii) Spð2MNÞ ↓ Spð2NÞ × SOðMÞ,
(ix) Spð2NÞ ↓ SUðNÞ ×Uð1Þ.

The second category corresponds to special simple
subgroups embedded in the following way: For any
irreducible representation R� of a group G, classical or
exceptional, with dimension d�, we have that G is a
subgroup in SUðd�Þ. However, this embedding may not
be maximal. If R� is real, then G is a maximal subgroup of
SOðd�Þ, while if it is pseudoreal, G is maximal in Spðd�Þ.
For some very specific cases, G may not be maximal, but
this is not relevant in the following.

Before proceeding, we make a point here about excep-
tional Lie groups. Exceptional groups can also be simply
embedded in classical groups. However, they do not have
dual groups which could break SUSY. Furthermore, we can
consider their maximal classical subgroups as nonmaximal
subgroups of their embedding group. In this way, we can
eliminate exceptional groups from our present analysis.
Intuitively, the most direct way to solve the problem at

hand would be to look for irreducible representations in
each classical Lie group that can generate the MSSM
content upon symmetry breaking. For this, we would need
to find the branching rules of these irreducible representa-
tions, which describe how irreducible representations
decompose [14]. Branching rules are, however, far from
trivial or even easy to compute in general since they are
different for every group and symmetry breaking pattern.
With these rules, we could try to find which irreducible
representations could contain the MSSM. Then, we would
compute the generalized number of flavorsNf to eventually
conclude that, in most cases, they do not satisfy the ISS
condition (2.3).
There is a better way to approach the problem, by

making the enlightening observation that the quantityP
imi dimðrGSM

i ÞCðrGSB
i Þ of interest in the computation of

the generalized number of flavors is given by the Casimir
CðRÞ (up to a constant) of the original irreducible repre-
sentation R in GSGUT, i.e.

X
i

mi dimðrGSM
i ÞCðrGSB

i Þ ¼ ξ2CðRÞ: ð2:4Þ

The constant ξ, which is necessary to properly rescale the
generators, is 1 for embeddings of the first kind andffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cðr�Þ=CðR�Þ

p
for embeddings of the second kind.

To prove (2.4), we now consider a subgroupH ofG. The
subgroupH has for Lie algebra h, a subalgebra of g. We can
choose a basis for h as a subset of the tA with exactly dim h
generators. When the symmetry is reduced from G to H,
the irreducible representation R of G breaks as

G ↓ H; R ↓ r≡⨁
i
miri; ð2:5Þ

where r is a representation ofH that may be reducible. This
representation can be block diagonalized as a direct sum of
irreducible representations ri of H. Here mi stands for the
multiplicity of each such irreducible representation.
To better understand what happens to the Casimir upon

symmetry breaking, it is convenient to use the exponential
map development of the elements of G. Indeed, an element
g ∈ G in an irreducible representation R, near the identity,
can be parametrized by a set fαAg as

g ¼ exp

�Xdim g

A¼1

αAtAR

�
:
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Under symmetry reduction G ↓ H, only some (properly
normalized) linear combinations of the generators are kept.
The resulting elements of G that belong to H can thus be
written as

h ¼ exp

�Xdim h

a¼1

βatar

�
;

where the set of ftar ¼ ξUaAtARg forms a complete basis for
H. Here ξ properly normalizes the generators as above and
U singles out the proper linear combinations. The rectan-
gular matrices U are normalized such that UaAUbBδAB ¼
δab and satisfy ξUaAUbBfABC ¼ fabcUcC where the f’s are
the appropriate structure constants.
This implies that the generators of H in representation r

are related to the generators of G in representation R.
Hence, according to (2.1), we have

CðrÞ ¼ trðtar tarÞ ¼ ξ2UaAUaBtrðtARtBRÞ ¼ ξ2CðRÞ
ðno sum on aÞ: ð2:6Þ
On the other hand, it is possible to block diagonalize the
ftarg so that each block is an irreducible representation ri of
H according to the decomposition (2.5). Then the trace can
be taken on each block separately, which leads to

CðrÞ ¼
X
i

mitrðtari tariÞ ¼
X
i

miCðriÞ ðno sum on aÞ:

ð2:7Þ
We are interested in the symmetry breaking

GSGUT ↓ GSB ×GSM, so in our case H is the direct product
of two disjoint subgroups (by that we mean that the only
element intersecting both is the identity). Replacing H by
H ×H0 in the previous analysis alternatively yields

G ↓ H ×H0; R ↓ r ¼ ⨁
i
miðri × r0iÞ; ð2:8Þ

where ri × r0i is an irreducible representation of H ×H0

made from the direct product of an irreducible representa-
tion ri of H and of an irreducible representation r0i of H

0.
To achieve the desired result, we further reduce the

symmetry by taking only H as a subgroup of H ×H0. This
is equivalent to replacing r0i in (2.8) by a sum of dimðr0iÞ
identity representations. Mathematically, we can write
this as

G ↓ H ×H0 ↓ H;

R ↓ r ↓ ⨁
i
mi dimðr0iÞri:

From this expression, and from (2.6) and (2.7), we get the
following identity:

X
i

mi dimðr0iÞCðriÞ ¼ ξ2CðRÞ; ð2:9Þ

which is exactly the internal sum of the definition of Nf

(1.5) with H ¼ GSB and H0 ¼ GSM, thus proving (2.4).
This result simplifies greatly our analysis. Indeed, the

generalized number of flavors can be simply expressed in a
function of quantities in the unbroken gauge group,
irrespective of the specific symmetry breaking pattern. In
fact, only the massive gauge bosons add up to the
generalized number of flavor after symmetry reduction.
Hence, for a given gauge subgroup H of G, the ISS
condition (2.3) becomes, after substituting Nf (1.5) and
using identity (2.9) [once for Nf and once for CðhÞ],

X
R

X
i

mi dimðr0iÞCðriÞ þ � � � < 3

2
CðhÞ

⇒ ξ2
X
R

CðRÞ þ � � � < 3

2
ξ2CðgÞ − � � � : ð2:10Þ

The ellipses here stand for the massive gauge bosons. From
(2.10), it is clear that the ISS condition for the broken group
is more restrictive than the ISS condition for the unbroken
group (for which the ellipses on the right-hand side are
absent).
Since the relevant symmetry breaking pattern can be

reached by following a specific chain of maximal sub-
groups, the previous result implies that the less stringent
constraint on the generalized number of flavors occurs
through the first breaking to maximal subgroups.
Therefore, (2.3) is the only condition we consider for
the remainder of the proof.
Our task is now reduced to finding all irreducible

representations R of GSGUT that have an acceptable
Casimir, and then check if any combination of them can
yield the SM content after symmetry breaking, providing
that the sum of their Casimirs is still allowed.

B. Ordering of irreducible representations

Before looking into the allowed irreducible representa-
tions, it is convenient to introduce an ordering for the
different irreducible representations. Indeed, by ordering
the irreducible representations in function of their Casimirs,
it is possible to avoid computing them for all irreducible
representations. Although here the ordering must be found
only for SUðNÞ and SOðNÞ, the results below will be valid
for all classical Lie algebras an, bn, cn, and dn, where n is
the rank.
To tackle this problem, we use basic knowledge about

semisimple Lie algebras. The necessary concepts are
quickly reviewed in the Appendix. In the notation
employed here, dWi stands for the ith Dynkin coefficients
of an irreducible representation or a root W, and its
decomposition under the simple roots is denoted by kWi ,
such that they are linked by dW ¼ kWA, with A the Cartan
matrix of the algebra. Moreover, the simple roots are
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denoted αi, and they are normalized so that the largest ones
have a squared size of 1.
To begin with, we need a practical way of computing the

Casimir for any irreducible representation. As stated
previously, there are multiple ways to define the Casimir
CðRÞ of an irreducible representation R ofGwith algebra g.
An expression based on group theoretic arguments is [12]

CðRÞ ¼ dimR
dim g

C2ðRÞ: ð2:11Þ

The dimension of an irreducible representation R can be
found by Weyl’s dimension formula [15], which is

dimR ¼
Y
β>0

hβ; Rþ Ii
hβ; Ii ¼

Y
β>0

P
n
i¼1 k

β
i ðdRi þ 1Þα2iP
n
i¼1 k

β
i α

2
i

;

where the product is taken over all the positive roots β of
the algebra, and I corresponds to the combination of roots
that has a 1 for each of its Dynkin coefficients. The
quadratic Casimir is given by [15]

C2ðRÞ ¼ hR; Rþ 2Ii ¼ 1

2

X
i

kRi ðdRi þ 2Þα2i

¼ 1

2

X
i;j

dRi A
−1
ij ðdRj þ 2Þα2j ; ð2:12Þ

where A−1
ij is the inverse Cartan matrix, presented in the

Appendix. From these formulas, we can establish some

ordering between the irreducible representations of an
algebra.
Consider some irreducible representation R of a given

Lie algebra g with Dynkin coefficients dRi and another
irreducible representation R0 of the same algebra related to
the first by dR

0
i ¼ dRi þ δil, with l ¼ 1; 2;…; n, so that the

only difference between R and R0 is dR0
l ¼ dRl þ 1. We then

prove that

CðR0Þ > CðRÞ: ð2:13Þ

First, we show that dimR0 > dimR since

dimR0

dimR
¼

Y
β>0

P
ik

β
i ðdR0

i þ 1Þα2iP
ik

β
i ðdRi þ 1Þα2i

¼
Y
β>0

P
ik

β
i ðdRi þ δil þ 1Þα2iP
ik

β
i ðdRi þ 1Þα2i

> 1:

Indeed, the roots β are positive and the kβi are necessarily
positive by definition. Thus, we have that the numerator is
equal to the denominator if kβl ¼ 0, or else it is greater. But

there is always at least a root for which kβl ≠ 0: The lth
simple root αl is a positive root and has kαli ¼ δil. This
implies the inequality dimR0 > dimR.
Second, we have C2ðR0Þ > C2ðRÞ since

C2ðR0Þ − C2ðRÞ ¼
1

2

X
i;j

dR
0

i A
−1
ij ðdR0

j þ 2Þα2j −
1

2

X
i;j

dRi A
−1
ij ðdRj þ 2Þα2j

¼ 1

2

X
i;j

ðdRi þ δilÞA−1
ij ðdRj þ δjl þ 2Þα2j −

1

2

X
i;j

dRi A
−1
ij ðdRj þ 2Þα2j

¼ 1

2
A−1
llα

2
l þ

1

2

X
i

½dRi A−1
il α

2
l þ ðdRi þ 2ÞA−1

li α
2
i � > 0;

because A−1 has only strictly positive components, regard-
less of the algebra, so that each term is greater than or equal
to zero and some terms are strictly greater than zero. Since
dim g is the same for R and R0, Eq. (2.11) implies that
CðR0Þ > CðRÞ, and this is valid for every semisimple Lie
algebra. This result also holds for any irreducible repre-
sentations R0 and R such that dR

0
i ≥ dRi ∀ i. Indeed, in this

case, R0 can be obtained by successively adding ones to the
Dynkin coefficients of R, so the inequality can be applied at
each step of the chain.
Of course, one only gets a partial ordering of the

irreducible representations from this, since it does not
allow some irreducible representations to be compared.
For example, if R ¼ ð1; 1; 0; 0Þ, R0 ¼ ð1; 2; 0; 0Þ, and

R00 ¼ ð2; 1; 0; 0Þ, then, according to these results, we have
CðR0Þ > CðRÞ and CðR00Þ > CðRÞ, but the formalism does
not tell us if CðR0Þ > CðR00Þ or CðR0Þ < CðR00Þ. Such an
ordering will be introduced for specific groups when
necessary.

III. THE NO-GO THEOREM

Our goal is now clear: We must find the largest
irreducible representations that satisfy the ISS condition
(2.3). Unfortunately, it will be shown below that the largest
irreducible representation is quite small and the few
acceptable irreducible representations cannot accommodate
the MSSM.
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To follow with the proof, we need a more specific
approach with respect to the irreducible representations, so
we study theories unified with SUðNÞ or SOðNÞ separately.
However, the analysis will be similar in each case: We
state the appropriate ISS condition and then treat irreduc-
ible representations in order of increasing Dynkin coef-
ficients. We find that only the irreducible representations
1 and δi1 [and the conjugate representation δin for
SUðnþ 1Þ] are allowed to build the SM families.
Finally, we study the possible symmetry breaking patterns
and the branching rules associated with them to conclude
that there are no representations that can account for theQL
quark doublets, hence completing the proof of the no-go
theorem.

A. Admissible field content of a SUðn+ 1Þ-based
unified theory

We first focus on the unified groupGSGUT ¼ SUðNÞ. For
convenience with respect to conjugate representations, we
write N ¼ nþ 1 to make the rank n of the group explicit.
We keep in mind that the MSSM is of rank 4, so we need n
at least equal to 5. We begin by finding the maximal
subgroup with the largest upper bound on the generalized
number of flavors. We follow by finding an exhaustive list
of the irreducible representations of SUðnþ 1Þ that can be
used in the original UV theory such that SUSY is broken by
a metastable vacuum.
From Sec. II A, we only need to find the less stringent

constraint on the generalized number of flavors occurring
from the breaking of the SGUT gauge group to one of its
maximal subgroups. A quick analysis of possible maximal
subgroups of SUðnþ 1Þ determines that the weakest
condition on Nf corresponds to the maximal embedding
SUðnþ 1Þ ↓ SUðn−mþ 1Þ×SUðmÞ×Uð1Þ with m > 4.
This leads to

Nf <
3

2
ðn −mþ 1Þ; m > 4; ð3:1Þ

which is general for any symmetry breaking patterns and
will prove to be sufficient to complete our proof.
We are now ready to construct a list of allowed

irreducible representations in the UV theory. The first
irreducible representation is the trivial 1 with d1i ¼ 0 ∀ i.
This irreducible representation has Cð1Þ ¼ 0 in any group.
Then, we look at the defining representations, which we
label by their Dynkin coefficients as dRi ¼ δil with
l ¼ 1; 2;…; n. These constitute the building blocks
of other irreducible representations according to our
ordering. For simplicity, hereafter irreducible representa-
tions will most of the time be denoted directly by their
Dynkin coefficients. Since the algebra of SUðnþ 1Þ is an,
it is straightforward to compute the Casimir CðRÞ for
these irreducible representations from (2.11) and the
explicit Cartan matrix presented in the Appendix. One

has dim an ¼ nðnþ 2Þ, dim δil ¼ ðnþ1
l Þ, and C2ðδilÞ ¼

lðnþ1−lÞðnþ2Þ
2ðnþ1Þ , which leads to

CðδilÞ ¼
1

2

�
n − 1

l − 1

�
: ð3:2Þ

This formula is symmetric under the interchange
l → nþ 1 − l as it should since δi;nþ1−l is the conjugate
representation of δil. This fact allows us to focus on
l ≤ ⌊ nþ1

2
⌋ and then extend the results with the help of

the symmetry.
The inequality (2.13) tells us that we have CðδilÞ >

Cð1Þ, but does not allow us to compare the defining
representations between themselves. Nevertheless, with
the explicit expression for their Casimirs, this can be done
as follows:

CðδilÞ
Cðδi;l−1Þ

¼ ðnþ 1−lÞ!ðl− 2Þ!
ðn−lÞ!ðl− 1Þ! ¼ nþ 1−l

l− 1
≥
nþ 1

n− 1
> 1:

ð3:3Þ

This comparison assumes l ≥ 2 and is thus valid only for
n ≥ 3 which is verified since n ≥ 5. Equation (3.3) is
transformed in an inequation by replacing l by any value
l ≤ ⌊ nþ1

2
⌋. Hence we have that the Casimir is strictly

increasing with l for l ¼ 1; 2;…; ⌊ nþ1
2
⌋ and then

decreases symmetrically for the other values of l by the
symmetry of the Casimirs. The Casimirs (3.2) of the first
three defining representations are presented in the first
column of Table I. According to (3.1), we have that for δi3,
the upper bound on the generalized number of flavors is
already overcome. Hence, inequality (3.3) means that only
the defining representations δi1 and δi2 and their conjugates
are allowed in the theory. Moreover, when we consider
three generations of fermions for the MSSM content, we
need 3CðRÞ to not exceed the upper bound of (3.1), which
furthermore reduces the MSSM field candidates to only δi1
and its conjugate δin. We now use inequality (2.13) to find
the other possible irreducible representations. The possible
Dynkin coefficients of the representations are given by
adding the Dynkin coefficients of two allowed defining
representations (thus combining two among δi1, δi2, δi;n−1,
and δin). These are presented in the second column of
Table I along with their Casimirs, without the conjugate
representations since their Casimirs are the same. It is
straightforward to verify that only the Casimirs of 2δi1 and
δi1 þ δin do not overtake the upper bound of (3.1), but 3
times their Casimirs do, so they cannot be used to build the
MSSM families.
In the same way, we check for other irreducible repre-

sentations by adding the Dynkin coefficients of the allowed
representations of the second column with those of the first
column, which leads to the irreducible representations of
the third column of Table I. It is easy to check that they do
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not satisfy the ISS condition; hence, the list of allowed
irreducible representations is complete.
In summary, our analysis implies that the three MSSM

families can originate only from the irreducible represen-
tations 1, δi1, and δin. Moreover, only δi1, δi2, 2δi1, and
δi1 þ δin and their conjugates can cause symmetry breaking
by acquiring VEVs. This fact is highlighted in Table I with
bold entries.
Since the remaining steps of the proof are similar for

both SUðNÞ and SOðNÞ fully SGUTs, we now turn our
attention to unification based on SOðNÞ.

B. Admissible field content of a SOðNÞ-based
unified theory

We now consider a theory with GSGUT ¼ SOðNÞ. The
analysis is almost the same as for the SUðNÞ case, taking
into account minor changes. As before, we first find the
largest possible upper bound on Nf, and then we obtain all
irreducible representations of SOðNÞ that can be used in the
UV theory that satisfy the previous upper bound.
We have already shown in Sec. II that for every

reduction of a symmetry group to a maximal subgroup,
the upper bound on Nf decreases. Thus, to find the
weakest ISS condition, we only have to find the maximal
subgroup of SOðNÞ for which the upper bound on Nf is the
largest. This corresponds to the symmetry breaking
pattern SOðNÞ ↓ SOðN −MÞ × SOðMÞ with M mini-
mally greater than 9 to respect the rank condition of the
MSSM. Accordingly, the ISS criterion we work with is

Nf <
3

2
ðN −M − 2Þ; M > 9: ð3:4Þ

This inequality dictates which irreducible representations
of SOðNÞ can be included in our theory. To determine the
relevant irreducible representations, we again establish an
ordering between the defining representations of SOðNÞ.
The algebra of SOðNÞ is different whether N ¼ 2nþ 1 or
N ¼ 2n. In the former case, the algebra is bn and the last
root is different. Hence we consider only defining repre-
sentations up to l ≤ n − 1. In the latter case, the algebra is
dn and the last two roots are different; thus we limit

ourselves to representations with l ≤ n − 2. The omitted
representations are studied separately afterwards.
The Casimirs for the defining representations δil are the

same regardless of the parity of N for the values of l
considered. We have dim δil ¼ ðNlÞ, dim soðNÞ ¼ NðNþ1Þ

2
,

and C2ðδilÞ ¼ l
2
ðN − lÞ, leading to

CðδilÞ ¼
�
N − 2

l − 1

�
: ð3:5Þ

As in the SUðnþ 1Þ case, we compare the Casimirs of δil
and δi;l−1 to provide an ordering,

CðδilÞ
Cðδi;l−1Þ

¼ ðN − lÞ!ðl − 2Þ!
ðN − 1 − lÞ!ðl − 1Þ! ¼

N − l
l − 1

> 1: ð3:6Þ

It is easy to check that the last inequality holds for the
specified values of l.
The first column of Table II presents the Casimirs of the

first three defining representations computed using (3.5).
The bold entries are the irreducible representations that do
not violate the ISS condition (3.4). We can see that for
l ¼ 1, 2, the representations are allowed, but not for l ¼ 3.
Moreover, only δi1 is acceptable to give three generations of
MSSM fermions. Hence, according to inequality (3.6), we
do not need to consider larger values of l. We still have to
check the spinorial representations of SOðNÞ. For
N ¼ 2nþ 1, we had put aside δin which has Casimir
CðδinÞ ¼ 2n−3. For N ¼ 2n, we need to verify l¼ n− 1,
n. These two representations are conjugate to each other,
with Casimir Cðδi;n−1Þ ¼ CðδinÞ ¼ 2n−4. One thus con-
cludes that these representations are unusable to construct
our fully SGUT.
We now use (2.13) to explore more general irreducible

representations. There are four cases to consider, and they
are gathered in the second and third columns of Table II. In
summary, we are left with two irreducible representations
that can be used for three generations of MSSM fermions,
the irreducible representations 1 and δi1. In addition to
these representations, one can introduce one or two δi2 and
2δi1 to build a Higgs sector, to which we now turn.

TABLE I. The Casimirs of some irreducible representations of SUðnþ 1Þ. These can be found with the help of the formula presented
in the Appendix. The bold entries are the irreducible representations that are allowed for the theory to exhibit a metastable SUSY-
breaking vacuum. The representations are ordered in columns according to the sum of their Dynkin coefficients.

R CðRÞ R CðRÞ R CðRÞ
δi1

1
2 2δi1 1

2 ðnþ 3Þ 3δi1
1
4
ðnþ 3Þðnþ 4Þ

δi2
1
2 ðn − 1Þ δi1 þ δin nþ 1 2δi1 þ δin

1
4
ðnþ 3Þð3nþ 2Þ

δi3
1
4
ðn − 1Þðn − 2Þ δi1 þ δi2

1
2
ðn2 þ 2n − 2Þ

2δi2
1
6
ðnþ 3Þðn − 1Þ

δi1 þ δi;n−1
1
4
ðn − 1Þð3nþ 4Þ

JEAN-FRANÇOIS FORTIN and JEAN-SAMUEL LEBOEUF PHYSICAL REVIEW D 96, 015025 (2017)

015025-8



C. Higgs sector and branching rules

We now have an exhaustive list of allowed representa-
tions for any SUðnþ 1Þ or SOðNÞ fully SGUT theory. The
last step of the proof is to show that these are not able to
generate the MSSM field content. To formally prove this
statement, all symmetry breaking patterns must be inves-
tigated, and each of these patterns produces specific
branching rules for the irreducible representations. To solve
this problem, we analyze the various symmetry breaking
patterns that can occur from a Higgs sector built from the
allowed representations. We then compute the general
branching rules for these patterns to conclude that the
MSSM cannot be generated from these representations.
We begin by studying achievable symmetry breaking

patterns for SUðnþ 1Þ and SOðNÞ theories. This question
was already answered in [10]. The results of [10] are
summarized in Table III. As previously stated, these patterns
can be dealt with by embedding them in a chain of maximal
subgroups. For each symmetry breaking pattern found in
[10], we need five particular cases of maximal subgroups.
Hence, we give in Table IV the branching rules of the eight
irreducible representations permitted for the two patterns
when the embedding group is SUðnþ 1Þ. The branching
rules for the three remaining patterns, where SOðNÞ is the
embedding group, are presented in Table V. For this case,
only four irreducible representations are allowed.

The branching rules are given in terms of direct products
and direct sums. For example, the branching rule for the
irreducible representation δi2 for the symmetry breaking
pattern SUðnþ 1Þ ↓ SUðn −mþ 1Þ × SUðmÞ is

δSUðnþ1Þ
i2 ↓ ðδSUðn−mþ1Þ

i2 × 1SUðmÞÞ ⊕ ðδSUðn−mþ1Þ
i1 × δSUðmÞ

i1 Þ
⊕ ð1SUðn−mþ1Þ × δSUðmÞ

i2 Þ:

In the tables, the group index under which the representa-
tions act is suppressed to simplify the notation.
We now focus on the branching rules of the trivial 1, the

fundamental δi1, and the antifundamental δin representa-
tions because they are the only candidates that can contain
the MSSM families. The trivial representation 1 has a trivial
branching rule. In fact, since the dimension of the repre-
sentations must be conserved before and after symmetry
breaking, we have a direct argument to write the general
rule

1GSGUT ↓ ×
Gi

1Gi ; ð3:7Þ

whereGi is any subgroup product ofGSGUT. Looking at the
branching rules of δi1 and δin, it is not hard to convince
oneself that the resulting representation is of the form of a
direct sum of products of many trivial 1 and only one
fundamental or antifundamental, at each step of the chain of

TABLE II. The Casimirs of some irreducible representations of SOðNÞ. The bold entries are the irreducible representations that are
allowed for the theory to exhibit a metastable SUSY-breaking vacuum. The representations are ordered in columns according to the sum
of their Dynkin coefficients.

R CðRÞ R CðRÞ R CðRÞ
δi1 1 2δi1 1

2 ðN þ 2ÞðN − 1Þ 3δi1
1
2
ðN þ 1ÞðN þ 4Þ

δi2 N − 2 δi1 þ δi2 ðN þ 2ÞðN − 2Þ
δi3

1
2
ðN − 3ÞðN − 2Þ 2δi2

1
3
ðN þ 2ÞðN þ 1ÞðN − 3Þ

TABLE III. Symmetry breaking patterns from the VEV of some irreducible representations of SUðnþ 1Þ or
SOðNÞ. The results are taken from [10].

R SUðnþ 1Þ ↓ SOðNÞ ↓
δi1 or δin SUðnÞ SOðNÞ
k½δi1� or k½δin� SUðnþ 1 − kÞ SOðN − kÞ

δi2 or δi;n−1

SUðnÞ SOðN − 1Þ
or or

SOðnþ 1Þ SOð⌊ N
2
⌋Þ × SOðN − ⌊ N

2
⌋Þ

2δi1 or 2δin

SUðn − 1Þ × SUð2Þ ×Uð1Þ SUð⌊ N
2
⌋Þ × Uð1Þ

or or
SOð2⌊ nþ1

2
⌋þ 1Þ SOðN − 2Þ ×Uð1Þ

δi1 þ δin

SUðnþ 1 − ⌊ nþ1
2
⌋Þ × SUð⌊ nþ1

2
⌋Þ × Uð1Þ � � �

or
SUðnÞ × Uð1Þ
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maximal subgroups, regardless of the aimed subgroups and
the starting group. It can be roughly expressed as

δGSGUT
ia ↓ ⨁

Gi

ðδGi
ia0 × ×

Gj
j≠i

1GjÞ; ð3:8Þ

where a and a0 are used to designate whether it is the
fundamental or antifundamental representation and Gi are
the subgroups of SUðnþ 1Þ or SOðNÞ resulting from the
symmetry breaking; thus Gi must be an SUðMÞ or SOðMÞ
subgroup. Moreover, when Gi ¼ SOðNiÞ, we necessarily
have a0 ¼ 1.
There is one last ambiguity we have not addressed yet:

Can a fancy Higgs sector with several Higgs fields lead to
another symmetry breaking pattern with branching rules
different from (3.8)? The short answer is no. Indeed, we can
always consider the symmetry breaking in steps with each
Higgs further reducing the symmetry. Consider, without
loss of generality, that some Higgs acquires a VEV before
the others. Then the other Higgs would have to decompose
according to one of the branching rules of Table IV or V.
But the resulting representations are all representations that
we have already considered for symmetry breaking. Thus

the next Higgs in the list will produce a symmetry breaking
pattern already included in Table III. The argument can be
repeated until the Higgs sector is completely exhausted,
demonstrating the generality of our analysis and explaining
why we considered all five symmetry breaking patterns
although only the first cases in Tables IV and V lead to
product groups of the form GSB × GSM.
This observation was rather important to make, because

if it were possible to break a SUðNÞ group to E6 in some
way, then this theory would be a good candidate. In E6

unification, one fundamental 27 representation contains
one complete generation of fermions, and these represen-
tations are in fact the only ones available to us in our
framework.
It is possible to lift the requirement of the three families

by looking at branching rules for irreducible representa-
tions R in steps such that

R ↓ ⨁
i
mir

G0
SB

i × rGSM
i ↓ ⨁

i;j
mimijr

GSB
i;j × r

GSym

i;j × rGSM
i ;

ð3:9Þ

TABLE IV. Branching rules for the allowed irreducible representations for some maximal subgroups of
SUðnþ 1Þ. In the first column, the Uð1Þ factor of the symmetry breaking pattern is not included. The first three
representations are separated from the others to indicate that they are the only representations that can be included 3
times or more in the theory.

R SUðnþ 1Þ ↓ SUðnþ 1Þ ↓
SUðn −mþ 1Þ × SUðmÞ SOðnþ 1Þ

1 1 × 1 1
δi1 δi1 × 1 ⊕ 1 × δi1 δi1
δin δi;n−m × 1 ⊕ 1 × δi;m−1 δi1

δi2 δi2 × 1 ⊕ 1 × δi2 ⊕ δi1 × δi1 δi2
δi;n−1 δi;n−m−1 × 1 ⊕ 1 × δi;m−2 ⊕ δi;n−m × δi;m−1 δi2
2δi1 2δi1 × 1 ⊕ 1 × 2δi1 ⊕ δi1 × δi1 2δi1 ⊕ 1
2δin 2δi;n−m × 1 ⊕ 1 × 2δi;m−1 ⊕ δi;n−m × δi;m−1 2δi1 ⊕ 1

δi1 þ δin
½δi1 þ δi;n−m� × 1 ⊕ 1 × ½δi1 þ δi;m−1� δi1 ⊕ δi2⊕ δi1 × δi;m−1 ⊕ δi;n−m × δi1 ⊕ 1 × 1

TABLE V. Branching rules for the allowed irreducible representations for some maximal subgroups of SOðNÞ. In the last two
columns, we separate the symmetry breaking pattern SOðNÞ ↓ SUðn ¼ ⌊N=2⌋Þ for N even and odd since the rules are different in each
case. The first two representations are separated from the others to indicate that they are the only representations that can be included
three times or more in the theory.

R SOðNÞ ↓ SOð2nÞ ↓ SOð2nþ 1Þ ↓
SOðN −MÞ × SOðMÞ SUðnÞ SUðnÞ

1 1 × 1 1 1
δi1 δi1 × 1 ⊕ 1 × δi1 δi1 ⊕ δi;n−1 δi1 ⊕ δi;n−1 ⊕ 1

δi2 δi2 × 1 ⊕ δi1 × δi1 ⊕ 1 × δi2
δi2 ⊕ δi;n−2 ⊕ 1 ½δi1 þ δi;n−1� ⊕ 1 ⊕ δi2 ⊕ δi;n−2
⊕ ½δi1 þ δi;n−1� ⊕ δi1 ⊕ δi;n−1

2δi1 2δi1 × 1 ⊕ δi1 × δi1 ⊕ 1 × 2δi1
2δi1 ⊕ 2δi;n−1 2δi1 ⊕ 2δi;n−1 ⊕ ½δi1 þ δi;n−1�
⊕ ½δi1 þ δi;n−1� ⊕ δi1 ⊕ δi;n−1 ⊕ 1
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where GSym is a symmetry group of the different MSSM
families and mij are the appropriate multiplicities. In this
case, the three MSSM families would originate from the
same irreducible representations, and they would be related
by some hidden symmetry group. Thus the branching rules
for the allowed irreducible representations in Tables IV
and V which cannot be included 3 times could still be
relevant in generating the three MSSM families.

D. Proof of the no-go theorem

We are finally ready to complete our proof. After the
analysis performed above, we are left with (3.7), (3.8), and
(3.9) to build the MSSM, regardless of the unifying group
or of the exact symmetry breaking pattern. Unfortunately
these representations cannot provide the MSSM quark QL
which has quantum number (3, 2) under SUð3ÞC and
SUð2ÞL. In terms of Dynkin coefficients, this quark would
need to be in ð1; 0ÞSUð3ÞC × ð1ÞSUð2ÞL , but such an arrange-
ment never happens for the three irreducible representations
in (3.7) and (3.8), i.e. the irreducible representations that
can be included at least 3 times.
Actually, the smallest irreducible representations that

could provide such a field are the antisymmetric repre-
sentations for SUðnþ 1Þ and the spinorial representations
for SOðNÞ. However, we have already ruled out the
spinorial representations of SOðNÞ. The antisymmetric
representations of SUðnþ 1Þ would be ruled out by the
MSSM family argument since they cannot be included
three times. In principle, it is still possible that several
symmetry breakings could generate three MSSM families
from a unique irreducible representation through a hidden
MSSM family symmetry group GSym as in (3.9). Looking
at Tables IV and V, it is clear that the MSSM family
symmetry group path is not possible. Indeed, for symmetry
breaking patterns leading to product groups of the form
GSB ×GSM, the MSSM quark QL can never be generated 3
times since the antisymmetric representation always breaks
to an antisymmetric representation times the trivial repre-
sentation or a fundamental representation times a funda-
mental representation. Hence, this argument concludes the
proof of the no-go theorem for a fully SGUT using an ISS
metastable SUSY-breaking vacuum.

IV. CONCLUSION

In this article we introduced the idea of fully SGUTs, i.e.
SUSic grand unified theories that, upon symmetry breaking
through the Higgs mechanism, decompose into a visible
sector representing the MSSM and an extra sector with a
gauge group responsible for SUSY breaking. The impor-
tant feature of fully SGUTs being that all gauge groups
unify into a simple SGUT gauge group GSGUT, including
the extra sector gauge group. Fully SGUTs are thus
motivated by MSSM gauge coupling unification.

We then focused on a specific implementation of this
framework where the extra gauge group breaks SUSY
through the ISS mechanism. Starting from simple SGUT
gauge groups with complex representations, we then
showed that the existence of the ISS SUSY-breaking
minimum puts strong constraints on the matter content
of the fully SGUT theories. From the theory of Lie groups
and Lie algebras, we found all the allowed irreducible
representations in the fully SGUT for which the ISS SUSY-
breaking minimum exists in the extra sector (assuming
none of the matter field irreducible representations gen-
erated by symmetry breaking acquire a large mass). Finally,
from the possible symmetry breaking patterns induced
through the Higgs mechanism, we demonstrated that none
of the allowed representations contains the MSSM field
content. We thus showed that fully SGUTs with metastable
SUSY breaking à la ISS is forbidden.
In the specific framework studied here, one assumption

that could perhaps be relaxed is symmetry breaking
through the Higgs mechanism. For example, if it were
possible somehow to break SUð27Þ to E6 by a different
symmetry breaking mechanism, a unified theory could
maybe be built. The remaining assumption that all irre-
ducible representations generated by symmetry breaking
are light and thus contribute to the running of the extra
sector gauge coupling might also be relaxed by some clever
model building.
It would also be interesting to look at other SUSY-

breaking mechanisms for which the idea of fully SGUTs
could be successfully implemented. If they exist, it is
likely that such models would not be generic. However,
such models could nevertheless be of interest—after all,
the SM itself is rather baroque. For example, their
phenomenology could help explain why superpartners
have not yet been seen at the LHC or could address the
electroweak hierarchy problem. We hope to return to
such models in future work.
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APPENDIX: BASICS ABOUT CLASSICAL
LIE ALGEBRAS

We review here the relevant basics of classical Lie
algebras. First, there are four infinite families of classical
Lie algebras, denoted by an, bn, cn, and dn, where n is a
positive integer called the rank of the algebra. They
correspond respectively to the algebras of the groups
SUðnþ 1Þ, SOð2nþ 1Þ, Spð2nÞ, and SOð2nÞ. Their
structure is dictated by a set of linearly dependent vectors
of n ∈ N components called the roots that we here denote
by βi. As a subset of these roots, there is a set of n linearly
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independent particular roots called the simple roots denoted
by αi, such that every other root β is a linear combination of
the αi, with either all positive integer coefficients or
negative integer coefficients. Thus, the roots can be split
in two sets called positives roots and negative roots,
respectively.
There exists a scalar product between the roots, denoted

by hβi; βji. Since β ¼ P
ik

β
i αi, where the kβi are constant

coefficients, only the scalar product between the αi is
needed. The result of all the scalar products is encoded in a
matrix called the Cartan matrix A of the Lie algebra. It is
defined as

Aij ¼ 2
hαi; αji
hαj; αji

; ðA1Þ

and will be specified shortly for each different simple Lie
algebra.
The irreducible representations of an algebra are often

referred to by their dimensions, but it is easier to keep
track of them by labeling them by their Dynkin

coefficients, which form a vector of n positive integers.
The n Dynkin coefficients of a given irreducible
representation R are denoted by dRi in this paper.
Since the simple roots αi form a basis for an n-
dimensional space, they can be used to express the
Dynkin coefficients of R. In this basis, they will be
denoted by kRi . If we define the Dynkin coefficients of
the simple roots as the rows of the Cartan matrix A, then
we can switch between the two notations simply by
writing dRj ¼ kRi Aij. It is worth noting that the kRi of an
irreducible representation R are all positive. From this,
we can write the scalar product between representations
or roots W and W0 as hW;W0i ¼ 1

2

P
ik

W
i d

W0
i α2i , where α2i

is the squared size of the root. We choose here the
convention where the largest squared size of the roots is
normalized to 1 so that Cðδi1Þ ¼ 1

2
for the fundamental

representation of SUðNÞ.
Here we give the Cartan matrices and their inverses for

each simple Lie algebra. Empty cells correspond to zeros.
For an, we have

A ¼

0
BBBBBBBBBB@

2 −1
−1 2 −1

−1 . .
. . .

.

. .
.

2 −1
−1 2 −1

−1 2

1
CCCCCCCCCCA
; A−1

ij ¼

8>><
>>:

iðnþ 1 − jÞ
nþ 1

if i ≤ j

jðnþ 1 − iÞ
nþ 1

if i > j:

ðA2Þ

For bn, we have

A ¼

0
BBBBBBBBBB@

2 −1
−1 2 −1

−1 . .
. . .

.

. .
.

2 −1
−1 2 −2

−1 2

1
CCCCCCCCCCA
; A−1

ij ¼

8>><
>>:

i if i ≤ j; i ≠ n

j if j < i; i ≠ n
j
2

if i ¼ n:

ðA3Þ

For cn, we have

A ¼

0
BBBBBBBBBB@

2 −1
−1 2 −1

−1 . .
. . .

.

. .
.

2 −1
−1 2 −1

−2 2

1
CCCCCCCCCCA
; A−1

ij ¼

8>><
>>:

i if i ≤ j; j ≠ n

j if j < i; j ≠ n
i
2

if j ¼ n:

ðA4Þ
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For dn, we have

A ¼

0
BBBBBBBBBB@

2 −1
−1 2 −1

−1 . .
. . .

.

. .
.

2 −1 −1
−1 2

−1 2

1
CCCCCCCCCCA
; A−1

ij ¼

8>>>>>>>>><
>>>>>>>>>:

i if i ≤ j; j ≠ n − 1; n

j if j < i; i ≠ n; n − 1
i
2

if j ¼ n − 1; n& i ≠ n − 1; n
j
2

if i ¼ n − 1; n& j ≠ n − 1; n
n
4

if i ¼ j ¼ n − 1; n
n−2
4

if i ¼ n; j ¼ n − 1 or i ↔ j:

ðA5Þ

For further information about Lie algebras and their representations, we refer the reader to [15].
We now present the derivation of the formula used in Sec. III A to compute the Casimir of a general class of

irreducible representations of SUðnþ 1Þ. We consider irreducible representations with Dynkin coefficients given by di ¼
pδil þ qδik ¼ ð0;…; 0; q; 0;…; 0; p; 0;…; 0Þ for some integers l ≥ k. To proceed, we use (2.11) and (2.12). First we
compute the quadratic Casimir,

C2ðRÞ ¼ hR;Rþ 2Ii ¼ 1

2
diA−1

ij d
0
j ¼

1

2
ðpδil þ qδikÞA−1

ij ðpδil þ qδik þ 2Þ

¼ 1

2
½p2A−1

ll þ pqðA−1
lk þ A−1

kl Þ þ q2A−1
kk � þ

Xn
j¼1

ðpA−1
lj þ qA−1

kj Þ

¼ 1

2N
fN2ðplþ qkÞ þ N½pðplþ qkÞ þ qkðpþ qÞ − pl2 − qk2� − ðplþ qkÞ2g;

where N ≡ nþ 1. Second, we find the dimension of this irreducible representation using the hook factor technique,

dimR ¼
�Yp

i¼1

ðNþp−i
k Þ

ðpþqþl−i
k Þ ·

ðNþp−k−i
l−k Þ

ðpþl−k−i
l−k Þ

��Yq
j¼1

ðNþpþq−j
k Þ

ðqþk−j
k Þ

�
: ðA6Þ

Finally, using dim an ¼ nðnþ 2Þ, it is straightforward to obtain the Casimirs showed in Table I.
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