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The standard model (SM) prediction for the CP-violating quantity ϵ0K=ϵK deviates from its measured
value by 2.8σ. It has been shown that this tension can be resolved within the minimal supersymmetric
standard model (MSSM) through gluino-squark box diagrams, even if squarks and gluinos are much
heavier than 1 TeV. The rare decays KL → π0νν̄ and Kþ → πþνν̄ are similarly sensitive to very high mass
scales and the first one also measures CP violation. In this article, we analyze the correlations between
ϵ0K=ϵK and BðKL → π0νν̄Þ and BðKþ → πþνν̄Þ within the MSSM aiming at an explanation of ϵ0K=ϵK via
gluino-squark box diagrams. The dominant MSSM contribution to the K → πνν̄ branching fractions stems
from box diagrams with squarks, sleptons, charginos, and neutralinos, and the pattern of the correlations is
different from the widely studied Z-penguin scenarios. This is interesting in light of future precision
measurements by KOTO and NA62 at J-PARC and CERN, respectively. We find BðKL →
π0νν̄Þ=BSMðKL → π0νν̄Þ≲ 2ð1.2Þ and BðKþ → πþνν̄Þ=BSMðKþ → πþνν̄Þ≲ 1.4ð1.1Þ, if all squark
masses are above 1.5 TeV, gaugino masses obey GUT relations, and if one allows for a fine-tuning at
the 1%(10%) level for the gluino mass. Larger values are possible for a tuned CP violating phase.
Furthermore, the sign of the MSSM contribution to ϵ0K imposes a strict correlation between BðKL → π0νν̄Þ
and the hierarchy between the masses mŪ, mD̄ of the right-handed up-squark and down-squark:
sgn½BðKL → π0νν̄Þ − BSMðKL → π0νν̄Þ� ¼ sgnðmŪ −mD̄Þ.
DOI: 10.1103/PhysRevD.96.015023

I. INTRODUCTION

Flavor-changing neutral current (FCNC) decays of K
mesons are extremely sensitive to new physics (NP) and
probe virtual effects of particles with masses far above the
reach of future colliders, especially if the corresponding
observable is CP violating. Prime examples of such
observables are ϵK and ϵ0K measuring indirect and direct
CP violation in K → ππ decays and also KL → π0νν̄.
While indirect CP violation was already found in 1964
[1], it took 35 more years to establish a nonzero value of ϵ0K
in 1999 by the NA48 and KTeV Collaborations [2,3]:

Re
ϵ0K
ϵK

����
exp

¼ ð16.6� 2.3Þ × 10−4 ðPDG Þ: ð1Þ

Until recently, large theoretical uncertainties precluded
reliable predictions for Reðϵ0K=ϵKÞ. Calculating the had-
ronic matrix elements with the large-Nc (dual QCD)
method one finds a standard model (SM) value well below
the experimental range given in Eq. (1) [4]. A major
breakthrough has been the recent lattice-QCD calculation
of Ref. [5], which gives support to the large-Nc result. The
current status is [6]

ϵ0K
ϵK

����
SM

¼ ð1.06� 5.07Þ × 10−4; ð2Þ

which is consistent with ðϵ0K=ϵKÞSM ¼ ð1.9� 4.5Þ × 10−4

[7]. Both results are based on the lattice numbers in
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Refs. [5,8] and further use CP-conserving K → ππ data to
constrain some of the hadronic matrix elements involved.
The SM prediction in Eq. (2) lies below the experimental
value in Eq. (1) by 2.8σ.1

This tension can be explained by NP effects like Z0
gauge bosons [10–14], models with modified Z-couplings
[10,12,15,16], by a right-handed coupling of quarks
to the W [17], within the littlest Higgs model [18], but
also within the minimal supersymmetric standard model
(MSSM) [19,20].
When pursuing such NP interpretations of the tension in

ϵ0K, it is natural to look for signatures in other s → d
transitions which are, in general, correlated in UV complete
models. To this end, the rare decays KL → π0νν̄ and Kþ →
πþνν̄ play an important role. Within the SM, the branching
ratios are predicted to be [21–23]

BðKL → π0νν̄ÞSM ¼ ð2.9� 0.2� 0.0Þ × 10−11;

BðKþ → πþνν̄ÞSM ¼ ð8.3� 0.3� 0.3Þ × 10−11: ð3Þ

The first error summarizes the uncertainty from CKM
parameters, the second one denotes the remaining theo-
retical uncertainties (in BðKL → π0νν̄ÞSM, 0.04 is rounded
to 0.0). The numbers in Eq. (3) are based on the best-fit
result for the CKM parameters in Ref. [24]. Experimentally,
we have [25]

BðKþ → πþνν̄Þexp ¼ ð17.3þ11.5
−10.5Þ × 10−11; ð4Þ

and the 90% C.L. upper bound [26],

BðKL → π0νν̄Þexp ≤ 2.6 × 10−8: ð5Þ

In the future, these measurements will be significantly
improved. The NA62 experiment at CERN [27,28] is
aiming to reach a precision of 10% compared to the SM
already in 2018. In order to achieve 5% accuracy, more
time is needed. Concerning KL → π0νν̄, the KOTO experi-
ment at J-PARC aims in a first step at measuring BðKL →
π0νν̄Þ around the SM sensitivity [29,30]. Furthermore, the
KOTO-step2 experiment will aim at 100 events for the SM
branching ratio, implying a precision of 10% of this
measurement [31].
In our MSSM scenario—in which the desired effect in ϵ0K

is generated via gluino-squark boxes [19]—correlations
with BðKL → π0νν̄Þ and BðKþ → πþνν̄Þ are not unex-
pected, since sizable box contributions also occur in these
rare decays [32] (see Fig. 1). Reference [19] achieves
sizable effects in ϵ0K [33] together with a simultaneous
efficient suppression of the supersymmetric QCD contri-
butions to ϵK [34]. The suppression occurs because crossed
and uncrossed gluino box diagrams cancel if the gluino
mass is roughly 1.5 times the squark masses. With
appropriately large left-left squark mixing angle and a
CP phase, one can reconcile the measurements of ϵK and
ΔMK with the large value in Eq. (1) and squark and gluino
masses in the multi-TeV range, so that there is no conflict
with collider searches.
However, there is no such cancellation in the (dominant)

chargino box contribution to KL → π0νν̄ and Kþ → πþνν̄
which permits potentially large effects.

FIG. 1. Feynman diagrams of the dominant MSSM contributions to ϵ0K , K → πνν̄, and ϵK in our scenario. ~Q denotes a left-handed
squark which is a down-strange mixture in our setup. ~U ( ~D) represents the right-handed up (down) squark. ~g, ~χ0, and ~χ� stand for gluino,
neutralino, and chargino, respectively, and ~L denotes a charged slepton. First row: The first two box diagrams feed ϵ0K through A2 in
Eq. (6) if mU ≠ mD. The last diagram gives the ballpark of the MSSM contribution to BðK → πνν̄Þ. Second row: MSSM contributions
to ϵK .

1Calculations using chiral perturbation theory instead are
consistent with both the measurement and Eq. (2), because they
have larger errors [9].
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This article is organized as follows: In the next section,
we will review ϵ0K=ϵK and K → πνν̄ within the MSSM. In
Sec. III, we then perform the phenomenological analysis
highlighting the correlations before we conclude in Sec. IV.

II. PRELIMINARIES

ϵ0K=ϵK is given by [7]

ϵ0K
ϵK

¼ ωþffiffiffi
2

p jϵexpK jReAexp
0

�
ImA2

ωþ
− ð1 − Ω̂effÞImA0

�
ð6Þ

ωþ¼ð4.53�0.02Þ×10−2, jϵexpK j¼ ð2.228�0.011Þ×10−3,
Ω̂eff ¼ ð14.8� 8.0Þ × 10−2, and the amplitudes AI ¼
hðππÞIjHjΔSj¼1jK0i involving the effective jΔSj ¼ 1

Hamiltonian HjΔSj¼1. Short-distance physics enters ImA0

and ImA2 through the Wilson coefficients in HjΔSj¼1.
The SM prediction of the renormalization-group (RG)
improved Wilson coefficients is known to the next-
to-leading order (NLO) of QCD and QED corrections
[35] and the next-to-next-to-leading-order QCD calculation
is underway [36]. Equation (2) is based on a novel analytic
formula for the NLO RG evolution.
The Wilson coefficients multiply the four-quark oper-

ators Qj whose hadronic matrix elements hðππÞIjQjjK0i
must be calculated by nonperturbative methods. For some
time these calculations for the matrix elements entering
ImA2 are in good shape, thanks to precise results from
lattice QCD [8]. However, ImA0 has become tractable with
lattice QCD only recently [5].
CP-conserving data determine ReA0 and ωþ in Eq. (6).

ωþ is essentially equal to the ratio ReA2=ReA0, except
that it is calculated from charged rather than neutral
kaon decays. The smallness of ωþ encodes the famous
“ΔI ¼ 1=2” rule ReA0 ≫ ReA2. It leverages the ImA2 term
in Eq. (6) and leads to the above-mentioned high sensitivity
of ϵ0K to new physics in this amplitude.
Following the approach of Ref. [19], we aim at explain-

ing the discrepancy in ϵ0K=ϵK with contributions to the
Wilson coefficients c0q1;2. Therefore, we need the flavor
(and CP) violation in the left-handed squark sector
while the mass difference between the right-handed up-
and down-squarks accounts for the necessary isospin
violation.
The small errors in Eq. (3) show that the K → πνν̄

branching ratios are theoretically very clean. While KL →
π0νν̄ is only sensitive to the CP violating part of
the amplitude, Kþ → πþνν̄ is dominated by the CP
conserving part. In principle, many diagrams contribute
to K → πνν̄ in the MSSM with generic sources of flavor
violation [32]. However, since we are interested in a
scenario with s − d flavor violation in the left-handed
squark sector, chargino-box contributions are numerically
most important.

III. PHENOMENOLOGICAL ANALYSIS

Although the correlations between ϵ0K=ϵK and K → πνν̄
in the MSSM have already been discussed in detail in
Refs. [20,32,37,38], our study has several novelties. First of
all, Refs. [32,37] were written before the appearance of the
ϵ0K anomaly, while we take into account the implication of
the current deviation from the SM prediction. With the
progress on the SM prediction, ϵ0K implies a much sharper
constraint on the MSSM parameters, resulting in tighter
bounds on the deviations of BðK → πνν̄Þ from the SM
prediction. In addition, in our analysis we employ mŪ ≠
mD̄ to generate large gluino box (Trojan penguin) [33]
contributions to ϵ0K, while Refs. [20,38] enhance ϵ

0
K through

Z penguins. Furthermore, we consider the latest LHC limits
on the supersymmetric (SUSY) masses [39–42].
Defining the bilinear terms for the squarks as M2

X;ij ¼
m2

Xðδij þ ΔX;ijÞ for X ¼ Q; Ū; D̄, the numerically relevant
parameters entering ϵ0K , ϵK and K → πνν̄ in our analysis
are

mQ; jΔQ;12j; θ; M3; M2; M1; mŪ=mD̄; mL: ð7Þ

Here mQ is the universal mass parameter for the bilinear
terms of the left-handed squarks which we define in the
down-quark basis (i.e. the up-squark mass matrix is
obtained via a CKM rotation from M2

Q) :θ≡ argðΔQ;12Þ,
M3 is the gluino mass, M2 (M1) the wino (bino) mass, and
mL is the (universal) mass for the left-handed sleptons,
respectively. The trilinear A-terms as well as the off-
diagonal elements of the bilinear terms ΔX;ij are set to 0
except for ΔQ;12 which generates the required flavor and
CP violation in our setup. The values of the other (SUSY)
parameters barely affect our results.2

The SUSY contribution to ϵK (ϵSUSYK ) and ΔMK ,
originates from one-loop boxes with all possible combi-
nations of gluinos, winos, and binos. For Kþ → πþνν̄ and
KL → π0νν̄ we take into account all MSSM one-loop
contributions [32]. However, numerically the chargino
boxes turn out to be by far dominant in our setup. In
ϵ0K=ϵK, we include all SUSY QCD (SQCD) contributions
as well as Z-penguin contributions originating from zchar-
gino diagrams to the I ¼ 0, 2 amplitudes with hadronic
matrix elements evaluated at 1.3 GeV [6,19]. In the
calculation of all contributions, we perform an exact
diagonalization of the squark mass matrices.
In the SM contributions, we fix the relevant CKM

elements to their best-fit values [24], in particular we set
V�
tdVts ¼ ð−3.22þ 1.41iÞ × 10−4. In this way, we assume

that the MSSM contributions to the standard unitarity-
triangle analysis are small, so that the change in V�

tdVts is

2We use the fixed values tan β ¼ 10, μ ¼ MA ¼ mQ, Aij ¼ 0.
We also fix BG ¼ 1, which parameterizes the matrix element of
the chromomagnetic penguin operator Q8g.
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unimportant compared to the explicit MSSM contributions
to ϵ0K and BðK → πνν̄Þ. This is justified in typical MSSM
scenarios with generic flavor violation.
First, we show a typical prediction for BðKL →

π0νν̄Þ=BSMðKL → π0νν̄Þ as a function of the squark masses
in the left panel of Fig. 2. Here we assume universal
diagonal elements for the left-handed and right-handed
down squark mass matrices MS ¼ mQ ¼ mD̄ and use
mL ¼ 300 GeV. We also choose ΔQ;12 ¼ 0.1 expð−iπ=4Þ
(0.1 expði3π=4Þ) for mŪ > MS (mŪ < MS) regions to
obtain a positive contribution to ϵ0K . We impose M3=MS ¼
1.5 in order to obtain an efficient suppression of ϵSUSYK
[19,34]. In addition, the GUT relation for M2 and M1 are
imposed. The ϵ0K=ϵK discrepancy between Eq. (1) and the
second prediction in Eq. (2) is resolved at 1σ (2σ) within
the dark (light) green region. The red shaded region is
excluded by ϵK at 95% C.L. if the inclusive value of jVcbj is
used, while the region between the blue-dashed lines can
explain the ϵK discrepancy present if the exclusive deter-
mination of Vcb is used [43].3 Note that θ ¼ �π=4 max-
imizes the effect in ϵSUSYK , while the SUSY contributions to
ϵ0K=ϵK is maximized at θ ¼ �π=2 resulting instead in a
vanishing effect in ϵSUSYK . The blue shaded region is
excluded by the current LHC results [40–42]. Here, in
order to be conservative, we use the most stringent one, i.e.
we maximize the bound which is a function of the

neutralino mass. In this setup, we find that BðKL →
π0νν̄Þ=BSMðKL → π0νν̄Þ≃ 1.05–1.1 is predicted in light
of the ϵ0K=ϵK discrepancy (and the potential ϵK discrepancy)
if mŪ > mD̄.
In the right panel of Fig. 2, the dependence on the CP-

violating phase (θ) is shown. Here, we chose jΔQ;12j ¼ 0.1,
and mD̄ ¼ 2mŪ ¼ 2mQ ¼ 2MS (mŪ ¼ 2mD̄¼ 2mQ¼ 2MS)
for 0 < θ < π (π < θ < 2π). It can be seen that if θ is close
�π=2, the constraint from ϵK is weakened while ϵ0K as well
as BðKL → π0νν̄Þ is enhanced.
Next, let us investigate upper and lower limits on

BðKL → π0νν̄Þ and BðKþ → πþνν̄Þ. In the following
analysis, we fix the slepton mass close to the experimental
limit (mL ¼ 300 GeV) [39] and use GUT relations among
all three gaugino masses. Therefore, when one fixes the
lightest squark mass, the relevant free parameters are only

jΔQ;12j; M3; mŪ=mD̄; ð8Þ

with 0 < jΔQ;12j < 1 and 0 < θ < 2π. In Fig. 3, the blue
solid line encloses the maximally allowed region in the
BðKL → π0νν̄Þ–BðKþ → πþνν̄Þ plane (normalized by their
SM values). The maximal values are obtained whenever the
SUSY contributions to the ΔS ¼ 2 amplitude exactly
cancel. The contour lines in the figures show the required
value of M3=MS (imposing again GUT relations) for
this cancellation. The maximal and minimal values for
BðK → πνν̄Þ are obtained by the decoupling one of the left-
handed mixed down-strange squark while simultaneously
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FIG. 2. Contours of BðKL → π0νν̄Þ=BSMðKL → π0νν̄Þ. The ϵ0K=ϵK discrepancy is resolved at the 1σ (2σ) level within the dark (light)
green region. The red shaded region is excluded by ϵK at 95% C.L. using the inclusive value jVcbj, while the region between the blue-
dashed lines can explain the ϵK discrepancy which is present if the exclusive determination of Vcb is used [43]. The blue shaded region is
excluded by the current LHC results from CMS and ATLAS [40–42]. M3=MS ¼ 1.5, mL ¼ 300 GeV and GUT relations among
gaugino masses are used. In the left plot, ΔQ;12 ¼ 0.1 expð−iπ=4Þ for mŪ > mD̄ ¼ mQ ¼ MS (upper branch) and ΔQ;12 ¼
0.1 expði3π=4Þ for mŪ < mD̄ ¼ mQ ¼ MS (lower branch). In the right plot, jΔQ;12j ¼ 0.1 is used, mD̄ ¼ 2mŪ ¼ 2mQ ¼ 2MS (for
0 < θ < π) and mŪ ¼ 2mD̄ ¼ 2mQ ¼ 2MS (for π < θ < 2π).

3The difference compared to Fig. 4 of Ref. [19] comes from
ΔQ;13;23.
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maximizing their mixing. Since we assume equal diagonal
entries of the bilinear terms this corresponds to the limit
mQ → ∞ and jΔQ;12j → 1 which implies one light squark
which is an equal admixture of the first and second
generation of interaction eigenstates. Note that these results
are independent of mŪ=mD̄, but mŪ=mD̄ is important when
considering the correlation with ϵ0K=ϵK . In the left and right
panels, the lightest squark mass is fixed to 1.5 TeV and
3 TeV, respectively. The latest searches for first-generation
squarks at the LHC imply m ~q1 ≳ 1.4 TeV if the gluino is
heavy and the neutralino is light [41,42]. We find that the
upper allowed values for the branching ratios differ
significantly from the SM predictions. However, in order
to achieve these maximal values, severe fine-tuning of
the gluino mass (with respect to the squark masses) or
tuning of the CP violating phase is necessary: e.g. around
θ ¼ 3π=2, ϵSUSYK is much suppressed while BðKL → π0νν̄Þ
is enhanced.
Let us now investigate the degree of fine-tuning of the

gluino mass needed to suppress ϵSUSYK . In Fig. 4, the
necessary amount of the fine-tuning in the gluino mass
with respect to the value for the exact cancellation is shown,
again in the BðKL → π0νν̄Þ − BðKþ → πþνν̄Þ plane like
Fig. 3. In the light (dark) blue regions, the amount of fine-
tuning is milder than 1% (10%), respectively while in the
regions outside more sever fine-tuning is required in order
to satisfy constraints from ϵK (using the inclusive jVcbj
[43]) and ΔMK at the 2σ level. This means that the gluino
mass can be shifted from its value necessary for an exact
cancellation in ϵK and ΔMK (given by the contours in

Fig. 3) by 1% (∼20 GeV) and 10% (∼200 GeV) without
violating the constraints. Here we have scanned over all
values of the CP violating phase θ. Alternatively, one can
satisfy ϵK by tuning θ to values different from �90° by at
most 0.9° (9°). In our plot, we have discarded such a tuned
CP phase, which explains the white dents in the blue
regions around θ ¼ �90°. However, in the case of a tuned θ
the correlation between the two K → πνν̄ branching ratios
is stronger. The red contour show the SUSY contributions
to ϵ0K=ϵK and the current ϵ0K=ϵK discrepancy is resolved at
1σ (2σ) within the dark (light) green region. The black
dashed lines indicate the shifts of the boundaries of the
green regions when the gluino is taken to be 10% heavier
than in Fig. 3. The lightest squark mass is fixed to 1.5 TeV.
In the left (right) panel, we used mD̄=mŪ ¼ 1.1 ð2Þ with
mŪ ¼ mQ for 0 < θ < π, and mŪ=mD̄ ¼ 1.1 ð2Þ with
mD̄ ¼ mQ for π < θ < 2π. The same results are depicted
in Fig. 5 but for a lightest squark mass of 3 TeV, and
mD̄=mŪ ¼ 1.5 ð2ÞwithmŪ ¼ mQ is used for 0 < θ < π, or
mŪ=mD̄ ¼ 1.5 ð2Þ with mD̄ ¼ mQ, in the left (right) panel.
Comparing Fig. 4 to Fig. 5 we can see that if mŪ=mD̄ (or

mD̄=mŪ) differs more strongly from 1, jBðKL → π0νν̄Þ −
BSMðKL → π0νν̄Þj is predicted to be smaller in light of the
ϵ0K=ϵK discrepancy. Figs. 4 and 5 also illustrate an impor-
tant finding: There is a strict correlation between BðKL →
π0νν̄Þ and mŪ=mD̄: sgnðBðKL → π0νν̄Þ − BSMðKL →
π0νν̄ÞÞ ¼ sgnðmŪ −mD̄Þ. This finding is easily understood
by recalling that sgnðmŪ −mD̄Þ determines whether we
must choose the CP phase θ between 0 and π or instead
between π and 2π to generate the desired positive
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FIG. 3. Allowed region in the BðKL → π0νν̄Þ − BðKþ → πþνν̄Þ plane. “SM” in the axis labels represents the corresponding value of
the branching ratio within the SM. The contours show the values ofM3=MS which is needed to cancel the SUSY contributions to ϵK . In
the left (right) panel, the lightest squark mass is fixed at 1.5 (3) TeV. The gray shaded region is the Grossman-Nir bound [44]. The right
sides of the blue dashed lines are the experimental result for BðKþ → πþνν̄Þ given in Eq. (4).
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contribution to ϵ0K . Now the sign of the MSSM contribution
to BðKL → π0νν̄Þ depends on the CP phase in the same
way, but there is no explicit dependence of BðKL → π0νν̄Þ
on mŪ;D̄. The shape of the blue regions in Figs. 4 and 5 is a
generic feature of NP models with FCNC transitions only

among left-handed quarks and stems from the constraint of
ϵK on the new CP phases [45].
Numerically, we observed BðKL → π0νν̄Þ=BSMðKL →

π0νν̄Þ≲ 2ð1.2Þ and BðKþ → πþνν̄Þ=BSMðKþ → πþνν̄Þ ≲
1.4ð1.1Þ in light of ϵ0K=ϵK discrepancy, if all squark are

FIG. 4. The light (dark) blue region requires a milder parameter fine-tuning than 1% (10%) of the gluino mass compared to the value of
Fig. 3 and a milder parameter tuning than 1% (10%) of the deviation of the CP violating phase from �π=2. The plot suggests that by
tuning the CP violating phase θ close to�π=2 one can relax the fine-tuning of the gluino mass and still amplify the branching ratios. The
red contour represents the SUSY contributions to ϵ0K=ϵK , and the ϵ0K=ϵK discrepancy is resolved at 1σ (2σ) within the dark (light) green
region. The black dashed lines show the projected shifts of the boundaries of the green regions when the gluino is assumed to be 10%
heavier. The lightest squark mass is fixed to 1.5 TeV. In the left panel, mD̄=mŪ ¼ 1.1 (mŪ=mD̄ ¼ 1.1) is used for 0 < θ < π
(π < θ < 2π) to obtain a positive SUSY contribution to ϵ0K=ϵK . While, mD̄=mŪ ¼ 2 (mŪ=mD̄ ¼ 2) is used for 0 < θ < π (π < θ < 2π)
in the right panel. The region on the right side of the blue dashed lines are allowed by the current experimental measurements [given in
Eq. (4)].

FIG. 5. Same as Fig. 4 but for m ~q1 ¼ 3 TeV, mD̄=mŪ ðormŪ=mD̄Þ ¼ 1.5 (left panel) and mD̄=mŪ ðormŪ=mD̄Þ ¼ 2 (right).
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heavier than 1.5 TeV and if a 1% (10%) fine-tuning is
permitted. Here and hereafter, the quoted fine-tuning cor-
responds to the fine-tuning of the gluino mass or, alter-
natively, the tuning of the CP violating phase. Similarly,
BðKL → π0νν̄Þ=BSMðKL → π0νν̄Þ≲ 1.1 and BðKþ →
πþνν̄Þ=BSMðKþ → πþνν̄Þ≲ 1.02 are predicted, if all squark
masses are above 3 TeV with a 10% fine-tuning.
Note that if mŪ=mD̄ is close to 1, the Trojan penguin

contribution from the SUSY QCD box diagrams are
suppressed and the gluino contribution to the chromomag-
netic operator entering ϵ0K=ϵK becomes dominant: for
mŪ=mD̄ ¼ 1.05 (1.02), 25% (50%) of the SUSY contri-
bution comes from the chromomagnetic operator form ~q1 ¼
1.5 TeV and larger values of jBðKL → π0νν̄Þ − BSMðKL →
π0νν̄Þj are predicted. However, it is shown that such a case
always requires fine-tuning at the 1% level.

IV. DISCUSSION AND CONCLUSIONS

In this article, we have studied the correlations between
ϵK, ϵ0K, KL → π0νν̄ and Kþ → πþνν̄ in detail within the
MSSM. In order to accommodate the ϵ0K=ϵK anomaly, we
generate isospin violation by a mass splitting between
right-handed up and down-squark and flavor as well as CP
violating by off-diagonal elements in the left-handed
bilinear squark mass terms.
We find strong correlations between these observables

depending (to a very good approximation) only on mQ,
jΔQ;12j; θ;M3;M2; mŪ=mD̄;mL. In particular, we find the
following prediction: sgnðBðKL → π0νν̄Þ − BSMðKL →
π0νν̄ÞÞ ¼ sgnðmŪ −mD̄Þ. This is in contrast to generic
Z0 models where couplings to leptons are in general free
parameters, decoupling ϵ0K=ϵK from KL → π0νν̄ and
Kþ → πþνν̄.
We show that BðKL → π0νν̄Þ is expected to be shifted

with respect to the SM value by 5%–10% within the
typical parameter region of our scenario. Even a larger
shift is possible if one allows for fine tuning: BðKL →
π0νν̄Þ=BSMðKL → π0νν̄Þ ≲ 2ð1.2Þ and BðKþ → πþνν̄Þ=
BSMðKþ → πþνν̄Þ ≲ 1.4 ð1.1Þ for a fine-tuning at the 1%
(10%) level.
It is also clearly shown that our scenario can be

distinguished from those with dominant Z-penguins. In

the latter scenarios, the Z-penguin contributions to ϵ0K is
proportional to ðImΔL þ 3.3ImΔRÞ and BðKL → π0νν̄Þ −
BSMðKL → π0νν̄Þ is proportional to −ðImΔL þ ImΔRÞ.
Therefore, a suppression of the branching ratio of KL →
π0νν̄ (numerically BðKL → π0νν̄Þ=BSMðKL → π0νν̄Þ ≲
0.7 [15]) is in general predicted if there is no cancellation
between ImΔL and ImΔR [10]. Here, ΔLðRÞ denotes the
effective coupling of s̄γμPLðRÞdZμ originating from NP
interactions. This means that an accurate measurement of
KL → π0νν̄ would be able to distinguish these scenarios.
For our analysis, we assume GUT relations among the

gauginos. Relaxing this assumption allows for larger, but
less correlated, effects in KL → π0νν̄ and Kþ → πþνν̄.
Such an analysis together with a presentation of the
complete analytic expressions for ϵ0K=ϵK, KL → π0νν̄
and Kþ → πþνν̄ will be presented in a forthcoming article.
Finally, we discuss the Higgs boson mass within the

MSSM. In our phenomenological analysis (tan β ¼ 10 and
Aij ¼ 0), the Higgs boson mass of 125 GeV can be
achieved for stop masses around 5 TeV [46]. To accom-
modate for the measured Higgs mass with lighter stops we
have checked that one can choose large diagonal trilinear
Aii terms (defined with the Yukawa couplings factored out)
without relevant effect on the studied observables. In
particular, diagonal Aii terms neither generate sizable Z-
penguins nor effects in nucleon EDM. Furthermore, pro-
moting the MSSM to the NMSSM or adding additional D-
term contributions to the Higgs boson mass would leave
our analysis unchanged. (The patterns of flavor observables
in the MSSM and NMSSM are essentially identical.)
Therefore, one can account for the measured value of
125 GeV for the light Higgs boson mass within our setup.
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