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Motivated by the flavored Peccei-Quinn symmetry for unifying the flavor physics and string theory, we
construct an explicit model by introducing aUð1Þ symmetry such that the Uð1ÞX − ½gravity�2 anomaly-free
condition together with the standard model flavor structure demands additional sterile neutrinos as well as
no axionic domain-wall problem. Such additional sterile neutrinos play the role of realizing baryogenesis
via a new Affleck-Dine leptogenesis. We provide grounds for interpreting the Uð1ÞX symmetry as a
fundamental symmetry of nature. The model will resolve rather recent but fast-growing issues in
astroparticle physics, including leptonic mixings and CP violation in neutrino oscillation, high-energy
neutrinos, QCD axions, and axion cooling of stars. The QCD axion decay constant, through its connection
to the astrophysical constraints of stellar evolution and the SM fermion masses, is shown to be fixed at
FA ¼ 1.30þ0.66

−0.54 × 109 GeV (consequently, its mass is ma ¼ 4.34þ3.37
−1.49 meV and the axion-photon coupling

is jgaγγj ¼ 1.30þ1.01
−0.45 × 10−12 GeV−1). Interestingly enough, we show that neutrino oscillations at low

energies could be connected to astronomical-scale baseline neutrino oscillations. The model predicts the
nonobservational neutrinoless double beta (0νββ) decay rate as well as a remarkable pattern between the
leptonic Dirac CP phase (δCP) and the atmospheric mixing angle (θ23); e.g., δCP ≃ 220°–240°, 120°–140°
for θ23 ¼ 42.3° for normal mass ordering, and δCP ≃ 283°, 250°, 100°, 70° for θ23 ¼ 49.5° for the inverted
one. We stress that future measurements on the θ23, 0νββ decay rate, the sum of active neutrino masses, the
track-to-shower ratio of a cosmic neutrino, astrophysical constraints on axions, QCD axion mass, and the
axion-photon coupling are of importance to test the model in the near future.
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I. INTRODUCTION

The standard model (SM) of particle physics has been
successful in describing properties of known matter and
forces to a great precision until now, but we are far from
satisfied since it suffers from some problems or theoretical
arguments that have not been solved yet. These include the
following: inclusion of gravity in gauge theory, instability of
the Higgs potential, cosmological puzzles of matter-
antimatter asymmetry, dark matter, dark energy, and infla-
tion, and the flavor puzzle associated with the SM fermion
mass hierarchies, their mixing patterns with theCP violating
phases, and the strong CP problem. The SM, therefore,
cannot be the final answer. It is widely believed that the SM
shouldbe extended to amore fundamental underlying theory.
If nature is stringy, string theory should give insight into all
such fundamental problems or theoretical arguments.1 As
indicated in Refs. [1,2],2 such fundamental challenges
strongly hint that a supersymmetric framework with new
gauge symmetries as well as higher-dimensional operators

responsible for the SM flavor puzzles may be a promising
way to proceed. In favor of such a new extension of the SM,
axions and neutrinos could be powerful sources for the
arguments, in that they stand out as their convincing physics
and the variety of experimental probes. Many of the out-
standing mysteries of astrophysics may be hidden from our
sight at all wavelengths of the electromagnetic spectrum
because of absorption bymatter and radiationbetweenus and
the source. So, data from a variety of observational windows,
especially, through direct observations with neutrinos and
axions, may be crucial. Thus, the axions and neutrinos in
astrophysics and cosmology could provide a natural labo-
ratory for a new extension of SM particle physics.3

Axions in stars available at low energies are well suited
for very sensitive tests. If the axion exists, it solves the
strong CP problem of QCD through the Peccei-Quinn (PQ)
mechanism [5,6], fits easily into a string theoretic frame-
work, and appears cosmologically as a form of cold dark
matter. The axion lies at the intersection of elementary
particle physics, astrophysics, cosmology and string
theory, potentially playing a crucial role in each. There
are being discussed two prototype axion models,4

Kim-Shifman-Vainshtein-Zakharov (KSVZ) [10] and
*yhahn@ibs.re.kr
1In Ref. [1], a concrete model is designed to bridge

between string theory as a fundamental theory and low-energy
flavor physics.

2Reference [2] introduces a superpotential for unifying flavor
and strong CP problems, the so-called flavored PQ symmetry
model in a way that no axionic domain wall problem occurs.

3See Ref. [3] for a new extension of SM particle physics, and
Ref. [4] for a landscape of new physics.

4There are good reviews in Refs. [7–9] on the axion.
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Dine-Fischler-Srednicki-Zhitnitsky (DFSZ) models. And
another new type model so-called flavored PQ symmetry is
appeared [2]. These minimal models, commonly introduc-
ing SM gauge singlet scalar fields carrying PQ charges, are
categorized by what couples to Uð1ÞPQ with domain-wall
number NDW

5: (i) the KSVZ model [10] couples to hadrons
and photons with NDW ¼ 1, where only new heavy quarks
are charged under Uð1ÞPQ, and (ii) the DFSZ model [12]
couples to hadrons, photons and charged-leptons with
NDW ¼ 6, where only known quarks and Higgs doublets
carry PQ charge. (iii) The flavored PQ symmetry model [2]
couples to hadrons, photons and leptons with NDW ¼ 1, in
which the SM fermion fields as well as SM gauge singlet
fields carry PQ charges but electroweak Higgs doublet
fields do not. We refer to the model as flavored-Axion
(FA) model.
In the case of neutrinos, the neutrino oscillations at low

energies are quite well-studied from the experiments
available in nuclear power plants, particle accelerators,
nuclear bombs, and general atmospheric phenomena. And,
after the observation of a nonzero mixing angle θ13 in the
Daya Bay [13] and RENO [14] experiments, the Dirac CP-
violating phase δCP and a precise measurement of the
atmospheric mixing angle θ23 are the next observables on
the agenda of neutrino oscillation experiments. Meanwhile,
the very different structure of leptonic mixings compared
to the quark ones indicates an unexpected texture of the
mass matrix and may provide important clues to our
understanding of the physics of fundamental constituents
of matter. In some sense, our understanding of the SM
fermion masses and mixing angles remains at a very
primitive level. On the other hand, high-energy neutrinos
are available in the most violent astrophysical sources:
events like the births, collisions, and deaths of stars,
especially the explosion of supernovae, gamma-ray bursts,
and cataclysmic phenomena involving black holes and
neutron stars. The SM weakly interacting neutrinos, known
as three different flavors νe, νμ, ντ, can deliver astrophysical
information (e.g., IceCube detector [15], etc.) from the edge
of the Universe and from deep inside the most cataclysmic
high-energy processes. Moreover, the observations of
cosmic structures (e.g., cosmic microwave background
(CMB), galaxy surveys, etc.) can give the information

on the neutrino masses and the effective number of species
of neutrino Neff

ν [16,17]. Neutrino oscillation, a CP prop-
erty not yet fully understood, may play a role in the
decoupling process and therefore can affect Neff

ν .
Additional neutrinos, if existed in nature, should be sterile
with respect to the SM gauge interactions because the
Z-boson decay Z → νν̄ showed that there are only three
species of active neutrinos with ordinary weak interactions.
Such sterile neutrinos are light or heavy and do not
participate in the weak interaction. However, the latest
results [18] from Planck and baryon acoustic oscillations
(BAO) show that the contribution of light sterile neutrinos
to Neff

ν at the big bang nucleosynthesis (BBN) era is
negligible6; such light sterile neutrinos can play the role
of a realization of baryogenesis via a new Affleck-Dine
leptogensis [19]. Such additional sterile neutrinos could be
further constrained by the mass orderings of active neu-
trinos, the BBN constraints [17], the solar neutrino oscil-
lations [16], and the inflationary and leptogensis scenarios.7

Hence, it needs a new paradigm to explain the peculiar
structure of lepton sector compared to the quark one as well
as the astrophysical and cosmological observations on
neutrinos.
Since astrophysical and cosmological observations have

increasingly placed tight constraints on parameters for
axion and neutrino, it is in time for a new scenario on
axion and neutrino to mount an interesting challenge. In a
theoretical point of view, axion physics together with
neutrino physics8 requires new gauge interactions and a
set of new fields that are SM singlets. Thus in extensions of
the SM, sterile neutrinos and axions could be naturally
introduced, e.g., in view of Uð1Þ symmetry. Motivated by
the aforementioned fundamental challenges, we investigate
a minimal and economic supersymmetric extension of SM
realized within the framework of G ≡ SM ×Uð1ÞX × A4.
The non-Abelian discrete symmetry A4 as a symmetry of
geometrical solid could be originated from superstring
theory; indeed, orbifolds have certain geometrical sym-
metries, and thus field theories in orbifold can realize A4

[20]. All renormalizable and nonrenormalizable operators
allowed by such gauge symmetries, non-Abelian discrete
symmetry, and R-parity exist in the superpotential. We
assign the Uð1ÞX quantum numbers in the following ways
(see Table II) so that

(i) the mixed Uð1ÞX − ½gravity�2 anomaly is free in the
presence of gravity, so that additional sterile neu-
trinos are introduced.

(ii) the Uð1ÞX quantum numbers of the SM quarks do
not give rise to axionic domain-wall problem,

5At the QCD phase transition, each axionic string becomes the
edge to NDW domain-walls, and the process of axion radiation
stops. If NDW > 1 separating the various domains (like in the
DFSZ model) the string-wall network is stable and has a sizable
surface energy density σ≈maF2

A≈6.3×109GeV3ðFA=1012GeVÞ,
which is enormously bigger than the critical density of the
Universe today ρc ≃ 10−26kg=m3 ∼ 10−47 GeV4, where ma is
an axion mass and FA is an axion decay constant. And since
the energy density in these walls, ρwall ¼ σT, dissipates slowly as
the Universe expands and ρwall now would vastly exceed the
closure density of the Universe, this is a serious problem [11]. This
disaster is avoided if NDW ¼ 1 or if the PQ phase transition
occurred during (or before) inflation.

6See the arguments related to Eq. (136).
7The inflationary and leptogensis scenarios on Ref. [19] will be

separated and appear in more detail soon.
8There are certainly models of neutrino masses without new

gauge interactions.
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implying that flavor structure of the SM may be
correlated to axionic domain-wall.

(iii) the Uð1ÞX symmetry is responsible for vacuum
configuration as well as for describing mass hier-
archies of leptons and quarks in the SM.

Then the flavored PQ symmetry Uð1ÞX embedded in the
non-Abelian A4 finite group9 could economically explain
the mass hierarchies of quarks and leptons including their
peculiar mixing patterns as well as provide a neat solution
to the strong CP problem and its resulting axion. Here if we
assume that the non-Abelian discrete A4 symmetry is a
subgroup of a gauge symmetry, it can be protected from
quantum-gravitational effects [22]. Moreover, in the model
since such A4 symmetry is broken completely by higher-
order effects, there is no residual symmetry; so there is no
room for a spontaneously broken discrete symmetry to give
rise to domain-wall problem. Differently from Ref. [2], in
the present model we impose Uð1ÞX − ½gravity�2 anomaly-
free condition together with the SM flavor structure in a
way that no axionic domain-wall problem occurs, which in
turn demands additional sterile neutrinos. Such additional
neutrinos may play a crucial role as a bridge between
leptogenesis and new neutrino oscillations along with high-
energy cosmic events. In addition, in order to fix the QCD
axion decay constant appropriately, we impose several
astrophysical constraints; see Sec. III.
The rest of this paper is organized as follows. In Sec. II,

we construct a minimalistic SUSY model for quarks,
leptons, and axions based on A4 ×Uð1ÞX symmetry in a
way that the mixed Uð1ÞX − ½gravity�2 anomaly-free con-
dition together with the SM flavor structure demands
additional sterile neutrinos as well as no axionic
domain-wall problem. In detail, in Sec. II A, the vacuum
configuration is described to explain the peculiar mixing
patterns of the SM. In Sec. II B, we describe the Yukawa
superpotential for leptons, quarks, and Nambu-Goldstone
(NG) modes. In Sec. II C, we show that the global Uð1ÞX is
the remnant of the broken Uð1ÞX gauge symmetry by the
Green-Schwarz (GS) mechanism [23], so it can be pro-
tected from quantum-gravitational effects. Along this line,
we provide a reason that the Uð1ÞX symmetry could be
interpreted as a fundamental symmetry of nature. And we
show, through the GS anomaly cancellation mechanism,
how the Uð1ÞX gauge bosons acquire masses leaving
behind the corresponding global symmetries and how
the QCD axion could be derived from string theory. In
Sec. III, we describe how the QCD axion could be realized
in the model under the two global Uð1ÞX symmetry. And
we show explicitly symmetry breaking scales by consid-
ering the astrophysical constraints on star coolings, and
provide model predictions on the axion mass and axion-
photon coupling. In Sec. IV, we investigate how neutrino

oscillations at low energies could be connected to new
oscillations available on high-energy neutrinos. In turn, we
explore what values of CP phase and atmospheric mixing
angle in the low-energy neutrino oscillation can be pre-
dicted, depending on mass hierarchies of the active neu-
trinos and mass splittings responsible for new oscillations.
In addition, we examine a possibility to observe the effects
of the pseudo-Dirac property of neutrinos by performing
astronomical-scale baseline experiments to uncover the
oscillation effects of tiny mass splitting, and such possibil-
ity has the ability to distinguish between normal mass
ordering and the inverted one of the active neutrino mass.
Our work is summarized in Sec. V, and we provide our
conclusions.

II. THE MODEL SETUP: FLAVORED
A4 × Uð1ÞX SYMMETRY

Unless flavor symmetries are assumed, particle masses
and mixings are generally undetermined in the SM gauge
theory. In order to describe the present SM flavor puzzles
associated with the fermion mass hierarchies, including the
large leptonic mixing angles and small quark mixing
angles, we introduce the non-Abelian discrete A4 flavor
symmetry [24,25] which is mainly responsible for the
peculiar mixing patterns with an additional continuous
global symmetry Uð1ÞX which is mainly for vacuum
configuration as well as for describing mass hierarchies
of leptons and quarks. Moreover, the spontaneous breaking
of Uð1ÞX realizes the existence of the NG mode (called
axion) and provides an elegant solution of the strong CP
problem. Along with Ref. [2], in a way that no axionic
domain wall problem occurs, this global Uð1Þ symmetry is
referred to as “flavored-PQ symmetry.” Then the symmetry
group for matter fields (leptons and quarks), flavon fields
and driving fields is A4 ×Uð1ÞX, whose quantum numbers
are assigned in Tables I and II.
To impose the A4 flavor symmetry on our model

properly, apart from the usual two Higgs doublets Hu;d

responsible for electroweak symmetry breaking, which are
invariant under A4 (i.e., flavor singlets 1 with no T-flavor),
the scalar sector is extended by introducing two types of
new scalar multiplets, flavon fields10 ΦT , ΦS, Θ, ~Θ, Ψ, ~Ψ
that are SUð2Þ-singlets and driving fields ΦT

0 , ΦS
0 , Θ0,

Ψ0 that are associated with a nontrivial scalar potential
in the symmetry breaking sector: we take the flavon fields
ΦT , ΦS to be A4 triplets, and Θ, ~Θ, Ψ, ~Ψ to be A4 singlets
with \no T-flavor (1 representation), respectively, that
are SUð2Þ-singlets, and driving fields ΦT

0 , ΦS
0 to be A4

triplets and Θ0, Ψ0 to be an A4 singlet. In addition, the

9E. Ma and G. Rajasekaran [21] have introduced to leptonic
sector A4 symmetry which is the smallest group for three families.

10The flavon fields are responsible for the spontaneous break-
ing of the flavor symmetry, while the driving fields are introduced
to break the flavor group along required vacuum expectation
value (VEV) directions and to allow the flavons to get VEVs,
which couple only to the flavons.
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superpotentialW in the model [see Eqs. (3), (20), and (21)]
is uniquely determined by the Uð1ÞR symmetry, containing
the usual R-parity as a subgroup: fmatter fields →
eiξ=2 matter fieldsg and fdriving fields → eiξ driving
fieldsg, with W → eiξW, whereas flavon and Higgs fields
remain invariant under an Uð1ÞR symmetry. As a conse-
quence of the R symmetry, the other superpotential term
καLαHu and the terms violating the lepton and baryon
number symmetries are not allowed.11

In the lepton sector, the A4 model giving nonzero θ13 as
well as bilarge mixings, θ23, θ12, works as follows.
According to the μ–τ power law in Ref. [2], one can
assign charged-leptons to the three inequivalent singlet
representations of A4: we assign the left-handed charged
leptons denoted as Le, Lμ, Lτ, the electron flavor to the 1
(T-flavor 0), the muon flavor to the 10 (T-flavor þ1), and
the tau flavor to the 100 (T-flavor −1), while the right-
handed charged leptons denoted as ec, μc, τc, the electron
flavor to the 1 (T-flavor 0), the muon flavor to the
100 (T-flavor −1), and the tau flavor to the 10 (T-flavor
þ1). In addition, we assign the right-handed neutrinos
SUð2ÞL singlets denoted as Nc to the 3, while the right-
handed neutrinos SUð2ÞL singlets denoted as Sce, Scμ and Scτ
to the 1, 100 and 10, respectively. On the other hand, for the
quark flavors we assign the left-handed quark SUð2ÞL
doublets denoted as Q1, Q2 and Q3 to the 1, 100 and 10,
respectively, while the right-handed up-type quarks are
assigned as uc, cc and tc to the 1, 10 and 100 under A4,
respectively, and the right-handed down-type quark
SUð2ÞL gauge singlet Dc ¼ fdc; sc; bcg to the 3 under A4.
Finally, the additional symmetry Uð1ÞX is imposed,12

which is an anomalous symmetry and under which
matter fields, flavon fields, and driving fields carry their
own X-charges. The Uð1ÞX invariance forbids renormaliz-
able Yukawa couplings for the light families, but would
allow them through effective nonrenormalizable couplings
suppressed by ðF=ΛÞn with n being positive integers.
Then, the gauge singlet flavon field F is activated
to dimension-four(three) operators with different orders
[26,27],

c0OP4ðF Þ0 þ c01OP3ðF Þ1 þ c1OP4

�
F
Λ

�
1

þ c2OP4

�
F
Λ

�
2

þ c3OP4

�
F
Λ

�
3

þ…; ð1Þ

where OP4ð3Þ is a dimension-four(three) operator, and all
the coefficients ci and c0i are complex numbers with
absolute value of order unity. Even with all couplings
being of order unity, hierarchical masses for different
flavors can be naturally realized. The flavon field F is a
scalar field which acquires a VEV and breaks spontane-
ously the flavored-PQ symmetry Uð1ÞX. Here Λ, above
which there exists unknown physics, is the scale of flavor
dynamics, and is associated with heavy states which are
integrated out. The effective theory below Λ is rather
simple, while the full theory will have many heavy states.
We assume that the cut-off scale Λ in the superpotentials
(20) and (21) is a scale where the complex structure and
axio-dilaton moduli are stabilized through fluxes. So, in our
framework, the hierarchy hHu;di ¼ vu;d ≪ Λ is main-
tained, and below the scale Λ the higher-dimensional
operators express the effects from the unknown physics.
Since the Yukawa couplings are eventually responsible for
the fermion masses they must be related in a very simple
way at a large scale in order for intermediate scale physics
to produce all the interesting structure in the fermion mass
matrices.
Here we recall that A4 is the symmetry group of the

tetrahedron and the finite groups of the even permutation of
four objects having four irreducible representations: its
irreducible representations are 3; 1; 10; 100 with 3 ⊗ 3 ¼
3s ⊕ 3a ⊕ 1 ⊕ 10 ⊕ 100, and 10 ⊗ 10 ¼ 100. The details of
the A4 group are shown in Appendix A. Let ða1; a2; a3Þ and
ðb1; b2; b3Þ denote the basis vectors for two 3’s. Then, we
have

ða ⊗ bÞ3s ¼
1ffiffiffi
3

p ð2a1b1 − a2b3 − a3b2;

2a3b3 − a2b1 − a1b2; 2a2b2 − a3b1 − a1b3Þ;
ða ⊗ bcÞ3a ¼ iða3b2 − a2b3; a2b1 − a1b2; a1b3 − a3b1Þ;
ða ⊗ bÞ1 ¼ a1b1 þ a2b3 þ a3b2;

ða ⊗ bÞ10 ¼ a1b2 þ a2b1 þ a3b3;

ða ⊗ bÞ100 ¼ a1b3 þ a2b2 þ a3b1: ð2Þ

Under A4 ×Uð1ÞX ×Uð1ÞR, the driving, flavon, and Higgs
fields are assigned as in Table I.

A. Vacuum configuration

The superpotential dependent on the driving fields,
which is invariant under SUð3Þc × SUð2ÞL ×Uð1ÞY ×
Uð1ÞX × A4, is given at leading order by

Wv ¼ ΦT
0 ð ~μΦT þ ~gΦTΦTÞ þΦS

0ðg1ΦSΦS þ g2 ~ΘΦSÞ
þ Θ0ðg3ΦSΦS þ g4ΘΘþ g5Θ ~Θþ g6 ~Θ ~ΘÞ
þ g7Ψ0ðΨ ~Ψ − μ2ΨÞ; ð3Þ

11In addition, higher-dimensional supersymmetric operators
like QiQjQkLl (i, j, k must not all be the same) are not allowed
either, and stabilizing proton.

12It is likely that an exact continuous global symmetry is
violated by quantum gravitational effects [22]. Here the global
Uð1ÞX symmetry is a remnant of the broken Uð1ÞX gauge
symmetry which connects string theory with flavor physics
[1]; see Sec. II C.
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where the fieldsΨ and ~Ψ charged by−q, q, respectively, are
ensured by the Uð1ÞX symmetry extended to a complex
Uð1Þ due to the holomorphy of the supepotential. Note here
that the PQ scale μΨ ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

vΨv ~Ψ=2
p

corresponds to the scale
of the spontaneous symmetry breaking scale; see Eqs. (9)
and (16). Recalling that the model13 implicitly has two
Uð1ÞX ≡ Uð1ÞX1

×Uð1ÞX2
symmetries which are gener-

ated by the charges X1 ¼ −2p and X2 ¼ −q. Since there is
no fundamental distinction between the singlets Θ and ~Θ as
indicated in Table I, we are free to define ~Θ as the
combination that couples to ΦS

0ΦS in the superpotential
Wv [24]. Due to the assignment of quantum numbers under
A4 ×Uð1ÞX ×Uð1ÞR the usual superpotential term μHuHd
is not allowed, while the following operators driven by Ψ0

and ΦT
0 are allowed by

gΨ0
Ψ0HuHd þ

gT
Λ
ðΦT

0ΦTÞ1HuHd; ð4Þ

which is to promote the μ term μeff ≡ gΨ0
hΨ0i þ

gThΦT
0 ivT=ð

ffiffiffi
2

p
ΛÞ of the order of mS and/or mSvT=Λ (here

hΨ0i and hΦT
0 i: the VEVs of the scalar components of the

driving fields, mS: soft SUSY breaking mass). Here14 we

assume gΨ0
hΨ0i ≪ gThΦT

0 ivT=ð
ffiffiffi
2

p
ΛÞ. The supersym-

metry of the model is assumed broken by all possible
holomorphic soft terms which are invariant under
A4 ×Uð1ÞX ×Uð1ÞR symmetry, where the soft breaking
terms are already present at the scale relevant to flavor
dynamics. And it is evident that, at leading order, the scalar
supersymmetricWðΦTΦSÞ terms are absent due to different
Uð1ÞX quantum number, which is crucial for relevant
vacuum alignments in the model to produce the present
large leptonic mixing and small quark mixing. It is
interesting that at the leading order the electroweak scale
does not mix with the potentially large scales vS, vT , vΘ
and vΨ. The A4 flavor symmetry is broken by two triplets
ΦS and ΦT and by a singlet Θ. As demonstrated in
Appendix B 1, the fields develop a phenomenologically
nontrivial VEValong the direction in Eq. (9). Therefore, as
we shall see later, such VEV direction is very crucial to
realize the present experimental data of small quark mixing
angles and leptonic tri-bimaximal mixing (TBM)-like
angles. See also below Eq. (146).
We take the Uð1ÞX breaking scale, which corresponds to

the A4 symmetry breaking scale, to be much above the
electroweak scale in our scenario15; that is,

hHu;di ≪ hΘi; hΦTi; hΦSi < hΨi; h ~Ψi: ð5Þ

Here we assume that the electroweak symmetry is broken
by some mechanism, such as radiative effects when SUSY
is broken. In supergravity, SUSY is broken by the non-
vanishing VEVof some auxiliary field. Setting to zero from
the beginning the matter fields fqc;l; Hu;…g, with the
almost vanishing cosmological constant for the remaining
fields the gravitino massm3=2 is directly related to the scale
of supersymmetry breaking,

jFj2 − 3m2
3=2M

2
P þ 1

2
D2

Xi
≈ 0; ð6Þ

implying that the F- andD-term potentials should vanish in
the limit m3=2 ¼ e ~K=2M2

P jWj=M2
P [here ~K is a Kahler

potential in Eq. (47)] going to zero and some of them
should scale as m3=2 at the minimum. In the global SUSY
limit, i.e., MP → ∞, the vacuum configurations are
obtained by the F and D terms of all the fields
being required to vanish. The relevant F-term potential
is written as

TABLE I. Representations of the driving, flavon, and Higgs
fields under A4 ×Uð1ÞX. Here Uð1ÞX ≡ Uð1ÞX1

× Uð1ÞX2
sym-

metries which are generated by the charges X1 ¼ −2p and
X2 ¼ −q.

Field ΦT
0 ΦS

0
Θ0 Ψ0 ΦS ΦT Θ ~Θ Ψ ~Ψ Hd Hu

A4 3 3 1 1 3 3 1 1 1 1 1 1
Uð1ÞX 0 4p 4p 0 −2p 0 −2p −2p −q q 0 0
Uð1ÞR 2 2 2 2 0 0 0 0 0 0 0 0

13In the model, there are threeUð1Þ symmetries,Uð1ÞL (lepton
number),Uð1ÞPQ andUð1ÞY except forUð1ÞR andUð1ÞB (baryon
number). All of these threes are finally broken. Uð1ÞY is broken
by the electroweak symmetry breakdown. When flavon fields
acquire VEVs, both Uð1ÞL (which is hidden) and Uð1ÞPQ appear
to be broken. Actually, there are linear combinations of the two
Uð1ÞXi

symmetries, which are Uð1Þ ~X ×Uð1Þf. Here the Uð1Þ ~X
symmetry as Uð1ÞPQ has anomaly, while the Uð1Þf is anomaly-
free. Note that Uð1Þf is not identified with Uð1ÞL.

14As discussed in Ref. [19], the field Ψ0 identified as inflaton
can predominantly decay into Higgses (and Higgsinos) through
the first term after inflation, which is important for inflation and
Affleck-Dine leptogenesis, while the second term is crucial for
relating the sizable μ term with the low-energy flavor physics.
The size of the renormalizable superpotential coupling of the
inflaton to particles of the SM is severely restricted by the
reheating temperature, Treh

Ψ0
, and in turn a successful leptogenesis.

Consequently, we have μeff ≃ gThΦT
0 ivT=Λ as in Ref. [2], which

can describe the correct Cabibbo-Kobayashi-Maskawa (CKM)
mixing matrix with vT=Λ ∼ 0.04≃ λ2=

ffiffiffi
2

p
. Since the field ΦT is

not charged under the Uð1ÞX, the nontrivial next-to-leading-order
operators in the down-type quark superpotential (20) could be
generated via ΦT ; see footnote 18.

15See the symmetry breaking scales from the astrophysical
constraints Eq. (116).
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Vglobal
F ¼

���� 2g1ffiffiffi
3

p ðΦS1ΦS1 −ΦS2ΦS3Þ þ g2ΦS1
~Θ
����2þ���� 2g1ffiffiffi

3
p ðΦS2ΦS2 −ΦS1ΦS3Þ þ g2ΦS3

~Θ
����2

þ
���� 2g1ffiffiffi

3
p ðΦS3ΦS3 −ΦS1ΦS2Þ þ g2ΦS2

~Θ
����2 þ jg3ðΦS1ΦS1 þ 2ΦS2ΦS3Þ þ g4Θ2 þ g5Θ ~Θþ g6 ~Θ2j2

þ jg7ðΨ ~Ψ − μ2ΨÞj2 þ jg7j2jΨ0j2ðjΨj2 þ j ~Ψj2Þ þ
X

i¼the others

���� ∂Wv

∂zi
����2; ð7Þ

where gi are dimensionless couplings. The model contains
two Fayet-Iliopolos (FI) D terms, LFI ¼ −ξFIi

R
d2θVXi

¼
−ξFIi gXi

DXi
, giving rise to theD-term potential. TheD-term

potential is given by

Vglobal
D ¼ jX1j2g2X1

2

�
ξFI1
jX1j

− jΦSj2 − jΘj2 − j ~Θj2
�

2

þ jX2j2g2X2

2

�
ξFI2
jX2j

− jΨj2 þ j ~Ψj2
�

2

ð8Þ

with DXi
¼ gXi

ðξFIi −
P

iXijΦij2Þ, where Φ1 ¼ fΦS;Θg
and Φ2 ¼ fΨ; ~Ψg, and ξFIi ¼ 2Ei=τi are constant parame-
ters with dimensions of mass squared, and here Ei are
measures of the strength of the fluxes for the gauge fields
living on theD7-branes [28]. In Vglobal

D , the flavon fields are
charged under the Uð1ÞX gauge group for which the fluxes
provide FI factors. Since SUSY is preserved after the
spontaneous symmetry breaking of Uð1ÞX × A4, the scalar
potential in the limitMP → ∞ vanishes at its ground states,
i.e., hVglobal

D i ¼ 0 and hVglobal
F i ¼ 0 vanishing F terms must

have also vanishing D terms. Consequently, the VEVs of
the flavon fields are from the minimization conditions of
the F-term scalar potential: from Appendix B 1, the
phenomenologically nontrivial solutions [2]

hΦSi ¼
1ffiffiffi
2

p ðvS; vS; vSÞ; hΦTi ¼
1ffiffiffi
2

p ðvT; 0; 0Þ;

hΘi ¼ vΘffiffiffi
2

p ; hΨi ¼ h ~Ψi ¼ vΨffiffiffi
2

p ; ð9Þ

with vΘ ¼ vS
ffiffiffiffiffiffiffiffiffiffi
−3 g3

g4

q
and vT ¼ −ð ~μ=~gÞ ffiffiffiffiffiffiffiffi

3=2
p

where

~g is a dimensionless coupling, as well as a set of trivial
solutions

hΦSi ¼ ð0; 0; 0Þ; hΦTi ¼ ð0; 0; 0Þ;
hΘi ¼ 0; hΨi ¼ h ~Ψi ¼ vΨffiffiffi

2
p ; ð10Þ

in which the undetermined VEVs indicate that in the SUSY
limit there exist flat directions in the flavon potential along

which the scalar fields ΦS, Θ and Ψ, ~Ψ do not feel the
potential. Even these VEVs could be slightly perturbed by
higher-dimensional operators contributing to the driving
superpotential, their corrections to the lepton and quark
mass matrices are absorbed into the leading-order terms
and redefined due to the same VEV directions, or can be
kept small enough and negligible, as shown in Ref. [2].
The above two supersymmetric solutions are taken by the
D-flatness conditions, respectively, for (i) phenomenologi-
cally viable case

ξFI1 ¼ jX1jðhjΦSj2i þ hjΘj2iÞ;
ξFI2 ¼ 0; hΨi ¼ h ~Ψi; ð11Þ

and (ii) phenomenologically trivial case

ξFI1 ¼ hΦSi ¼ hΘi ¼ 0;

ξFI2 ¼ 0; hΨi ¼ h ~Ψi; ð12Þ

both of which indicate that the VEVs of the flavon fields
strictly depend on the moduli stabilization, particularly on
the VEVs of the fluxes Ei in the FI terms [28]. So it seems
hard for the first case (i) to stabilize jΦij at large VEVs
∼Oð109–10Þ GeV. And there is a tension between hΦii ¼ 0

and hξFIi i ≠ 0which are possible as long as Ei are below the
string scale. Therefore it is imperative that, in order for the
D terms to act as uplifting potential, the F terms have to
necessarily break SUSY.
In order for the solution in Eq. (10) to be phenomeno-

logically nontrivial, by taking m2
ΦS
, m2

Θ, m
2
Ψ, m

2
~Ψ
< 0, Φ1

and Φ2 roll down toward its true minimum from a large
scale, which we assume to be stabilized far away from the
origin by Planck-suppressed higher-dimensional correc-
tions in the SUSY broken phase. And by adding a soft
SUSY breaking mass term to the scalar potential one can
execute h ~Θi ¼ 0 for the scalar field ~Θ with m2

~Θ
> 0. Then,

the vacuum alignment is taken as the absolute minimum.
The phenomenologically viable VEVs of the flavon fields
can be determined by considering both the SUSY breaking
effect which lift up the flat directions and supersymmetric
next-to-leading-order Planck-suppressed terms [29,30]
invariant under A4 ×Uð1ÞX. The supersymmetric next-to-
leading-order terms are given by
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ΔWv≃ α

MP
Ψ ~ΨðΦTΦT

0 Þ1þ
β

MP
ðΦS

0ΦTÞ1ΘΘ

þ 1

MP
fγ1ðΦSΦSÞ1ðΦTΦS

0Þ1þ γ2ðΦSΦSÞ10 ðΦTΦS
0Þ100

þ γ3ðΦSΦSÞ100 ðΦTΦS
0Þ10g; ð13Þ

where α, β, and γ1;2;3 are real-valued constants being of
order Oð0.1Þ ¼ Oð1Þ= ffiffiffiffiffiffi

8π
p

. Note that here we have
neglected irrelevant operators including ~Θ, ðΦSΦSÞ3s,
ðΦSΦTÞ3s, and ðΦSΦTÞ3a in ΔWv since we are considering
the phenomenologically nontrivial solutions as in Eq. (9).
Since soft SUSY-breaking terms are already present at the
scale relevant to flavor dynamics, the scalar potentials for
Ψð ~ΨÞ and ΦSðΘÞ at leading order read

VðΦS;ΘÞ≃ β1m2
3=2jΦSj2 þ β2m2

3=2jΘj2 þ
v2T jβΘ2 þ γΦ2

Sj2
2M2

P
;

VðΨ; ~ΨÞ≃ α1m2
3=2jΨj2 þ α2m2

3=2j ~Ψj2 þ jαj2 v
2
T jΨj2j ~Ψj2
2M2

P
;

ð14Þ
leading to the PQ breaking scales

μ2Ψ ¼ vΨv ~Ψ
2

¼ 2
ffiffiffiffiffiffiffiffiffiffi
α1α2

p
jαj2

�
m3=2

vT
MP

�
2

; ð15Þ

v2S ¼
2β1κ

2

γðβ þ γÞ
�
m3=2

vT
MP

�
2

¼ κ2v2Θ; ð16Þ

where γ¼ 3ðγ1þ γ2þ γ3Þ, β1β¼ γβ2, and κ¼ð−3g3=g4Þ−1
2.

It indicates that the gravitino mass (or soft SUSY breaking
mass, mS ¼ m3=2, see Ref. [1]) strongly depends on the
scales of PQ fields and ΦT as well as the ratios

ffiffiffiffiffiffiffiffiffiffi
α1α2

p
=jαj2

and β1=γðβ þ γÞ; for example, for μΨ ∼ 1010 GeV and vT ∼
109 GeV satisfying the SM fermion mass hierarchies [2]
one can obtain m3=2 ∼Oð10Þ TeV, and/or subsequently
vS ∼ vΘ ∼ 109 GeV with

ffiffiffiffiffiffiffiffiffiffi
α1α2

p
=jαj2 ∼ β1=γðβ þ γÞ ∼

Oð10−6Þ which is comparable with the axion decay con-
stants [for example, as in Eqs. (89) and (115)]. With the soft
SUSY-breaking potential, the radial components of the
fields Ψ and ~Ψ are stabilized at

vΨ ≃ μΨ
ffiffiffi
2

p �
α2
α1

�
1=4

; v ~Ψ ≃ μΨ
ffiffiffi
2

p �
α1
α2

�
1=4

; ð17Þ

respectively. The saxion field hΨ is defined in Eq. (27)
which is the deviation of jΨj from the VEV Eq. (17) along
the flat direction. And in the SUSY limit the driving fields
ΦT

0 , ΦS
0 , Θ0 and Ψ0 develop VEVs along the directions

hΦT
0 i ¼ ð0; 0; 0Þ; hΦSi ¼ ð0; 0; 0Þ;

hΘ0i ¼ 0; hΨ0i ¼ 0; ð18Þ

in which the vacuum structures are corrected being of
order mS when the SUSY breaking effect lifts up the flat
directions.
As mentioned before, the model has two Uð1Þ sym-

metries which are generated by the charges X1 ≡ −2p and
X2 ≡ −q. The A4 flavor symmetry along with the flavored
PQ symmetry Uð1ÞX1

is spontaneously broken by two A4-
triplets ΦT , ΦS and by a singlet Θ in Table I. And the
Uð1ÞX2

symmetry is spontaneously broken by Ψ, ~Ψ, whose
scales are denoted as vΨ and vΨ̄, respectively, and the VEV
of Ψ (scaled by the cutoff Λ) is assumed as

hΨi
Λ

¼ h ~Ψi
Λ

≡ λffiffiffi
2

p : ð19Þ

Here the parameter λ ≈ 0.225 stands for the Cabbibo
parameter [31]. After getting VEVs hΘi, hΦSi ≠ 0 [which
generates the heavy neutrino masses given by Eq. (34)] and
hΨi ≠ 0, the flavored PQ symmetry Uð1ÞX is spontane-
ously broken at a scale much higher than the electroweak
scale and is realized by the existence of the NG modes A1;2

that couples to ordinary quarks and leptons at the tree level
through the Yukawa couplings as in Eq. (30) (see also
Eqs. (84), (85), and (125), and one of the linear combi-
nations of NG bosons becomes the QCD axion16 Through
triangle anomalies, the axion mixes with mesons (leading
to a nonzero mass), and thus couples to photons, and
nucleons. The explicit breaking of the Uð1ÞX by the chiral
anomaly effect further breaks it down to ZNDW

discrete
symmetry, where NDW is the domain-wall number. At the
QCD phase transition, the ZNDW

symmetry is spontaneously
broken, and which gives rise to a domain wall problem
[32]. Such domain wall problem can be overcome because
the model has two anomalous axial Uð1Þ symmetries
which are generated by the charges X1 and X2,
Uð1ÞX ≡ Uð1ÞX1

×Uð1ÞX2
.

B. Quarks, leptons, and axions

Under A4 ×Uð1ÞX, the matter fields are assigned as in
Table II. Because of the chiral structure of weak inter-
actions, bare fermion masses are not allowed in the
SM. Fermion masses arise through Yukawa interactions.17

16The VEV configurations in Eq. (9) break the Uð1ÞX
spontaneously and the superpotential dependent on the
driving field Θ0 in Eq. (3) becomes, for simplicity, if
we let ΦS1 ¼ ΦS2 ¼ ΦS3, WΘ0

¼ Θ0ðg3ΦSΦS þ g4ΘΘþ
6κg3fvΘΦSi − vSΘg þ g5ðΘþ 2 vS

κ Þ ~Θþ g6 ~Θ ~ΘÞ after shifting
by vΘ; vS. This shows clearly that the linear combination
ðvΘΘþ vSΦSiÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2Θ þ v2S

p
is a massless superfield.

17Since the right-handed neutrinos Nc (Sc) having a mass scale
much above (below) the weak interaction scale are complete
singlets of the SM gauge symmetry, they can possess bare SM
invariant mass terms. However, the flavored-PQ symmetryUð1ÞX
guarantees the absence of bare mass terms MNcNc and μsScSc.
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Recalling that vΨ=Λ ¼ v ~Ψ=Λ ≡ λ in Eq. (19) is used when
the Uð1ÞX quantum numbers of the SM charged fermions
are assigned. The superpotential for Yukawa interactions
in the quark sector, which are invariant under
SUð3Þc × SUð2ÞL ×Uð1ÞY ×Uð1ÞX × A4, is given at lead-
ing order by

Wq ¼ yuQ1ucHu þ ycQ2ccHu þ ytQ3tcHu;

þ ydQ1ðDcΦSÞ1
Hd

Λ
þ ysQ2ðDcΦSÞ10

Hd

Λ

þ ybQ3ðDcΦSÞ100
Hd

Λ
: ð20Þ

In the above superpotential,Wq, each quark sector has three
independent Yukawa terms at the leading: apart from the
Yukawa couplings, each up-type quark sector does not
involve flavon fields, while the down-type quark sector
involves18 the A4-triplet flavon fields ΦT and ΦS. The left-
handed quark doublets Q1, Q2, Q3 transform as 1; 100, and

10, respectively; the right-handed quarks uc ∼ 1, cc ∼ 10,
tc ∼ 100 and Dc ≡ fdc; sc; bcg ∼ 3. Since the right-handed
down-type quark transforms as 3, in contrast with the up-
type quark sector, the down-type quark sector can have
nontrivial next-to-leading-order terms as shown in Ref. [2],
and which in turn explains the CKM matrix. The up-type
quark superpotential in (20) does not contribute to the
CKM matrix due to the diagonal form of mass matrix,
while the down-type quark superpotential does contribute
the CKM matrix. Naively speaking, since the leading-order
operators in the down-type quark superpotential has six
physical parameters, they could not explain the four CKM
parameters and three down-type quark masses. Thus, one
can consider the next-to-leading-order corrections as in
footnote 17 to account for the correct CKM matrix.
In the lepton sector, based on the field contents in

Tables I and II the superpotential for Yukawa interactions
under SUð3Þc × SUð2ÞL ×Uð1ÞY ×Uð1ÞX × A4 reads at
leading order

Wlν ¼ ys1LeSceHu þ ys2LμScμHu þ ys3LτScτHu þ
1

2
ðyss1 SceSce þ yss2 S

c
μScτ þ yss2 S

c
τScμÞ ~Ψþ yν1LeðNcΦTÞ1

Hu

Λ

þ yν2LμðNcΦTÞ100
Hu

Λ
þ yν3LτðNcΦTÞ10

Hu

Λ
þ 1

2
ðŷΘΘþ ŷ ~Θ

~ΘÞðNcNcÞ1 þ
ŷR
2
ðNcNcÞ3sΦS

þ yeLeecHd þ yμLμμ
cHd þ yτLττ

cHd: ð21Þ

In the above leptonic Yukawa superpotential,Wlν, charged
lepton sector has three independent Yukawa terms at the
leading: apart from the Yukawa couplings, each term does
not involve flavon fields. The left-handed lepton doublets
Le, Lμ, Lτ transform as 1, 10, and 100, respectively; the right-
handed leptons ec ∼ 1, μc ∼ 100, and τc ∼ 10. In the neutrino
sector, two right-handed Majorana neutrinos S and N are
introduced to make light neutrinos pseudo-Dirac particles
and to realize TBM pattern,19 respectively; Sce, Scμ, Scτ
and N transform as 1, 100, 10, and 3 under A4 symmetry,

respectively. They compose two Majorana mass terms; one
is associated with an A4 singlet ~Ψ, while the other one is
associated with an A4 singlet Θ and an A4 triplet ΦS,
in which all flavon fields associated with the Majorana
mass terms are the SM gauge singlets. The two different
assignments of A4 quantum number to Majorana
neutrinos guarantee the absence of the Yukawa terms
ScNc × flavon fields. Correspondingly, two Dirac neutrino
mass terms are generated; one is associated with Sc, and the
other is Nc. Imposing the continuous global Uð1ÞX sym-
metry in Table II explains the absence of the Yukawa terms
LNcΦS and NcNcΦT as well as does not allow the
interchange between ΦT and ΦS, both of which transform
differently under Uð1ÞX, so that bilarge θ12, θ23 mixings
with a nonzero θ13 mixing for the leptonic mixing matrix
could be obtained after seesawing [34] (as will be shown
later, the effective mass matrix achieved by seesawing
contributes to TBM mixing pattern and pseudo-Dirac
mass splittings, except for active neutrino masses. Such

TABLE II. Representations of the matter fields under A4 ×Uð1ÞX.
Field Q1, Q2, Q3 Dc uc, cc, tc Le, Lμ, Lτ ec, μc, τc Nc Sce, Scμ, Scτ

A4 1, 100, 10 3 1, 10, 100 1, 10, 100 1, 100, 10 3 1, 100, 10
Uð1ÞX ð−3q − r;−2q − r;−rÞ 2pþ r r − 3q; r; r −9q − p pþ 15q; pþ 13q; pþ 11q p pþ 25q
Uð1ÞR 1 1 1 1 1 1 1

18The operators including the field ΦT appear in the next-to-
leading-order superpotential, i.e., ΔWd¼xdQ1ðDcΦTÞ1 Θ

Λ2Hdþ
xsQ2ðDcΦTÞ10 ΘΛ2HdþxbQ3ðDcΦTÞ100 ΘΛ2Hdþxasd Q1ðDcΦTΦSÞ1×
Hd

Λ2þxass Q2ðDcΦTΦSÞ10Hd

Λ2þxasb Q3ðDcΦTΦSÞ100Hd

Λ2 where xd;s;b
and xasd;s;b are Yukawa coupling constants, which plays crucial
roles for the CKM mixing angles to be correctly fitted. See also
Ref. [2].

19See Eq. (146) for the exact TBM mixing [33].
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pseudo-Dirac mass splittings are responsible for very long
wavelength, which in turn connect to an axion decay
constant; see Eqs. (74) and (148).).
Since the Uð1ÞX quantum numbers are assigned appro-

priately to the matter fields content as in Table II, it is
expected that the SM gauge singlet flavon fields derives
higher-dimensional operators, which are eventually visu-
alized into the Yukawa couplings of charged fermions
as a function of flavon fields Ψð ~ΨÞ, i.e., yu;c ¼ yu;cð ~ΨÞ,
yd;s ¼ yd;sð ~ΨÞ, ye;μ;τ ¼ ye;μ;τðΨÞ, except for the top and
bottom Yukawa couplings:

yu ¼ ŷu

�
~Ψ
Λ

�6

; yc ¼ ŷc

�
~Ψ
Λ

�2

; yt ¼ ŷt

yd ¼ ŷd

�
~Ψ
Λ

�3

; ys ¼ ŷs

�
~Ψ
Λ

�2

; yb ¼ ŷb:

ye ¼ ŷe

�
Ψ
Λ

�
6

; yμ ¼ ŷμ

�
Ψ
Λ

�
4

; yτ ¼ ŷτ

�
Ψ
Λ

�
2

: ð22Þ

From the top Yukawa coupling and pole mass (ŷt and mt)
and the neutral Higgs VEV ratio (tan β ¼ vu=vd), by
requiring ŷt to be order of unity, 1=

ffiffiffiffiffi
10

p ≲ jŷtj≲
ffiffiffiffiffi
10

p
,

we have the allowed range for tan β: 1.7≲ tan β < 10,
where20 we have used mt ¼ 173.07� 0.52� 0.72 GeV
[31]. In particular, the value of tan β ¼ 2 with the above
Yukawa couplings is preferred because of the mixed
Uð1ÞX − ½gravity�2 anomaly free condition together with
the observed mass hierarchies of the SM charged fermions.
On the other hand, the neutrino Yukawa couplings in terms
of the flavons Ψð ~ΨÞ and Θ are given as

ysi ¼ ŷsi

�
Ψ
Λ

�
16

; yssi ¼ ŷssi

�
Ψ
Λ

�
51Θ
Λ
;

yνi ¼ ŷνi

�
~Ψ
Λ

�9

; ŷΘ ≈ ŷ ~Θ ≈ ŷR ≈Oð1Þ: ð23Þ

Here the hat Yukawa couplings ŷ are complex numbers and
of order unity, i.e., 1=

ffiffiffiffiffi
10

p ≲ jŷj ≲ ffiffiffiffiffi
10

p
. The above

Yukawa superpotentials (20) and (21) with Eqs. (22) and
(23) indicate that, since the flavon fields charged under
Uð1ÞX are the SM gauge singlets, a direct NG mode
coupling to ordinary quarks and leptons is possible through
Yukawa interactions. Since the fields associated with the
superpotentials (20) and (21) are charged under Uð1ÞX, it is
expected that the top quark and hat neutrino Yukawa
couplings appearing in the superpotentials are of order
unity and complex numbers. We note that the flavon fields

ΦS and ΦT derive dimension-five operators in the down-
type quark sector and Dirac neutrino sector, respectively,
apart from the Yukawa couplings, while the flavon fields Ψ
and ~Ψ derives higher-dimensional operators through the
Yukawa couplings with theUð1ÞX flavor symmetry respon-
sible for the hierarchical charged lepton masses as shown
by Eqs. (22) and (23). The model is assumed to be broken
by all possible holomorphic soft terms, where the soft
breaking terms are already present at the scale relevant to
flavor dynamics.
The model incorporates the SM gauge singlet flavon

fields FA ¼ ΦS, Θ, Ψ, ~Ψ with the following interactions
invariant under the Uð1ÞX × A4 and the resulting chiral
symmetry, i.e., the kinetic and Yukawa terms, and the scalar
potential VSUSY in SUSY limit21 are of the form

L ⊃ ∂μF
†
A∂μFA þ LY − VSUSY þ Lϑ þ ψ̄i∂ψ

þ 1

2
N̄i∂N þ 1

2
S̄i∂S: ð24Þ

Here the VSUSY term is written in terms of Eqs. (7) and (8),
which is replaced by V total including soft SUSY breaking
term when SUSY breaking effects are considered,
and ψ stands for all Dirac fermions. The kinetic terms

∂2K
∂F †

A∂FA
∂μF

†
A∂μFA with Kahler potential ~K ⊃ jFAj2 þ

higher-order terms [cf. Eq. (51)] for canonically normal-
ized fields are written as

∂μΦ
†
S∂μΦS þ ∂μΘ†∂μΘþ ∂μΨ†∂μΨþ ∂μ

~Ψ†∂μ ~Ψ: ð25Þ

The scalar fields ΦS, Θ and Ψð ~ΨÞ have X-charges X1 ¼
−2p and X2 ¼ −qðqÞ, respectively, that is

ΦSi → eiξ1X1ΦSi ; Θ → eiξ1X1Θ;

Ψ → eiξ2X2Ψ; ~Ψ → e−iξ2X2 ~Ψ ð26Þ

where ξk (k ¼ 1, 2) are constants. So, the potential VSUSY
has Uð1ÞX global symmetry. In order to extract NG bosons
resulting from spontaneous breaking of Uð1ÞX symmetry,
we set the decomposition of complex scalar fields as
follows22

20We take a lower bound of tan β preferred in the minimal
supersymmetric standard model (MSSM). For tan β < 1.7, the
top quark Yukawa coupling blows up before the momentum scale
μ ≈ 2 × 1016 GeV.

21In our superpotential, the superfields ΦS, Θ, and Ψð ~ΨÞ are
gauge singlets and have −2p and −qðqÞ X-charges, respectively.
Given soft SUSY-breaking potential, the radial components of the
X-fields jΦSj, jΘj jΨj and j ~Ψj are stabilized. The X-fields contain
the axion, saxion (the scalar partner of the axion), and axino (the
fermionic superpartner of the axion).

22Note that the massless modes are not contained in the fields
~Θ, ΦT , ΦT

0 , ΦS
0 , Θ0, Ψ0.
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ΦSi ¼
ei

ϕS
vSffiffiffi
2

p ðvS þ hSÞ; Θ ¼ ei
ϕθ
vΘffiffiffi
2

p ðvΘ þ hΘÞ;

Ψ ¼ vΨffiffiffi
2

p ei
ϕΨ
vg

�
1þ hΨ

vg

�
; ~Ψ ¼ v ~Ψffiffiffi

2
p e−i

ϕΨ
vg

�
1þ hΨ

vg

�
;

ð27Þ

in which we have set ΦS1 ¼ ΦS2 ¼ ΦS3 ≡ ΦSi in the

SUSY limit, and vg ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2Ψ þ v2~Ψ

q
. And the NG modes

A1 and A2 are expressed as

A1 ¼
vSϕS þ vΘϕθffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v2S þ v2Θ
p ; A2 ¼ ϕΨ ð28Þ

with the angular fields ϕS, ϕθ, and ϕΨ. With Eqs. (25) and
(27), the derivative couplings of Ak arise from the kinetic
terms,

∂μF �
k∂μF k ¼

1

2
ð∂μA1Þ2

�
1þhF

vF

�
2

þ1

2
ð∂μA2Þ2

�
1þhΨ

vg

�
2

þ1

2
ð∂μhF Þ2þ

1

2
ð∂μhΨÞ2þ…; ð29Þ

where vF ¼ vΘð1þ κ2Þ1=2 and hF ¼ ðκhS þ hΘÞ=
ð1þ κ2Þ1=2, and the dots stand for the orthogonal compo-
nents h⊥F and A⊥

1 . Recalling that κ ≡ vS=vΘ. Clearly, the
derivative interactions of Ak (k ¼ 1, 2) are suppressed by
the VEVs vF and vΨ. From Eq. (29), performing vF ,
vΨ → ∞, the NG modes A1;2, whose interactions are
determined by symmetry, are invariant under the symmetry
and distinguished from the radial modes, hF and hΨ.
In Eq. (24), the Yukawa Lagrangian is given as follows.

Once the scalar fields ΦS, Θ, ~Θ, Ψ and ~Ψ get VEVs, the
flavor symmetry Uð1ÞX × A4 is spontaneously broken23

And at energies below the electroweak scale, all quarks
and leptons obtain masses. The relevant Yukawa interaction
terms with chiral fermions ψ charged under the flavored
Uð1ÞX symmetry is given by

−LY ¼ quRMuquL þ ei
A1
vFqdRMdqdL þ lRMllL

þ 1

2
ð νcL SR NR Þ

×

0BBB@
0 e16i

A2
vgmT

DS e−9i
A2
vgmT

D

e16i
A2
vgmDS eið50

A2
vg
þA1

vF
ÞMS 0

e−9i
A2
vgmD 0 ei

A1
vFMR

1CCCA
0B@ νL

ScR
Nc

R

1CA
þH:c:; ð30Þ

where qu ¼ ðu; c; tÞ and qd ¼ ðd; s; bÞ. And in the above
Lagrangian (30) the Dirac and Majorana neutrino mass
terms read

mDS ¼

0B@ ŷs1 0 0

0 ŷs2 0

0 0 ŷs3

1CA�
vΨffiffiffi
2

p
Λ

�
16

vu; ð31Þ

MS ¼

0B@ ŷss1 0 0

0 0 ŷss2
0 ŷss2 0

1CA v ~Ψffiffiffi
2

p
�

vΨffiffiffi
2

p
Λ

�
51 vΘffiffiffi

2
p

Λ
; ð32Þ

mD ¼

0B@ ŷν1 0 0

0 0 ŷν2
0 ŷν3 0

1CA vTffiffiffi
2

p
Λ

�
v ~Ψffiffiffi
2

p
Λ

�
9

vu

¼ ŷν1

0B@ 1 0 0

0 0 y2
0 y3 0

1CA vTffiffiffi
2

p
Λ

�
v ~Ψffiffiffi
2

p
Λ

�
9

vu; ð33Þ

MR ¼

0B@ 1þ 2
3
~κeiϕ − 1

3
~κeiϕ − 1

3
~κeiϕ

− 1
3
~κeiϕ 2

3
~κeiϕ 1 − 1

3
~κeiϕ

− 1
3
~κeiϕ 1 − 1

3
~κeiϕ 2

3
~κeiϕ

1CAM; ð34Þ

where

y2 ≡ ŷν2
ŷν1

; y3 ≡ ŷν3
ŷν1

; ~κ ≡
ffiffiffi
3

2

r ����ŷR vSM
����;

ϕ ≡ arg

�
ŷR
ŷΘ

�
with M ≡

����ŷΘ vΘffiffiffi
2

p
����: ð35Þ

Recalling that the hat Yukawa couplings in Eqs. (36)–(35)
are all of order unity and complex numbers. We will discuss
the neutrino physics in detail in Sec. IV. Now, we move to
discussion on the charged-fermion sector, in which the
physical mass hierarchies are directly responsible for the
assignment of Uð1ÞX quantum numbers. The axion cou-
pling matrices to the up-type quarks, charged leptons,
and down-type quarks, respectively, are diagonalized

through biunitary transformations: Vψ
RMψV

ψ†
L ¼ cMψ

(diagonal form), and the mass eigenstates ψ 0
R ¼ Vψ

RψR

and ψ 0
L ¼ Vψ

LψL. These transformation include, in particu-
lar, the chiral transformation necessary to make Mu and
Md real and positive. This induces a contribution to the
QCD vacuum angle as in Eq. (69). Note here that under
the chiral rotation of the quark field given by Eq. (91) the
effective QCD angle ϑeff is invariant. In the above
Lagrangian (30), the mass matrices Mu, Md and Ml
for up-, down-type quarks and charged leptons, respec-
tively, are expressed as

23If the symmetryUð1ÞX is broken spontaneously, the massless
modes A1 of the scalar ΦS (or Θ) and A2 of the scalar Ψð ~ΨÞ
appear as phases.
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Mu ¼

0B@ yue
−6iA2vg 0 0

0 yce
−2iA2vg 0

0 0 yt

1CAvu; ð36Þ

Md ¼

0B@ ~yd ys yb
yd ~ys yb
yd ys ~yb

1CA
0B@ e−3i

A2
vg 0 0

0 e−2i
A2
vg 0

0 0 1

1CA vSffiffiffi
2

p
Λ
vd;

ð37Þ

Ml ¼

0BB@
yee

6i
A2
vg 0 0

0 yμe
4i

A2
vg 0

0 0 yτe
2i

A2
vg

1CCAvd; ð38Þ

where vd ≡ hHdi ¼ v cos β=
ffiffiffi
2

p
, and vu ≡ hHui ¼

v sin β=
ffiffiffi
2

p
with v≃ 246 GeV, ~yf ¼ yf þ xf

1
κ
vT
Λ with

f ¼ d, s, b (in which the Yukawa couplings xf come from
higher-dimensional operators driven by the flavon field ΦT
in Ref. [2]), and the corresponding Yukawa terms for
charged leptons and up-type quarks are given by

yτ ¼
�

λffiffiffi
2

p
�

2

ŷτ; yμ ¼
�

λffiffiffi
2

p
�

4

ŷμ; ye ¼
�

λffiffiffi
2

p
�

6

ŷe;

yt ¼ ŷt; yc ¼
�

λffiffiffi
2

p
�

2

ŷc; yu ¼
�

λffiffiffi
2

p
�

6

ŷu: ð39Þ

The physical structure of the charged-fermion Lagrangian
given by Eqs. (84) and (85) may be examined, and these
results are in a good agreement with the empirical charged
lepton and up-type quarks mass ratios calculated from the
measured values [31]:

me

mτ
≃ 2.9 × 10−4;

mμ

mτ
≃ 5.9 × 10−2: ð40Þ

mu

mt
≃ 1.4 × 10−5;

mc

mt
≃ 7.4 × 10−3: ð41Þ

On the other hand,Md in Eq. (37) generates the down-type
quark masses:

cMd ¼ Vd†
R MdVd

L ¼ diagðmd;ms;mbÞ; ð42Þ

where Vd
L and Vd

R can be determined by diagonalizing the
matrices for M†

dMd and MdM
†
d, respectively. In particu-

lar, the mixing matrix Vd
L becomes one of the matrices

composing the CKM mixing matrix. The Hermitian matrix
M†

dMd is diagonalized by the mixing matrix Vd
L:

Vd†
L M†

dMdVd
L

¼v2d3

�
vSffiffiffi
2

p
Λ

�
2

Vd†
L

0BBB@
ð λffiffi

2
p Þ6jŷdj2 ð λffiffi

2
p Þ5ŷ�dŷs ð λffiffi

2
p Þ3ŷ�dŷb

ð λffiffi
2

p Þ5ŷdŷ�s ð λffiffi
2

p Þ4jŷsj2 ð λffiffi
2

p Þ2ŷ�s ŷb
ð λffiffi

2
p Þ3ŷdŷ�b ð λffiffi

2
p Þ2ŷsŷ�b jŷbj2

1CCCAVd
L

¼diagðjmdj2;jmsj2;jmbj2Þ: ð43Þ

Due to the strong hierarchal structure of the Hermitian
matrix, one can fit the results calculated from the measured
values [31]:

md

mb
≃ 1.2 × 10−3;

ms

mb
≃ 2.4 × 10−2: ð44Þ

Naively speaking, since the leading matrix Md has six
physical parameters, while observables are seven (CKM
parameters: four, down-type quark masses: three), it alone
may not generate the correct CKM matrix in the standard
parametrization in Ref. [31]. Therefore, in order to achieve
the correct CKM mixing matrix, we should include non-
trivial next-to-leading-order corrections which are driven
by the field ΦT neutral under SUð2ÞL ×Uð1ÞY ×Uð1ÞX;
see more details in Ref. [2].

C. The mixed Uð1ÞX anomalies and a bridge
between string theory and flavor physics

It is well known that any discrete or continuous global
symmetry is not protected from violations by quantum
gravity effects [22]. Here we discuss that the global Uð1ÞX
is the remnant of the broken Uð1ÞX gauge symmetry by the
GS mechanism, and so it can be protected from quantum-
gravitational effects, similar to Ref. [1]. String theory when
compactified to four dimensions generically contains an
anomalous Uð1Þ with anomaly cancellation. The model
group SUð3ÞC × SUð2ÞL × Uð1ÞY ×Uð1ÞR × Uð1ÞX we
are interested may be realized in a four-stack model
Uð3Þ ×Uð2Þ ×Uð1Þ ×Uð1Þ on D branes where the
gauged Uð1Þs are generically anomalous [35].
Hypercharge Uð1ÞY is the unique anomaly-free linear
combination of the four Uð1Þs. The other combinations
contribute to Uð1ÞX and a gauged Uð1ÞR [36] which
contains an R-symmetry as a subgroup. In addition, a
non-Abelian discrete flavor symmetry, A4, has been intro-
duced to describe flavor mixing pattern, which can be
realized in field theories on orbifolds [20]. Here if we
assume that the non-Abelian discrete symmetry A4 is a
subgroup of a gauge symmetry, it can be protected from
quantum-gravitational effects. Moreover, in the model
since such non-Abelian discrete symmetry is broken
completely by higher-order effects, there is no residual
symmetry; so there is no room for a spontaneously broken
discrete symmetry to give rise to domain-wall problem.
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We assume throughout that the model can be derived as
consistent type IIB string vacuum. In such a vacuum, as
will be shown later, the Uð1ÞX-mixed anomalies such as
Uð1ÞX½Uð1ÞY �2, Uð1ÞX½SUð2ÞL�2, Uð1ÞX½SUð3ÞC�2, and
Uð1ÞY ½Uð1ÞX�2 should be cancelled by appropriate shifts
of Ramond-Ramond axions in the bulk [37]. On the other
hand, nonperturbative quantum gravitational anomaly
effects [38,39] lead to a nonconservation of the correspond-
ing current,

∂μJ
μ
X ∝ R ~R; ð45Þ

where R is the Riemann tensor and ~R is its dual, which
spoils the axion solution to the strong CP problem.
Therefore, in order to eliminate the breaking effects of
the axionic shift symmetry by gravity we impose an
Uð1ÞX-½gravity�2 anomaly cancellation condition. Since
the Uð1ÞX charges in Table II are flavor-dependent, the
Uð1ÞX symmetry serves as a natural flavor symmetry, and
helps explanation of the pattern of quark and lepton
mixings as seen in Sec. II B. Thus the choices of Uð1ÞX
charges for ordinary quarks and leptons are strongly
restricted by the Uð1ÞX-½gravity�2 anomaly cancellation
condition:

0¼f3 ·2ð−5q−3rÞþ3ð6pþ3rÞþ3ð−3qþ3rÞgquark
þf−2ð27qþ3pÞþ ð3pþ39qÞþ3pþ3pþ75qglepton:

ð46Þ
This indicates that the Uð1ÞX symmetry could be inter-
preted as a fundamental symmetry of nature when p ¼ −q.
Clearly, the Uð1ÞX quantum numbers of quark flavors in
Eq. (46) are arranged in a way that no axionic domain-wall
problem occurs, which plays a crucial role in cosmology
when the X-symmetry breaking occurs after inflation. With
the quantum numbers of SM quarks and charged leptons
satisfying the observed mass spectra based on the frame-
work of A4 ×Uð1ÞX, if the SM quark quantum numbers are
arranged in a way that no domain-wall problem occurs, one
can find an available arrangement of quantum numbers to
satisfy the neutrino phenomenology (see Sec. IV).
We work in a supergravity framework based on type IIB

string theory, and assume that the dilaton and complex
structure moduli are fixed at semi-classical level by turning
on background fluxes [40]. Below the scale where the
complex structure and the axio-dilaton moduli are stabi-
lized through fluxes as in Refs. [41,42], the low-energy
Kahler potential K and superpotential W for the Kahler
moduli and matter superfields, invariant under Uð1ÞX
gauged symmetry, are given in type IIB string theory by [1]

K ¼ −M2
P ln

�
ðT þ T̄Þ

Y2
i¼1

�
Ti þ T̄i −

δGSi
16π2

VXi

��
þ ~K þ… ð47Þ

with ~K ¼
X2
i¼1

ZiΦ
†
i e

−XiVXiΦi þ
X
k

Zkjφkj2;

W ¼ WY þWv þW0 þWðTÞ; ð48Þ

in whichΦ1¼fΦS;Θ; ~Θg,Φ2¼fΨ; ~Ψg, φi¼fΨ0;ΦT
0 ;ΦTg,

dots represent higher-order terms, and MP ¼ ð8πGÞ−1=2 ¼
2.436 × 1018 GeV is the reduced Planck mass with the
Newton’s gravitational constant G. W0 stands for the
constant value of the flux superpotential at its minimum.
Since the Kahler moduli do not appear in the superpotential
W at leading order, they are not fixed by the fluxes. So a
nonperturbative superpotential WðTÞ is introduced to
stabilize the Kahler moduli. Although WðTÞ in Eq. (48)
is absent at tree level, the source of this nonperturbative
term could be either D3-brane instantons or gaugino
condensation from the non-Abelian gauge sector of the
N-wrapped D7-branes [43]. The Kahler moduli in K of
Eq. (47) control the overall size of the compact space,

T ¼ τ

2
þ iθ; Ti ¼

τi
2
þ iθi with i ¼ 1; 2; ð49Þ

where τ=2ðτi=2Þ are the size moduli of the internal
manifold and θðθiÞ are the axionic parts. As can be seen
from the Kahler potential above, the relevant fields par-
ticipating in the four-dimensional GS mechanism are the
Uð1ÞXi

charged chiral matter superfields Φi, the vector
superfields VXi

of the gauged Uð1ÞXi
which is anomalous,

and the Kahler moduli Ti. The matter superfields in K
consist of all the scalar fields Φi that are not moduli and do
not have Planck sized VEVs, and the chiral matter fields φk
are neutral under the Uð1ÞXi

symmetry. We take, for
simplicity, the normalization factors Zi ¼ Zk ¼ 1, and
the holomorphic gauge kinetic function on the Kahler
moduli in the four-dimensional effective SUGRA

Ti ¼
1

g2Xi

þ i
aTi

8π2
ð50Þ

where gXi
are the four-dimensional gauge couplings of

Uð1ÞXi
. Actually, gaugino masses require a nontrivial

dependence of the holomorphic gauge kinetic function
on the Kahler moduli. This dependence is generic in most
of the models of N ¼ 1 SUGRA derived from extended
supergravity and string theory [44]. And vector multiplets
VXi

in Eq. (47) are the Uð1ÞXi
gauge superfields including

gauge bosons Aμ
i . The GS parameter δGSi characterizes the

coupling of the anomalous gauge boson to the axion. The
kinetic terms of the Kahler moduli and scalar sectors in
the flat space limit of the four-dimensional N ¼ 1 super-
gravity are expressed as
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Lkinetic ¼ KTT̄∂μT∂μT̄ þ KTiT̄i
∂μTi∂μT̄i

þ KΦiΦ̄i
∂μΦi∂μΦ†

i : ð51Þ

Here we set KΦiΦ̄i
¼ 1 for canonically normalized scalar

fields, as Eq. (25). In addition to the superpotential in
Eq. (48), the Kahler potential in Eq. (47) deviates from the
canonical form due to the contributions of nonrenormaliz-
able terms scaled by an ultra violate cutoff MP, invariant
under the both gauge and the flavor symmetries. Here the
kinetic terms for the axionic and size moduli do not mix in
perturbation theory, due to the axionic shift symmetry,
where any nonperturbative violations are small enough to
be irrelevant.
The theory is invariant under the Uð1ÞX gauge trans-

formation VXi
→ VXi

þ iðΛi − Λ̄iÞ, together with the mat-
ter and Kahler moduli superfields transform as [1]

Φi → eiXiΛiΦi; Ti → Ti þ i
δGSi
16π2

Λi ð52Þ

where ΛðΛ̄iÞ are (anti)chiral superfields parametrizing
Uð1ÞXi

transformations on the superspace. Recalling that

the scalar fields ΦS, Θ and Ψð ~ΨÞ have X-charges X1 ¼
−2p and X2 ¼ −qðqÞ, respectively. So the axionic moduli
θi and matter axions Ai have shift symmetries,

θi → θi −
δGSi
16π2

ξi; Ai → Ai þ fai
δGSi
δQi

ξi; ð53Þ

where the decay constants fai are defined in Eq. (74), δ
Q
i is

anomaly coefficient defined in Eq. (55), and ξi ¼
−ReΛijθ¼θ̄¼0 and Φijθ¼θ̄¼0 ¼ 1ffiffi

2
p ei

Ai
vi ðvi þ hiÞ (here vi

and hi being the VEVs and Higgs bosons of scalar
components, respectively, and the subscripts θ and θ̄ are
the Grasmann variables.), with the gauge transformation

Aμ
i → Aμ

i − ∂μξi: ð54Þ

As discussed in Ref. [1], by introducing two gauged
Uð1Þ symmetries author has stabilized the three size moduli
(τ=2, τi=2) and one axionic direction θst with large masses,
while the two axionic directions (θst1 ≡ θ − θ1 and
θst2 ≡ θ − θ2) remain massless. The two massless axion
directions are gauged by the Uð1Þ gauge interactions
associated with D-branes, and the gauged flat directions
of the F-term potential are removed through the
Stuckelberg mechanism. Now we discuss how the corre-
sponding massless NG modes could survive in the phase of
scalars charged under the global continuous symmetry
Uð1ÞX, as shown in Ref. [1]. Since we have two gauged
anomalous Uð1Þ currents, there are two axions linear
combinations of Ai and θsti (i ¼ 1, 2) that couple to the
(non)-Abelian Chern-Pontryagin densities with coefficients

by anomalies. And the two gauged anomalous Uð1Þ
symmetries, Uð1ÞX1

×Uð1ÞX2
, have the corresponding

coefficients,

δGi ¼ 2Tr½XiT2
SUð3Þ�; δWi ¼ 2Tr½XiT2

SUð2Þ�;
δHi ¼ 2Tr½XiY2�; ð55Þ

respectively, which stand for the coefficients of the mixed
Uð1ÞXi

-½SUð3ÞC�2,Uð1ÞXi
-½SUð2ÞL�2, andUð1ÞXi

-½Uð1ÞY �2
anomalies which are canceled by the GS mechanism. Here
UðnÞ generators (n > 2) are normalized according to
Tr½TaTb� ¼ δab=2, and for convenience, δHi ¼ 2Tr½XiY2�
is defined for hypercharge. Then the anomaly generated by
the triangle graph is cancelled by diagram in which the
gauged anomalous Uð1ÞX mixes with the axionic moduli,
which in turn couples to the Chern-Pontryagin density
TrðQμν ~QμνÞ for the corresponding gauge group in the
compactification. And so the axion decay constant depends
on the Kahler metric, and in particular on where the moduli
are stabilized, as shown in Ref. [1]. Consider the four-
dimensional effective action of the axions, θsti and Ai, and
their corresponding gauge fields, Aμ

i , which contains the
following,

KTiT̄i

�
∂μθsti −

δGSi
16π2

Aμ
i

�
2

−
1

4g2Xi

Fμν
i Fiμν − gXi

ξFIi DXi

þ jDμΦij2 þ θsti TrðQμν ~QμνÞ þ
Ai

fai

δQi
16π2

TrðQμν ~QμνÞ;

ð56Þ

where ~Q ≡ 1
2
ϵμνρσQρσ with the gauge field strengths Q ¼

fG;W;Hg for SUð3ÞC, SUð2ÞL, and Uð1ÞY , respectively.
Fμν
i are the Uð1ÞXi

gauge field strengths Fμν
i ¼

∂μAν
i − ∂νAμ

i , and the SUð3ÞC, SUð2ÞL, Uð1ÞY gauge
couplings are absorbed into their corresponding gauge field
strengths. In jDμΦij2, the scalar fields Φi couple to the
Uð1ÞXi

gauge bosons, where the gauge couplings gXi
are

absorbed into the gauge bosons Aμ
i in the Uð1ÞX gauge

covariant derivative Dμ ≡ ∂μ þ iXiA
μ
i . As mentioned

before, the introduction of FI terms leads to the D-term
potentials in Eq. (8) where the FI factors ξFIi depend on the
closed stringmoduli τi=2. The first, third, and fourth terms of
Eq. (56) stem from expanding the Kahler potential of
Eq. (47). Under the anomalousUð1ÞX gauge transformation
in Eqs. (52) and (53), the first and fifth terms together, and
similarly the fourth and sixth terms in Eq. (56), are gauge
invariant, that is, the interaction Lagrangians,

Lint
Aiθ

st
i
¼ −Aμ

i J
Xi
μ þ Ai

fai

δQi
16π2

TrðQμν ~QμνÞ

− Aμ
i J

θi
μ þ θsti TrðQμν ~QμνÞ; ð57Þ
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are invariant. There are anomalous currents JXi
μ and Jθiμ

coupling to the gauge bosons Aμ
i , that is, ∂μJ

μ
Xi

¼
δGSi
16π2

TrðQμν ~QμνÞ ¼ −∂μJ
μ
θi
:

Jθiμ ¼ KTiT̄i

δGSi
8π2

∂μθ
st
i ; JXi

μ ¼ −iXiΦ
†
i ∂μ

↔
Φi; ð58Þ

leading to ∂μðJμθi þ JμXi
Þ ¼ 0. Expanding Lagrangian (56)

and using θsti ¼ aTi
=ð8π2fsti Þwith fsti ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2KTiT̄i

=ð8π2Þ2
q

it

reads

1

2
ð∂μaTi

Þ2 þ aTi

fsti

1

8π2
TrðQμν ~QμνÞ þ

1

2
ð∂μAiÞ2

þ Ai

fai

δQi
16π2

TrðQμν ~QμνÞ − JXi
μ Aμ

i − Jθiμ A
μ
i

þ 1

2g2Xi

m2
Xi
Aμ
i Aiμ −

1

4g2Xi

Fμν
i Fiμν

−
g2Xi

2

�
ξFIi −

X
i

XijΦij2
�

2

ð59Þ

where aTi
is the canonically normalized Kahler axions.

Clearly it indicates that the values of fsti depend on the
Kahler metric and on where the moduli are stabilized. And
the gauge boson masses obtained by the super-Higgs
mechanism are given by

mXi
¼ gXi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2KTiT̄i

�
δGSi
16π2

�
2

þ 2f2ai

s
; ð60Þ

Then the open string axions Ai are linearly mixed with the
closed string axions ~aTi

with decay constants fsti and fai

~Ai¼
Ai

δGSi
2
fsti −aTi

faiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f2ai þðδGSi

2
fsti Þ2

q ; Gi¼
aTi

δGSi
2
fsti þAifaiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

f2ai þðδGSi
2
fsti Þ2

q : ð61Þ

Since theUð1ÞX is gauged, two linear combinationsGi of the
Ai and aTi

fields are eaten by the Uð1ÞX gauge bosons and

obtain string scale masses, while the other combinations ~Ai
survive to low energies and contribute to the QCD axion

~Ai ≈ Ai: ð62Þ

For fsti ≫ fai, the axions ~Ai as would-be QCD axion are
approximated to Ai. Below the scale mXi

the gauge bosons
decouple, leaving behind low-energy symmetries which are
anomalous global Uð1ÞXi

with the low-energy effective
Lagrangian

L ⊃ LSM þ 1

2
ð∂μAiÞ2 þ

δQi
16π2

Ai

fai
TrðQμν ~QμνÞ

þ iXiΦ
†
i ∂μ

↔
Φi

∂μAi

fai

δGSi
δQi

: ð63Þ

The gaugedUð1ÞXi
symmetries are broken, and only the SM

gauge group remains. Since the gauge fields ξi are absorbed
into gauge transformation, i.e., into the longitudinalmode of
the Uð1ÞXi

gauge bosons to make them massive, the gauge
fields ξi in the axionic shift symmetry defined in Eq. (53)
become constant, ξ. Under the axionic shift symmetry

Ai

fai
→

Ai

fai
þ δGSi

δQi
ξðconstantÞ; ð64Þ

the operator δ
Qi
i

δGSi
∂μJ

μ
Qi

Ai
fai

[the third term in the right-hand side

in Eq. (63)] transforms

δQi
δGSi

∂μJ
μ
Qi

Ai

fai
→

δQi
δGSi

∂μJ
μ
Qi

Ai þ fai
δGSi
δQi

ξ

fai

¼ −
δQi
δGSi

JμQi∂μ
Ai

fai
þ ξ∂μJ

μ
Qi: ð65Þ

Since, in a Uð1Þ gauge theory, the resulting surface term in
the action would vanish for finite energy configurations, the
last term ∂μJ

μ
Hi in Eq. (65) does not lead to parity or time-

reversal violation. And the coupling ∂μJ
μ
Wi, the last term in

Eq. (65) corresponding to theSUð2Þweakvacuum structure,
can be removed from the Lagrangian through a Bþ L
transformation i.e., ∂μðJμB þ JμLÞ ¼ Nf

8π2
Tr½Wμν

~Wμν� (where
JμB and J

μ
L are baryon-and lepton-number currents, andNf is

the number of generations). Thus, the last term in Eq. (65)
ξ∂μJ

μ
Wi and ξ∂μJ

μ
Hi for the SUð2Þ and Uð1ÞY gauge groups

are not physical; it means the third term forQ ¼ fW;Hg on
the right-hand side in Eq. (63) are just axion-derivative
couplings. Below the weak scale the third terms on the right
side of Eq. (63) for Q ¼ fW;Hg merge to give the
electromagnetic anomaly coefficient of UX − ½Uð1ÞEM�2;
see Eq. (94). On the other hand, in the case of SUð3Þ gauge
group the Chern-Pontryagin density ∂μJ

μ
G has physical

effects leading to CP violation due to the existence of
instantonic configurations in the QCD Lagrangian. So the
operator Gaμν ~Ga

μνAi=fai is not invariant under the axionic
shift symmetry. The fourth term in the right-hand side in
Eq. (63) can be traded by Eq. (86). As will be discussed
below Eq. (70), one linear combination of the globalUð1ÞXi

in Eq. (62) [see also Eq. (73)] is broken explicitly by QCD
instantons.
A crucial property of the above GS anomaly cancellation

mechanism is that the two Uð1Þ gauge bosons acquire
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masses leaving behind the corresponding global sym-
metries. These global symmetries Uð1ÞXi

are remain exact
to all orders in type IIB string perturbations theory around
the orientifold vacuum. On the other hand, we expects
nonperturbative violation of global symmetries and con-
sequently exponentially small in the string coupling, as
long as the vacuum stays at the orientifold point. This GS
mechanism can be applied to show the cancellation of the
other mixed Uð1Þ anomalies, such as Uð1ÞY-½Uð1ÞX1

�2,
Uð1ÞY-½Uð1ÞX2

�2, and Uð1ÞY-Uð1ÞX1
-Uð1ÞX2

, by including
Chern-Simons terms in the effective Lagrangian. The
anomalies coefficients of the mixed Uð1ÞY-½Uð1ÞXi

�2 and
Uð1ÞY-Uð1ÞXi

-Uð1ÞXj
with j ≠ i ¼ 1, 2 are given by

δXi ¼ 2Tr½YðXiÞ2�; δXij ¼ 2Tr½YXiXj�: ð66Þ

Actually, in order for the hypercharge gauge invariance of
the SM not to be violated without giving mass to the
hypercharge gauge field, these anomalies should be
removed. Thus we include the following Chern-Simons
terms to the effective action Eq. (56)

δXi
32π2

Aμ
i A

ν
i
~FYμν þ

δXij
32π2

Aμ
i A

ν
j
~FYμν −

ðδXi Þ2
δGSi

Ai

32π2fai
Fμν
i
~FYμν

þ 1

32π2

�ðδXijÞ2
δGSj

Aj

faj
Fμν
i −

ðδXijÞ2
δGSi

Ai

fai
Fμν
j

�
~FYμν ð67Þ

with j ≠ i ¼ 1, 2, where FYμν is the hypercharge field
strength and its dual ~FYμν. Under the Uð1ÞX gauge trans-
formation in Eqs. (52) and (53), the first and third terms
together, and similarly the second and fourth terms in
Eq. (67), are gauge invariant.
[Hereafter, without loss of generality, at low energies we

absorb δGSi into ξi in Eq. (70).]

III. QCD AXION AND AXIONS
IN ASTROPARTICLE PHYSICS

The would-be axions play crucial role in evolution of
stars and solving the strong CP problem, which will be
discussed in detail here. In Eq. (24), the CP-violating term
appearing in the QCD Lagrangian is expressed as

Lϑ ¼ ϑeff
32π2

Gaμν ~Ga
μν ð68Þ

where −π ≤ ϑeff ≤ π is the effective ϑ parameter defined
and the color gauge coupling is absorbed into the gauge
field, in the basis where quark masses are real and positive,
diagonal, and γ5-free, as

ϑeff ¼ ϑþ arg fdetðMuÞ detðMdÞg: ð69Þ

Here the angle ϑ is given above the electroweak scale,
which is the coefficient of ϑGaμν ~Ga

μν=32π2 where Ga is the

color field strength tensor and its dual ~Ga
μν ¼ 1

2
εμνρσGaμν

(here a is an SUð3Þ-adjoint index), coming from the strong
interaction. And, the second term comes from a chiral
transformation of weak interaction for diagonalization of
the quark mass matrices by ψq → e−iγ5 arg½detmq�=2ψq,
directly indicating the CKM CP phase in Ref. [31], which
is of order unity. However, experimental bounds on CP
violation in strong interactions are very tight, the strongest
ones coming from the limits on the electric dipole moment
of the neutron dn < 0.29 × 10−25 e [45] which implies
jϑeff j < 0.56 × 10−10. ϑeff should be very small to make a
theory consistent with experimental bounds. A huge
cancellation between ϑ and arg fdetðMuÞ detðMdÞg sug-
gests that there should be a physical process.
The model has two anomalous Uð1Þ symmetries,

Uð1ÞX1
×Uð1ÞX2

, with respective anomalies δG1 and δG2 ,
both of which are the coefficients of the Uð1ÞXk

-
SUð3ÞC-SUð3ÞC anomaly, so there are two would-be
axions A1 and A2, with the transformation of the phase
fields

A1 → A1 þ
vFX1

δG1
ξ1; A2 → A2 þ

vgX2

δG2
ξ2; ð70Þ

respectively [2]. Their charges X1 and X2 are linearly
independent. And the color anomaly coefficients are
obtained by letting 2

P
ψ i
Xkψ i

TrðtatbÞ ¼ δGk δ
ab, where

the ta are the generators of the representation of SUð3Þ
to which ψ belongs and the sum runs over all Dirac fermion
ψ with X-charge. Since the two Uð1Þs are broken by two
types of field attaining VEVs, a new PQ symmetry Uð1Þ ~X
which is a linear combination of the two Uð1Þs has
anomaly, while another Uð1Þ is anomaly-free (it is the
broken Uð1Þf symmetry by hΘi, hΦSi ≠ 0 responsible for
lepton number violation). Under Uð1Þ ~X ×Uð1Þf the fields
are transformed as

F 1¼
vFe

i
A1
vFffiffiffi
2

p
�
1þhF

vF

�
; F 1→eiX1ξ1F 1; with ξ1¼δG2 α;

F 2¼
vge

i
A2
vgffiffiffi
2

p
�
1þhΨ

vg

�
; F 2→eiX2ξ2F 2; with ξ2¼−δG1 α:

ð71Þ

One linear combination of the phase fields A1 and A2

becomes the axion (≡ A), and the other orthogonal
combination corresponds to the Goldstone boson (≡ G):�

A

G

�
¼

�
cosϑ sinϑ

− sin ϑ cos ϑ

��
A1

A2

�
ð72Þ
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Here, the G is the “true” Goldstone boson24 of the
spontaneously broken Uð1Þf. And since the Goldstone
boson interactions arise only through the derivative cou-
plings as Eq. (29), we can have the nonlinearly realized
global symmetry below the symmetry breaking scale,
Uð1Þf∶G → GþϒðconstantÞ. Then, the angle is obtained
as cosϑ ¼ −

~X2vgffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð ~X1vF Þ2þð− ~X2vgÞ2

p and sin ϑ ¼ ~X1vFffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð ~X1vF Þ2þð− ~X2vgÞ2

p
with ~X1 ≡ δG2 X1 and ~X2 ≡ −δG1X2. Therefore, the axion A
and the Goldstone boson G can be expressed as

A ¼ A1δ
G
1 fa2 þ A2δ

G
2 fa1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðδG2 fa1Þ2 þ ðδG1 fa2Þ2
q ;

G ¼ A2δ
G
1 fa2 − A1δ

G
2 fa1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðδG2 fa1Þ2 þ ðδG1 fa2Þ2
q ; ð73Þ

where the decay constants are given by

fa1 ¼ jX1jvF ; fa2 ¼ jX2jvg: ð74Þ

Meanwhile, the X-current for Uð1Þ ~X with the condition
(71) is given by

J ~X
μ ¼ i ~X1F

†
1∂μ

↔
F 1 − i ~X2F

†
2∂μ

↔
F 2 þ

1

2

X
ψ

~Xψ ψ̄γμγ5ψ

with ~Xψ ≡ ~X1ψ − ~X2ψ ð75Þ

where ψ ¼ all X-charged Dirac fermions, which is con-
served, ∂μJ ~X

μ ¼ 0, up to the triangle anomaly. This current
creates a massless particle, the axion. The X-current in
Eq. (75) is now decoupled in the limit vF , vg → ∞ as

J ~X
μ ¼ ~X1vF∂μA1 þ ð− ~X2vgÞ∂μA2 þ

1

2

X
ψ

~Xψ ψ̄γμγ5ψ

¼ ∂μAffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð 1
2fa1δ

G
2

Þ2 þ ð 1
2fa2δ

G
1

Þ2
q þ 1

2

X
ψ

~Xψ ψ̄γμγ5ψ ; ð76Þ

which corresponds to the charge flow satisfying the current
conservation equation if the symmetry is exact. Since the
J ~X
μ does not couple to the Goldstone boson G in Eq. (73),

requiring J ~X
μ not to create G from the vacuum

h0jJ ~X
μ jGi ¼ 0, it follows that

ð ~X1vF Þ2 ¼ ð ~X2vgÞ2: ð77Þ

This indicates that if one of the symmetry breaking scales is
determined, the other one is automatically fixed. The NG

boson A (which will be the QCD axion) possess the decay
constant, fA, defined by h0jJ ~X

μ ðxÞjAðpÞi ¼ ipμfAe−ip·x.
Then, from Eq. (76) we obtain the spontaneous symmetry
breaking scale

fA ¼
��

1

2fa1δ
G
2

�
2

þ
�

1

2fa2δ
G
1

�
2
�

−1
2

; ð78Þ

which is more reduced to fA ¼ ffiffiffi
2

p
δG2 fa1 ¼

ffiffiffi
2

p
δG1 fa2 by

using Eq. (77). Under the Uð1Þ ~X transformation, the axion
field A translates with the axion decay constant FA

A → Aþ FAα with FA ≡ fA=N and N ¼ 2δG1 δ
G
2

ð79Þ

where α ≡ P
iαi. Note here that if N were large, then FA

can be lowered significantly compared to the symmetry
breaking scale.
However, the current J ~X

μ is anomalous, that is, it is
violated at one loop by the triangle anomaly [2,46]

∂μJ ~X
μ ¼ N

16π2
TrðGμν

~GμνÞ: ð80Þ

Then, after chiral rotation as in Eq. (91) the corresponding
Lagrangian has the form

Leff ⊃
1

32π2

�
ϑeff þ

A1

fa1
δG1 þ A2

fa2
δG2

�
Ga

μν
~Gaμν

¼ 1

32π2

�
ϑeff þ

A
FA

�
Ga

μν
~Gaμν: ð81Þ

Since ϑeff is an angle of mod 2π, after chiral rotations
on Dirac fermion charged under Uð1ÞX1

×Uð1ÞX2
, the

Lagrangian should be invariant under

A1

fa1
→

A1

fa1
þ 2π

δG1
n1;

A2

fa2
→

A2

fa2
þ 2π

δG2
n2; ð82Þ

where n1;2 are non-negative integers. So, it is clear to see
the following by replacing ni with NDWδ

G
i : if δ

G
1 and δG2 are

relative prime (so, the domain wall number NDW ¼ 1),
there can be no ZNDW

discrete symmetry and therefore no
axionic domain wall problem. Our model [δG1 ¼ 3X1 ¼ 6,
δG2 ¼ −13X2 ¼ 13 for q ¼ −p ¼ 1 in Eq. (46)] corre-
sponds to the case.25

24It could be a massless Majoron-like particle.

25Note that these color anomaly coefficients, δG1 ¼ 6, δG2 ¼ 13,
coming from the mixed Uð1ÞX − ½gravity�2 anomaly-free con-
dition are different from those (δG1 ¼ 3, δG2 ¼ 17) in Ref. [2].
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A. Quarks and charged leptons
and their interactions with axions

In order to obtain the axion interactions with the SM
fermions, let us remove the NG modes A1 and A2 from
the mass matrices in Eq. (30) by chiral-rotation of the
charged fermion and neutrino fields as in Eq. (91). The
Yukawa Lagrangian of the charged fermions in Eq. (30)
have the ~X-symmetry with the transformation parameter ρ
under

Uð1Þ ~X∶u→e−6i ~X2
γ5
2
ρu; c→e−2i ~X2

γ5
2
ρc; t¼ invariant

d→eið ~X1−3 ~X2Þγ52 ρd; s→eið ~X1−2 ~X2Þγ52 ρs; b→ei ~X1
γ5
2
ρb;

e→e6i ~X2
γ5
2
ρe; μ→e4i ~X2

γ5
2
ρμ; τ→e2i ~X2

γ5
2
ρτ: ð83Þ

After diagonalization of the mass matrices for charged
fermions, between 1 GeV and 246 GeV the axion-charged
fermion Lagrangian are expressed as

−La−q ≃ ∂μA1

2fa1
fX1dd̄γμγ5dþ X1ss̄γμγ5sþ X1bb̄γμγ5bg

þ ∂μA2

2fa2
fXuūγμγ5uþ Xcc̄γμγ5c

þ X2dd̄γμγ5dþ X2ss̄γμγ5sg
þmuūuþmcc̄cþmtt̄tþmdd̄dþmss̄s

þmbb̄b − q̄i∂q; ð84Þ

−La−l ≃ ∂μA2

2fa2
fXeēγμγ5eþ Xμμ̄γ

μγ5μþ Xττ̄γ
μγ5τg

þmeēeþmμμ̄μþmττ̄τ − l̄i∂l; ð85Þ

in which q ¼ u, c, t, d, s, b and l ¼ e, μ, τ represent mass
eigenstates. And the derivative interactions can also be
simplified, and in turn which can be expressed in terms of
the hadronic axion A, see Eq. (95), as

X
ψ

�∂μA1

fa1
X1ψ þ

∂μA2

fa2
X2ψ

�
ψ̄γμγ5ψ ¼ ∂μA

fA

X
ψ

~Xψ ψ̄γ
μγ5ψ :

ð86Þ

The axion couplings are model dependent with the ele-
ments of the matrices, so the X-charges of the fermions are
given as Xu ¼ −6X2, Xc ¼ −2X2, Xe ¼ 6X2, Xμ ¼ 4X2,
Xτ ¼ 2X2, X1d ¼ X1s ¼ X1b ¼ X1, X2d ¼ −3X2 and
X2s ¼ −2X2. Recalling that X1 ¼ −2p and X2 ¼ −q with
p ¼ −q. The above axion-SM fermion interactions are
applicable above 1 GeV such as in J=Ψ and Υ decays. It is
clear that the hadronic axion, A, does not couple to charged-
leptons at tree level, whereas the new NG bosons, A1 and/or

A2, interact with both quarks and leptons.
26 Such couplings,

however, are suppressed by factors v=fa1 or v=fa2.
Consequently, both the hadronic axion and the new NG
modes are invisible. Below the QCD scale (1GeV≈4πfπ),
the axion-hadron interactions are meaningful rather than
the axion-quark interactions in Eq. (84) [see below
Eq. (109)]. The chiral symmetry is broken and π, K,
and η are produced as pseudo-Goldstone bosons. Since the
weakly coupled NG bosons and the hadronic axion could
carry away a large amount of energy from the interior of
stars, according to the standard stellar evolution scenario
their couplings should be bounded with electrons (because
second and third generation particles are absent in almost
all astrophysical objects) and nucleons,27 respectively.
As seen in superpotential (21) since the SM charged

lepton fields which are nontrivially X-charged Dirac
fermions have Uð1ÞEM charges, the axion A2 coupling to
electrons are added to the Lagrangian through a chiral
rotation, as shown in Eq. (85). And the axion A2 couples
directly to electrons, thereby the axion can be emitted by
Compton scattering, atomic axio-recombination and axio-
deexcitation, and axio-bremsstrahlung in electron-ion or
electron-electron collisions [47]. The axion A2 coupling to
electron in the model reads

gAee ¼
Xeme

fa2
; ð87Þ

where me ¼ 0.511 MeV, and without loss of generality we
set Xe ¼ −6 for the given X-charges X2 ¼ −q ¼ −1. On
top of the FA model, in the two conventional models the
hadronic axion coupling to electron has a very small model-
independent coupling induced at one-loop via photon
coupling for KSVZ, and a model-dependent contribution
proportional to an Oð1Þ coefficient for DFSZ,

gAee ¼
( me

fK
3α2em
4π

�
E
N log

fK
me

− 2
3
4þzþw
1þzþw log

ΛQCD

me

	
; KSVZ

me
fD
tan β; DFSZ

ð88Þ
where z ¼ mu=md, w ¼ mu=ms, tan β ¼ vu=vd, fKðDÞ are
their corresponding decay constants, the electromagnetic
anomaly coefficient E vanishes for KSVZ, and ΛQCD is an
energy scale close to the QCD confinement scale. There are
several restrictive astrophysical limits [31] on the axion
models that couples to electrons, which arise from the
above-mentioned processes: among them, (i) from stars in

26The A as a linear combination of A1 and A2 could play a role
as a QCD axion to give a natural solution to the strong CP
problem, while A2 alone does not. However, since the A2 is an
admixture of the QCD axion, its coupling also is controlled by the
QCD axion quantities. In addition, the A2 coupling to electron is
constrained by astrophysical constraints.

27Axion interaction with nucleons will be discussed in
Sec. III B 2.
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the red giant branch of the color-magnitude diagram of
globular clusters [47], αAee < 1.5 × 10−26 (95% CL) [48],
(ii) from white dwarfs (WDs) where bremsstrahlung is
mainly efficient [49], αAee < 6 × 10−27 [50], and recently
(iii) from the Sun the XENON100 experiment provides the
upper bound, gAee < 7.7 × 10−12 (90% CL) [51]. Here a
fine-structure constant, αAee ¼ g2Aee=4π, is related to the
axion-electron coupling constant gAee. Then, the astro-
physical lower bound of the PQ breaking scale is derived
from the above-mentioned upper limits:

fa2 ≳ ð3.98×108−1.23×1010ÞGeV; FA

fK≳ ð1.02×104−3.15×105ÞGeV; KSVZ

fD≳ ð6.64×107−2.04×109Þ tanβGeV; DFSZ: ð89Þ

Such weakly coupled axions have a wealth of interesting
phenomenological implications in the context of astrophys-
ics, like the formation of a cosmic diffuse background of
axions from core collapse supernova explosions [52] or
neutron star cooling [53]. Indeed, the longstanding anomaly
in the cooling of WDs might be explained by axions
with αAee ¼ ð0.29–2.30Þ × 10−27 [54], which is recently
improved in Refs. [50,55], implying axion decay constants

4.1×10−28≲αAee≲ 3.7× 10−27

⇔

8>><>>:
fa2 ¼ ð1.4−4.3Þ× 1010 GeV; FA

fK ¼ ð3.7− 11.0Þ× 105 GeV; KSVZ

fD ¼ ð2.4− 7.1Þ× 109 tanβGeV; DFSZ

ð90Þ

As will be seen later, with the lower bounds of decay
constants in Eq. (120) derived from the upper limits of the
axion-photon couplings, the KSVZ model could be
excluded by the anomaly Eq. (90) with Eq. (114). In
addition, it may indicate that direct searches for axions
and calculations of their effects on the cooling of stars and
on the supernova SN1987A [56] exclude most values of
fa2 ≲ 109 GeV. Note that here, if the constraint from WDs
cooling as in Eq. (90) is not considered, the prototype
KSVZ model is allowed; in addition, the model (FA)
prediction for axion decay constants could have a little
bit wider ranges constrained by the extra cooling from the
neutron star as seen in Eq. (115).

B. Strong CP problem and QCD axion

Through a chiral rotation on ψ as in Eq. (83), we can
dispose of the ϑeff angle in Eq. (68). Let us chiral-rotate the
fth ψ in the Fujikawa measure of the path integral

ψf → exp

�
i
αfγ5
2

�
ψf with αf ≡ ρ ~Xψf

¼ ρð ~X1ψf
− ~X2ψf

Þ

ð91Þ

on Dirac spinors, which contributes

L → Lþ g2s
16π2

X
ψf

ρ ~Xψf
Ga

μν
~GbμνTrðtatbÞ

¼ Lþ g2s
32π2

ρNGa
μν
~Gaμν ð92Þ

to the Lagrangian, where the N is the axion color
anomaly of the Uð1Þ ~X symmetry. (Here we resurrect the
color gauge coupling gs.) And the second term in the
right-hand side of Eq. (92) is obtained by letting
2
P

ψf
~X1ψf

TrðtatbÞ − 2
P

ψf
~X2ψf

TrðtatbÞ ¼ Nδab, where

the sum runs over all ψ with ~X-charge. Through a rotation

Eq. (91), i.e., ψf → expfi ~Xψ

N
A
FA

γ5
2
gψf, we obtain the van-

ishing anomaly terms by adding the QCD vacuum given in
Lagrangian (68) to the above Lagrangian

Lϑ ¼
�
ϑeff þ

A1

Fa1

þ A2

Fa2

�
αs
8π

Gaμν ~Ga
μν

≡
�
ϑeff þ

A
FA

�
αs
8π

Gμνa ~Ga
μν: ð93Þ

Here Fai ¼ fai=δ
G
i with i ¼ 1, 2. At low energies Awill get

a VEV, hAi ¼ −FAϑeff , eliminating the constant ϑeff term.
The axion then is the excitation of the A field, a ¼ A − hAi.
Since the SM fields ψ have Uð1ÞEM charges, the axion
coupling to photon will be added to the Lagrangian through
a rotation Eq. (91), which survive to the QCD scale:

L → Lþ e2
2ρ
P

ψ
~XψðQem

i Þ2
32π2

Fμν
~Fμν

¼ Lþ e2

32π2

�
E
N

�
A
FA

Fμν
~Fμν ð94Þ

with the axion electromagnetic anomaly E ¼
2
P

ψ
~X1ψf

ðQem
f Þ2 − 2

P
ψ
~X2ψf

ðQem
f Þ2 for here ψ ¼ all ~X-

charged Dirac fermions, where Fμν is the electromagnetic
field strength and its dual ~Fμν. Note that since the field A is
not a constant, this term is not a total derivative, and so can
not be neglected.
At energies far below fA, after integrating out the X-

charge carrying heavy degree of freedoms, in terms of the
physical axion field “a” (which is the excitation with the
vacuum expectation removed) we can obtain the following
effective Lagrangian L including the SM Lagrangian LSM:

L ⊃
1

2
ð∂μaÞ2 −

∂μa

2fA

X
ψ

~Xψ ψ̄γ
μγ5ψ þ g2s

32π2
a
FA

Ga
μν
~Gaμν

þ e2

32π2

�
E
N

�
a
FA

Fμν
~Fμν: ð95Þ
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Below the SUð2Þ ×Uð1Þ breaking scale where all quarks
and leptons obtain masses, theX-current given in Eq. (76) is
constructed from the axion, quark and lepton transforma-
tions under theX-symmetry. The reason that the axion gets a
mass is that the X-current has the color anomaly. Then, we
neglect the lepton current for the axion mass.
We integrate out the heavy quarks (c, b, t) to obtain the

effective couplings just above QCD scale. Now there are
three light quarks (u, d, s). In order to obtain the axion mass
and derive the axion coupling to photons, we eliminate the
coupling of axions to gluons through rotation of the light
quark fields

q → exp

�
−iαq

γ5
2

�
q with q ¼ u; d; s: ð96Þ

With the above chiral-rotation, such that a=FA−
P

qαq¼0,
the quark-axion sector of the Lagrangian (95) reads

LA¼ iq̄γμDμqþ
1

2
ð∂μaÞ2−1

2

X
q¼u;d;s

�∂μa
fA

~Xq−∂μαq

�
q̄γμγ5q

−
� X

q¼u;d;s

mqq̄Le−iαqqRþH:c:

�

þ e2

32π2

�
E
N

a
FA

−6
X
q

αqðQem
q Þ2

�
Fμν

~Fμν: ð97Þ

As can be seen here, the CP violating ϑeff term at the
minimum is canceled out, which provides a dynamical
solution to the CP problem [5], but there is a phase in
mq. Clearly, we have some freedom in choosing the
phase28: since the QCD vacuum is a flavor singlet, i.e.,
hūui ¼ hd̄di ¼ hs̄si, the αq is determined by the flavor
singlet condition, that is, αumu ¼ αdmd ¼ αsms. From
a=FA −

P
qαq ¼ 0, we obtain

αu ¼
a
FA

1

1þ zþ w
; αd ¼

a
FA

z
1þ zþ w

;

αs ¼
a
FA

w
1þ zþ w

; ð98Þ

where z ¼ muhūui=mdhd̄di ¼ mu=md and w ¼
muhūui=mshs̄si ¼ mu=ms in the SUð3Þflavor symmetric
vacuum. Considering u, d, and s quarks, the chiral
symmetry breaking effect due to the mixing between axion
and light mesons is

X
q

αqðQem
q Þ2 ¼ 4þ zþ w

9ð1þ zþ wÞ
a
FA

: ð99Þ

And the value of E=N is determined by the X-charge
carrying quarks and leptons

E
N

¼ 2 · ½ð ~Xe þ ~Xμ þ ~XτÞð−1Þ2 þ 3ð ~Xu þ ~XcÞð23Þ2 þ 3ð ~Xd þ ~Xs þ ~XbÞð− 1
3
Þ2�

2ðX1d þ X1s þ X1bÞðXu þ Xc þ X2d þ X2sÞ
ð100Þ

which corresponds to 14=39, where δG1 ¼ 6, δG2 ¼ 13 for the given X-charges X1 ¼ 2, X2 ¼ −1 [with q ¼ −p ¼ 1 in
Eq. (46)]. Here the axion color anomaly N and electromagnetic anomaly E are given below Eq. (92) and Eq. (94),
respectively.

1. Axion mass

Now, at below the QCD scale where the quarks have hadronized into mesons, which will result in mixing between axions
and NG mesons of the broken chiral SUð3ÞL × SUð3ÞR, the kinetic terms vanish

−LA ¼
� X

q¼u;d;s

mqq̄Le−iαqqR þ H:c:

�
−

e2

32π2

�
E
N
−
2

3

4þ zþ w
1þ zþ w

�
a
FA

Fμν
~Fμν

þ ∂μa
2fA

��
~Xu −

N
1þ zþ ω

�
ūγμγ5uþ

�
~Xd −

zN
1þ zþ ω

�
d̄γμγ5dþ

�
~Xs −

ωN
1þ zþ ω

�
s̄γμγ5s

�
: ð101Þ

From the effective Lagrangian (84), the interaction for the
light quarks preserves the X-symmetry, while it does not
preserve the chiral symmetry. So, wemay include the effects
of the Yukawa interactions in the effective Lagrangian by

adding a term which explicitly breaks the symmetry. Let us
consider the form of the chiral Lagrangian,

−Leff ¼
f2π
4
Tr½DμΣ†DμΣ� þ 1

2
μf2πTr½ΣAMq þ ðΣAMqÞ†�;

ð102Þ
where Σ ≡ exp ½2iπaTa=fπ� (a ¼ 1;…; 8) is the meson
field, Ta are the generators of SUð3Þ, Dμ is the appropriate

28In the case that mu, md, and ms are equal, it is natural to
choose these phases to be the same, i.e., αu ¼ αd ¼ αs ≡ α=3
[57].
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covariant derivatives which introduce the electroweak inter-
actions, fπ ¼ 92 MeV, μ is an undetermined constant,
which is related to explicit chiral symmetry breaking,Mq ¼
diagðmu;md;msÞ is the light quark mass matrix, and A ¼
diagðeiαu ; eiαd ; eiαsÞ is the axionphase rotation.The first term
in the above Lagrangian (102) is invariant under global
transformation Σ → gLΣg

†
R where gL ¼ I (unit matrix) and

gR ¼ diagðeiα1 ; eiα2 ; eiα3Þ, while the second term is not
invariant. Thus, the axion and mesons acquire masses from
the second term in the Lagrangian (102). Note that the
invariance of the above Lagrangian (102) under Uð1Þ ~X
requires that Σ transform as

Σ→Σ

0B@e−iα ~Xu 0 0

0 e−iα ~Xd 0

0 0 e−iα ~Xs

1CA; A→AþFAα: ð103Þ

Even the axion A field is generated at the high energy, it
develops a VEV below QCD scale. Expanding Σ and
considering the constant term corresponding to ground state
energy, the A potential is given as

VðAÞ ¼ −μf2π
�
mu cos

1

1þ zþ w

�
A
FA

þ ϑeff

�
þmd cos

z
1þ zþ w

�
A
FA

þ ϑeff

�
þms cos

w
1þ zþ w

�
A
FA

þ ϑeff

��
; ð104Þ

which is minimized when hAi ¼ −ϑeffFA. Then, the QCD
axion mass is proportional to the curvature of the effective
potential induced by the anomaly. Expanding VðAÞ at the
minimum gives the axion mass

m2
a ¼


∂2VðAÞ
∂a2

�
hAi¼−ϑeffFA

¼ f2π
F2
A

μmu

1þ zþ w
: ð105Þ

The physical axion/meson states and the mixing param-
eters may be determined from the axion/meson mass matrix
which can be obtained by expanding the symmetry break-
ing part in Lagrangian (102) and taking the terms quadratic
in the fields [see Eq. (C1)]. The axion mass in terms of the
pion mass is obtained as

m2
aF2

A ¼ m2
π0
f2πFðz; wÞ; ð106Þ

where m2
π0

is the π0π0 entry of M2 in Eq. (C3), and

Fðz; wÞ ¼ z
ð1þ zÞð1þ zþ wÞ ;

FA ¼
��

1

Fa1

�
2

þ
�

1

Fa2

�
2
�

−1
2

: ð107Þ

It is clear that the axion mass vanishes in the limit mu or
md → 0. The QCD axion mass derived in Eq. (106) is
equivalent to Eq. (105). In order to estimate the QCD axion
mass, first we determine the parameters μmu and w as a
function of z from the physical masses of the mesons. In
Eq. (C1), they can be extracted as μmu ¼ ð108.3 MeVÞ2z,
w ¼ 0.315z. Then, we can estimate the axion mass,

ma ¼ 4.34 meV

�
1.3 × 109 GeV

FA

�
; ð108Þ

where the Weinberg value for z ≡ mu=md ¼ 0.56 [58] and
Eq. (77) are used.

2. Axion interactions with nucleon

Below the chiral symmetry breaking scale, the axion-
hadron interactions are meaningful for the axion production
rate in the core of a star where the temperature is not as high
as 1 GeV, which is given by

−La−ψN ¼ ∂μa

2FA
XψN

ψ̄Nγμγ
5ψN; ð109Þ

where ψN is the nucleon doublet ðp; nÞT (here p and n
correspond to the proton field and neutron field, respec-
tively). The couplings of the axion to the nucleon can be
derived from the last part in Lagrangian (101)

−LA ⊃
∂μa
2FA

��
~Xu

N
−

1

1þ zþ ω

�
ūγμγ5u

þ
�
~Xd

N
−

z
1þ zþ ω

�
d̄γμγ5d

þ
�
~Xs

N
−

ω

1þ zþ ω

�
s̄γμγ5s

�
: ð110Þ

Then nucleon couplings, Xn;p, are related to axial-vector
current matrix elements by Goldberger-Treiman relations
[31], which are applied in the FA model as

Xp ¼
�
~Xu

N
− η

�
Δuþ

�
~Xd

N
− ηz

�
Δdþ

�
~Xs

N
− ηω

�
Δs;

Xn ¼
�
~Xu

N
− η

�
Δdþ

�
~Xd

N
− ηz

�
Δuþ

�
~Xs

N
− ηω

�
Δs:

ð111Þ

Here, η ¼ ð1þ zþ ωÞ−1 with z ¼ mu=md and ω ¼
mu=ms ≪ z and the Δq are given by the axial vector
current matrix element ΔqSμ ¼ hpjq̄γμγ5qjpi. From
Eqs. (109)–(111), the QCD axion coupling to the neutron
can be obtained as

Y. H. AHN PHYSICAL REVIEW D 96, 015022 (2017)

015022-20



gAnn ¼
Xnmn

FA
: ð112Þ

Here the neutron mass mn ¼ 939.6 MeV, and the decay
constant FA ¼ fA=N is replaced by FK ¼ fK=N and
FD ¼ fD=N for KSVZ and DFSZ model, respectively,
in which the color anomaly coefficients are model depen-
dent, N ¼ 1; Ngðtan β þ 1= tan βÞ, respectively. Now, for
numerical estimations on Eq. (112) we adopt the central
values of Δu ¼ 0.84� 0.02, Δd ¼ −0.43� 0.02 and
Δs ¼ −0.09� 0.02, and taken the Weinberg value for
0.38 < z < 0.58 [31]. We obtain the axion-neutron
coupling

Xn ¼
�
4

δG2
− η

�
Δdþ

�
3

2δG2
þ 1

2δG1
− ηz

�
Δu

þ
�
1

δG2
þ 1

2δG1
− ηω

�
Δs; ð113Þ

which gives a restrictive bound, whose value lies in ranges
0.174≳ Xn ≳ 0.070. Combining the measurement of
axion-neutron coupling in Ref. [59] with that of axion-
electron coupling in Eq. (90), the decay constants for the
FA model are fixed as in Eq. (116), while the decay
constant for DFSZ model has a wide range once the
unknown parameter tan β is determined,29 and the decay
constant for the KSVZ is not so tightly constrained. The
reason is that for KSVZ axions ~Xu ¼ ~Xd ¼ ~Xs ¼ 0 leads to
0.081≳ Xn ≳ −0.023 including Xn ¼ 0, and for DFSZ

axions ~Xu ¼ tan β; ~Xd ¼ ~Xs ¼ 1= tan β leading to Xn¼
ðcos2βNg

−ηÞΔdþðsin2βNg
−ηzÞΔuþðsin2βNg

−ηωÞΔs with Ng ¼ 3

depends on the value of tan β. Interestingly enough, there is
a hint for extra cooling from the neutron star in the
supernova remnant “Cassiopeia A” by axion neutron
bremsstrahlung, requiring a coupling to the neutron of size
[59], which is translated into

gAnn ¼ ð3.8� 3Þ × 10−10

⇔ 7.66 × 107 ≲ FA=GeV≲ 1.95 × 109; ð114Þ
which is compatible with the state-of-the-art upper limit on
this coupling, gAnn < 8 × 10−10, from neutron star cooling
[60]. From Eq. (114), the coupling gAnn can be translated in
terms of the scales of X-symmetry breakdown, fai , into

fa1 ¼ ð0.65–16.54Þ × 109 GeV;

fa2 ¼ ð0.14–3.58Þ × 1010 GeV ð115Þ

where we have used fai ¼
ffiffiffi
2

p
δGi FA in Eq. (79). Combining

the above result in Eq. (115) with the axion-electron
coupling in Eq. (90), we obtain a more restrictive bound
on the scale of Uð1ÞX symmetry breakdown by using
Eq. (107)

fa1 ¼ 1.1þ0.6
−0.5 × 1010 GeV;

fa2 ¼ 2.4þ1.2
−1.0 × 1010 GeV; ð116Þ

which corresponds to

FA ¼ 1.30þ0.66
−0.54 × 109 GeV: ð117Þ

3. Axion interactions with photon

After integrating out the heavy π0 and η at low energies,
there is an effective low-energy Lagrangian with an axion-
photon coupling gaγγ:

Laγγ ¼
1

4
gaγγaphysFμν ~Fμν ¼ −gaγγaphysE⃗ · B⃗; ð118Þ

where E⃗ and B⃗ are the electromagnetic field components.
And the axion-photon coupling can be expressed in terms
of the axion mass, pion mass, pion decay constant, z and w:

gaγγ ¼
αem
2π

ma

fπmπ0

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Fðz; wÞp �

E
N
−
2

3

4þ zþ w
1þ zþ w

�
: ð119Þ

The upper bound on the axion-photon coupling is derived
from the recent analysis of the horizontal branch (HB)
stars in galactic globular clusters (GCs) [61], which trans-
lates into the lower bound of decay constant through
Eq. (106), as

jgaγγj < 6.6 × 10−11 GeV−1 ð95% CLÞ

⇔ FA ≳
8<:

2.57 × 107 GeV FA

3.20 × 107 GeV; KSVZ

1.50 × 107 GeV; DFSZ

ð120Þ

where in the right side z ¼ 0.56, ω ¼ 0.315z, and
E=N ¼ 14=39, 0, 8=3, FA, KSVZ, and DFSZ, respectively,
are used. Subsequently, the bounden Eq. (119) translates
into the upper bound of axion mass through Eq. (119) as
ma < 0.22 eV, < 0.18 eV, and < 0.38 eV for FA, KSVZ,
and DFSZ, respectively. From Eq. (108) and Eq. (116), we
predict the axion mass and its corresponding axion-photon
coupling

ma ¼ 4.34þ3.37
−1.49 meV

⇔ jgaγγj ¼ 1.30þ1.01
−0.45 × 10−12 GeV−1: ð121Þ

The corresponding Compton wavelength of axion oscil-
lations is λa ¼ ð2πh=maÞc with c≃ 2.997 × 108 m=s and
h≃ 1.055 × 10−34 J · s:

29For example, if one takes tan β ¼ 10, one obtains 0.022≲
Xn ≲ 0.327 and 9.34 × 109 ≲ fD=GeV ≲ 1.16 × 1011 from the
axion-neutron coupling. Combining this result with that of
Eq. (90) one gets a PQ symmetry breaking scale fD ¼
ð2.4–7.1Þ × 1010 GeV in DFSZ.
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λa ¼ 2.86þ1.50
−1.25 × 10−2 cm: ð122Þ

The axion to two-photon decay width is

Γa→γγ ¼
g2aγγm3

a

64π

≃ 1.66 × 10−38s−1
�

gaγγ
1.30 × 10−12 GeV−1

�
2

×

�
ma

4.34 meV

�
3

: ð123Þ

So the axions decay much slower than the age of the
Universe of 4.35 × 1017 s. The axion coupling to photon
gaγγ divided by the axion mass ma is dependent on E=N.
Fig. 1 shows the E=N dependence of ðgaγγ=maÞ2 so that the
experimental limit is independent of the axion massma [2]:
the value of ðgaγγ=maÞ2 of our model is located just
a bit lower than that of the conventional axion model,
i.e., KSVZ model. For the Weinberg value z ¼ 0.56, the
anomaly value E=N ¼ 14=39 predicts ðgaγγ=maÞ2 ¼
9.010 × 10−20 GeV−2 eV−2 which is lower than the
ADMX (Axion Dark Matter eXperiment) bound [62],
ðgaγγ=maÞ2ADMX ≤ 1.44 × 10−19 GeV−2 eV−2. Fig. 2 shows
the plot for the axion-photon coupling jgaγγj as a function of
the axion mass ma in terms of anomaly values E=N ¼ 0,

8=3, 14=39 which correspond to the KSVZ, DFSZ and FA
model, respectively. The model will be tested in the very
near future through the experiment such as CAPP (Center
for Axion and Precision Physics research) [63].

IV. NEUTRINOS IN FLAVOR AND
ASTROPARTICLE PHYSICS

Let us investigate how neutrino oscillations at low
energies could be connected to new oscillations available
on high-energy neutrinos. Similar to the quark sector, in
order to eliminate the NG modes A1;2 from the Yukawa
Lagrangian of the neutrinos in Eq. (30) we transform the
neutrino fields by chiral rotations

Uð1ÞX∶ N → e−iX1
A1
fa1

γ5
2N; S → eið−X1

A1
fa1

þ50X2
A2
fa2

Þγ5
2 S;

ν → eið−X1
A1
fa1

þ18X2
A2
fa2

Þγ5
2 ν: ð124Þ

Since the masses of Majorana neutrino NR are much larger
than those of Dirac and light Majorana ones, after integrat-
ing out the heavy Majorana neutrinos, we obtain the
following effective Lagrangian for neutrinos

−La−ν
W ≃ 1

2
ð νcL SR ÞMν

�
νL

ScR

�
þ 1

2
NRMRNc

R þ gffiffiffi
2

p W−
μlLγ

μνL þ H:c: −
X1

2

A1

fa1
MiN̄iiγ5Nc

i

−
�
X1

2

A1

fa1
− 25X2

A2

fa2

�
msi S̄iiγ5Si −

�
X1

2

A1

fa1
− 9X2

A2

fa2

�
mνi ν̄iiγ5νi −

1

2
N̄ii∂Ni −

1

2
S̄ii∂Si − 1

2
ν̄ii∂νi; ð125Þ
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FIG. 1. Plot of ðgaγγ=maÞ2 versus E=N for z ¼ 0.56. The gray-
band represents the experimentally excluded bound ðgaγγ=maÞ2 ≤
1.44 × 10−19 GeV−2 eV−2 from ADMX [62]. Here the dotted-
black, dashed-blue, and solid-red lines stand for ðgaγγ=maÞ2¼
1.435×10−19GeV−2 eV−2 forE=N¼0, 2.120×10−20GeV−2eV−2

for E=N¼8=3, and 9.010×10−20GeV−2eV−2 for E=N ¼ 14=39,
respectively. See more various supersymmetric and no-
supersymmetric KSVZ and DFSZ-type models varying the
parameter E=N in Ref. [64].
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FIG. 2. Plot of jgaγγ j versus ma for KSVZ (black dotted line),
DFSZ (blue dashed line) and our model (red solid line) in terms of
E=N ¼ 0, 8=3 and 14=39, respectively. Here the horizontal dotted
line stands for the upper bound jgaγγj ≲ 6.6 × 10−11 GeV−1 which
is from globular-cluster stars [31]. And the black bar correspond-
ing to ma ≲ 16 meV is the constraint derived from the measured
duration of the neutrino signal of the supernova SN1987A [31]. In
particular, in the model, forFA ¼ 1.30þ0.66

−0.54 × 109 GeV,we obtain
ma ¼ 4.34þ3.37

−1.49 meV and jgaγγ j ¼ 1.30þ1.01
−0.45 × 10−12 GeV−1,

which corresponds to the yellow band.
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with Mν ¼
�
−mT

DM
−1
R mD mT

DS

mDS MS

�
; ð126Þ

where the mass matrices MR, mD, mDS and MS have off-
diagonal components, and Mi (msi ) and mνi are mass
eigenvalues of the heavy (very light) Majorana neutrinos
and active neutrinos, respectively. Here we used four-
component Majorana spinors, (Nc ¼ N, Sc ¼ S, and
νc ¼ ν).
According to the simple basis rotation by Lim and

Kobayashi [65], we perform basis rotations from weak
to mass eigenstates in the leptonic sector,

�
νL

ScR

�
→ W†

ν

�
νL

ScR

�
¼ ξL: ð127Þ

Here the transformation matrix Wν is unitary, which is
given by

Wν ¼
�
UL 0

0 UR

��
V1 iV1

V2 −iV2

�
Z;

with Z ¼
�

ei
π
4 cos θ −eiπ4 sin θ

e−i
π
4 sin θ e−i

π
4 cos θ

�
ð128Þ

where the 3 × 3 matrix UL participates in the leptonic
mixing matrix, the 3 × 3 matrix UR is an unknown unitary
matrix and V1 and V2 are the diagonal matrices, V1 ¼
diagð1; 1; 1Þ= ffiffiffi

2
p

and V2 ¼ diagðeiϕ1 ; eiϕ2 ; eiϕ3Þ= ffiffiffi
2

p
with

ϕi being arbitrary phases. Then the 6 × 6 light neutrino
mass matrix in Eq. (126) is diagonalized as

WT
νMνWν ¼ ZT

�
M̂νν M̂

M̂ M̂S

�
Z

≡ diagðmν1 ; mν2 ; mν3 ; ms1 ; ms2 ; ms3Þ ð129Þ

with

M̂νν ¼ UT
LMννUL; M̂S ¼ UT

RMSUR;

M̂ ¼ UT
RmDSUL ≡ diagðm1; m2; m3Þ: ð130Þ

As can be seen in Eqs. (31)–(34), it is important to
notice that the low-energy effective light neutrinos become
pseudo-Dirac particles since M̂ (or mDS) is dominant
over M̂νν and M̂S, that is, jM̂j ≫ jM̂ννj; jM̂Sj due to
Eqs. (31)–(34) and (126). This is an important point
because the masses of the low-energy active neutrinos
are determined by the Dirac neutrino mass termmDS (or M̂)
which is from the operators ysiLαScαHu in Eq. (21). After
some algebra if we name δ “pseudo-Dirac mass splitting,”

δ≡ M̂ννþM̂†
S; with tan2θ¼jM̂ννj2− jM̂Sj2

2M̂jδj ; ð131Þ

due to jM̂ννj ≫ jM̂Sj one obtains

δ≃ M̂νν; ð132Þ

leading to tan 2θ≃ jδj=2M̂ ≪ 1. Keeping terms up to the
first order in heavy Majorana mass, in the mass eigenstates
ν1, ν2, ν3, Sc1, S

c
2, S

c
3 basis the Hermitian matrixMνM

†
ν can

be diagonalized as a real and positive 6 × 6 squared mass
matrix by the unitary transformation Wν in Eq. (128)

WT
νMνM

†
νW�

ν ¼
� jM̂j2þjM̂jjδj 0

0 jM̂j2− jM̂jjδj

�
≡ diagðm2

ν1 ;m
2
ν2 ;m

2
ν3 ;m

2
s1 ;m

2
s2m

2
s3Þ: ð133Þ

As is well-known, because of the observed hierarchy
jΔm2

Atmj¼ jm2
ν3 −ðm2

ν1 þm2
ν2Þ=2j≫Δm2

Sol≡m2
ν2 −m2

ν1 >0,
and the requirement of a Mikheyev-Smirnov-Wolfenstein
resonance for solar neutrinos, there are two possible
neutrino mass spectra: (i) the normal mass ordering
(NO) m2

ν1<m2
ν2<m2

ν3 , m
2
s1<m2

s2<m2
s3 , and (ii) the inverted

mass ordering (IO) m2
ν3 < m2

ν1 < m2
ν2 , m

2
s3 < m2

s1 < m2
s2 , in

which the mass-squared differences in the k-th pair Δm2
k ≡

m2
νk −m2

sk are enough small that the same mass ordering
applies for the both eigenmasses, that is,

Δm2
k ¼ 2mkjδkj ≪ m2

νk ð134Þ

for all k ¼ 1, 2, 3. It is anticipated that Δm2
k ≪ Δm2

Sol,
jΔm2

Atmj, otherwise the effects of the pseudo-Dirac neu-
trinos should have been detected. But in the limit that
Δm2

k ¼ 0, it is hard to discern the pseudo-Dirac nature of
neutrinos. The pseudo-Dirac mass splittings will manifest
themselves through very long wavelength oscillations
characterized by the Δm2

k. (Hereafter, shortly, we call
Δm2

k mass splitting.) The pseudo-Dirac mass splittings
could be limited by the following four constraints (i) the
active neutrino mass hierarchy: for NO, m2

3 ≳ Δm2
Atm ≃

2.5 × 10−3 eV2 and m2
2 ≳ Δm2

Sol ≃ 7.5 × 10−5 eV2, while
for IO m2

2 > m2
1 ≳ 2.5 × 10−3 eV2, which gives the upper

bounds for the values of δk

jδ1j ≪ 3.8 × 10−5 eV2=m1; jδ2j ≪ 4.3 × 10−3 eV;

jδ3j ≪ 7.5 × 10−4 eV; for NO jδ1;2j ≪ 7.5 × 10−4 eV;

jδ3j ≪ 3.8 × 10−5 eV2=m3; for IO; ð135Þ
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(ii) the BBN constraints on the effective number of species
of light particles during nucleosynthesis30 by requiring
sterile neutrinos do not equilibrium at that time through
large angle oscillations to active one [17], which implies

Δm2
k ≤ 10−9 eV2; ð136Þ

(iii) the solar neutrino oscillations; such Δm2
1;2 can modify

the LMA (large mixing angle) solution and detailed fits in
case of pseudo-Dirac neutrinos imply a bound [16]

Δm2
1;2 < 1.8 × 10−12 eV2 at 3σ: ð137Þ

And (iv) the inflationary and leptogenesis scenarios in
Ref. [19] in the context of our model gives a lower bound
on the values of δk

δk ≳ 2.95 × 10−14 eV; ð138Þ
when the Hubble scale during inflation is HI ≃ 1010 GeV.
From the above constraints (i)–(iv), we roughly estimate a
bound for tiny mass splittings

6 × 10−16 ≲ Δm2
k=eV

2 ≲ 1.8 × 10−12; ð139Þ
where mνi ∼ 0.01 eV is assumed31 in the lower bound.
From the basis rotations of weak to mass eigenstates,

one of the Majorana neutrino mass matrices, Mνν ¼
−mT

DM
−1
R mD in Eq. (126), can be diagonalized as

M̂νν ¼ UT
LMννUL ¼ −UT

Lm
T
DM

−1
R mDUL; ð140Þ

as noticed in Eq. (129). The three neutrino active states
emitted by weak interactions are described in terms of the
six mass eigenstates as

να ¼ Uαkξk with ξk ¼
1ffiffiffi
2

p ð 1 i Þ
�
νk

Sck

�
; ð141Þ

in which the redefinition of the fields νk → ei
π
4νk and Sck →

e−i
π
4Sck is used. Since the active neutrinos are massive and

mixed, the weak eigenstates να (with flavor α ¼ e, μ, τ)
produced in a weak gauge interaction are linear combina-
tions of the mass eigenstates with definite masses, given by
jναi ¼

PNν
k W�

αkjξki where Wαk are the matrix elements of
the explicit form of the matrix Wν. Note that even the
number Nν of massive neutrinos can be larger than three, in
the present model the light fermions Sα do not take part in
the standard weak interaction and thus are not excluded by
LEP results according to which the number of active
neutrinos are coupled with the W� and Z bosons is Nν ¼
2.984� 0.008 [45]. The charged gauge interaction in
Eq. (126) for the neutrino flavor production and detection
is written in the charged lepton basis as

−Lc:c: ¼
gffiffiffi
2

p W−
μ l̄α

1þ γ5
2

γμUαkξk þ H:c:; ð142Þ

where g is the SU(2) coupling constant, and U ≡ UL is the
3 × 3 Pontecorvo-Maki-Nakagawa-Sakata (PMNS) mixing
matrix UPMNS. Thus, in the mass eigenstate basis, the
PMNS leptonic mixing matrix [31] at low energies is
visualized in the charged weak interaction, which is
expressed in terms of three mixing angles, θ12, θ13, θ23,
and three CP-odd phases (one δCP for the Dirac neutrino
and two φ1;2 for the Majorana neutrino) as

UPMNS ¼

0B@ c13c12 c13s12 s13e−iδCP

−c23s12 − s23c12s13eiδCP c23c12 − s23s12s13eiδCP s23c13
s23s12 − c23c12s13eiδCP −s23c12 − c23s12s13eiδCP c23c13

1CAPν; ð143Þ

where sij ≡ sin θij, cij ≡ cos θij and Pν is a diagonal phase
matrix what is that particles are Majorana ones.

A. A bridge between low- and high-energy neutrinos

Now there are four interesting features in the neutrino
sector.

1. The active neutrino mixing angles and the
pseudo-Dirac mass splittings responsible for new

wavelength oscillations come from seesaw

The first one is that the active neutrino mixing angles
ðθ12; θ13; θ23; δCPÞ and the pseudo-Dirac mass splittings δk
responsible for new wavelength oscillations characterized
by the Δm2

k could be obtained from the mass matrix Mνν

formed by seesawing. Recalling that the 3 × 3 mixing
matrix UL ¼ UPMNS diagonalizing the mass matrix Mνν

participates in the charged weak interaction. From Eqs. (30)

30If the effective number of neutrinos Neff
ν is larger than the SM

prediction of Neff
ν ¼ 3.046 [31] at the BBN era, the relativistic

degree of freedom, and, consequently, the Hubble expansion rate,
will also be larger, causing weak interactions to become in-
effective earlier. This will lead to a larger neutron-to-proton ratio
and will change the standard BBN predictions for light element
abundances. However, the latest number combining Planck and
BAO is Neff

ν ¼ 3.04� 0.18, spot on 3.046 expected from the SM
neutrinos [18].

31In the present model, the lightest effective neutrino mass
could not be extremely small because the values of δk through the
relation Eq. (134), are constrained by the μ − τ powered mass
matrix in Eq. (144).
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and (142), by redefining the light neutrino field νL as PννL
and transforming lL → PνlL, lR → PνlR, SR → PsSR,
one can always make the Yukawa couplings ŷν1, y2, y3 in
Eq. (33) and ŷs1, ŷ

s
2, ŷ

s
3 in Eq. (31) real and positive. Then,

from Eqs. (33) and (34) we obtain the μ − τ powered mass
matrix as in Refs. [2,66]

Mνν¼m0eiπ

0BBBBB@
1þ2F ð1−FÞy2 ð1−FÞy3

ð1−FÞy2
�
1þFþ3G

2

	
y22

�
1þF−3G

2

	
y2y3

ð1−FÞy3
�
1þF−3G

2

	
y2y3

�
1þFþ3G

2

	
y23

1CCCCCA
¼U�

PMNSM̂ννU
†
PMNS; ð144Þ

where

m0 ≡
���� ŷν21 υ2u
3M

����� vTffiffiffi
2

p
Λ

�
2
�

vΨffiffiffi
2

p
Λ

�
18

;

F ¼ ð~κeiϕ þ 1Þ−1; G ¼ ð~κeiϕ − 1Þ−1: ð145Þ

In the limit yν1 ¼ yν2 ¼ yν3 (y2, y3 → 1), the mass matrix
(144) gives the TBM angles [33] and their corresponding
mass eigenvalues jδkj which are equivalent to jðM̂ννÞkj ¼
Δm2

k=2mk

sin2θ12¼
1

3
; sin2θ23¼

1

2
; sinθ13¼ 0;

jδ1j ¼ 3m0jFj; jδ2j ¼ 3m0; jδ3j ¼ 3m0jGj: ð146Þ

These pseudo-Dirac mass splittings jδkj, which is closely
correlated with an axion decay constant (see Eq. (78), the
Uð1ÞX1

symmetry breaking scale), are disconnected from
the TBM mixing angles. It is in general expected that
deviations of y2, y3 from unity, leading to the nonzero
reactor mixing angle, i.e., θ13 ≠ 0, and in turn opening a
possibility to search for CP violation in neutrino oscillation
experiments. These deviations generate relations between
mixing angles and eigenvalues jδkj. Therefore Eq. (144)
directly indicates that there could be deviations from the
exact TBM if the Dirac neutrino Yukawa couplings in mD
of Eq. (33) do not have the same magnitude, and the
pseudo-Dirac mass splittings are all of the same order

jδ1j≃ jδ2j≃ jδ3j≃Oðm0Þ: ð147Þ

The large values of the solar (θ12) and atmospheric (θ23)
mixings as well as the nonzero but relatively large reactor
mixing angle (θ13), as indicated in Table III, are conse-
quences of a nontrivial structure of the μ − τ powered mass
matrix Mνν in Eq. (144) in the charged lepton basis. Let us
consider the constraints on the X-symmetry (or PQ sym-
metry) breaking scale implied by the fermion mass scales in
the model as well as the interactions between SM fermions
and axions. In turn, this astroparticle constraint plays a
crucial role in cosmology, as shown in the leptogenesis
scenario of Ref. [19]. From the overall scale of the mass
matrix in Eq. (145), the pseudo-Dirac mass splitting, δ2, is
expected to be

jδ2j≃ 2.94× 10−11
�
4.24× 109 GeV

M

�����ŷν1 vTffiffiffi
2

p
Λ

����2sin2β eV;

ð148Þ

in which the scale ofM can be estimated from Eqs. (35) and
(116) through the astrophysical constraints as

M ¼ jŷΘj × 2.75þ1.50
−1.25 × 109 GeV: ð149Þ

Note that the scale of the heavy neutrino,M, is connected to
the PQ symmetry breaking scale via the axion decay
constant in Eq. (78). As shown in Eq. (9), the scale of
M is expected as OðvΘÞ ∼OðvSÞ ∼OðMÞ. And Eq. (148)
shows that the value of δ2 depends on the magnitude
ŷν1vT=Λ since M is constrained by the astrophysical
constraints in Eq. (116): the smaller the ratio vT=Λ, the
smaller becomes jδkj responsible for the pseudo-Dirac mass
splittings.32 However, the value of jδkj is constrained from
Eqs. (138) and (139); for example, using tan β ¼ 2 and
vT=Λ≃ λ2=

ffiffiffi
2

p
, we obtain

jδ2j≃ 1.50 × 10−14jŷν1j2 eV: ð150Þ

TABLE III. The global fit of three-flavor oscillation parameters at the best-fit (BF) and 3σ level [67].
NO ¼ normal neutrino mass ordering; IO ¼ inverted mass ordering. And Δm2

Sol ≡ m2
ν2 −m2

ν1 , Δm2
Atm ≡ m2

ν3 −m2
ν1 for NO, and

Δm2
Atm ≡ m2

ν2 −m2
ν3 for IO.

θ13½°� δCP½°� θ12½°� θ23½°� Δm2
Sol½10−5 eV2� Δm2

Atm½10−3 eV2�

BF
NO 8.50 306

34.63
42.3

7.50
2.457

IO 8.51 254 49.5 2.449

3σ
NO 7.85 → 9.10

0 → 360 31.29 → 35.91
38.2 → 53.3

7.02 → 8.09
2.317 → 2.607

IO 7.87 → 9.11 38.6 → 53.3 2.307 → 2.590

32Moreover, the overall scale of the heavy neutrino mass M is
closely related with a successful leptogenesis in Ref. [19],
constraints of the mass splittings in Eq. (134), and the CKM
mixing parameters, therefore it is very important to fit the
parameters vT=Λ and M.
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The value of vT=Λ is also related to the μ term in Eq. (4):
when soft SUSY breaking terms are included into the
flavon potential, the driving fields attain VEVs, and in turn
the magnitude of the μ term is expected to be 200 GeV≲
μeff ≲ 1 TeV formS ∼Oð10Þ TeV and vT=Λ ∼ 0.04. Since
the values of vT=Λ and vS=Λ are closely associated with the
CKM mixing matrix and the down-type quark masses,
respectively, their values should lie in the ranges

vT
Λ

∼Oð0.1Þ; vS
Λ

≲ vΘ
Λ

∼ λ2 <
vΨ
Λ

¼ λ < 1: ð151Þ

Here the first term is derived from the requirement that the
term should fit its size down to generate the correct CKM
matrix in Ref. [2] as well as the μ term in Eq. (4), and the
second one comes from Eq. (19) and vΘ¼vΨδG1 =δ

G
2

ffiffiffiffiffiffiffiffiffiffiffi
1þκ2

p
with δG1 ¼ 6, δG2 ¼ 13 and κ ≡ vS=vΘ [see also its related
parameter ~κ in Eq. (35)], as shown in Eq. (77).
Naively speaking, the charged-lepton superpotential in

(21) does not contribute to the PMNS matrix due to the
diagonal form of mass matrix. However, the neutrino
superpotential in (21) has totally 22 parameters (except
for ŷ ~Θ), which means the mass matrix in Eq. (126) has 22
parameters. Since the transform matrixWν in Eq. (128) has
16 parameters—UL contains 6, UR contains 6, V2 contains
3, and Z contains 1—instead of using Eq. (129) due to
ambiguity of phases, if we look at Eq. (133), we see that
there are six real mass squared eigenvalues. From
Eqs. (133) and (144), we see that there are eight physical
degree of freedoms, i.e., m0, y2, y3, ~κ, ϕ, and Δm2

k with
k ¼ 1, 2, 3. One can reduce the physical degree of freedoms
more: once the three pseudo-Dirac mass splittings Δm2

k are
fixed by high-energy very long wave experiments, such as
IceCube, there are only five physical degree of freedoms
left in the neutrino sector; among nine observables, the five
measured quantities (θ12, θ23, θ13, Δm2

Sol, and Δm2
Atm) are

used as constraints, and four quantities could be predicted;
see Sec. IV B.

2. The sum of active neutrino masses constrained
from cosmology

The second interesting feature is that the masses of the
active neutrinos mνi are determined in a completely
independent way that the neutrino mixing angles are
obtained through the seesaw formula in Eq. (144); but
they are tied to each other by the tiny mass splittings in
Eq. (133). Thus the sum of light neutrino masses given by

X
i

mνi ¼
1

2

�
Δm2

1

δ1
þ Δm2

2

δ2
þ Δm2

3

δ3

�
ð152Þ

could be controlled by the μ − τ powered mass matrix in
Eq. (144). And a bound on the sum of the light neutrino
masses can be extracted as

0.06≲X
i

mνi=eV < 0.194; ð153Þ

a lower limit for the sum of the neutrino masses,P
3
i¼1mνi ≳ 0.06 eV could be provided by the neutrino

oscillation measurements; an upper limit33 is given by the
Planck Collaboration [18] which is subject to the cosmo-
logical bounds

P
imνi < 0.194 eV at 95% CL (the CMB

temperature and polarization power spectrum from Planck
2015 in combination with the baryon acoustic oscillations
(BAO) data, assuming a standard ΛCDM cosmological
model). And another interesting quantity related to our
leptogenesis scenario in Ref. [19] could be extracted asX
i

mνi

Δm2
i
¼ 1

2

�
1

δ1
þ 1

δ2
þ 1

δ3

�
≲ 0.5 × 1014 eV−1; ð154Þ

where the upper limit is derived from a lower bound on δi in
Eq. (138); see the leptogenesis scenario in Ref. [19]. It is
expected that, once the tiny mass splittings Δm2

k are fixed
through new oscillation experiments, the above quantities
in Eqs. (152) and (154) has a dependence on θ23 along with
the μ − τ powered mass matrix in Eq. (144). Also remark
that the tritium beta decay experiment KATRIN [69] will be

sensitive to an effective electron neutrino mass mβ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
ijUeij2m2

νi

q
[70] down to about 0.2 eV.

3. The active neutrino mixing parameters constrained
from astronomical-scale baseline neutrino oscillations

The third interesting feature is that once very tiny mass
splittings are determined by performing astronomical-scale
baseline experiments to uncover the oscillation effects of
very tiny mass splitting Δm2

k, the active neutrino mixing
parameters (θ12, θ23, θ13, δCP and mν1 , mν2 , mν3) are
predicted in the model due to Eqs. (134) and (140).
Thus we can possibly connect the pseudo-Dirac neutrino
oscillations with the low-energy neutrino properties as well
as a successful leptogenesis in Ref. [19]. With the help of
the mixing matrix Eq. (128), the flavor conversion prob-
ability between the active neutrinos follows from the time
evolution of the state ξk as

Pνα→νβðWν; L; EÞ ¼
����W�

νe−i
M̂2

ν
2E LWT

ν

	
αβ

���2
¼ 1

4

����X3
k¼1

Uβk

n
ei

m2
νk

L

2E þ ei
m2
Sk

L

2E

o
U�

αk

����2;
ð155Þ

33Massive neutrinos could leave distinct signatures on the
CMB and large-scale structure (LSS) at different epochs of the
Universe’s evolution [68]. To a large extent, these signatures
could be extracted from the available cosmological observations,
from which the total neutrino mass could be constrained.
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in which L ¼ flight length, E ¼ neutrino energy, and
M̂ν ≡ WT

νMνWν; see Eq. (129). For the baseline,
4πE=Δm2

Sol;Atm ≪ L, the probability of neutrino flavor
conversion reads

Pνα→νβ ≡ Pαβ ¼
X3
k¼1

jUαkj2jUβkj2cos2
�
Δm2

kL
4E

�
; ð156Þ

where the oscillatory terms involving the atmospheric and
solar mass-squared differences are averaged out over these
long distances. Such new oscillation lengths far beyond the
earth-sun distance will be provided by astrophysical neu-
trinos, which fly galactic and extra galactic distances with
very high-energy neutrinos. It has been shown [71] that
inside the Gamma Ray Burst (GRB) sources

R
VC;Ndt ≪ 1

where the effective potentials due to the matter effects are
VC ¼ ffiffiffi

2
p

GFne with ne being the electron number density
in matter and VN ¼ −

ffiffiffi
2

p
GFnn=2with nn being the neutron

number density in matter, so the matter effects inside the
source are not relevant for neutrino oscillation, while inside
the earth for VC;N ≫ Δm2

k=2E again the matter effect will
not be significant because of the very tiny effective mixing
angle. So, we only consider neutrino oscillation in vacuum
for astrophysical neutrinos. Neutrinos arriving at neutrino
telescopes from astrophysical sources such as GRBs [72],
active galactic nuclei [73], and type Ib/c supernova [74]
travel large distances over ∼100 Mpc. Neutrino telescope,
such as IceCube,34 observes neutrinos from extragalactic
sources located far away from the earth and with neutrino
energy 105 GeV≲ E≲ 107 GeV. Given neutrino trajec-
tory L and energy E, the oscillation effects become
prominent when Δm2

k ∼ E=4πL, where L ≡ LðzÞ is a
distance-measure with redshift z, which is different from
comoving or luminosity distance, given by

LðzÞ ≡ DH

Z
z

0

dz0

ð1þ z0Þ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωmð1þ z0Þ3 þ ΩΛ

p ; ð157Þ

where the Hubble length DH ¼ c=H0 ≃ 4.42 Gpc with the
results of the Planck Collaboration [75]:

ΩΛ ¼ 0.6911� 0.0062; Ωm ¼ 0.3089� 0.0062;

H0 ¼ 67.74� 0.46 km s−1 Mpc−1; ð158Þ

in which ΩΛ, Ωm, and H0 stand for the dark energy density
of the Universe, the matter density of the Universe, and the
present Hubble expansion rate, respectively. The asymp-
totic value of LðzÞ is about 2.1 Gpc achieved by large value

of z, which means that the smallest Δm2
k that can be probed

with astrophysical neutrinos with E is 10−17 eV2ðE=PeVÞ
[76]. If this is case, in order to observe the oscillation
effects the oscillation lengths should not be much larger
than the flight length before arriving at neutrino telescopes
in earth for given tiny mass splittings, that is,

Lk
osc ≃

�
5 × 10−15 eV2

Δm2
k

��
E

5 × 105 GeV

�
8 Mpc≲ 8 Mpc

ð159Þ

which means that astrophysical neutrinos with L≃ 8 Mpc
(the flight length) and energy E≃ 0.5 PeV would be useful
to probe the pseudo-Dirac property of neutrinos with the
very tiny mass splitting Δm2

k ≃ 5 × 10−15 eV2. From
Eq. (159), we see that given the tiny mass splittings Δm2

k ¼
10−14−15 eV2 with the energies around 100 TeV–1 PeV, a
new oscillation curve at neutrino trajectory≲Oð10Þ Mpc is
naively expected to occur. In Refs. [77,78] the track-to-
shower ratio for the number of shower NS and track events
NT in the IceCube detector is expressed in terms of tiny
mass splittings Δm2

k, flight length L, neutrino mixing
angles and CP phase (θ12, θ23, θ13, δCP), and initial flavor
composition ϕ0

β

NT

NS
¼ aμpT

~Fμ

ae ~Fe þ aμð1 − pTÞ ~Fμ þ aτ ~Fτ

; ð160Þ

where

~Fα ¼
X
βk

jUαkj2jUβkj2ϕ0
β;

aα ¼ 4π

Z
dEcos2

�
Δm2

kL
4E

�
E−ωAαðEÞ; ð161Þ

with a spectral index ω. Here pT is the probability that an
observed event produced by a muon neutrino is a track
event, which is mildly dependent on energy and approx-
imately equals to 0.8 [79]. Then above equation can be
simplified to

NT

NS
¼ ϕμ

ae
aμpT

þ ð aτ
aμpT

− ae
aμpT

Þϕτ þ ð1−pT
pT

− ae
aμpT

Þϕμ

; ð162Þ

where ϕe ¼ 1 − ϕμ − ϕτ with ϕl ≡ ~Fl=ð ~Fe þ ~Fμ þ ~FτÞ is
assumed.

4. No observable 0νββ-decay rate

The fourth important feature is that, since the two mass
eigenstates in each pseudo-Dirac pair have opposite CP
parity, no observable 0νββ-decay rate is expected. In the
model, the 0νββ-decay rate effectively measures the

34IceCube [15] is a powerful neutrino telescope but also a huge
muon detector that registers more than 100 billion muons per
year, produced by the interaction of cosmic rays in the Earths
atmosphere.
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absolute value of the ee-component of the effective neutrino
mass matrixMν in Eq. (126) in the basis where the charged
lepton mass matrix is real and diagonal, which can
be expressed as jmeej ¼ jP3

k¼1ðUek=
ffiffiffi
2

p Þ2ðmνk −mskÞj,
which in turn is roughly re-expressed in terms of the
pseudo-Dirac mass splittings as

jmeej≃
����X3
k¼1

�
Uekffiffiffi
2

p
�

2

δk

���� ∼Oð10−14−15Þ eV; ð163Þ

where the last equality is deduced from the numerical
analysis in Sec. IV B. This clearly indicates that the
0νββ-decay would be highly suppressed due to the con-
straints in Eqs. (135)–(139). The pseudo-Dirac neutrinos
(Majorana neutrinos) are almost Dirac particles and the
lepton number is only slightly violated by their Majorana
masses and Mνν, MS ≪ mDS. Therefore, the discovery of
0νββ-decay in the on-gong or future 0νββ experiments [80],
with sensitivities 0.01 < jmeej=eV < 0.1, will rule out the
present model. Current 0νββ-decay experimental upper
limits and the reach of near-future experiments are collected
for example in Ref. [81].

B. Numerical analysis

After the relatively large reactor angle θ13 measured in
Daya Bay [13] and RENO [14] including Double Chooz,
T2K and MINOS experiments [82], the recent analysis
based on global fits [67,83] of the neutrino oscillations
enters into a new phase of precise determination of mixing
angles and mass squared differences, indicating that the
TBM [33] for three flavors should be corrected in the lepton
sector: in particular, in the most recent analysis [67], their
allowed ranges at 1σ best-fit (3σ) from global fits are given
by Table III. In addition, recently the high-energy neutrino
events observed by IceCube [79] are analyzed in Refs. [77],
aiming to probe the initial flavor of cosmic neutrinos; the
bound on the track-to-shower ratio of a cosmic neutrino35 is
extracted as

NT

NS
¼ 0.18þ0.13

−0.05 : ð164Þ

First, in order to obtain low-energy neutrino data we
perform a numerical analysis using the linear algebra tools
of Ref. [84]. The seesaw formula in Eq. (144) for obtaining
neutrino mixing angles and pseudo-Dirac mass splittings
contains seven parameters: y1ð≡ŷν1

vTffiffi
2

p
Λ
ð vΨffiffi

2
p

Λ
Þ9Þ, vu, M, y2,

y3, ~κ, ϕ. The first three (y1, M, and vu) lead to the overall
scale parameter m0, which is closely related to the Uð1ÞX1

breaking scale; see Eq. (116). The next four (y2, y3, ~κ, ϕ)

give rise to the deviations from TBM as well as the CP
phases and corrections to the pseudo-Dirac mass splittings
[see Eq. (146)]. In our numerical analysis, we take
M ¼ 4.24 × 109 GeV and36 tan β ¼ 2 [see Eq. (149) and
below Eq. (22)], for simplicity, as inputs. Recalling that
all the hat Yukawa couplings are of order unity, i.e.,
1=

ffiffiffiffiffi
10

p ≲ jŷj≲ ffiffiffiffiffi
10

p
. Then the effective mass matrix in

Eq. (144) contains only the five parametersm0, y2, y3, ~κ, ϕ,
which can be determined from the experimental results of
three mixing angles, θ12, θ13, θ23, and the three tiny mass
splittings, Δm2

k ¼ 2mkjδkj, if they are fixed by high-energy
very long wavelength experiments, such as IceCube. In
addition, the individual neutrino masses mνi ¼ mi and the
CP phases δCP, φ1;2 can be predicted after determining the
model parameters. Scanning all the parameter spaces by
putting the experimental constraints in Table III with the
above input parameters, we obtain for the normal mass
ordering (NO) with Δm2

1 ¼ Δm2
2 ¼ 2.7 × 10−15 eV2,

Δm2
3 ¼ 5 × 10−15 eV2

~κ ∈ ½0.15;0.66�; ϕ∈ ½92°;112°�∪ ½248°;268°�;
ŷν1 ∈ ½1.28;1.98�; y2 ∈ ½0.81;1.29�; y3 ∈ ½0.82;1.31�;

ð165Þ

leading to ŷs1 ∈ ½0.93; 2.10�, ŷs2 ∈ ½0.98; 2.12�, and
ŷs3 ∈ ½2.11; 2.89�; for the inverted mass ordering (IO) with
Δm2

1 ¼ Δm2
2 ¼ 10−14 eV2, Δm2

3 ¼ 5.5 × 10−15 eV2, we
obtain

~κ ∈ ½0.10;0.66�; ϕ∈ ½90°;112°�∪ ½248°;269°�;
ŷν1 ∈ ½2.15;2.48�; y2 ∈ ½0.82;1.22�; y3 ∈ ½0.80;1.22�;

ð166Þ

leading to ŷs1 ∈ ½2.07; 2.86�, ŷs2 ∈ ½2.10; 2.88�, and ŷs3 ∈
½0.85; 2.12�.
On the other hand, in case of degenerate mass splittings

Δm2
i ¼ 5 × 10−15 eV2 (i ¼ 1, 2, 3), we obtain for the NO

~κ ∈ ½0.37;0.62�; ϕ∈ ½99°;105°�∪ ½255°;262°�;
ŷν1 ∈ ½1.48;1.88�; y2 ∈ ½0.79;1.14�; y3 ∈ ½0.84;1.18�;

ð167Þ

leading to ŷs1 ∈ ½1.92; 3.01�, ŷs2 ∈ ½1.95; 3.02�, and ŷs3 ∈
½2.72; 3.33�; for the IO we obtain

35We note that much larger detectors than the present IceCube
would be required to get fully meaningful result for the test of our
model in detail.

36From Eqs. (35) and (116), we simply square the axion decay
constant fa1 with the scale M. As noticed in Eq. (22), in our
model small values of tan β ¼ vu=vd are preferred.
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~κ ∈ ½0.41;0.68�; ϕ∈ ½102°;112°�∪ ½249°;256°�;
ŷν1 ∈ ½1.35;1.54�; y2 ∈ ½1.08;1.20�; y3 ∈ ½0.80;1.20�;

ð168Þ
leading to ŷs1 ∈ ½2.75; 3.32�, ŷs2 ∈ ½2.77; 3.33�, and ŷs3 ∈
½2.03; 2.74�. The active neutrino oscillation experiments are
now on a new step to confirm the CP violation in the lepton

sector. Actually, the T2K and NOνA experiments indicate a
finite CP phase [85]. As can be seen in the left side figures
of Figs. 3 and 4, there is a remarkable behavior correlated
between δCP and θ23. Thus, accurate measurements of θ23
are crucial for a test of our model.
Figs. 3 and 4 show predictions of δCP (left plot) andP
imνi (right plot) as a function of the atmospheric mixing
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FIG. 3. For NO, the left plot shows predictions of δCP as a function of θ23, while the right plot shows predictions of
P

imνi in terms of
θ23. Here, the red crosses and blue dots correspond to Δm2

1 ¼ Δm2
2 ¼ 2.7 × 10−15 eV2 < Δm2

3 ¼ 5 × 10−15 eV2 and
Δm2

1 ¼ Δm2
2 ¼ Δm2

3 ¼ 5 × 10−15 eV2, respectively. In both plots, the vertical dotted lines indicate the best-fit value for NO, and
in the right plot the horizontal dotted line shows the cosmological bounds

P
imνi < 0.194 eV at 95% CL [18].
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FIG. 4. For IO, the left plot shows predictions of δCP as a function of θ23, while the right plot shows predictions of
P

imνi in terms of
θ23. Here, the red asters and black stars correspond to Δm2

1 ¼ Δm2
2 ¼ 10−14 eV2 > Δm2

3 ¼ 5.5 × 10−15 eV2 and
Δm2

1 ¼ Δm2
2 ¼ Δm2

3 ¼ 5 × 10−15 eV2, respectively. In both plots, the vertical dotted lines indicate the best-fit value for IO, and in
the right plot the horizontal dotted line shows the cosmological bounds

P
imνi < 0.194 eV at 95% CL [18].
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angle θ23. For the hierarchical mass splittings Δm2
1 ¼

Δm2
2 ¼ 2.7 × 10−15 eV2 < Δm2

3 ¼ 5 × 10−15 eV2 for NO
(red crosses in Fig. 3) and Δm2

3 ¼ 5.5 × 10−15 eV2 <
Δm2

1 ¼ Δm2
2 ¼ 10−14 eV2 for IO (red asters in Fig. 4),

the value of θ23 would lie on jθ23 − 45°j ∼ 1°– 8°, while the
values of Dirac CP phase have predictive but wide ranges
for both NO and IO. The left plots in Fig. 3 and Fig. 4 on
δCP as a function of θ23 predict δCP ¼ 220°–240°,
120°–140° on the global best-fit θ23 ¼ 42.3° for NO, and
δCP ¼ 283°, 250°, 100°, 70° on θ23 ¼ 49.5° for IO.
For the degenerate mass splittings Δm2

1 ¼ Δm2
2 ¼

Δm2
3 ¼ 5 × 10−15 eV2, the value of θ23 would lie on

jθ23 − 45°j ∼ 1° for IO (black stars in Fig. 4), while
jθ23 − 45°j ∼ 7°–8° for NO (blue dots in Fig. 3). Due to
the relation Δm2

k ¼ 2mkjδkj, as the value of Δm2
k decreases

up to the bound in Eq. (139) the sum of the light neutrino
masses could become lower than the bounds from Planck
Collaboration [18]. Hence, future precise measurement on
the atmospheric mixing angle θ23 is of importance in order

to distinguish between hierarchy and degeneracy of the
mass splittings Δm2

k in the model. The magnitude of the
CP-violating effects is determined by the invariant JCP
associated with the Dirac CP-violating phase

JCP ≡ −Im½U�
e1Ue3Uτ1U�

τ3�

¼ 1

8
sin 2θ12 sin 2θ13 sin 2θ23 cos θ13 sin δCP: ð169Þ

Here Uαj is an element of the PMNS matrix in Eq. (143),
with α ¼ e, μ, τ corresponding to the lepton flavors and
j ¼ 1, 2, 3 corresponding to the light neutrino mass
eigenstates. Due to the precise measurement of θ13, which
is relatively large, it may now be possible to put constraints
on the Dirac phase δCP which will be obtained in the long
baseline neutrino oscillation experiments T2K, NOνA, etc.
(see Ref. [31]). However, the current large uncertainty on
θ23 is at present limiting the information that can be
extracted from the νe appearance measurements. Precise
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FIG. 5. Plots of the track-to-shower ratio NT=NS as a function of Lðlog10½path length=10 kpc�Þ for NO with
Δm2

1 ¼ Δm2
2 ¼ 2.7 × 10−15 eV2 < Δm2

3 ¼ 5.0 × 10−15 eV2, and for IO with Δm2
3 ¼ 5.5 × 10−15 eV2 < Δm2

1 ¼ Δm2
2 ¼ 10−14 eV2.

Each panel corresponds to the specific initial flavor composition (ϕ0
e∶ϕ0

μ∶ϕ0
τ ) at the source. For three neutrino mixing angles and Dirac-

type CP phase, we take the global fit results at 1σ [67]. Red and blue curved lines correspond to normal and inverted neutrino mass
orderings, respectively, for ω ¼ 2.2, whereas light red and light blue regions represent the corresponding results for ω ¼ 1.8�2.6. Gray
shaded regions represent the forbidden bound from NT=NS ¼ 0.18þ0.13

−0.05 in Ref. [77].
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measurements of all the mixing angles, especially θ23, are
needed to maximize the sensitivity to the leptonic CP
violation.
Second, to investigate how large the value of NT=NS can

be deviated by the oscillatory terms as in Ref. [78], we
perform numerical analysis by taking the values of the
neutrino mixing angles and CP phase from the above low-
energy neutrino oscillation data consistent with the global
fit results at 1σ level [67] as shown in Table III. Since we
are interested in the data consistent with the global fit
results at 1σ level [67], we take the hierarchical mass
splittings in Eqs. (165) and (166) for NO and IO,
respectively. Future precise measurement on the atmos-
pheric mixing angle θ23 is of importance in order to
distinguish between hierarchy and degeneracy of the mass
splittings Δm2

k in the model. In the limit of large or null
mass splittingΔm2

k, there are no oscillation effects, and thus
it is expected that the value of NT=NS becomes constant for
a given data set of neutrino mixing angles and CP phase.
By using the high-energy neutrino events in the IceCube
detector which lie in energies between 60 TeV and 3 PeV
[77], Eq. (162) shows directly that track-to-shower ratio
NT=NS can give a new oscillation curve as a signal
dependent on neutrino flight length if the neutrino mixing
angles and CP phase, initial flavor composition, and tiny
mass splittings are given as inputs. Our numerical results
depend on the initial flavor composition ϕ0

e∶ϕ0
μ∶ϕ0

τ at the
source which are relevant for the interpretation of obser-
vational data. We consider the four well-known production
mechanisms for high-energy neutrinos from which the
flavor compositions are given as (i) ð1

3
∶ 2
3
∶0Þ for π decay,

(ii) ð1
2
∶ 1
2
∶0Þ for charmed mesons decay, (iii) ð1∶0∶0Þ for β

decay of neutrons, and (iv) ð0∶1∶0Þ for π decay with
damped muons. The tiny mass splittings Δm2

k can be
searched for, looking at high-energy cosmic neutrinos by
measuring the track-to-shower ratio NT=NS as the function
of Lðlog10½path length=10 kpc�Þ in Eq. (162). In the
numerical analysis shown by Fig. 5, we use the spectral
index given by ω ¼ 2.2� 0.4 [79] and the best-fit values
for NO (IO) in Table III. Fig. 5 shows plots of the
track-to-shower ratio NT=NS as a function of
Lðlog10½path length=10 kpc�Þ with the neutrino energy
60 TeV≲ Eν ≲ 3 PeV studied in Ref. [77]. According to
four specific assumptions at each panel for the flavor
compositions at the source (ϕ0

e∶ϕ0
μ∶ϕ0

τ ), for ω ¼ 2.2 the
normal mass ordering is presented as the red curved line
(for Δm2

1¼Δm2
2¼2.7×10−15 eV2<Δm2

3¼5×10−15 eV2),
and the inverted one as the blue curved line (for Δm2

3 ¼
5.5×10−15 eV2 <Δm2

1 ¼Δm2
2 ¼ 10−14 eV2), respectively,

whereas light red and light blue regions represent the
corresponding results for ω ¼ 1.8�2.6. Clearly, Fig. 5
shows the oscillation peaks occur at distances of
0.65 Mpc and 0.18 Mpc for NO and IO, respectively. In
order for the track-to-shower ratio NT=NS to have the

ability to distinguish between NO and IO, much larger
detectors than the present IceCube would be required [86].
See also a similar study in Ref. [78].

V. CONCLUSION

We have constructed an explicit model for rather recent
but fast growing issues of astroparticle physics, encom-
passing several main issues which are connected to each
other: leptonic mixings and CP violation in neutrino
oscillation, high-energy neutrinos, QCD axion, and axion
cooling of stars. The model based on the SM ×Uð1ÞX × A4

symmetry has effective physical degree of freedoms:
(i) The up-type quark and charged-lepton superpotentials
in (20) and (21), respectively, does not contribute to the
CKM and PMNS mixing matrices due to their diagonal
form of mass matrices. While (ii) the down-type quark
superpotential (20) having six physical parameters includ-
ing next-to-leading-order corrections could explain the four
CKM parameters and three down-type quark masses. And
(iii) in neutrino sector there are eight physical degree of
freedoms, i.e., m0, y2, y3, ~κ, ϕ, and Δm2

k with k ¼ 1, 2, 3.
One can reduce the physical degree of freedoms more: once
the three pseudo-Dirac mass splittings Δm2

k are fixed by
high-energy very long wave experiments, such as IceCube,
there are only five physical degree of freedoms left in
neutrino sector; among nine observables the five measured
quantities (θ12, θ23, θ13, Δm2

Sol, and Δm2
Atm) are used as

constraints, and four quantities could be predicted; see
Sec. IV B. Finally, (iv) in string moduli sector there are
eight physical degree of freedoms, i.e., three moduli plus
two gauge bosons. In the context of supersymmetric moduli
stabilization, three size moduli and one axionic partner with
positive masses are stabilized while leaving two axions
massless. Two massive gauge bosons corresponding to
gaugedUð1ÞXi

with i ¼ 1, 2 eat the gauged flat two axionic
degree of freedoms, leaving behind low-energy global
Uð1ÞXi

symmetries so that the two axionic directions
survive to low energies as the flavored PQ axions.
The model has the following desirable features, in that

such flavored-PQ supersymmetric model can be testable in
the very near future through on-going experiments for
neutrino oscillation, 0νββ decay, axion, and IceCube
searches for neutrinos:

(i) The anomalous globalUð1ÞX, which originates from
the broken gauged Uð1ÞX symmetry (see Sec. II C),
is introduced as a fundamental symmetry in nature in
a way that the mixed Uð1ÞX − ½gravity�2 anomaly is
free. In particular, such anomaly-free conditions
together with the observed mass hierarchies of the
SM charged fermions demand additional sterile
neutrinos; the Uð1ÞX quantum numbers of the SM
quarks are assigned in a way that no axionic domain-
wall problem occurs, implying that flavor structure
of the SMmay be correlated to axionic domain-wall.
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Such additional sterile neutrinos play the role of a
realization of baryogenesis via a new Affleck-Dine
leptogenesis [19]. The spontaneous breakdown of
the automatic flavored Uð1ÞX symmetry together
with the GS mechanism produces37 NG modes,
A1;2, (and QCD axion A) whose decay constants
are fixed by several astrophysical constraints
[47–50,52–55,59–61]. Then the flavored PQ sym-
metry Uð1ÞX embedded in the non-Abelian A4 finite
group could economically explain the mass hierar-
chies of quarks and leptons including their peculiar
mixing patterns as well as provide a neat solution to
the strong CP problem and its resulting axion. Such
flavored PQ symmetry breakdown leads to two
Majorana neutrino mass scales of order much larger
and smaller than the electroweak symmetry breaking
scale according to the A4 ×Uð1ÞX symmetry. And
the NG modes couple very weakly to both active and
sterile neutrinos, so that they are not in thermal
equilibrium with the neutrinos during nucleosynthe-
sis. Interestingly enough, since the NG mode A2

interacts with electrons at tree level, indeed, the NG
mode A2 emitted from the dense interior of WDs play
a crucial role in direct searches as fundamental
particles [see Eq. (90)]; the bound of the QCD axion
mass could be inferred from such astrophysical
considerations on star coolings since the QCD axion
emission causes energy loss ∼1=FA affecting crucial
stellar evolution; see Eq. (114). Interestingly, we
found that the QCD axion decay constant is shown
to be located at FA ¼ 1.30þ0.66

−0.54 × 109 GeV. Conse-
quently, we have shown model predictions on the
axion mass ma¼4.34þ3.37

−1.49meV and the axion cou-
pling to photon jgaγγj¼1.30þ1.01

−0.45×10−12GeV−1. In
turn, the square of the ratio between them is shown to
be located just a bit lower than that of the conven-
tional KSVZ model as shown in Fig. 1.

(ii) We have shown that, after the symmetry breakdown,
the active neutrino masses are achieved by pseudo-
Dirac mass scheme, and which are determined in a
completely independent way that the active neutrino
mixing angles are obtained through the seesaw
framework. But they are linked each other through
astronomical mass splittings responsible for new
wavelength oscillations characterized by the mass
squared differences of the light neutrino pairs, Δm2.
So in this framework which leads to pairs of almost
degenerate neutrinos, the pseudo-Dirac mass split-
tings jδkj as eigenvalues of the seesaw formula are
much smaller than the active neutrino masses. Such

mass splittings Δm2 are well constrained by the low-
energy neutrino oscillation data, the BBN con-
straints on the effective number of species of light
particles during nucleosynthesis, and a leptogenesis
scenario Ref. [19]. Since the mass eigenstates in
each pseudo-Dirac pair have opposite CP parity,
0νββ-decay rate is expected to be ≲OðδkÞ eV,
which might not be observable in the near future.
Once the mass splittings Δm2 are fixed by astro-
nomical-scale baseline experiments, such as Ice-
Cube [15], the active neutrino mixing angles
(θ12, θ13, θ23, δCP) [31] and the pseudo-Dirac mass
splittings jδkj are well constrained since stars are
employed to place constraints on the decay constant
of the NG mode A2 (QCD axion A) through the A2

interaction to electron (the A interaction to photon
and neutron). We have investigated how neutrino
oscillations at low energies could be connected to
new oscillations available on high-energy neutrinos,
connected by a new Affleck-Dine leptogenesis
scenario in Ref. [19].

On phenomenological examples, taking specific
but realistic mass splittings Δm2

k for normal mass
ordering (NO) and inverted one (IO), we have
examined leptonic CP violation and the sum of
the light neutrino masses as a function of the
atmospheric mixing angle θ23: Figs. 3 and 4 show
the main results. Future precise measurement on the
atmospheric mixing angle θ23 is of importance in
order to distinguish between hierarchy and degen-
eracy of the mass splittings Δm2

k in the model. For
the hierarchical mass splittings Δm2

1¼Δm2
2¼2.7×

10−15 eV2<Δm2
3¼5×10−15 eV2 for NO (red crosses

in Fig. 3) and Δm2
3 ¼ 5.5 × 10−15 eV2 < Δm2

1 ¼
Δm2

2 ¼ 10−14 eV2 for IO (red asters in Fig. 4), the
value of θ23 would lie on jθ23 − 45°j ∼ 1°–8°, while
the values of Dirac CP phase have predictive but
wide ranges for both NO and IO. In particular, the
left plots in Figs. 3 and 4 on δCP as a function of θ23
predict δCP ¼ 220°–240°, 120°–140° on the global
best-fit θ23 ¼ 42.3° for NO, and δCP ¼ 283°, 250°,
100°, 70° on θ23 ¼ 49.5° for IO. For the degenerate
mass splittings Δm2

1¼Δm2
2¼Δm2

3¼5×10−15 eV2,
the value of θ23 would lie on jθ23 − 45°j ∼ 1° for
IO (black stars in Fig. 4), while jθ23 − 45°j ∼ 7°–8°
for NO (blue dots in Fig. 3). Due to the relation
Δm2

k ¼ 2mkjδkj, as the value of Δm2
k decreases up to

the bound in Eq. (139) the sum of the light neutrino
masses could become lower than the bounds from
Planck Collaboration [18]. Hence, future precise
measurement on the atmospheric mixing angle
θ23 is of importance in order to distinguish between
hierarchy and degeneracy of the mass splittingsΔm2

k
in the model. Moreover, by using the high-energy

37Here “automatic” means that the quantum number assign-
ment ofUð1ÞX is determined by hierarchies of the SM fermions in
a way that no axionic domain-wall problem occurs if the
X-symmetry breakdown occurs after inflation.
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neutrino events in the IceCube detector which lie in
energies between 60 TeVand 3 PeV, we have plotted
the track-to-shower ratio NT=NS as a function of
flight length Lðlog10½path length=10 kpc�Þ and
found the new oscillation peaks as signals at dis-
tances of 0.65 Mpc and 0.18 Mpc for NO and IO,
respectively, when the best-fit values for NO(IO) in
Table III and the given hierarchical mass splittings
for NO(IO) are given as inputs. In order for the track-
to-shower ratio NT=NS to have the ability to dis-
tinguish between NO and IO, much larger detectors
than the present IceCube would be required [86].
Although it is a little bit hard to confirm the tiny
pseudo-Dirac mass splittings, it can be tested indi-
rectly. A crucial observation here is that such tiny
mass splittings together with the sum of neutrino
masses obtained from cosmological constraints
suggest a high predictability of very long wave-
length oscillations as well as the nonobservational
0νββ decay rate.

(iii) Under the gauged Uð1ÞX ≡ Uð1ÞX1
×Uð1ÞX2

sym-
metry, the string theoretic axions, vector fields,
and Kahler moduli participate in the four-
dimensional GS mechanism. The string theoretic
QCD axions originate from antisymmetric tensor
gauge fields in compactified string theory, with the
string theoretic axion decay constants depending on
the Kahler metric. Since the three moduli all
appear in the Kahler potential, the three size moduli
and one axionic partner with positive masses are
stabilized, while leaving two axions massless,
through nonperturbative superpotentials [1]. The
two gauged anomalous Uð1Þ symmetries have
the mixed Uð1ÞX-½SUð3ÞC�2, Uð1ÞX-½SUð2Þ�2,
Uð1ÞX-½Uð1ÞY �2, and Uð1ÞY-½Uð1ÞX�2 anomalies
which are cancelled by the GS mechanism, where
the gauged anomalousUð1ÞX mixes with the axionic
moduli and which in turn couples to a multiple of the
QCD instanton density. The two axionic directions
are gauged by the Uð1Þ gauge interactions associ-
ated withD-branes, and the gauged flat directions of
the F-term potential are removed through the Stuck-
elberg mechanism. Below the mass scale of heavy
gauge boson the gauge bosons decouple, leaving
behind low-energy symmetries which are anomalous
global Uð1ÞX. In such a way, the QCD axion decay
constant could be much lower than the scale of
moduli stabilization when the matter fields charged
under the global anomalous Uð1ÞX get VEVs
induced by tachyonic SUSY breaking masses.
One linear combination of the global Uð1ÞXi

is
broken explicitly by instantons, and such would-
be QCD axions play crucial role in evolution of stars
and solving the strong CP problem.
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APPENDIX A: THE A4 GROUP

The group A4 is the symmetry group of the tetrahedron,
isomorphic to the finite group of the even permutations of
four objects. The group A4 has two generators, denoted S
and T, satisfying the relations S2 ¼ T3 ¼ ðSTÞ3 ¼ 1. In the
three-dimensional complex representation, S and T are
given by

S¼ 1

3

0B@−1 2 2

2 −1 2

2 2 −1

1CA; T ¼

0B@1 0 0

0 ω 0

0 0 ω2

1CA: ðA1Þ

A4 has four irreducible representations: one triplet 3 and
three singlets 1, 10, 100. An A4 singlet a is invariant under the
action of S (Sa ¼ a), while the action of T produces
Ta ¼ a for 1, Ta ¼ ωa for 10, and Ta ¼ ω2a for 100, where
ω ¼ ei2π=3 ¼ −1=2þ i

ffiffiffi
3

p
=2 is a complex cubic-root of

unity. Products of two A4 representations decompose into
irreducible representations according to the following
multiplication rules: 3 ⊗ 3 ¼ 3s ⊕ 3a ⊕ 1 ⊕ 10 ⊕ 100,
10 ⊗ 100 ¼ 1, 10 ⊗ 10 ¼ 100 and 100 ⊗ 100 ¼ 10. Explicitly,
if ða1; a2; a3Þ and ðb1; b2; b3Þ denote two A4 triplets, then
we have Eq. (2).
To make the presentation of our model physically more

transparent, we define the T-flavor quantum number Tf
through the eigenvalues of the operator T, for which
T3 ¼ 1. In detail, we say that a field f has T-flavor
Tf ¼ 0, þ1, or −1 when it is an eigenfield of the T
operator with eigenvalue 1, ω, ω2, respectively (in short,
with eigenvalue ωTf for T-flavor Tf, considering the
cyclical properties of the cubic root of unity ω). The T-
flavor is an additive quantum number modulo 3. We also
define the S-flavor-parity through the eigenvalues of the
operator S, which are þ1 and −1 since S2 ¼ 1, and we
speak of S-flavor-even and S-flavor-odd fields. For A4-
singlets, which are all S-flavor-even, the 1 representation
has no T-flavor (Tf ¼ 0), the 10 representation has T-flavor
Tf ¼ þ1, and the 100 representation has T-flavor Tf ¼ −1.
Since for A4-triplets, the operators S and T do not commute,
A4-triplet fields cannot simultaneously have a definite T-
flavor and a definite S-flavor-parity.
The real representation, in which S is diagonal, is

obtained through the unitary transformation

A → A0 ¼ UωAU
†
ω; ðA2Þ

where A is any A4 matrix in the real representation
and
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Uω ¼ 1ffiffiffi
3

p

0B@ 1 1 1

1 ω ω2

1 ω2 ω

1CA: ðA3Þ

We have

S0 ¼

0B@ 1 0 0

0 −1 0

0 0 −1

1CA; T 0 ¼

0B@ 0 1 0

0 0 1

1 0 0

1CA: ðA4Þ

For reference, an A4 triplet field with T-flavor eigenfields
ða1; a2; a3Þ in the complex representation can be expressed
in terms of components ðaR1; aR2; aR3Þ as

a1R ¼ a1 þ a2 þ a3ffiffiffi
3

p ; a2R ¼ a1 þ ωa2 þ ω2a3ffiffiffi
3

p ;

a3R ¼ a1 þ ω2a2 þ ωa3ffiffiffi
3

p : ðA5Þ

Inversely,

a1 ¼
a1R þ a2R þ a3Rffiffiffi

3
p ; a2 ¼

a1R þ ω2a2R þ ωa3Rffiffiffi
3

p ;

a3 ¼
a1R þ ωa2R þ ω2a3Rffiffiffi

3
p : ðA6Þ

Now, in the S diagonal basis the product rules of two
triplets ðaR1; aR2; aR3Þ and ðbR1; bR2; bR3Þ according to
3 ⊗ 3 ¼ 3s ⊕ 3a ⊕ 1 ⊕ 10 ⊕ 100 are as follows:

ðaR ⊗ bRÞ3s ¼ ða2Rb3R þ a3Rb2R; a3Rb1R þ a1Rb3R;

a1Rb2R þ a2Rb1RÞ;
ðaR ⊗ bRÞ3a ¼ ða2Rb3R − a3Rb2R; a3Rb1R − a1Rb3R;

a1Rb2R − a2Rb1RÞ;
ðaR ⊗ bRÞ1 ¼ a1Rb1R þ a2Rb2R þ a3Rb3R;

ðaR ⊗ bRÞ10 ¼ a1Rb1R þ ω2a2Rb2R þ ωa3Rb3R;

ðaR ⊗ bRÞ100 ¼ a1Rb1R þ ωa2Rb2R þ ω2a3Rb3R: ðA7Þ

APPENDIX B: VACUUM CONFIGURATION

1. Vacuum configuration for the flavon fields

We review the vacuum configuration shown in Ref. [2].
Indeed, the VEV pattern of the flavons is determined
dynamically, in which the vacuum alignment problem
can be solved by the supersymmetric driving field method
in Ref. [24].38 In order to make a nontrivial scalar potential

in the SUSY breaking sector, we introduce driving fields
ΦT

0 , ΦS
0 , Θ0, Ψ0 whose have the representation of

A4 ×Uð1ÞX as in Table I. The leading-order superpotential
dependent on the driving fields, which is invariant under the
flavor symmetry A4 ×Uð1ÞX, is given by the superpotential
(3). In the SUSY limit, the vacuum configuration is
obtained by the F terms of all fields being required to
vanish. The vacuum alignment of the flavon ΦT is
determined by

∂Wv

∂ΦT
01

¼ ~μΦT1 þ
2~gffiffiffi
3

p ðΦ2
T1 −ΦT2ΦT3Þ ¼ 0;

∂Wv

∂ΦT
02

¼ ~μΦT3 þ
2~gffiffiffi
3

p ðΦ2
T2 −ΦT1ΦT3Þ ¼ 0;

∂Wv

∂ΦT
03

¼ ~μΦT2 þ
2~gffiffiffi
3

p ðΦ2
T3 −ΦT1ΦT2Þ ¼ 0: ðB1Þ

From this set of three equations, we can obtain the
supersymmetric vacuum for ΦT,

hΦTi ¼
vTffiffiffi
2

p ð1; 0; 0Þ with vT ¼ −
~μ

~g

ffiffiffi
3

2

r
; ðB2Þ

where ~g is a dimensionless coupling. And the minimization
equations for the vacuum configuration of ΦS and ðΘ; ~ΘÞ
are given by

∂Wv

∂ΦS
01

¼2g1ffiffiffi
3

p ðΦS1ΦS1−ΦS2ΦS3Þþg2ΦS1
~Θ¼0;

∂Wv

∂ΦS
02

¼2g1ffiffiffi
3

p ðΦS2ΦS2−ΦS1ΦS3Þþg2ΦS3
~Θ¼0;

∂Wv

∂ΦS
03

¼2g1ffiffiffi
3

p ðΦS3ΦS3−Φ1ΦS2Þþg2ΦS2
~Θ¼0;

∂Wv

∂Θ0

¼g3ðΦS1ΦS1þ2ΦS2ΦS3Þþg4Θ2þg5Θ ~Θþg6 ~Θ2¼0:

ðB3Þ

From the above four equations, we can get the super-
symmetric vacua for the fields ΦS, Θ, ~Θ,

hΦSi ¼
vSffiffiffi
2

p ð1; 1; 1Þ; hΘi ¼ vΘffiffiffi
2

p ;

h ~Θi ¼ 0; with vΘ ¼ vS

ffiffiffiffiffiffiffiffiffiffiffi
−3

g3
g4

r
; ðB4Þ

where vΘ is undetermined, and the VEVs vΘ and vS are
naturally of the same order of magnitude (here, the
dimensionless parameters g3 and g4 are the same order
of magnitude.). Finally, the minimization equation for the
vacuum configuration of Ψ ( ~Ψ) is given by

38There is another generic way for the vacuum alignment
problem by extending the model with a spatial extra dimension
[24].
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∂Wv

∂Ψ0

¼ g7ðΨ ~Ψ − μ2ΨÞ ¼ 0; ðB5Þ

where μΨ is the Uð1ÞX breaking scale and g7 is a
dimensionless coupling. From the above equation, we
obtain the supersymmetric vacua for the fields Ψ and ~Ψ

hΨi ¼ h ~Ψi ¼ vΨffiffiffi
2

p ; with vΨ ¼ μΨ
ffiffiffi
2

p
: ðB6Þ

2. Vacuum configuration for the driving fields

From the vanishing of the F terms associated with the
flavons, the vacuum configuration of the driving fields ΦT

0 ,
ΦS

0 , Θ0, Ψ0 is determined by

∂Wv

∂ΦT1
¼ 2~gffiffiffi

3
p ð2ΦT1ΦT

01 −ΦT2ΦT
03 −ΦT3ΦT

02Þ þ ~μΦT
01 ¼ 0;

∂Wv

∂ΦT2
¼ 2~gffiffiffi

3
p ð2ΦT2ΦT

02 −ΦT3ΦT
01 −ΦT1ΦT

03Þ þ ~μΦT
03 ¼ 0;

∂Wv

∂ΦT3
¼ 2~gffiffiffi

3
p ð2ΦT3ΦT

03 −ΦT2ΦT
01 −ΦT1ΦT

02Þ þ ~μΦT
02 ¼ 0;

ðB7Þ

∂Wv

∂ΦS1
¼ 2g1ffiffiffi

3
p ð2ΦS1ΦS

01 −ΦS2ΦS
03 −ΦS3ΦS

02Þ

þ g2ΦS
01
~Θþ 2g3ΦS1Θ0 ¼ 0;

∂Wv

∂ΦS2
¼ 2g1ffiffiffi

3
p ð2ΦS2ΦS

02 −ΦS3ΦS
01 −ΦS1ΦS

03Þ

þ g2ΦS
03
~Θþ 2g3ΦS3Θ0 ¼ 0;

∂Wv

∂ΦS3
¼ 2g1ffiffiffi

3
p ð2ΦS3ΦS

03 −ΦS1ΦS
02 −ΦS2ΦS

01Þ

þ g2ΦS
02
~Θþ 2g3ΦS2Θ0 ¼ 0; ðB8Þ

∂Wv

∂Θ ¼ Θ0ð2g4Θþ g5 ~ΘÞ ¼ 0;

∂Wv

∂ ~Θ
¼ Θ0ðg5Θþ 2g6 ~ΘÞ

þ g2ðΦS1ΦS
01 þΦS2ΦS

03 þΦS3ΦS
02Þ ¼ 0;

∂Wv

∂Ψ ¼ g7Ψ0
~Ψ ¼ 0;

∂Wv

∂ ~Ψ
¼ g7Ψ0Ψ ¼ 0: ðB9Þ

From this set of ten equations, we obtain

hΦT
0 i ¼ ð0; 0; 0Þ; hΦS

0i ¼ ð0; 0; 0Þ;
hΘ0i ¼ 0; hΨ0i ¼ 0; ðB10Þ

which are valid to all orders.

APPENDIX C: MIXING BETWEEN AXION
AND MESON

The mass terms reads

Lmass ¼ μmu

�
f2π

2ð1þ zþ wÞF2
A
a2 þ 1þ z

2z
π20

þ wþ 4zþ zw
6zw

η2 −
1 − z

2
ffiffiffi
3

p
z
π0ηþ

�
zþ w
zw

�
K̄0K0

þ 1þ w
w

KþK̄− þ 1þ z
z

πþπ−
�
: ðC1Þ

As for the axion-photon coupling, both the π0 and η couple
to photons through triangle anomalies. However, from
Eq. (C1), we see that there are no mixings with the axion
and the heavy π0 and η. We explicitly show the mass
squared terms in Eq. (C1) and the boson-photon-photon
couplings Gaγγ , Gπγγ , and Gηγγ for the axion, π0 and η,
respectively:

1

2
ð a π0 η ÞM2

0B@ a

π0

η

1CAþ 1

4
ð a π0 η Þ

0B@Gaγγ

Gπγγ

Gηγγ

1CAF ~F

ðC2Þ

where

M2 ¼

0BB@
μmu

f2π
F2
Að1þzþwÞ 0 0

0 μmu
1þz
z μmu

z−1ffiffi
3

p
z

0 μmu
z−1ffiffi
3

p
z

μmu
wþ4zþzw

3zw

1CCA: ðC3Þ

Diagonalization of the mass squared matrix M2 in a basis
a − π0 − η basis, one can find the physical masses for the
axion a, π0, and η. And, the physical masses for π0 and K0

mesons as well as the electromagnetic contributions to the
physical π� and K� mesons are expressed as

ðm2
π0
Þphys ¼ 2μmu

�
zþ wþ zw −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðzþ wþ zwÞ2 − 3zwð1þ zþ wÞ

p
3zw

�
;

ðm2
K0Þphys ¼ μmu

�
1

z
þ 1

w

�
; ðm2

K� −m2
π�Þphys ¼ μmu

�
1

w
−
1

z

�
: ðC4Þ
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