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Calculable cosmological CP violation and resonant leptogenesis
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Within the extension of MSSM by two right-handed neutrinos, with tree level mass degeneracy, we
address the issue of leptogenesis. Investigating the quantum corrections in detail, we show that the lepton
asymmetry is induced at the one-loop level and a decisive role is played by the tau lepton Yukawa coupling.
On a concrete and predictive neutrino model, which enables us to predict the CP violating 6 phase and
relate it to the cosmological CP asymmetry, we demonstrate that the needed amount of the baryon

asymmetry is generated via the resonant leptogenesis.
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I. INTRODUCTION

The simplest extension of the standard model (SM),
required for accommodation of the atmospheric and solar
neutrino data [1], is the inclusion of the SM singlet right-
handed neutrinos (RHN). The latter, having the Majorana
mass, can generate neutrino masses via the seesaw mecha-
nism. It is remarkable that this simple construction also
offers an elegant way for generating the baryon asymmetry
of the Universe through thermal leptogenesis [2] (for
reviews see [3-5]). In order to reduce the number of
parameters entering the CP asymmetry, the minimalistic
approach with texture zeros has been put forward in
Ref. [6]. This approach enables one to relate the CP
violating phase § (appearing in the neutrino oscillations)
with the cosmological CP asymmetry [6—15]. The setup
looks especially attractive with two (or more) quasidegen-
erate RHNs [9-12,15] because, besides the further reduc-
tion of the model parameter number, it offers the possibility
for resonant leptogenesis [ 16—18] (for recent discussions on
resonant leptogenesis see [19-22]).

With two degenerate RHNs, in [11] all possible one
texture zero 3 x 2 Dirac-type Yukawa couplings have been
investigated. As it turns out, because of a very limited
number of parameters, these types of models are either
disfavored by the current data [1] or do not generate enough
of the baryon asymmetry. In order to circumvent this
obstacle, in a recent work [15] the setup with two
degenerate RHNs and two texture zero 3 x 2 Dirac-type
Yukawa couplings augmented with a single AL = 2 lepton
number violating the d = 5 operator has been investigated.
All textures, within such a setup, giving experimentally
viable neutrino mass matrices have been studied in great
detail. As it turned out [15], some of them together with a
successful neutrino sector give interesting predictions and
allow one to calculate the cosmological CP phase in terms
of the neutrino CP phase 6.
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Encouraged by these findings, in this paper we aim to
investigate such a construction in detail from the viewpoint
of the leptogenesis. Thus, we start our studies with the
minimal SUSY standard model augmented with two
RHNSs, which at high energy scales are strictly degenerate
in mass. The degeneracy is lifted by the renormalization. As
we show, taking into account the charged lepton Yukawa
couplings in the renormalization procedure (where, in a
regime of RHN masses <107 GeV,l the decisive role is
played by the tau lepton’s Yukawa coupling), the nonzero
cosmological lepton asymmetry emerges at the one-loop
level. Moreover, the sufficient baryogenesis is realized even
with RHN masses near the TeV scale and also with low
values of the MSSM parameter tanf3(~1). As we have
mentioned, to make the scenario viable, in Ref. [15] we
have included the single AL = 2, d = 5 operator, which we
adopt also in this paper. The inclusion of such terms does
not alter renormalization group (RG) studies, and the
results mentioned above are robust. For demonstrative
purposes we pick up one of the viable models of [15].
That is the concrete neutrino texture zero mass matrix
(referred to as the texture P;), which emerges via the
integration of two (quasi)degenerate RHNs and the single
AL =2, d =5 operator. The model’s predictive power
allows one to compute the cosmological CP phase in terms
of observed neutrino parameters and CP phases (not
measured yet, but predicted by the model).

Note that an approach, similar to the one we pursue in this
paper, could also work within a non-SUSY framework (i.e.,
within the SM augmented with two degenerate RHN ).
However, since for a solution to the gauge hierarchy problem
the supersymmetry appears to be a well motivated (and
perhaps the best so far) framework, we choose to perform our
investigations within the SUSY setup.

The paper is organized as follows. In Sec. II, we first
describe our setup and then, proving the emergence of the

"These mass values that we consider within our studies avoid
the relic gravitino problem [23,24].

© 2017 American Physical Society


https://doi.org/10.1103/PhysRevD.96.015015
https://doi.org/10.1103/PhysRevD.96.015015
https://doi.org/10.1103/PhysRevD.96.015015
https://doi.org/10.1103/PhysRevD.96.015015

ACHELASHVILI and TAVARTKILADZE

cosmological CP violation via charged lepton Yukawas at
the one-loop level, give a detailed calculation of CP
violation relevant for the leptogenesis. In Sec. III we
present the neutrino scenario (discussed in Ref. [15]
together with other scenarios), with the prediction of the
CP phase 6 and its relation with the cosmological CP
violation. On this scenario we demonstrate that leptonic
asymmetry, induced at quantum level (and computed in
Sec. II), leads to desirable baryon asymmetry via resonant
leptogenesis. Then we present one example of the renor-
malizable UV completion of our model and prove the
robustness of all obtained results. Appendix A includes
details and various aspects of the RG studies. In
Appendix B we investigate the effects of the scalar
components of the RHN superfields in the net baryon
asymmetry.

II. TWO QUASIDEGENERATE RHN
AND COSMOLOGICAL CP

In this section, we first describe our setup and then give a
detailed calculation of CP violation relevant for the
leptogenesis.

Our framework is the MSSM augmented with two right-
handed neutrinos N, and N,. This extension is enough to
build a consistent neutrino sector accommodating the
neutrino data [1] and also to have a successful leptogenesis
scenario. The relevant lepton superpotential couplings,
which we are starting with, are given by

: 1
Wiep = 7Y hy + [TY,Nh, — 5NTMNN, (1)

where h,; and h, are down- and up-type MSSM Higgs
doublet superfields, respectively, and 7 = (1}, 15, 13),
el = (ef,€5,€5), NT = (N,N,). We work in a basis in
which the charged lepton Yukawa matrix is diagonal and
real,

Yo = Diag(, Ays Ae)- (2)
Moreover, we assume that the RHN mass matrix My is
strictly degenerate at high scale. For the latter we take the
GUT scale Mg =2 x 10'® GeV.? Therefore, we assume

0 1
at u=Mg: My = (1 O)M(MG). (3)

This form of My is crucial for our studies. Although it is
interesting and worthwhile to study, we do not attempt here
to justify the form of My (and of the textures considered

2Degeneracy of My can be guaranteed by some symmetry at
high energies. For concreteness, we assume this energy interval to
be > M (although the degeneracy at lower energies can be
considered as well).
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below) by symmetries. Our approach here is rather phe-
nomenological aiming to investigate possibilities, out-
comes, and implications of the textures we consider.
Since (3) at a tree level leads to the mass degeneracy of
the RHNs, it has interesting implications for resonant
leptogenesis [9-11] and also, as we will see below, for
building predictive neutrino scenarios [11,15].

For the leptogenesis scenario two necessary conditions
need to be satisfied. First of all, at the scale y = My, , the
degeneracy between the masses of N; and N, has to be
lifted. And, at the same scale, the neutrino Yukawa matrix
¥,—written in the mass eigenstate basis of My—must be
such that Im[(¥]¥,),,]> # 0. [These can be seen from
Eq. (40) with a demand €, ; # 0.] Below we show that both
these are realized by radiative corrections and the needed
effect already arises at the one-loop level, with a dominant
contribution due to the Y, Yukawa couplings (in particular
from 4,) in the RG.

A. Loop induced cosmological CP violation

Radiative corrections are crucial for the cosmological
CP violation. We will start with radiative corrections to the
M y matrix. RG effects cause lifting of the mass degeneracy
and, as we will see, are important also for the phase
misalignment (explained below).

At the GUT scale, the M has an off-diagonal form with
(My);; = (My),, =0 [see Eq. (3)]. However, at low
energies, RG corrections generate these entries. Thus,
we parametrize the matrix M at scale u as

While all entries of the matrix M run, for our studies the

s M)y (1) (My)yy _ §(2)
ratios m =0y’ and m = Oy
which we will write and solve RG equations below). That is

why we have written M in the form given in Eq. (4). With
|5§J’2)| <1, the M (at scale y = M) will determine the
masses of RHNs M, and M,, while 55\}’2) will be respon-
sible for their splitting and for complexity in My (the phase

of the overall factor M does not contribute to the physical
CP). As it will turn out (see below),

will be relevant (for

1 2)\k —
oy = (&))" = ~dw. (5)
Therefore, M is diagonalized by the transformation

UIIJMNUN:Mlz?/iag:Diag(Mth)’
with UN:PNONP;V’

My =M|(1=[oy]). Mr=[M[(1+]éx]).  (6)

where
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Py = Diag(e™"/2, ¢/?),
0 1 (1 -1 )
N — \/E 1 1 )
P}, = Diag(e™u/2 je=itu/2),
with 7 = Arg(Sy),
by = Arg(M). ()

In the N’s mass eigenstate basis, the Dirac-type neutrino
Yukawa matrix will be ¥, = ¥,Uy. In the CP asymme-
tries, the components (¥]¥,),, and (¥]¥,),, appear [see
Eq. (40)]. From (6) and (7) we have

—[(O}PRYY,PyON)y )7,
= _[(OK/P;{YZYVPNON)IZF' (8)

Therefore, we see that the CP violating part should come
from the combination Py Y ] Y, Py, which in a matrix form is

. (YIYu)n |(Y;Yu)12|ei("_"/)
[(Y2Y,)ale (YoY,)n
with 7' = Arg[(Y[Y,),,]. 9)

We see that the 1/ — 5 difference (mismatch) will govern
the CP asymmetric decays of the RHNs. Without
including the charged lepton Yukawa couplings in the
RG effects we will have ' = n with a high accuracy. It
was shown in Ref. [21] that by ignoring Y, Yukawas no
CP asymmetry emerges at O(Y}) order and nonzero
contributions start only from O(Y$) terms [22]. Such
corrections are extremely suppressed for Y, < 1/50.
Since in our consideration we are interested in cases
with M, $107 GeV giving |(Y,);;| <7 x 107* (well
fixed from the neutrino sector and the desired value of
the baryon asymmetry), these effects (i.e., order ~Y9
corrections) will not have any relevance. In Ref. [11] in
the RG of My the effect of Y,, coming from two-loop
corrections, was taken into account and showed that
sufficient CP violation can emerge. Below we show that
including Y, in the Y,’s one-loop RG, will induce a
sufficient amount of CP violation. This mainly happens
via 4, Yukawa coupling. Thus, below we give a detailed
investigation of A.’s effect.

Using My’s RG given in Eq. (A3) (of Appendix A1), for

(1.2) : s e (My)y
oy, which are the ratios (Mx)lz and (

metrization in Eq. (4)], we can derive the followmg RG
equations:

22 [see para-
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d 1 1
167:25550 = 4(YY,)y + 26 (V) = (YiY,)n0]
2(60)2(YiY,) 1 — 20062 (V1Y)
1
_2(ny YEY,)oy + - (10)

.p

- (YIYD)II]

2 2
— 26V (YEY,) 0 — 28485 (YY),

1
_4_”2( ZYeYZYD)lzJF"'v (11)

d o + 2 i
16772E51(v) = 4(Y0Y,)12 + 200 [(Y]Y,)

where in the second lines of (10) and (11) are given two-
loop corrections depending on Y,. Dots there stand for
higher order irrelevant terms. From two-loop corrections
we keep only Y, dependent terms. Remaining contribu-
tions are not relevant for us.> From (10) and (11) we see
that dominant contributions come from the first terms of
the right-hand side (RHS) and from those given in the
second rows. Other terms give contributions of order
O(Y}) or higher and thus will be ignored. At this
approximation we have

Sy (1) = 8" (1) = ~8n (1)

___/ dt< < —ny)y>21, (12)

where t=1Inyu, t;=InMgs, and we have used the
boundary conditions at the GUT scale 55\})06) =
5§3>(IG) = 0. For evaluation of the integral in (12) we
need to know the scale dependence of Y, and Y,. This is
found in Appendix A 1 by solving the RG equations for
Y, and Y,. Using Egs. (AS) and (A6), the integral of the
matrix appearing in (12) can be written as

1 0 0
=k(M)Y| 0 1 0 YyG. (13)
0 0 7 (M)
where
(), (1) (1 —-255)dt :
7o (o) = KT 2ty / k(o).
l;K(t)dt In

(14)

Omitted terms are either strongly suppressed or do not give
any significant contribution neither to the CP violation nor to the
RHN mass splittings.
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re(uw) = ni(u), k() = nd(wng,(u).  (15)

and we have ignored 4,, Yukawa couplings. For the
definition of 5 factors see Eq. (A6). The Y,; denote
the corresponding Yukawa matrix at scale y = M;. On
the other hand, we have

1 0 0
01 0 |re (16
0 0 r.(M)

(YY,)|yop = k(M)Y g

(Derivations are given in Appendix A 1.)

Comparing (13) with (16) we see that the difference in
these matrix structures (besides overall flavor universal RG
factors) are in the RG factors r,(M) and 7.(M). Without the
A, Yukawa coupling these factors are equal, and there is no
mismatch between the phases  and #' [defined in Egs. (7)
and (9)] of these matrices. Nonzero 1’ — 5 will be due to the
deviation, which we parametrize as

_ (M)

$= o)

~1. (17)

This value can be computed numerically by evaluation of
the appropriate RG factors. However, it is useful to have an
approximate expression for &, which is given by

£ = {/ﬁ(M) Mg 1 22(M)

In—=6 4 _
1622 "M 3(1622)

Mg)? A2(M)
et et)ilu(ne)] -] ,
=M M 1-loop 16”2 2—loop
(18)

where one- and two-loop contributions are indicated. The
derivation of this expression is given in Appendix A 1. As
we see, nonzero ¢ is induced already at the one-loop level
[without the two-loop correction of léiz in Eq. (14)].
However, the inclusion of the two-loop correction can

contribute to £ by the amount of ~3%—-5% (because of the
ln% factor suppression), and we have included it.

Now we are ready to write down quantities that have
direct relevance for the leptogenesis. From (12), with
definitions introduced above and by obtained relations,
we have

[347 + 647 + 1042

|6y (M) ]e™
_ 1 ®(M)
 4rt k(M)
< [|(YiY, )y e + §|(Yv)31(Yv>32|€i(¢31_¢32)];4:M7
(19)

where ¢3; and ¢, are phases of the matrix elements (Y, )5,
and (Y,)s,, respectively, at scale 4 = M. Equation (19)
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shows well that in the limit & — 0, we have = 5/, while
the mismatch of these two phases are due to £ # 0. With
¢ <« 1, from (19) we derive

|(Yv)31(Yu)32| . /
] @ = gn i) (20)

n—n=¢
We stress that the one-loop renormalization of the Y, matrix
plays the leading role in the generation of &, i.e., in the CP
violation.* [This is also demonstrated by Eq. (18).]
The value of |5y(M)|, which characterizes the mass
splitting between the RHNs, can be computed taking the
absolute value of both sides of (19),

K " y M
|on(M)| = ﬁ [(YoY,)a1 +&(Y0)31 (Y050l mmr lnﬁGv
k(M
with xy = <) (21)
k(M) In =g

These expressions can be used upon the calculation of the
leptogenesis, which we will do in the next section for one
concrete model of the neutrino mass matrix.

III. PREDICTIVE NEUTRINO TEXTURE
AND BARYON ASYMMETRY

In this section we apply obtained results within the setup
of the couplings (1) augmented by single AL =2,d =35
operator. As was shown in [15], this could lead to the
successful and predictive neutrino sectors. With the addi-
tion of this d = 5 operator, the results obtained above can
remain intact. We consider one neutrino scenario that
allows us to predict the CP phase ¢ and relate it with
the cosmological CP violation leading to desirable baryon
asymmetry via resonant leptogenesis. First we discuss the
neutrino sector and then turn to the investigation of the
leptogenesis. At the end, we present one possible renor-
malizable UV completion (giving risetothe AL =2,d =5
operator that we utilize) maintaining all obtained results.

A. P; neutrino texture: Relating &
and cosmological CP

In the work of Ref. [15], within the setup of two (quasi)
degenerate RHNs were studied neutrino mass matrices that
emerged from two zero 3 x 2 Yukawa textures in combi-
nation with one d = 5 entry. In this way, all experimentally
viable neutrino mass matrices have been investigated,
which also predicted CP violation and gave promise for
successful leptogenesis. Here, for concreteness we consider
one scenario of the neutrino mass matrix—called in [15]

*Note that since RG equations for M and Y, in the non-SUSY
case have similar structures (besides some group-theoretical
factors), the & would be generated also within the non-SUSY
setup.
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the P,-type texture—and show that it admits having
calculable CP violation.
Thus, we consider the Yukawa matrix with the form
0 0

bzelﬂz

ase'®  bye's

e 0 0 0 0
= 0 €iy 0 a) b2

0 0 e~ as

Y, = | aye™

with

y=p-p,
=0 —a3+p3—fr, (23)

where, only one phase ¢ will be relevant for the cosmo-
logical CP asymmetry. The phases x, y, z can be removed
by proper phase redefinitions of the states /; and e{. Using
this and the form of My, given in Eq. (3), via the seesaw
formula we get the following contribution to the neutrino
mass matrix:

w=a—pr+p,

z=a3 = + fr—p,
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Besides this, we include the d = 5 operator

;15 eixs

Lish,h, (25)

*

where M, and 215 are some cutoff scale and dimensionless
coupling, respectively. With proper phase redefinitions
of [; states, without loss of any generality, both of these
can be taken real and the phase x5 selected as x5 =
@+ p—arg(M). The origin of the operator (25) and
consistency of our construction will be discussed in
Sec. I C. Taking into account these and Eq. (24), the
neutrino mass matrix at scale M will have the form

0 ds 0
MD(M) = - d5 2612b2 a3b2 + a2b3ei"”
0 a3b2 + a2b3ei‘/’ 2a3b3ei4’
va(M) : - |M]|
W, with d5 = d5 M* s (26)

where in My we have ignored (1,1) and (2,2) elements,
which are induced at one-loop level and are so suppressed
that they have no impact on light neutrino masses and
mixings. By the renormalization (discussed in Appendix A 2)

55 0\2 -1
M3 = —(h)* Y, MJ'Y]. (24) for the neutrino mass matrix at scale M, we obtain
|
0 ds 0 2(11,)
; T
MU(MZ) = d5 2(12[?2 (Cl3b2 + a2b3e’¢)r,/3 1’71, Wlth m = _#i(w-ﬁz-p)’ (27)

0 (613172 + a2b3€i(/))}’y3 2a3b3ei’/’r12/3

where the couplings a;, b;, ds, and phases appearing M, = PU*P' Miey+p, (28)

in (27) are given at scale M. The RG factors r,3 and ry
are given in Egs. (A17) and (A18), respectively. The
neutrino mass matrix (27) is of the P; type investigated
in details in [15].

Noting that we are working in a basis of a diagonal
charged lepton mass matrix, the neutrino mass matrix can
be related to the lepton mixing matrix U by

C13C12
_ i5
U= | —cus12 — sn3513¢12€

is
$23812 — €3813C €

where M3 — (my, m,, m3) and the phase matrices and U
are

P = Diag(e', e, e3),

P’ = Diag(1, e, e'2), (29)
_'5
C13812 size”
i
€23C12 — §2381352€" $23€C13 |- (30)
i
—593C12 — 35138 12€" C€23C13

As was discussed in detail in [15], the texture (27) allows only a normal neutrino mass hierarchy. Using the conditions

2.4 24 2.4
m3li3 — MiCpp — M58y,

M,Sl'l) = M,<,1'3) =0 in Eq. (28), we obtain the following predictions:
5 Am2,, + Am2 i,
m; =

SR IRV
1 — sjzeotyy (1 + 173)7 — 1

cosp; = , (31)
2mymyct, st
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TABLE I. Results from the P;-type texture of Eq. (27). Masses are given in eVs.
o 1 P Works with
NH, sin® 6,3 = 0.49 and best fit values
+0.378 +3.036 +2.696 [of Eq. (33)] for remaining oscillation parameters,

(my, my, m3) = (0.00613,0.0106,0.0499), m; = 0

8 = arglm;c3, + mysie| — arglm; — mye'],

pr = £ — arg[m 2, + mysi,e”] + 2argm; — mye'],

(32)
where by definition AmZ, = m3—m3 and Am’, =

m3 —m?2. With the inputs

sin20,, = 0.304,  sin?6,; = 0.49,  sin?6,5 = 0.0218,
AmZ, = 0.002382 eV2,  Am2, =7.5x 1075 eV2,
(33)

we obtain the values

m, = 0.00613 eV,
oy = £3.036,

my = 0.0106 eV, m; = 0.0499 eV,
§=140378, p,=42.696.  (34)

Notice that besides sin’ 0,5 all inputs of Eq. (33) are taken
to be the best fit values [1]. The results are summarized in
Table I.

At the same time, from (28) we have the relations

2a2b2ﬁ¢ = eziszzz,
2azbye®imrl, = ¥ Ay,

((13b2 + 02b3€i(/))ﬁ’ll"y3 = ei(a)2+m3)A23’ (35)
with
Aij = UflUjlml + U;-sz;le’leei/}l + U73U73m3ei”2. (36)

Note that from the neutrino sector all A;; numbers are
determined with the help of zero entries in the matrix of
Eq. (27). With the help of the phases appearing in (22),
without loss of generality we can take a;, b; > 0. With this,
from Eqgs. (35) we can express |m| and the couplings as,
b, in terms of a, and [M| as follows:

|I’7’l| _ U%(Mz) r-
M|
a 1
az = r—; A_zz (-A23 + \/ -A%3 - A22A33) )
1 |Ap| 1| Azl
by, = — , =— . 37
27 ay 2| T 2|im|rs g

Also, for the phase ¢ we get the following prediction:

¢ = Arg

2
-A23 "4%3
-1 . (38
<\/A22.A33 i A22A33 ( )

Notice that there is a pair of solutions. When for the a;’s
expression in Eq. (37) we are taking the + sign, in Eq. (38)
we should take the sign —, and vice versa.

From these, using results given in Table I, we find the
numerical value of ¢,

for 5 = +0.378: ¢, = +1.287, p_ = —1.287,
for § = —0.378: ¢, = —1.287, ¢_ = +1.287, (39)

where ¢’s subscripts correspond to the signs taken in (38).
These and the relations of (37) will be used upon calcu-
lation of the baryon asymmetry, which we do in the next
subsection.

B. Resonant leptogenesis

The CP asymmetries €¢; and ¢, generated by out-
of-equilibrium decays of the quasidegenerate fermionic
components of N; and N, states, respectively, are given
by [17,18]

Im[(V]7,), > (M3 - M})M,T,

(¥I7,)01 (¥1,)5, (M3 = M3)? + MRTS
e =¢€(1 < 2). (40)

€1 =

Here M, M, (with M, > M) are the mass eigenvalues
of the RHN mass matrix. These masses, within our
scenario, are given in (6) with the splitting parameter
given in Eq. (21). The decay widths of fermionic RHNs
are given by I'; = % (Y1Y,),,. Moreover, the imaginary part
of [(Y]¥,),,]? will be computed with the help of (8) and (9)
with the relevant phase given in Eq. (20). Using general
expressions (20) and (21) for the neutrino model discussed
in the previous subsection, we get

’In Appendix B we investigate the contribution to the baryon
asymmetry via decays of the scalar components of the RHN
superfields. As we show, these effects are less than 3%.
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TABLE II. Cases with different values of m,(m,) and M.

Case (I_) Case (I) Case (II_) Case (II)
m;(m;) 162.77 GeV 163.48 GeV 162.77 GeV 163.48 GeV

Mg 103 GeV 103 GeV  2x10° GeV 2 x 10° GeV
h .
yr = — % sin ¢

¢ ; ,
(—ZiZi + cos )? + sin’¢
K . M
|65 (M)] = 25 lashy + asbs(1+ £)e [ In—2.  (41)
47 M

With these, since we know the possible values of the phase
¢ [see Eq. (39)], and with the help of the relations (37) we
can compute €} , in terms of |M| and a,. Recalling that the
lepton asymmetry is converted to the baryon asymmetry via
sphaleron processes [25], with the relation ”Tb =—1.48 x
1073 (ks Ve, + k;@e,) we can compute the baryon asym-
metry. For the efficiency factors x,(1?) we will use the
extrapolating expressions [3] [see Eq. (40) in Ref. [3] ],

with k() and x;() depending on the mass scales 7ir; =
”‘z}é—l'l/[)(f/v‘ Y,),; and i, = % (Y]Y,),,, respectively.

Within our studies we will consider the RHN masses
=|M| <107 GeV. With this, we will not have the relic
gravitino problem [23,24]. For the simplicity, we consider all
SUSY particle masses to be equal to Mg < |M|, with M
identified with the SUSY scale, below which we have just
SM. As it turns out, via the RG factors, the asymmetry also
depends on the top quark mass. Therefore, we will consider
cases given in Table II, where cases of low top quark masses
by 1 — o deviation are included [i.e., cases (I_) and (II_)].
It is remarkable that the observed baryon asymmetry

N

<@> = (8.65 4 0.085) x 10711 (42)
exp
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(the recent value reported according to WMAP and Planck
[26]) can be obtained even for low values of the MSSM
parameter tan § = f—d (defined at the SUSY scale y = My).

This, for different cases and different values of M, is
demonstrated in Table III. For the calculations we have
used the RG factors found by numerical computations. The
details of this procedure, appropriate boundary and matching
conditions, are given in Appendix A 3.

While Table III deals with cases of the low tanf, in
plots of Fig. 1 we show baryon asymmetries as functions
of a, (the logs of these values for convenience) for
different values of the parameters Mg, M, tanf, and
the phases ¢ of Eq. (39). We see that needed baryon
asymmetry is obtained for a wide range of phenomeno-
logically interesting values of parameters. With the values
of a, giving the needed values of the baryon asymmetry,
we have also calculated [via relations of Eq. (37)] the
values of a3, b,3, which also turned out to be sup-
pressed, i.e., as, by3 < ay.

C. Renormalizable UV completion
and consistency check

Upon building the neutrino mass matrix (26), together
with seesaw contribution (24) (emerged via integration of
N, , states) we have used the d = 5 operator (25). Here we
present one renormalizable completion of the model, which
gives the latter operator. Also we check the whole con-
struction and show what conditions should be satisfied in
order to have a fully consistent model without affecting
obtained results.

For building a fully renormalizable model, we introduce
two additional RHN states N and N with the following
superpotential couplings:

AN, + AN, — M NN (43)

TABLE IIl.  Baryon asymmetry for various values of M and for the minimal (allowed) value of tan 4. The values of () given here
are obtained for all cases of Eq. (39), but for different values of a;, b;. [For phase sign choices see (38), (39), and comments after these

equations.]

Case M[GeV] tan f3 s i ry, Ky 10° x & 10 x (%)
(I_) 3x10° 1.63 = 0.8861 0.9713 1.230 5.678 8.573
(I.1) 3x10° 1.636 = 0.8849 0.9709 1.242 5.729 8.565
(I.2) 10* 1.665 =] 0.8343 0.953 1.211 5.490 8.564
(1.3) 103 1.72 = 0.7530 0.9218 1.1596 5.0317 8.559
(14) 100 1.775 = 0.6883 0.8944 1.118 4.574 8.557
(L.5) 107 1.831 = 0.6369 0.8703 1.0834 4.118 8.565
(IL.) 6 x 103 1.608 = 0.8685 0.9677 1.197 5.462 8.557
(IL.1) 6 x 10° 1.615 = 0.8670 0.9673 1.206 5.515 8.564
(I1.2) 10* 1.627 = 0.8468 0.9600 1.195 5.416 8.563
(IL.3) 10° 1.681 =] 0.7671 0.9295 1.147 4,968 8.557
(IL.4) 10° 1.736 =1 0.7034 0.9027 1.108 4.523 8.565
(IL.5) 107 1.79 =1 0.6524 0.8790 1.076 4.072 8.564
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FIG. 1. Left: Curves for case (I) (see Table II), with M = 10* GeV, § = +0.378, ¢ = ¢, = +1.287, and with different values of
tan 3. Right: Curves for case (II) (see Table II), with tan f = 15 GeV, 6 = —=0.378, ¢ = ¢, = —1.287, and with different values of M.
Gray horizontal bands correspond to the experimental value of the baryon asymmetry within the 1 — ¢ range given in Eq. (42).

With these and the couplings of (1)—(3), (22), after removing the phases x, y, x, o, p in Y, (by proper redefinition of the
fields) without loss of generality 2 and M, can be taken real and arg(1) = arg (/). Thus, the full (i.e., “extended”) Yukawa
and RHN matrices will be

_ N, Ny N N
Ny Ny, N N b
Ny 0O M 0 O
ext L 0 0 40 ext
= b0 il M¥=M M o0 0 0 (44)
a
L T Nlo o o M
a e -
P N \o o M, 0
With these forms, integration of heavy RHN states leads to the neutrino mass matrix
M, = —RYE (M) (V9T (45)
which, as desired, indeed has the form of (26) with
- [M|
ds = || A—. 46
s = A (46)

*

Furthermore, one should make sure that via loops the couplings 4 and 1 instead of zeros in the textures of Eq. (44) do not
induce entries which would affect and/or spoil the results of the neutrino sector and leptogenesis. To check this, one can
apply one-loop RGs for the neutrino Yukawas and RHN masses. Namely, in Egs. (A2) and (3) with the replacements
Y, = Y&, My — M we can estimate the one-loop contributions due to the 4, 1 couplings.® Since the structure of YX!
may be altered only by the second term on the RHS of (A2), we will calculate only the contribution due to this type of entry.
By the same reason, for the M$"’s correction, we will focus only on the first term (and on its transpose) on the RHS of
Eq. (A3). Doing so, with an assumption M, > |M|, at scale 4 = M, we obtain

0 0 AP 0
SYMr—2 | el b> 0 a3+ b3+ | InfE,
X X 0 Aayaz + bybse™®)

X X a,AM., b,AM
X X byAM, M
M x| . 2 o In¥a (47)
szM dzZM <|/1|2 + ZZ)M* 0

®Since (as we have seen) the couplings a;, b; are small, their corrections in the RG of Y& do not harm anything.
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where we have taken into account that at scale 4 = M the
couplings Y£*', M$¥* have forms given in Eq. (44). In (47) x
stands for the corrections which do not depend on A and/or
A Comparing (47) with (44) we see that the structure of Y¢X
is not changed and 6Y*! can be negligible for A, 1 < 4,/ 10.
In fact, from the neutrino sector, we have

d5|}’7’l| = |A12| =1.07 x 10_11 GeV (48)

[see Egs. (27) and (36) for definitions]. With this, on the
other hand, we have

M 1 \2/0.85
ds ~4.15 x 10712 . (4
5 x <104 GeV) <sinﬂ> ( ' ) 49)

With this and M, = (3 — 10)M, the (46) can be satisfied by
the selection

_ M* 1/2
|~ A= <d5 —)
M|

M \V2[ 1 \[/085\1/2
= (3.5 6.4) x 106 .
(3:5-64)x10 (104 GeV) (sinﬂ)( r,;l>

(50)

This in turn gives

for M <107 GeV, tanp> 1.6 = |A|~1<3x107

(51)

‘We checked and made sure that, for such small values of 4,
2, the corrections 6Y® and SM$} are affecting neither the
neutrino sector nor the leptogenesis. We have also checked
that two-loop corrections are very suppressed too and can

be safely ignored. The selection M, = (3 —10)M is

convenient because the states A, N (having the mass
M,) decouple earlier than the states N;, and will not
contribute to the leptogenesis process. With all these we
conclude that the results obtained in previous subsections
stay robust.

Closing this section, we comment (as was also noted in
Sec. II), that throughout our studies we have not attempted
to explain and justify texture zeros by symmetries. Our
approach here was to consider such textures that give a
predictive and consistent scenario allowing us to calculate
cosmological CP violation. The forms of the matrices in
Egs. (3), (22), and/or (44) with specific coupling selections
are such that their structures and the model’s predictive
power (as was demonstrated) are not ruined by radiative
corrections. For our purposes this was already satisfactory.
A more fundamental explanation should be pursued
elsewhere.
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APPENDIX A: RENORMALIZATION
GROUP STUDIES

1. Running of Y,, Y, and My matrices and
approximation for &

RG equations for the charged lepton and neutrino Dirac
Yukawa matrices, appearing in the superpotential of
Eq. (1), at one-loop order have the forms [27,28]

d
16;;231/@ =3Y,YiY, + Y, Y)Y,

+ Y, [w(3Yhy, + YiY,) - cig?],

9
¢ = _’370 ) Al
d :
16”2@;@ =Y,YlY, +3Y,Y}Y,
+Y,[e(3YiY, + YiY,) - cigl],
3

9a = (91,92, 93) denote gauge couplings of U(1)y,
SU(2),, and SU(3), gauge groups, respectively. Their
one-loop RG have forms 1672 <g, = b,g, with b, =
(3.,1,-3), where the hypercharge of U(1)y is taken in
SU(5) normalization.

The RG for the RHN mass matrix at the two-loop level
has the form [28]

d

1672
iy

1
My =2MyY)Y, — WMN[YZYEYZYD
T
+ Yy iy, +Yiy u3yly, + viv,)]

1 3
+ QMN Y,Y, (5 F + 3g§> + (transpose).

(A3)

Let us start with renormalization of the Y,’s matrix
elements. Ignoring in Eq. (A2) the O(Y}) order entries
(which are very small because within our studies
[(Y,);] < 10#), and from charged fermion Yukawas keep-
ing A, and 4,, we will have
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d
1672 Eln( V)ij = 037 + 347 — clga. (A4)
This gives the solution
(Y,)ij(1) = (Yug)i; (e ()22 ()mg, (), (AS)

where Y, denotes the Yukawa matrix at scale M and the
scale dependent RG factors are given by

1
@/ Ayt )dl'),

Nepc (1) = exp <—

1 e 50y
= — )dt
Ma(#) = exp (16”2[ ga(') )
L [, 3
i) =0 (o [ cttt)ar ) =G
with 7=1Inpu, =1Iny/, tg =InMg.
(A6)

From these, for the combination Y} Y, at scale y = M we
get the expression given in Eq. (16).

On the other hand, for the RHN mass splitting and for the
phase mismatch [depending on £ defined in Eq. (17)], the
integrals/factors of Eqgs. (13), (14), (15), and (16) will be
|
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relevant. For obtaining approximate analytical results [for

the expression o i’ E%; we
introduce the notation
/12
K= 1 -— A7
(1= 12) (A7)

and make a Taylor expansion of K(¢) and x(¢) near the
point ¢ = 1,,, in powers of (t - tM) As it turns out, this will
allow us to calculate & = (M; : 6 > (and
possibly in powers of other couphngs appearing in higher
degrees—together with appropriate factors). We have

162

() = KCliag) K (1) (1= 1) 5K (31) 1 = 1)

+...’
t)(t—tn)* + -,
(A8)

(1) = (i) + 1)1 = 1) + 3

where primes denote derivatives with respect to ¢. Plugging
these in Eq. (14) and performing integration we will get

_ K(ty) < UC’( ) LK (21) > >
F.(M) = I+ tc —ty) +— tg—ty) +--
1K’<tM) 1K'//(tM) 2 -1
X <1 2 K( ) (tG tM) + 8 K‘(tM) (tG tM) +ee . (A9)
Using in (A9) expression (A7) for K and keeping in expansion terms up to (z —t,,)?, we get
7.(M) 17, 1 /r 17, , AA(M)
rr(M) - _Er_ft tM<tG_tM) +6 <r_1+§KrT)ttM(tG_tM> - 162% (AIO)

As we see, the flavor universal RG factor x drops out at first
order of (z; — t);). The last term in Eq. (A10) is due to the
two-loop correction in the RG of My [in particular the
MNYZT, Y, Y! Y, term of the RHS of Eq. (A3)]. The remaining
terms are due to one-loop corrections, proving that cos-
mological CP violation emerges already at the one-loop
level.

Using in (A10) expressions for the scale factors given in
Egs. (A6) and (15), using the RG for A, [easily obtained
|

d
Mc<u<M: 1622—M
SSH ﬂdl

=Y, YIM, +M,Y:YT + M, [6tr(Y}Y,) —

|
from Eq. (Al)], and keeping terms up to the order
of (161 e, We obtain the expression for & given in
Eq. (18).

2. Neutrino mass matrix renormalization

In the energy interval Mg <y <M (where My is
the SUSY scale) the RG for the neutrino mass matrix
is [28,29]

2¢igal. (A11)

Below the My scale, effectively we have SM and the RG is [29]
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1

d - 1 T
p<Mg: 162> —M, ==Y ,YIM, +-M,Y:YT + M, [tr(6YY, + 6Y Y, +2YlY,) —3g5 + 4],

dt 2 2

where 1 is the SM Higgs self-coupling [emerging from the
self-interaction term A(H'H)? of the SM Higgs doublet H].
We will also need the RG evaluation of the VEVs v, and v,
which in appropriate energy intervals are given by [30-33]

d 1
u> Mg: 1671:2va =, <—3i,2 +Zc,‘}gg>, (A13)

d 3
u<Ms: 16712Ev = v<—3/1% -31 —/1§+Zczgﬁ>.

(A14)

At scale M, after decoupling of the RHN states, the
neutrino mass matrix is formed with the form

vi(M)

J(M) = o (Al9)

X X X
X X X

X

where x stands for entries depending on Yukawa cou-
plings. After renormalization, keeping 4., 4,, and g, in the
above RGs, for the neutrino mass matrix at scale M, we
obtain

(X> T3
M) (M) = X (X) -1y |m,
(X) 13 (X)-13 (X>"’12,3
2 M 2
with m = Mr,h, (A16)

where x denotes entries determined at scale M correspond-
ing to those in (A15), and RG factors are given by

= () (i)

) ) ) )

(A17)

3/5 2/5
1 t
X <’71 ( Z)rll ( MS)) , (A18)
m(ty)
where
= ! / S ()t (A19)
a =P 16”2 Ly, ’

and remaining 7 factors are defined in Eq. (A6).
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(A12)

[

We will also need the RG factor relating the VEV v, (M)
to the v(M,). Using Eqgs. (A13) and (A14) we obtain

- () e
()

3. Boundary and matching conditions

For finding the RG factors, appearing in the baryon
asymmetry, we numerically solve renormalization group
equations from the scale M, up to the M =2 x 10'® GeV
scale. For simplicity, for all SUSY particle masses we take
the common mass scale Mg. Thus, in the energy interval
M, < u < My, the Standard Model RGs for MS coupling
constants are used. However, in the interval Mg < u < M,
since we are dealing with the SUSY, the RGs for the DR
couplings are applied. Below we give boundary and
matching conditions for the gauge couplings g;,3, for
Yukawa constant 4, , and for the Higgs self-coupling A.

a. Gauge couplings

We choose our inputs for the MS gauge couplings at
scale M, as follows:

3 3.8, m
al (M) = gCgvaanz(Mz) + gcaglnM—;,
8 m
G (M) = s2agk(My) + sfvglnM—’Z,

1. m
a;'(Mz) = a7 (Mz) + 1~ In—*

A21
3z M, (a21)

where logarithmic terms lng—’z are due to the top quark

threshold correction [32,34]. Taking a,(M;) = 0.1185,
a;) (M) = 127.934, and s2 = 0.2313, from (A21) we
obtain

8 2
i (M) = 59.0057 + -2 In -t

157[ MZ’
_ 8s2  m
ay' (M) =29.5911 + o lnM—;,

1
a3 (M) = 8.4388 + —In— (A22)

3r M,

With these inputs we run g, , 5 via the two-loop RGs from
M up to the scale M.
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At scale u = Mg we use the matching conditions
between DR — MS gauge couplings [35,36],

) M 1 1 1 1 1

al = = — s —_—_— =,

H N a]ljR a]]v[s (ZZDR a%"s 67
1 1 1

S - (A23)

Above the scale Mg we apply two-loop SUSY RG
equations in the DR scheme [27].

b. Yukawa couplings and A

At the scale Mg all SUSY states decouple, and we are left
with the Standard Model with one Higgs doublet. Thus, the
third family Yukawa couplings and the self-coupling are
determined as

R A
i) =TS

1/ m 2 .
A(my,) _Z(v(Tth . with »(M,) = 174.1 GeV,

my, = 125.15 GeV, (A24)

where m,(m;) is the top quark running mass related to the
pole mass as

my(mq) = p, M. (A25)

The factor p, is p,=1/1.0603 [37], while the recent
measured value of the top’s pole mass is [38]

M = (173.34 4+ 0.76) GeV. (A26)

We take the values of (A24) as boundary conditions for
solving two-loop RG equations [32,39] for 4, ; and A from
the M, scale up to the scale M.

Above the Mg scale, we have MSSM states including
two doublets £, and h,, which couple with up-type quarks
and down-type quarks and charged leptons, respectively.
Thus, the third family Yukawa couplings at Mg are
~A(Ms) /s, Ap(Mg)/cp and A, (Ms)/cy, with sz =sinp,
cp =cosf. Above the scale Mg we apply two-loop
SUSY RG equations in the DR scheme [27]. Thus, at y =
Mg we use the matching conditions between DR — MS
couplings,
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at'u:MS:/llt)_Rz%[l_F 1 <g_%+3_g%_%>:|

S 1622 \120 8 3
R AS T L (130 3G 4g3
b 1672\ 120 © 8 3 /]
A 1 [ 9 3¢
DR =T ) (=22 A27
‘ Ccp [ + 16Jr2< 40 * 8 (A27)

where expressions in brackets on the RHS of the relations
are due to the DR — MS conversions [36]. With Eq. (A27)’s
matchings we run corresponding couplings from the scale
M up to the M scale. Throughout the paper, above the
mass scale M ¢ without using the superscript DR we assume
the couplings determined in this scheme.

APPENDIX B: CONTRIBUTION TO THE
BARYON ASYMMETRY FROM N DECAYS

The impact of the decays of the right-handed
sneutrinos—the scalar partners of the RHNs—was esti-
mated in [11] for specific textures. Here we give a more
detailed investigation and give results for the neutrino
model discussed in Sec. III A.

We will need to derive masses of the RH sneutrinos and
their couplings to the components of the superfields / and
h,,. For this purpose, we should include the soft breaking
terms

.~ 1 - - . e -
Vi, =1"A,Nh, — ENTBNN +He +1'ml+N'mN,
(B1)

which, together with the superpotential couplings, will be
relevant. As it turns out, A, and By couplings will be
relevant. Therefore, first we will study their renormaliza-
tion. After this, we investigate masses of the physical RH
sneutrinos and their couplings to the lepton superfield
components. These, at the end, will be used for the
calculation of the contribution in the baryon asymmetry
via the RH sneutrino decay processes.

1. Renormalization of soft A, and By terms

From general expressions of Ref. [27] we can derive RGs
for A, and By, which at the one-loop level have the forms

d .
1672 —A, =Y,YIA, +2A,Y)Y,+5Y,YIA,

dt
+A[r(3YLY, +Y]Y,) +4Y]Y, - cig]
+2V,[r(3YiIA, + YIA,) + cig2My |, (B2)
d .
167> 2 By = 2BNYLY, +2YIYiBy + 4My YA,
+4ATY M. (B3)
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Note that, applying these expressions for the third gen-
eration states, we can get expressions of [40] [see Egs. (17)
and (55) of this reference, which uses slightly different
definitions for the couplings]. These results are also
compatible with those given in [41] (with replacements
Y- YT, A= AD).

We parametrize the matrix By as

s 1
By = (My);ymg o |
1 1)

BN

(B4)

where all entries (My) 5, mp, 51(911;,2 ) run and their RGs can

be derived from the RG equations given above. For the
matrix A,, let us use the parametrization

(BS)

AI/ = mua,,

where m, is a constant and the elements of the a, matrix
run. The matrix Ae is
A, = Diag(A,.A,.A,) (B6)

(similar to the structure of the ¥, Yukawa matrix). We will
use the following boundary conditions:

at p=Mg: a, =Y, 4y =du =0,
A, = myDiag(e, A, 2;).
Au = mAYuG9 Ad = mAYdG’ (B7)

which assume proportionality (alignment) of the soft SUSY
breaking terms with the corresponding superpotential
couplings.

With (B4), (B5), using (B3) we have

162260 = a(viy 8— (Yia,),,.
w1 OBN (YLY,)y + mB( a,)y
d mA
1672 - =5l = ariy, )12+8m—(YZaD)12 (BS)
B

Because of RG effects, the alignment between Y,
and a, (which holds at the GUT scale) is violated. In
particular,

d ((a,);; 1A 2
1672 — V) =28, 4 34A, M,
i dt <<Yy)ij> o my m ( +Cyga )

(B9)

where on the RHS we kept third family couplings, gauge
couplings, and gaugino masses. From this we derive
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1+ ¢ 0 0
a, = 0 1+ ¢ 0 Y,
0 0 1 +€0+€
1
with €y = ——— / dt(3A,A, + ctg2M 7.)s
8 my
- ! /IG dia.A (B10)
Using (B10) in Egs. (B8) and (B4) we obtain’
—aoy(l +¢€ 1
at//l:M.BN:mBM< N( 1) _ >
1 —ady (1 + &)
my
a=1+2"4 (B11)
mp
and

1 763 o
e = | Car(vi(-Zov,vi 2™y, ) |
T d2asy / ( (16 ),
1 m’ *
¢ di| Y| —vY,Yi+2—4¢& )y, ) |
€2 = 47 aﬁN/ ( (16 * B€ 21

(B12)

with & = Diag(e, €, €9 + €).

The form of By given in Eq. (B11) will be needed to
construct the sneutrino mass matrix, which we will
do below.

2. Sneutrino mass matrix and its diagonalization

For calculating scalar RHN masses, from (B1) we keep
only the By term. We also include the mass®> term

NTM;,M NN coming from the superpotential. Therefore,
we consider the following quadratic potential:

2 ~ T . 1~ N
Vf‘v) = N'M{MyN — <§NTBNN +Hec. ). (B13)

With the transformation of the N superfields N = UyN’
[according to Eq. (6), the Uy diagonalizes the fermionic
RHN mass matrix], we obtain

- L 1 - .
VY = N (M PN — <§ NTULByUyN' + H.c.).
(B14)
On the other hand, from (B11) we have

"Since in the 4 functions we are ignoring ¥, couplings (due to
their smallness), for all practical purposes the mp can be treated
as a constant.
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1—als Laloy|(e, — € & +ée
VT B Uy — mBW( CL-dyl el 2>>7 it 0,(1 +;> (B15)
saléy| (& — &) 1+ aloy| 2
With further phase redefinition
N' =P/N", P, =Diag(e™®/2,¢7i®/2), with @, = Arg[mg(1 F &|dy])], (B16)
and by going to the real scalar components
N ALING T v/ SV LIG /. 1) (B17)
1 \/z 1 1)s 2 \/z 2 2)s
we will have
J - Mm . - -
- (3N URBUR 4 1. ) ==Ll 1 a2 - (W)
VL) ()2 = (F)2) — [MIRe(mad, ) (VERE = RRR) -+ (Mt (g, ) (V58 + WA
with 6, = ia|oy| ! ;62 ei@r )2, (B18)
From (B14) and (B18) we obtain the mass? terms,
1. - . ~ SRS MR N
VO =M, with 7 = (N§, N NS NY) (B19)
and
(M9)? 0 —|M[Re(mpd.)  |M|Im(mps,)
" | —IMIRe(mps,)  [M[Im(mps,) (M5)? 0
[M|Im(mps.)  |M|Re(mpd,) 0 (M5)?
where
(M9)? = [MP(1 = [8x])? = mpM||1 = @loyll,  (M3)* = [MPP(1 = |8y])* + ImpM||1 = &léy]].
(M9)> = [MP(1 + |65])> = |mpM|[1 +&loyll, (M2 = [MP(1+ [8x)% + [mpM||1 +alsy|l.  (B21)

The coupling of 72° states with the fermions emerges
from the F term of the superpotential /7Y, Nh,,. Following
the transformations, indicated above, we will have

(I'Y,Nh,)y — hITY,N
= &2y [TV, Uy (p, e @012, p )i,
50 o)

V2\0 0o
0 0

)

1

with p, =

(

1

Pa = 7§ (B22)

015015
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Performing the diagonalization of the matrix (B20)
by the transformation VIM2V; = (M2"%)2, 0 = Vi,
the fermion coupling with the scalar 7 eigenstates
will be

h 7Y with  Yp =Y, VOV,

VO — UN(pue'i&"/2,pde'ia’Z/z)- (B23)

The coupling with the slepton [ is derived from the
interaction term h,I" (Y,M4N* — A,N). Going from N
to the n states, we obtain
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h 'Yyt with Yp = (Y, MLV* —AVO)V;.  (B24)
For given values of M,mp, and my, with the help of
Egs. (B20), (B23), and (B24), we will have coupling
matrices Y, Yp and all other quantities needed for
calculation of the baryon asymmetry created via the decays

of the 1y 534 states.

3. Asymmetry via n decays

Now we are ready to discuss the contribution to the net
baryon asymmetry from the out of equilibrium resonant
decays of the right-handed sneutrinos (RHSN). As we have
seen, with SUSY breaking terms, the masses of RHSN’s
differ from their fermionic partners’ masses. Thus we have
mass-eigenstate RHSN’s 72;_; 534 with masses M,_; 34,
respectively. With the SUSY scale M g smaller (at least by a
factor of 3) than the scale M, the states n; remain nearly
degenerate.

For the resonant 7 decays we will apply the resummed
effective amplitude technique [17]. Effective amplitudes for
the real n; decay, say into the lepton /, (@ =1, 2, 3) and
antilepton [, respectively, are given by [17]

X ) I, (M) (1 =
Sai = Sai — Saj ~2j 2
7 M; M +H(

i)

5)
A7I
A7I

Sui =Sk = > Shj=rmes
—~ M M+H(

i)

where S,; is a tree level amplitude and IT;; is a two point
Green function’s (polarization operator of 72; — 7;) absorp-
tive part. The CP asymmetry is then given by

Sl = IS
€;§‘C — Z(l(|,\(ll|2 |£(ll|2) . (B26)
Za(|Sai| + |Sai| )
With Y and Yp given by Eq. (B23) and (B24) we can
calculate the polarization diagram’s (with external legs 7;

and n;) absorptive part I1;;, which at the one-loop level is
given by

l]’

i .
o (PPYRYp+ pPYLY;+ VY + YY)

II..(p) =

ij

(B27)

where p denotes the external momentum in the diagram
and upon evaluation of (B26), for IT we should use (B27)
with p = M;.

In an unbroken SUSY limit, neglecting finite temper-
ature effects (T — 0), the N decay does not produce lepton
asymmetry due to the following reason. The decays of Nin
the fermion and scalar channels are, respectively, N — lizu
and N > f*h;. Since the rates of these processes are the
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TABLE IV. Values of A"” :"X —contributions to the baryon
asymmetry via decays of the right-handed sneutrinos for cases
given in Table III [i.e., for values of a, giving (S )mX given in
Table III]. These values correspond to the phases 6 = —0.378 and
¢, =—1.287.

(ma,mg) (ma,mg)

— (1007, 500) GeV — (500, 1000) GeV
Case 10* x a, 10! x nTh 10* x a, 1011 x 7
(1) 0.016 0.25 0.016 0.24
(I.1) 0.0159785 0.25 0.0159785 0.25
(12)  0.0299 0.24 0.0299 0.24
(13)  0.0987 024 0.0987 0.24
(1.4) 0.3237 0.24 0.3237 0.24
(L5) 1.05655 0.23 1.05655 0.23
(I1.) 0.0229 0.25 0.0229 0.24
(IL.1) 0.0229 0.25 0.0229 0.24
(IL.2) 0.02986 0.24 0.02986 0.24
(I1.3) 0.09835 0.24 0.09835 0.24
(II.4) 0.322 0.24 0.322 0.24
(IL5) 1.05 0.23 1.05 0.23

same due to SUSY (at 7 = 0), the lepton asymmetries
created from these decays cancel each other. With T # 0,
the cancellation does not take place and one has

€ = ¢;(n; - lilu>ABF’ (B28)
with a temperature dependent factor Agzp given in [42).8
Therefore, we just need to compute ¢;(i7; — lh,), which is
the asymmetry created by n; decays in two fermions. Thus,
in (B25) we take S,; = (Yr),; and calculate ¢;(i1; — lh,)

with (B26). The baryon asymmetry created from the lepton
asymmetry due to n decays is

M 846 x 10
S

4
= -8.46 x 107> e;(7i; = h, ).
i—1

(B29)

where an effective number of degrees of freedom (including
two RHN superfields) ¢, = 228.75 was used. 5; are
efficiency factors that depend on m; = %Z(Y}Y Fii
and take into account temperature effects by integrating the
Boltzmann equations [42].

In Table IV we give results for the neutrino model
discussed in Sec. III A. These are obtained for the SUSY
particle masses = M and for the different values of pairs
(my,mp) (see also the caption of Table IV). Upon the

¥This expression is valid with alignment A, = m,Y,, which
we are assuming at the GUT scale, and thus Eq. (B28) can be well
applicable for our estimates.
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calculations, with obtained values of m;, according to
Ref. [42] we picked up the corresponding values of #;
and used them in (B29). From Table IV we see that a
contribution to the net baryon asymmetry from the RHS

decays is suppressed Z—’; <3x1072, ie., is less than 3%.

From Table IV we also see that the complexity of my,
practically does not change the results. This happens
because the my in the Y coupling matrix appears in front
of the Y, [see Eq. (B24)], which is strongly suppressed.
From the structure of (B20), one can also make sure that
the complexity of mp will not affect the results. We have

PHYSICAL REVIEW D 96, 015015 (2017)

checked this by varying the phases of m. For instance, for
case (L1) and my, = 500 GeV, mygz = 1000 x {3,
e/?, %3} GeV we have obtained "= 0.24 x 107!,
Suppression of % will always happen for the value of
|mg| in the range of a few 100 GeV to a few TeV, because
the mass degeneracy of n; states is lifted in such a way that
resonant enhancement of ”—S” does not happen. (This is unlike
the case of soft leptogenesis [42], which requires
|mg| < 10 MeV. Considering the latter value unnatural,
we did not pursue such possibilities within our studies.)
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