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Within the extension of MSSM by two right-handed neutrinos, with tree level mass degeneracy, we
address the issue of leptogenesis. Investigating the quantum corrections in detail, we show that the lepton
asymmetry is induced at the one-loop level and a decisive role is played by the tau lepton Yukawa coupling.
On a concrete and predictive neutrino model, which enables us to predict the CP violating δ phase and
relate it to the cosmological CP asymmetry, we demonstrate that the needed amount of the baryon
asymmetry is generated via the resonant leptogenesis.
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I. INTRODUCTION

The simplest extension of the standard model (SM),
required for accommodation of the atmospheric and solar
neutrino data [1], is the inclusion of the SM singlet right-
handed neutrinos (RHN). The latter, having the Majorana
mass, can generate neutrino masses via the seesaw mecha-
nism. It is remarkable that this simple construction also
offers an elegant way for generating the baryon asymmetry
of the Universe through thermal leptogenesis [2] (for
reviews see [3–5]). In order to reduce the number of
parameters entering the CP asymmetry, the minimalistic
approach with texture zeros has been put forward in
Ref. [6]. This approach enables one to relate the CP
violating phase δ (appearing in the neutrino oscillations)
with the cosmological CP asymmetry [6–15]. The setup
looks especially attractive with two (or more) quasidegen-
erate RHNs [9–12,15] because, besides the further reduc-
tion of the model parameter number, it offers the possibility
for resonant leptogenesis [16–18] (for recent discussions on
resonant leptogenesis see [19–22]).
With two degenerate RHNs, in [11] all possible one

texture zero 3 × 2 Dirac-type Yukawa couplings have been
investigated. As it turns out, because of a very limited
number of parameters, these types of models are either
disfavored by the current data [1] or do not generate enough
of the baryon asymmetry. In order to circumvent this
obstacle, in a recent work [15] the setup with two
degenerate RHNs and two texture zero 3 × 2 Dirac-type
Yukawa couplings augmented with a single ΔL ¼ 2 lepton
number violating the d ¼ 5 operator has been investigated.
All textures, within such a setup, giving experimentally
viable neutrino mass matrices have been studied in great
detail. As it turned out [15], some of them together with a
successful neutrino sector give interesting predictions and
allow one to calculate the cosmological CP phase in terms
of the neutrino CP phase δ.

Encouraged by these findings, in this paper we aim to
investigate such a construction in detail from the viewpoint
of the leptogenesis. Thus, we start our studies with the
minimal SUSY standard model augmented with two
RHNs, which at high energy scales are strictly degenerate
in mass. The degeneracy is lifted by the renormalization. As
we show, taking into account the charged lepton Yukawa
couplings in the renormalization procedure (where, in a
regime of RHN masses ≲107 GeV,1 the decisive role is
played by the tau lepton’s Yukawa coupling), the nonzero
cosmological lepton asymmetry emerges at the one-loop
level. Moreover, the sufficient baryogenesis is realized even
with RHN masses near the TeV scale and also with low
values of the MSSM parameter tan βð∼1Þ. As we have
mentioned, to make the scenario viable, in Ref. [15] we
have included the singleΔL ¼ 2, d ¼ 5 operator, which we
adopt also in this paper. The inclusion of such terms does
not alter renormalization group (RG) studies, and the
results mentioned above are robust. For demonstrative
purposes we pick up one of the viable models of [15].
That is the concrete neutrino texture zero mass matrix
(referred to as the texture P1), which emerges via the
integration of two (quasi)degenerate RHNs and the single
ΔL ¼ 2, d ¼ 5 operator. The model’s predictive power
allows one to compute the cosmological CP phase in terms
of observed neutrino parameters and CP phases (not
measured yet, but predicted by the model).
Note that an approach, similar to the one we pursue in this

paper, could also work within a non-SUSY framework (i.e.,
within the SM augmented with two degenerate RHNs).
However, since for a solution to the gauge hierarchy problem
the supersymmetry appears to be a well motivated (and
perhaps the best so far) framework, we choose to performour
investigations within the SUSY setup.
The paper is organized as follows. In Sec. II, we first

describe our setup and then, proving the emergence of the
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1These mass values that we consider within our studies avoid
the relic gravitino problem [23,24].
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cosmological CP violation via charged lepton Yukawas at
the one-loop level, give a detailed calculation of CP
violation relevant for the leptogenesis. In Sec. III we
present the neutrino scenario (discussed in Ref. [15]
together with other scenarios), with the prediction of the
CP phase δ and its relation with the cosmological CP
violation. On this scenario we demonstrate that leptonic
asymmetry, induced at quantum level (and computed in
Sec. II), leads to desirable baryon asymmetry via resonant
leptogenesis. Then we present one example of the renor-
malizable UV completion of our model and prove the
robustness of all obtained results. Appendix A includes
details and various aspects of the RG studies. In
Appendix B we investigate the effects of the scalar
components of the RHN superfields in the net baryon
asymmetry.

II. TWO QUASIDEGENERATE RHN
AND COSMOLOGICAL CP

In this section, we first describe our setup and then give a
detailed calculation of CP violation relevant for the
leptogenesis.
Our framework is the MSSM augmented with two right-

handed neutrinos N1 and N2. This extension is enough to
build a consistent neutrino sector accommodating the
neutrino data [1] and also to have a successful leptogenesis
scenario. The relevant lepton superpotential couplings,
which we are starting with, are given by

Wlept ¼ lTYdiag
e echd þ lTYνNhu −

1

2
NTMNN; ð1Þ

where hd and hu are down- and up-type MSSM Higgs
doublet superfields, respectively, and lT ¼ ðl1; l2; l3Þ,
ecT ¼ ðec1; ec2; ec3Þ, NT ¼ ðN1; N2Þ. We work in a basis in
which the charged lepton Yukawa matrix is diagonal and
real,

Ydiag
e ¼ Diagðλe; λμ; λτÞ: ð2Þ

Moreover, we assume that the RHN mass matrix MN is
strictly degenerate at high scale. For the latter we take the
GUT scale MG ≃ 2 × 1016 GeV.2 Therefore, we assume

at μ ¼ MG∶ MN ¼
�
0 1

1 0

�
MðMGÞ: ð3Þ

This form of MN is crucial for our studies. Although it is
interesting and worthwhile to study, we do not attempt here
to justify the form of MN (and of the textures considered

below) by symmetries. Our approach here is rather phe-
nomenological aiming to investigate possibilities, out-
comes, and implications of the textures we consider.
Since (3) at a tree level leads to the mass degeneracy of
the RHNs, it has interesting implications for resonant
leptogenesis [9–11] and also, as we will see below, for
building predictive neutrino scenarios [11,15].
For the leptogenesis scenario two necessary conditions

need to be satisfied. First of all, at the scale μ ¼ MN1;2
the

degeneracy between the masses of N1 and N2 has to be
lifted. And, at the same scale, the neutrino Yukawa matrix
Ŷν—written in the mass eigenstate basis of MN—must be
such that Im½ðŶ†

νŶνÞ12�2 ≠ 0. [These can be seen from
Eq. (40) with a demand ϵ1;2 ≠ 0.] Below we show that both
these are realized by radiative corrections and the needed
effect already arises at the one-loop level, with a dominant
contribution due to the Ye Yukawa couplings (in particular
from λτ) in the RG.

A. Loop induced cosmological CP violation

Radiative corrections are crucial for the cosmological
CP violation. We will start with radiative corrections to the
MN matrix. RG effects cause lifting of the mass degeneracy
and, as we will see, are important also for the phase
misalignment (explained below).
At the GUT scale, theMN has an off-diagonal form with

ðMNÞ11 ¼ ðMNÞ22 ¼ 0 [see Eq. (3)]. However, at low
energies, RG corrections generate these entries. Thus,
we parametrize the matrix MN at scale μ as

MNðμÞ ¼
 
δð1ÞN ðμÞ 1

1 δð2ÞN ðμÞ

!
MðμÞ: ð4Þ

While all entries of the matrix MN run, for our studies the

ratios ðMNÞ11
ðMNÞ12 ¼ δð1ÞN and ðMNÞ22

ðMNÞ12 ¼ δð2ÞN will be relevant (for

which we will write and solve RG equations below). That is
why we have writtenMN in the form given in Eq. (4). With

jδð1;2ÞN j ≪ 1, the M (at scale μ ¼ M) will determine the

masses of RHNs M1 and M2, while δð1;2ÞN will be respon-
sible for their splitting and for complexity inMN (the phase
of the overall factor M does not contribute to the physical
CP). As it will turn out (see below),

δð1ÞN ¼ ðδð2ÞN Þ� ≡ −δN: ð5Þ

Therefore, MN is diagonalized by the transformation

UT
NMNUN ¼MDiag

N ¼DiagðM1;M2Þ;
with UN ¼PNONP0

N;

M1¼ jMjð1− jδN jÞ; M2¼ jMjð1þjδN jÞ; ð6Þ

where

2Degeneracy of MN can be guaranteed by some symmetry at
high energies. For concreteness, we assume this energy interval to
be ≥ MG (although the degeneracy at lower energies can be
considered as well).
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PN ¼ Diagðe−iη=2; eiη=2Þ;

ON ¼ 1ffiffiffi
2

p
�
1 −1
1 1

�
;

P0
N ¼ Diagðe−iϕM=2; ie−iϕM=2Þ;

with η ¼ ArgðδNÞ;
ϕM ¼ ArgðMÞ: ð7Þ

In the N’s mass eigenstate basis, the Dirac-type neutrino
Yukawa matrix will be Ŷν ¼ YνUN . In the CP asymme-
tries, the components ðŶ†

νŶνÞ21 and ðŶ†
νŶνÞ12 appear [see

Eq. (40)]. From (6) and (7) we have

½ðŶ†
νŶνÞ21�2 ¼ −½ðOT

NP
�
NY

†
νYνPNONÞ21�2;

½ðŶ†
νŶνÞ12�2 ¼ −½ðOT

NP
�
NY

†
νYνPNONÞ12�2: ð8Þ

Therefore, we see that the CP violating part should come
from the combination P�

NY
†
νYνPN , which in a matrix form is

P�
NY

†
νYνPN ¼

� ðY†
νYνÞ11 jðY†

νYνÞ12jeiðη−η0Þ
jðY†

νYνÞ21jeiðη0−ηÞ ðY†
νYνÞ22

�
;

with η0 ¼ Arg½ðY†
νYνÞ21�: ð9Þ

We see that the η0 − η difference (mismatch) will govern
the CP asymmetric decays of the RHNs. Without
including the charged lepton Yukawa couplings in the
RG effects we will have η0 ≃ η with a high accuracy. It
was shown in Ref. [21] that by ignoring Ye Yukawas no
CP asymmetry emerges at OðY4

νÞ order and nonzero
contributions start only from OðY6

νÞ terms [22]. Such
corrections are extremely suppressed for Yν ≲ 1=50.
Since in our consideration we are interested in cases
with M1;2 ≲ 107 GeV giving jðYνÞijj < 7 × 10−4 (well
fixed from the neutrino sector and the desired value of
the baryon asymmetry), these effects (i.e., order ∼Y6

ν

corrections) will not have any relevance. In Ref. [11] in
the RG of MN the effect of Ye, coming from two-loop
corrections, was taken into account and showed that
sufficient CP violation can emerge. Below we show that
including Ye in the Yν’s one-loop RG, will induce a
sufficient amount of CP violation. This mainly happens
via λτ Yukawa coupling. Thus, below we give a detailed
investigation of λτ’s effect.
UsingMN’s RG given in Eq. (A3) (of Appendix A 1), for

δð1;2ÞN , which are the ratios ðMNÞ11
ðMNÞ12 and ðMNÞ22

ðMNÞ12 [see para-

metrization in Eq. (4)], we can derive the following RG
equations:

16π2
d
dt

δð1ÞN ¼ 4ðY†
νYνÞ21 þ 2δð1ÞN ½ðY†

νYνÞ11 − ðY†
νYνÞ22�

− 2ðδð1ÞN Þ2ðY†
νYνÞ12 − 2δð1ÞN δð2ÞN ðY†

νYνÞ21
−

1

4π2
ðY†

νYeY
†
eYνÞ21 þ � � � ; ð10Þ

16π2
d
dt

δð2ÞN ¼ 4ðY†
νYνÞ12 þ 2δð2ÞN ½ðY†

νYνÞ22 − ðY†
νYνÞ11�

− 2ðδð2ÞN Þ2ðY†
νYνÞ21 − 2δð1ÞN δð2ÞN ðY†

νYνÞ12
−

1

4π2
ðY†

νYeY
†
eYνÞ12 þ � � � ; ð11Þ

where in the second lines of (10) and (11) are given two-
loop corrections depending on Ye. Dots there stand for
higher order irrelevant terms. From two-loop corrections
we keep only Ye dependent terms. Remaining contribu-
tions are not relevant for us.3 From (10) and (11) we see
that dominant contributions come from the first terms of
the right-hand side (RHS) and from those given in the
second rows. Other terms give contributions of order
OðY4

νÞ or higher and thus will be ignored. At this
approximation we have

δð1ÞN ðtÞ≃ δð2Þ�N ðtÞ≡ −δNðtÞ

≃ −
1

4π2

Z
tG

t
dt

�
Y†
ν

�
1 −

1

16π2
YeY

†
e

�
Yν

�
21

; ð12Þ

where t ¼ ln μ, tG ¼ lnMG, and we have used the

boundary conditions at the GUT scale δð1ÞN ðtGÞ ¼
δð2ÞN ðtGÞ ¼ 0. For evaluation of the integral in (12) we
need to know the scale dependence of Yν and Ye. This is
found in Appendix A 1 by solving the RG equations for
Yν and Ye. Using Eqs. (A5) and (A6), the integral of the
matrix appearing in (12) can be written as

Z
tG

tM

Y†
ν

�
1 −

1

16π2
YeY

†
e

�
Yνdt

≃ κ̄ðMÞY†
νG

0
B@

1 0 0

0 1 0

0 0 r̄τðMÞ

1
CAYνG; ð13Þ

where

r̄τðMÞ¼
R tG
tM κðtÞrτðtÞð1− λ2τ

16π2
ÞdtR tG

tM κðtÞdt ; κ̄ðMÞ¼
Z

tG

tM

κðtÞdt;

ð14Þ

3Omitted terms are either strongly suppressed or do not give
any significant contribution neither to the CP violation nor to the
RHN mass splittings.
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rτðμÞ ¼ η2τðμÞ; κðμÞ ¼ η6t ðμÞη2gνðμÞ; ð15Þ

and we have ignored λe;μ Yukawa couplings. For the
definition of η factors see Eq. (A6). The YνG denote
the corresponding Yukawa matrix at scale μ ¼ MG. On
the other hand, we have

ðY†
νYνÞjμ¼M ≃ κðMÞY†

νG

0
B@

1 0 0

0 1 0

0 0 rτðMÞ

1
CAYνG: ð16Þ

(Derivations are given in Appendix A 1.)
Comparing (13) with (16) we see that the difference in

these matrix structures (besides overall flavor universal RG
factors) are in the RG factors rτðMÞ and r̄τðMÞ. Without the
λτ Yukawa coupling these factors are equal, and there is no
mismatch between the phases η and η0 [defined in Eqs. (7)
and (9)] of these matrices. Nonzero η0 − ηwill be due to the
deviation, which we parametrize as

ξ ¼ r̄τðMÞ
rτðMÞ − 1: ð17Þ

This value can be computed numerically by evaluation of
the appropriate RG factors. However, it is useful to have an
approximate expression for ξ, which is given by

ξ≃
�
λ2τðMÞ
16π2

ln
MG

M
þ 1

3

λ2τðMÞ
ð16π2Þ2 ½3λ

2
t þ 6λ2b þ 10λ2τ

−ð2cae þ caνÞg2a�μ¼M

�
ln
MG

M

�
2
�
1−loop

−
�
λ2τðMÞ
16π2

�
2−loop

;

ð18Þ
where one- and two-loop contributions are indicated. The
derivation of this expression is given in Appendix A 1. As
we see, nonzero ξ is induced already at the one-loop level

[without the two-loop correction of λ2τ
16π2

in Eq. (14)].
However, the inclusion of the two-loop correction can
contribute to ξ by the amount of ∼3%–5% (because of the
lnMG

M factor suppression), and we have included it.
Now we are ready to write down quantities that have

direct relevance for the leptogenesis. From (12), with
definitions introduced above and by obtained relations,
we have

jδNðMÞjeiη

¼ 1

4π2
κ̄ðMÞ
κðMÞ

× ½jðY†
νYνÞ21jeiη0 þ ξjðYνÞ31ðYνÞ32jeiðϕ31−ϕ32Þ�μ¼M;

ð19Þ
where ϕ31 and ϕ32 are phases of the matrix elements ðYνÞ31
and ðYνÞ32, respectively, at scale μ ¼ M. Equation (19)

shows well that in the limit ξ → 0, we have η ¼ η0, while
the mismatch of these two phases are due to ξ ≠ 0. With
ξ ≪ 1, from (19) we derive

η − η0 ≃ ξ
jðYνÞ31ðYνÞ32j
jðY†

νYνÞ21j
sinðϕ31 − ϕ32 − η0Þ: ð20Þ

We stress that the one-loop renormalization of the Yν matrix
plays the leading role in the generation of ξ, i.e., in the CP
violation.4 [This is also demonstrated by Eq. (18).]
The value of jδNðMÞj, which characterizes the mass

splitting between the RHNs, can be computed taking the
absolute value of both sides of (19),

jδNðMÞj ¼ κN
4π2

jðY†
νYνÞ21 þ ξðYνÞ31ðY�

νÞ32jμ¼M ln
MG

M
;

with κN ¼ κ̄ðMÞ
κðMÞ lnMG

M

: ð21Þ

These expressions can be used upon the calculation of the
leptogenesis, which we will do in the next section for one
concrete model of the neutrino mass matrix.

III. PREDICTIVE NEUTRINO TEXTURE
AND BARYON ASYMMETRY

In this section we apply obtained results within the setup
of the couplings (1) augmented by single ΔL ¼ 2, d ¼ 5
operator. As was shown in [15], this could lead to the
successful and predictive neutrino sectors. With the addi-
tion of this d ¼ 5 operator, the results obtained above can
remain intact. We consider one neutrino scenario that
allows us to predict the CP phase δ and relate it with
the cosmological CP violation leading to desirable baryon
asymmetry via resonant leptogenesis. First we discuss the
neutrino sector and then turn to the investigation of the
leptogenesis. At the end, we present one possible renor-
malizable UV completion (giving rise to theΔL ¼ 2, d ¼ 5
operator that we utilize) maintaining all obtained results.

A. P1 neutrino texture: Relating δ
and cosmological CP

In the work of Ref. [15], within the setup of two (quasi)
degenerate RHNs were studied neutrino mass matrices that
emerged from two zero 3 × 2 Yukawa textures in combi-
nation with one d ¼ 5 entry. In this way, all experimentally
viable neutrino mass matrices have been investigated,
which also predicted CP violation and gave promise for
successful leptogenesis. Here, for concreteness we consider
one scenario of the neutrino mass matrix—called in [15]

4Note that since RG equations forMN and Yν in the non-SUSY
case have similar structures (besides some group-theoretical
factors), the ξ would be generated also within the non-SUSY
setup.
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the P1-type texture—and show that it admits having
calculable CP violation.
Thus, we consider the Yukawa matrix with the form

Yν ¼

0
B@

0 0

a2eiα2 b2eiβ2

a3eiα3 b3eiβ3

1
CA

¼

0
B@

eix 0 0

0 eiy 0

0 0 eiz

1
CA
0
B@

0 0

a2 b2
a3 b3eiϕ

1
CA� eiω 0

0 eiρ

�
;

ð22Þ
with

ω ¼ α2 − β2 þ ρ; y ¼ β2 − ρ;

z ¼ α3 − α2 þ β2 − ρ; ϕ ¼ α2 − α3 þ β3 − β2; ð23Þ
where, only one phase ϕ will be relevant for the cosmo-
logical CP asymmetry. The phases x, y, z can be removed
by proper phase redefinitions of the states li and eci . Using
this and the form of MN , given in Eq. (3), via the seesaw
formula we get the following contribution to the neutrino
mass matrix:

Mss
ν ¼ −hh0ui2YνM−1

N YT
ν : ð24Þ

Besides this, we include the d ¼ 5 operator

~d5eix5

M�
l1l2huhu; ð25Þ

where M� and ~d5 are some cutoff scale and dimensionless
coupling, respectively. With proper phase redefinitions
of li states, without loss of any generality, both of these
can be taken real and the phase x5 selected as x5 ¼
ωþ ρ − argðMÞ. The origin of the operator (25) and
consistency of our construction will be discussed in
Sec. III C. Taking into account these and Eq. (24), the
neutrino mass matrix at scale M will have the form

MνðMÞ ¼ −

0
B@

0 d5 0

d5 2a2b2 a3b2 þ a2b3eiϕ

0 a3b2 þ a2b3eiϕ 2a3b3eiϕ

1
CA

×
v2uðMÞ

M · e−iðωþρÞ ; with d5 ¼ ~d5
jMj
M�

; ð26Þ

where in MN we have ignored (1,1) and (2,2) elements,
which are induced at one-loop level and are so suppressed
that they have no impact on light neutrino masses and
mixings. By the renormalization (discussed inAppendixA 2)
for the neutrino mass matrix at scale MZ we obtain

MνðMZÞ ¼

0
B@

0 d5 0

d5 2a2b2 ða3b2 þ a2b3eiϕÞrν3
0 ða3b2 þ a2b3eiϕÞrν3 2a3b3eiϕr2ν3

1
CAm̄; with m̄ ¼ −

rm̄v2uðMZÞ
M · e−iðωþρÞ ; ð27Þ

where the couplings ai, bi, d5, and phases appearing
in (27) are given at scale M. The RG factors rν3 and rm̄
are given in Eqs. (A17) and (A18), respectively. The
neutrino mass matrix (27) is of the P1 type investigated
in details in [15].
Noting that we are working in a basis of a diagonal

charged lepton mass matrix, the neutrino mass matrix can
be related to the lepton mixing matrix U by

Mν ¼ PU�P0Mdiag
ν UþP; ð28Þ

where Mdiag
ν ¼ ðm1; m2; m3Þ and the phase matrices and U

are

P ¼ Diagðeiω1 ; eiω2 ; eiω3Þ;
P0 ¼ Diagð1; eiρ1 ; eiρ2Þ; ð29Þ

U ¼

0
B@

c13c12 c13s12 s13e−iδ

−c23s12 − s23s13c12eiδ c23c12 − s23s13s12eiδ s23c13
s23s12 − c23s13c12eiδ −s23c12 − c23s13s12eiδ c23c13

1
CA: ð30Þ

As was discussed in detail in [15], the texture (27) allows only a normal neutrino mass hierarchy. Using the conditions

Mð1;1Þ
ν ¼ Mð1;3Þ

ν ¼ 0 in Eq. (28), we obtain the following predictions:

m2
3 ¼

Δm2
atm þ Δm2

solc
2
12

1 − s213cot
2
23ð1þ t213Þ2 − t413

; cos ρ1 ¼
m2

3t
4
13 −m2

1c
4
12 −m2

2s
4
12

2m1m2c212s
2
12

; ð31Þ
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δ ¼ arg½m1c212 þm2s212e
iρ1 � − arg½m1 −m2eiρ1 �;

ρ2 ¼ �π − arg½m1c212 þm2s212e
iρ1 � þ 2 arg½m1 −m2eiρ1 �;

ð32Þ

where by definition Δm2
atm ¼ m2

3 −m2
2 and Δm2

sol ¼
m2

2 −m2
1. With the inputs

sin2θ12 ¼ 0.304; sin2θ23 ¼ 0.49; sin2θ13 ¼ 0.0218;

Δm2
atm ¼ 0.002382 eV2; Δm2

sol ¼ 7.5 × 10−5 eV2;

ð33Þ

we obtain the values

m1 ¼ 0.00613 eV; m2 ¼ 0.0106 eV; m3 ¼ 0.0499 eV;

ρ1 ¼ �3.036; δ ¼ �0.378; ρ2 ¼ �2.696: ð34Þ

Notice that besides sin2 θ23 all inputs of Eq. (33) are taken
to be the best fit values [1]. The results are summarized in
Table I.
At the same time, from (28) we have the relations

2a2b2m̄ ¼ e2iω2A22;

2a3b3eiϕm̄r2ν3 ¼ e2iω3A33;

ða3b2 þ a2b3eiϕÞm̄rν3 ¼ eiðω2þω3ÞA23; ð35Þ

with

Aij ¼ U�
i1U

�
j1m1 þ U�

i2U
�
j2m2eiρ1 þ U�

i3U
�
j3m3eiρ2 : ð36Þ

Note that from the neutrino sector all Aij numbers are
determined with the help of zero entries in the matrix of
Eq. (27). With the help of the phases appearing in (22),
without loss of generality we can take ai, bi > 0. With this,
from Eqs. (35) we can express jm̄j and the couplings a3,
b2;3 in terms of a2 and jMj as follows:

jm̄j ¼ v2uðMZÞ
jMj rm̄;

a3 ¼
a2
rν3

���� 1

A22

�
A23 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2

23 −A22A33

q 	����;
b2 ¼

1

a2

jA22j
2jm̄j ; b3 ¼

1

a3

jA33j
2jm̄jr2ν3

: ð37Þ

Also, for the phase ϕ we get the following prediction:

ϕ ¼ Arg

" 
A23ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A22A33

p ∓
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2

23

A22A33

− 1

s !2#
: ð38Þ

Notice that there is a pair of solutions. When for the a3’s
expression in Eq. (37) we are taking the þ sign, in Eq. (38)
we should take the sign −, and vice versa.
From these, using results given in Table I, we find the

numerical value of ϕ,

for δ ¼ þ0.378∶ ϕþ ¼ þ1.287; ϕ− ¼ −1.287;

for δ ¼ −0.378∶ ϕþ ¼ −1.287; ϕ− ¼ þ1.287; ð39Þ

where ϕ’s subscripts correspond to the signs taken in (38).
These and the relations of (37) will be used upon calcu-
lation of the baryon asymmetry, which we do in the next
subsection.

B. Resonant leptogenesis

The CP asymmetries ϵ1 and ϵ2 generated by out-
of-equilibrium decays of the quasidegenerate fermionic
components of N1 and N2 states, respectively, are given
by [17,18]5

ϵ1 ¼
Im½ðŶ†

νŶνÞ21�2
ðŶ†

νŶνÞ11ðŶ†
νŶνÞ22

ðM2
2 −M2

1ÞM1Γ2

ðM2
2 −M2

1Þ2 þM2
1Γ2

2

;

ϵ2 ¼ ϵ1ð1 ↔ 2Þ: ð40Þ

Here M1, M2 (with M2 > M1) are the mass eigenvalues
of the RHN mass matrix. These masses, within our
scenario, are given in (6) with the splitting parameter
given in Eq. (21). The decay widths of fermionic RHNs
are given by Γi ¼ Mi

4π ðŶ†
νŶνÞii. Moreover, the imaginary part

of ½ðŶ†
νŶνÞ21�2 will be computed with the help of (8) and (9)

with the relevant phase given in Eq. (20). Using general
expressions (20) and (21) for the neutrino model discussed
in the previous subsection, we get

TABLE I. Results from the P1-type texture of Eq. (27). Masses are given in eVs.

δ ρ1 ρ2 Works with

NH, sin2 θ23 ¼ 0.49 and best fit values
�0.378 �3.036 �2.696 [of Eq. (33)] for remaining oscillation parameters,

ðm1; m2; m3Þ ¼ ð0.00613; 0.0106; 0.0499Þ, mββ ¼ 0

5In Appendix B we investigate the contribution to the baryon
asymmetry via decays of the scalar components of the RHN
superfields. As we show, these effects are less than 3%.
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η − η0 ≃ −ξ
a2b2
a3b3

sinϕ

ða2b2a3b3
þ cosϕÞ2 þ sin2ϕ

;

jδNðMÞj ¼ κN
4π2

ja2b2 þ a3b3ð1þ ξÞeiϕj lnMG

M
: ð41Þ

With these, since we know the possible values of the phase
ϕ [see Eq. (39)], and with the help of the relations (37) we
can compute ϵ1;2 in terms of jMj and a2. Recalling that the
lepton asymmetry is converted to the baryon asymmetry via
sphaleron processes [25], with the relation nb

s ≃ −1.48 ×
10−3ðκfð1Þϵ1 þ κf

ð2Þϵ2Þ we can compute the baryon asym-
metry. For the efficiency factors κf

ð1;2Þ we will use the
extrapolating expressions [3] [see Eq. (40) in Ref. [3] ],

with κf
ð1Þ and κf

ð2Þ depending on the mass scales ~m1 ¼
v2uðMÞ
M1

ðŶ†
νŶνÞ11 and ~m2 ¼ v2uðMÞ

M2
ðŶ†

νŶνÞ22, respectively.
Within our studies we will consider the RHN masses

≃jMj ≲ 107 GeV. With this, we will not have the relic
gravitino problem [23,24]. For the simplicity, we consider all
SUSY particle masses to be equal to MS < jMj, with MS
identified with the SUSY scale, below which we have just
SM. As it turns out, via the RG factors, the asymmetry also
depends on the top quark mass. Therefore, we will consider
cases given in Table II, where cases of low top quark masses
by 1 − σ deviation are included [i.e., cases ðI−Þ and ðII−Þ].
It is remarkable that the observed baryon asymmetry�

nb
s

�
exp

¼ ð8.65� 0.085Þ × 10−11 ð42Þ

(the recent value reported according to WMAP and Planck
[26]) can be obtained even for low values of the MSSM
parameter tan β ¼ vu

vd
(defined at the SUSY scale μ ¼ MS).

This, for different cases and different values of M, is
demonstrated in Table III. For the calculations we have
used the RG factors found by numerical computations. The
details of this procedure, appropriate boundary and matching
conditions, are given in Appendix A 3.
While Table III deals with cases of the low tan β, in

plots of Fig. 1 we show baryon asymmetries as functions
of a2 (the logs of these values for convenience) for
different values of the parameters MS, M, tan β, and
the phases ϕ of Eq. (39). We see that needed baryon
asymmetry is obtained for a wide range of phenomeno-
logically interesting values of parameters. With the values
of a2 giving the needed values of the baryon asymmetry,
we have also calculated [via relations of Eq. (37)] the
values of a3, b2;3, which also turned out to be sup-
pressed, i.e., a3, b2;3 ≲ a2.

C. Renormalizable UV completion
and consistency check

Upon building the neutrino mass matrix (26), together
with seesaw contribution (24) (emerged via integration of
N1;2 states) we have used the d ¼ 5 operator (25). Here we
present one renormalizable completion of the model, which
gives the latter operator. Also we check the whole con-
struction and show what conditions should be satisfied in
order to have a fully consistent model without affecting
obtained results.
For building a fully renormalizable model, we introduce

two additional RHN states N and N̄ with the following
superpotential couplings:

λl1N hu þ λ̄l2N̄ hu −M�NN̄ : ð43Þ

TABLE III. Baryon asymmetry for various values ofM and for the minimal (allowed) value of tan β. The values of ðnbs Þmax given here
are obtained for all cases of Eq. (39), but for different values of ai, bj. [For phase sign choices see (38), (39), and comments after these
equations.]

Case M[GeV] tan β rν3 rm̄ rvu κN 105 × ξ 1011 × ðnbs Þmax

ðI−Þ 3 × 103 1.63 ≃1 0.8861 0.9713 1.230 5.678 8.573
ðI:1Þ 3 × 103 1.636 ≃1 0.8849 0.9709 1.242 5.729 8.565
ðI:2Þ 104 1.665 ≃1 0.8343 0.953 1.211 5.490 8.564
ðI:3Þ 105 1.72 ≃1 0.7530 0.9218 1.1596 5.0317 8.559
ðI:4Þ 106 1.775 ≃1 0.6883 0.8944 1.118 4.574 8.557
ðI:5Þ 107 1.831 ≃1 0.6369 0.8703 1.0834 4.118 8.565
ðII−Þ 6 × 103 1.608 ≃1 0.8685 0.9677 1.197 5.462 8.557
ðII:1Þ 6 × 103 1.615 ≃1 0.8670 0.9673 1.206 5.515 8.564
ðII:2Þ 104 1.627 ≃1 0.8468 0.9600 1.195 5.416 8.563
ðII:3Þ 105 1.681 ≃1 0.7671 0.9295 1.147 4.968 8.557
ðII:4Þ 106 1.736 ≃1 0.7034 0.9027 1.108 4.523 8.565
ðII:5Þ 107 1.79 ≃1 0.6524 0.8790 1.076 4.072 8.564

TABLE II. Cases with different values of mtðmtÞ and MS.

Case ðI−Þ Case ðIÞ Case ðII−Þ Case ðIIÞ
mtðmtÞ 162.77 GeV 163.48 GeV 162.77 GeV 163.48 GeV
MS 103 GeV 103 GeV 2 × 103 GeV 2 × 103 GeV
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With these and the couplings of (1)–(3), (22), after removing the phases x, y, x, ω, ρ in Yν (by proper redefinition of the
fields) without loss of generality λ̄ andM� can be taken real and argðλÞ ¼ argðm̄Þ. Thus, the full (i.e., “extended”) Yukawa
and RHN matrices will be

Yext
ν ¼

N1 N2 N N̄

l1
l2
l3

0
B@

0 0 λ 0

a2 b2 0 λ̄

a3 b3eiϕ 0 0

1
CA ; Mext

N ¼

N1 N2 N N̄

N1

N2

N

N̄

0
BBB@

0 M 0 0

M 0 0 0

0 0 0 M�
0 0 M� 0

1
CCCA ð44Þ

With these forms, integration of heavy RHN states leads to the neutrino mass matrix

Mν ¼ −v2uYext
ν ðMext

N Þ−1ðYext
ν ÞT; ð45Þ

which, as desired, indeed has the form of (26) with

d5 ¼ jλjλ̄ jMj
M�

: ð46Þ

Furthermore, one should make sure that via loops the couplings λ and λ̄ instead of zeros in the textures of Eq. (44) do not
induce entries which would affect and/or spoil the results of the neutrino sector and leptogenesis. To check this, one can
apply one-loop RGs for the neutrino Yukawas and RHN masses. Namely, in Eqs. (A2) and (3) with the replacements
Yν → Yext

ν , MN → Mext
N we can estimate the one-loop contributions due to the λ, λ̄ couplings.6 Since the structure of Yext

ν

may be altered only by the second term on the RHS of (A2), we will calculate only the contribution due to this type of entry.
By the same reason, for the Mext

N ’s correction, we will focus only on the first term (and on its transpose) on the RHS of
Eq. (A3). Doing so, with an assumption M� > jMj, at scale μ ¼ M� we obtain

δYext
ν ≈ − 3

16π2

0
B@

0 0 λjλj2 0

a2λ̄2 b2λ̄2 0 λ̄ða22 þ b22 þ λ̄2Þ
× × 0 λ̄ða2a3 þ b2b3eiϕÞ

1
CA lnMG

M�
;

δMext
N ≈ − 1

8π2

0
BBB@

× × a2λ̄M� b2λ̄M

× × b2λ̄M� a2λ̄M

a2λ̄M� b2λ̄M� 0 ðjλj2 þ λ̄2ÞM�
b2λ̄M a2λ̄M ðjλj2 þ λ̄2ÞM� 0

1
CCCA lnMG

M�
; ð47Þ

FIG. 1. Left: Curves for case (I) (see Table II), with M ¼ 104 GeV, δ ¼ þ0.378, ϕ ¼ ϕþ ¼ þ1.287, and with different values of
tan β. Right: Curves for case (II) (see Table II), with tan β ¼ 15 GeV, δ ¼ −0.378, ϕ ¼ ϕþ ¼ −1.287, and with different values of M.
Gray horizontal bands correspond to the experimental value of the baryon asymmetry within the 1 − σ range given in Eq. (42).

6Since (as we have seen) the couplings ai, bi are small, their corrections in the RG of Yext
ν do not harm anything.
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where we have taken into account that at scale μ ¼ MG the
couplings Yext

ν ,Mext
N have forms given in Eq. (44). In (47) ×

stands for the corrections which do not depend on λ and/or
λ̄. Comparing (47) with (44) we see that the structure of Yext

ν

is not changed and δYext
ν can be negligible for λ; λ̄≲ λτ=10.

In fact, from the neutrino sector, we have

d5jm̄j ¼ jA12j≃ 1.07 × 10−11 GeV ð48Þ

[see Eqs. (27) and (36) for definitions]. With this, on the
other hand, we have

d5 ≈ 4.15 × 10−12
�

M
104 GeV

��
1

sin β

�
2
�
0.85
rm̄

�
: ð49Þ

With this andM� ¼ ð3 − 10ÞM, the (46) can be satisfied by
the selection

jλj ≈ λ̄ ¼
�
d5

M�
jMj
�

1=2

≃ ð3.5 − 6.4Þ × 10−6
�

M
104 GeV

�
1=2
�

1

sin β

��
0.85
rm̄

�
1=2

:

ð50Þ

This in turn gives

for M ≲ 107 GeV; tan β > 1.6 ⇒ jλj ≈ λ̄ < 3 × 10−4:

ð51Þ

We checked and made sure that, for such small values of λ,
λ̄, the corrections δYext

ν and δMext
N are affecting neither the

neutrino sector nor the leptogenesis. We have also checked
that two-loop corrections are very suppressed too and can
be safely ignored. The selection M� ¼ ð3 − 10ÞM is
convenient because the states N , N̄ (having the mass
M�) decouple earlier than the states N1;2 and will not
contribute to the leptogenesis process. With all these we
conclude that the results obtained in previous subsections
stay robust.
Closing this section, we comment (as was also noted in

Sec. II), that throughout our studies we have not attempted
to explain and justify texture zeros by symmetries. Our
approach here was to consider such textures that give a
predictive and consistent scenario allowing us to calculate
cosmological CP violation. The forms of the matrices in
Eqs. (3), (22), and/or (44) with specific coupling selections
are such that their structures and the model’s predictive
power (as was demonstrated) are not ruined by radiative
corrections. For our purposes this was already satisfactory.
A more fundamental explanation should be pursued
elsewhere.
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APPENDIX A: RENORMALIZATION
GROUP STUDIES

1. Running of Yν, Ye and MN matrices and
approximation for ξ

RG equations for the charged lepton and neutrino Dirac
Yukawa matrices, appearing in the superpotential of
Eq. (1), at one-loop order have the forms [27,28]

16π2
d
dt

Ye ¼ 3YeY
†
eYe þ YνY

†
νYe

þ Ye½trð3Y†
dYd þ Y†

eYeÞ − caeg2a�;

cae ¼
�
9

5
; 3; 0

�
; ðA1Þ

16π2
d
dt

Yν ¼ YeY
†
eYν þ 3YνY

†
νYν

þ Yν½trð3Y†
uYu þ Y†

νYνÞ − caνg2a�;

caν ¼
�
3

5
; 3; 0

�
: ðA2Þ

ga ¼ ðg1; g2; g3Þ denote gauge couplings of Uð1ÞY;
SUð2Þw, and SUð3Þc gauge groups, respectively. Their
one-loop RG have forms 16π2 d

dt ga ¼ bag3a, with ba ¼
ð33
5
; 1;−3Þ, where the hypercharge of Uð1ÞY is taken in

SUð5Þ normalization.
The RG for the RHN mass matrix at the two-loop level

has the form [28]

16π2
d
dt

MN ¼ 2MNY
†
νYν −

1

8π2
MN ½Y†

νYeY
†
eYν

þ Y†
νYνY

†
νYν þ Y†

νYνtrð3Y†
uYu þ Y†

νYνÞ�

þ 1

8π2
MNY

†
νYν

�
3

5
g21 þ 3g22

�
þ ðtransposeÞ:

ðA3Þ

Let us start with renormalization of the Yν’s matrix
elements. Ignoring in Eq. (A2) the OðY3

νÞ order entries
(which are very small because within our studies
jðYνÞijj≲ 10−4), and from charged fermion Yukawas keep-
ing λτ and λt, we will have
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16π2
d
dt

lnðYνÞij ≃ δi3λ
2
τ þ 3λ2t − caνg2a: ðA4Þ

This gives the solution

ðYνÞijðμÞ ¼ ðYνGÞijðητðμÞÞδi3η3t ðμÞηgνðμÞ; ðA5Þ

where YνG denotes the Yukawa matrix at scale MG and the
scale dependent RG factors are given by

ηt;b;τðμÞ ¼ exp

�
−

1

16π2

Z
tG

t
λ2t;b;τðt0Þdt0

�
;

ηaðμÞ ¼ exp

�
1

16π2

Z
tG

t
g2aðt0Þdt0

�
;

ηgνðμÞ ¼ exp

�
1

16π2

Z
tG

t
caνg2aðt0Þdt0

�
¼ η3=51 ðμÞη32ðμÞ;

with t ¼ ln μ; t0 ¼ ln μ0; tG ¼ lnMG:

ðA6Þ

From these, for the combination Y†
νYν at scale μ ¼ M we

get the expression given in Eq. (16).
On the other hand, for the RHNmass splitting and for the

phase mismatch [depending on ξ defined in Eq. (17)], the
integrals/factors of Eqs. (13), (14), (15), and (16) will be

relevant. For obtaining approximate analytical results [for

the expression of r̄τðMÞ
rτðMÞ] we will use expansions. Namely, we

introduce the notation

K ¼ κrτ

�
1 −

λ2τ
16π2

�
ðA7Þ

and make a Taylor expansion of KðtÞ and κðtÞ near the
point t ¼ tM, in powers of ðt − tMÞ. As it turns out, this will
allow us to calculate ξ ¼ r̄τðMÞ

rτðMÞ − 1 in powers of λ2τ
16π2

(and

possibly in powers of other couplings appearing in higher
degrees—together with appropriate 1

16π2
factors). We have

KðtÞ ¼ KðtMÞ þK0ðtMÞðt − tMÞ þ
1

2
K00ðtMÞðt − tMÞ2

þ � � � ;

κðtÞ ¼ κðtMÞ þ κ0ðtMÞðt − tMÞ þ
1

2
κ00ðtMÞðt − tMÞ2 þ � � � ;

ðA8Þ

where primes denote derivatives with respect to t. Plugging
these in Eq. (14) and performing integration we will get

r̄τðMÞ ¼ KðtMÞ
κðtMÞ

�
1þ 1

2

K0ðtMÞ
KðtMÞ

ðtG − tMÞ þ
1

6

K00ðtMÞ
KðtMÞ

ðtG − tMÞ2 þ � � �
�

×

�
1þ 1

2

κ0ðtMÞ
κðtMÞ

ðtG − tMÞ þ
1

6

κ00ðtMÞ
κðtMÞ

ðtG − tMÞ2 þ � � �
�

−1
: ðA9Þ

Using in (A9) expression (A7) for K and keeping in expansion terms up to ðt − tMÞ2, we get

r̄τðMÞ
rτðMÞ − 1≃ 1

2

r0τ
rτ

����
t¼tM

ðtG − tMÞ þ
1

6

�
r00τ
rτ

þ 1

2

κ0r0τ
κrτ

�
t¼tM

ðtG − tMÞ2 −
λ2τðMÞ
16π2

: ðA10Þ

As we see, the flavor universal RG factor κ drops out at first
order of ðtG − tMÞ. The last term in Eq. (A10) is due to the
two-loop correction in the RG of MN [in particular the
MNY

†
νYeY

†
eYν term of the RHS of Eq. (A3)]. The remaining

terms are due to one-loop corrections, proving that cos-
mological CP violation emerges already at the one-loop
level.
Using in (A10) expressions for the scale factors given in

Eqs. (A6) and (15), using the RG for λτ [easily obtained

from Eq. (A1)], and keeping terms up to the order
of 1

ð16π2Þ2, we obtain the expression for ξ given in

Eq. (18).

2. Neutrino mass matrix renormalization

In the energy interval MS ≤ μ < M (where MS is
the SUSY scale) the RG for the neutrino mass matrix
is [28,29]

MS ≤ μ < M∶ 16π2
d
dt

Mν ¼ YeY
†
eMν þMνY�

eYT
e þMν½6trðY†

uYuÞ − 2caνg2a�: ðA11Þ

Below the MS scale, effectively we have SM and the RG is [29]
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μ < MS∶ 16π2
d
dt

Mν ¼
1

2
YeY

†
eMν þ

1

2
MνY�

eYT
e þMν½trð6Y†

uYu þ 6Y†
dYd þ 2Y†

eYeÞ − 3g22 þ 4λ�; ðA12Þ

where λ is the SM Higgs self-coupling [emerging from the
self-interaction term λðH†HÞ2 of the SM Higgs doubletH].
We will also need the RG evaluation of the VEVs vu and v,
which in appropriate energy intervals are given by [30–33]

μ > MS∶ 16π2
d
dt

vu ¼ vu

�
−3λ2t þ

1

4
caνg2a

�
; ðA13Þ

μ < MS∶ 16π2
d
dt

v ¼ v

�
−3λ2t − 3λ2b − λ2τ þ

3

4
caνg2a

�
:

ðA14Þ

At scale M, after decoupling of the RHN states, the
neutrino mass matrix is formed with the form

Mij
ν ðMÞ ¼

0
B@

× × ×

× × ×

× × ×

1
CA v2uðMÞ

M
; ðA15Þ

where × stands for entries depending on Yukawa cou-
plings. After renormalization, keeping λτ, λt, and ga in the
above RGs, for the neutrino mass matrix at scale MZ we
obtain

Mij
ν ðMZÞ ¼

0
B@

× × ð×Þ · rν3
× × ð×Þ · rν3

ð×Þ · rν3 ð×Þ · rν3 ð×Þ · r2ν3

1
CAm̄;

with m̄ ¼ v2ðMZÞs2β
M

rm̄; ðA16Þ

where × denotes entries determined at scaleM correspond-
ing to those in (A15), and RG factors are given by

rν3 ¼
�
ητðtZÞ
ητðtMS

Þ
�

1=2
�
ητðtMS

Þ
ητðtMÞ

�
; ðA17Þ

rm̄ ¼ η4λ

�
ηtðtmt

Þ
ηtðtMÞ

�
12
�
ηbðtZÞ
ηbðtMS

Þ
�

12
�
ητðtZÞ
ητðtMS

Þ
�

4
�
η2ðtZÞ
η2ðtMÞ

�15
2

×
�
η3=51 ðtZÞη2=51 ðtMS

Þ
η1ðtMÞ

�3
2

; ðA18Þ

where

ηλ ¼ exp

�
−

1

16π2

Z
tMS

tmh

λðtÞdt
�
; ðA19Þ

and remaining η factors are defined in Eq. (A6).

We will also need the RG factor relating the VEV vuðMÞ
to the vðMZÞ. Using Eqs. (A13) and (A14) we obtain

rvu ¼
vuðMÞ
vðMZÞsβ

¼
�
ηtðtmt

Þ
ηtðtMÞ

�
3
�
ηbðtZÞ
ηbðtMS

Þ
�

3
�
ητðtZÞ
ητðtMS

Þ
�

×

�
η32ðtZÞη−22 ðtMS

Þ
η2ðtMÞ

�3
4
�
η31ðtZÞη−21 ðtMS

Þ
η1ðtMÞ

� 3
20

: ðA20Þ

3. Boundary and matching conditions

For finding the RG factors, appearing in the baryon
asymmetry, we numerically solve renormalization group
equations from the scaleMZ up to theMG ≃ 2 × 1016 GeV
scale. For simplicity, for all SUSY particle masses we take
the common mass scale MS. Thus, in the energy interval
MZ ≤ μ < MS, the Standard Model RGs for MS coupling
constants are used. However, in the intervalMS ≤ μ ≤ MG,
since we are dealing with the SUSY, the RGs for the DR
couplings are applied. Below we give boundary and
matching conditions for the gauge couplings g1;2;3, for
Yukawa constant λt;b;τ and for the Higgs self-coupling λ.

a. Gauge couplings

We choose our inputs for the MS gauge couplings at
scale MZ as follows:

α−11 ðMZÞ ¼
3

5
c2wα−1emðMZÞ þ

3

5
c2w

8

9π
ln

mt

MZ
;

α−12 ðMZÞ ¼ s2wα−1emðMZÞ þ s2w
8

9π
ln

mt

MZ
;

α−13 ðMZÞ ¼ α−1s ðMZÞ þ
1

3π
ln

mt

MZ
; ðA21Þ

where logarithmic terms ln mt
MZ

are due to the top quark
threshold correction [32,34]. Taking αsðMZÞ ¼ 0.1185,
α−1emðMZÞ ¼ 127.934, and s2w ¼ 0.2313, from (A21) we
obtain

α−11 ðMZÞ ¼ 59.0057þ 8c2w
15π

ln
mt

MZ
;

α−12 ðMZÞ ¼ 29.5911þ 8s2w
9π

ln
mt

MZ
;

α−13 ðMZÞ ¼ 8.4388þ 1

3π
ln

mt

MZ
: ðA22Þ

With these inputs we run g1;2;3 via the two-loop RGs from
MZ up to the scale MS.
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At scale μ ¼ MS we use the matching conditions
between D̄R −MS gauge couplings [35,36],

at μ ¼ MS∶
1

αD̄R1
¼ 1

αMS
1

;
1

αD̄R2
¼ 1

αMS
2

−
1

6π
;

1

αD̄R3
¼ 1

αMS
3

−
1

4π
: ðA23Þ

Above the scale MS we apply two-loop SUSY RG
equations in the D̄R scheme [27].

b. Yukawa couplings and λ

At the scaleMS all SUSY states decouple, and we are left
with the Standard Model with one Higgs doublet. Thus, the
third family Yukawa couplings and the self-coupling are
determined as

λtðmtÞ ¼
mtðmtÞ
vðmtÞ

; λbðMZÞ ¼
2.89 GeV
vðMZÞ

;

λτðMZÞ ¼
1.746 GeV
vðMZÞ

;

λðmhÞ ¼
1

4

�
mh

vðmhÞ
�

2

; with vðMZÞ ¼ 174.1 GeV;

mh ¼ 125.15 GeV; ðA24Þ

where mtðmtÞ is the top quark running mass related to the
pole mass as

mtðmtÞ ¼ ptM
pole
t : ðA25Þ

The factor pt is pt ≃ 1=1.0603 [37], while the recent
measured value of the top’s pole mass is [38]

Mpole
t ¼ ð173.34� 0.76Þ GeV: ðA26Þ

We take the values of (A24) as boundary conditions for
solving two-loop RG equations [32,39] for λt;b;τ and λ from
the MZ scale up to the scale MS.
Above the MS scale, we have MSSM states including

two doublets hu and hd, which couple with up-type quarks
and down-type quarks and charged leptons, respectively.
Thus, the third family Yukawa couplings at MS are
≈λtðMSÞ=sβ; λbðMSÞ=cβ and λτðMSÞ=cβ, with sβ ≡ sin β;
cβ ≡ cos β. Above the scale MS we apply two-loop
SUSY RG equations in the D̄R scheme [27]. Thus, at μ ¼
MS we use the matching conditions between D̄R −MS
couplings,

at μ ¼ MS∶ λD̄Rt ≃ λMS
t

sβ

�
1þ 1

16π2

�
g21
120

þ 3g22
8

−
4g23
3

��
;

λD̄Rb ≃ λMS
b

cβ

�
1þ 1

16π2

�
13g21
120

þ 3g22
8

−
4g23
3

��
;

λD̄Rτ ≃ λMS
τ

cβ

�
1þ 1

16π2

�
−
9g21
40

þ 3g22
8

��
; ðA27Þ

where expressions in brackets on the RHS of the relations
are due to the D̄R −MS conversions [36]. With Eq. (A27)’s
matchings we run corresponding couplings from the scale
MS up to the MG scale. Throughout the paper, above the
mass scaleMS without using the superscript D̄R we assume
the couplings determined in this scheme.

APPENDIX B: CONTRIBUTION TO THE
BARYON ASYMMETRY FROM ~N DECAYS

The impact of the decays of the right-handed
sneutrinos—the scalar partners of the RHNs—was esti-
mated in [11] for specific textures. Here we give a more
detailed investigation and give results for the neutrino
model discussed in Sec. III A.
We will need to derive masses of the RH sneutrinos and

their couplings to the components of the superfields l and
hu. For this purpose, we should include the soft breaking
terms

Vν
SB ¼ ~lTAν

~Nhu −
1

2
~NTBN

~N þ H:c:þ ~l†m2
~l
~lþ ~N†m2

~N
~N;

ðB1Þ

which, together with the superpotential couplings, will be
relevant. As it turns out, Aν and BN couplings will be
relevant. Therefore, first we will study their renormaliza-
tion. After this, we investigate masses of the physical RH
sneutrinos and their couplings to the lepton superfield
components. These, at the end, will be used for the
calculation of the contribution in the baryon asymmetry
via the RH sneutrino decay processes.

1. Renormalization of soft Aν and BN terms

From general expressions of Ref. [27] we can derive RGs
for Aν and BN , which at the one-loop level have the forms

16π2
d
dt
Aν ¼ YeY

†
eAνþ 2ÂeY

†
eYνþ 5YνY

†
νAν

þAν½trð3Y†
uYuþY†

νYνÞþ 4Y†
νYν− caνg2a�

þ 2Yν½trð3Y†
uÂuþY†

νAνÞþ caνg2aM ~Va
�; ðB2Þ

16π2
d
dt

BN ¼ 2BNY
†
νYν þ 2YT

νY�
νBN þ 4MNY

†
νAν

þ 4AT
νY�

νMN: ðB3Þ
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Note that, applying these expressions for the third gen-
eration states, we can get expressions of [40] [see Eqs. (17)
and (55) of this reference, which uses slightly different
definitions for the couplings]. These results are also
compatible with those given in [41] (with replacements
Y → YT , A → AT).
We parametrize the matrix BN as

BN ¼ ðMNÞ12mB

 
δð1ÞBN 1

1 δð2ÞBN

!
; ðB4Þ

where all entries ðMNÞ12; mB, δ
ð1;2Þ
BN run and their RGs can

be derived from the RG equations given above. For the
matrix Aν, let us use the parametrization

Aν ¼ mAaν; ðB5Þ

where mA is a constant and the elements of the aν matrix
run. The matrix Âe is

Âe ¼ DiagðAe; Aμ; AτÞ ðB6Þ

(similar to the structure of the Ye Yukawa matrix). We will
use the following boundary conditions:

at μ ¼ MG∶ aν ¼ Yν; δð1ÞBN ¼ δð2ÞBN ¼ 0;

Âe ¼ mADiagðλe; λμ; λτÞ;
Âu ¼ mAYuG; Âd ¼ mAYdG; ðB7Þ

which assume proportionality (alignment) of the soft SUSY
breaking terms with the corresponding superpotential
couplings.
With (B4), (B5), using (B3) we have

16π2
d
dt

δð1ÞBN ≃ 4ðY†
νYνÞ21 þ 8

mA

mB
ðY†

νaνÞ21;

16π2
d
dt

δð2ÞBN ≃ 4ðY†
νYνÞ12 þ 8

mA

mB
ðY†

νaνÞ12: ðB8Þ

Because of RG effects, the alignment between Yν

and aν (which holds at the GUT scale) is violated. In
particular,

16π2
d
dt

�ðaνÞij
ðYνÞij

�
≃ 2δi3

λτAτ

mA
þ 2

mA
ð3λtAt þ caνg2aM ~Va

Þ;

ðB9Þ

where on the RHS we kept third family couplings, gauge
couplings, and gaugino masses. From this we derive

aν ≃
0
B@

1þ ϵ0 0 0

0 1þ ϵ0 0

0 0 1þ ϵ0 þ ϵ

1
CAYν

with ϵ0 ¼ −
1

8π2mA

Z
tG

t
dtð3λtAt þ caνg2aM ~Va

Þ;

ϵ ¼ −
1

8π2mA

Z
tG

t
dtλτAτ: ðB10Þ

Using (B10) in Eqs. (B8) and (B4) we obtain7

at μ ¼ M∶BN ¼ mBM

�−αδNð1þ ϵ̄1Þ 1

1 −αδ�Nð1þ ϵ̄2Þ

�
;

α ¼ 1þ 2
mA

mB
ðB11Þ

and

ϵ̄1 ¼
1

4π2αδN

Z
tG

tM

dt

�
Y†
ν

�
α

16π2
YeY

†
e þ 2

mA

mB
ϵ̂

�
Yν

�
21

;

ϵ̄2 ¼
1

4π2αδ�N

Z
tG

tM

dt

�
Y†
ν

�
α�

16π2
YeY

†
e þ 2

m�
A

m�
B
ϵ̂�
�
Yν

��

21

;

with ϵ̂ ¼ Diagðϵ0; ϵ0; ϵ0 þ ϵÞ: ðB12Þ

The form of BN given in Eq. (B11) will be needed to
construct the sneutrino mass matrix, which we will
do below.

2. Sneutrino mass matrix and its diagonalization

For calculating scalar RHN masses, from (B1) we keep
only the BN term. We also include the mass2 term
~N†M†

NMN
~N coming from the superpotential. Therefore,

we consider the following quadratic potential:

Vð2Þ
~N

¼ ~N†M†
NMN

~N −
�
1

2
~NTBN

~N þ H:c:

�
: ðB13Þ

With the transformation of the N superfields N ¼ UNN0
[according to Eq. (6), the UN diagonalizes the fermionic
RHN mass matrix], we obtain

Vð2Þ
~N

¼ ~N0†ðMDiag
N Þ2 ~N0 −

�
1

2
~N0TUT

NBNUN
~N0 þ H:c:

�
:

ðB14Þ

On the other hand, from (B11) we have

7Since in the β functions we are ignoring Yν couplings (due to
their smallness), for all practical purposes the mB can be treated
as a constant.
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UT
NBNUN ¼ mBjMj

�
1 − ~αjδN j i

2
αjδN jðϵ̄1 − ϵ̄2Þ

i
2
αjδN jðϵ̄1 − ϵ̄2Þ 1þ ~αjδN j

�
; with ~α ¼ α

�
1þ ϵ̄1 þ ϵ̄2

2

�
: ðB15Þ

With further phase redefinition

~N0 ¼ ~P1
~N00; ~P1 ¼ Diagðe−i ~ω1=2; e−i ~ω2=2Þ; with ~ω1;2 ¼ Arg½mBð1 ∓ ~αjδN jÞ�; ðB16Þ

and by going to the real scalar components

~N00
1 ¼

1ffiffiffi
2

p ð ~NR
1 þ i ~NI

1Þ; ~N00
2 ¼

1ffiffiffi
2

p ð ~NR
2 þ i ~NI

2Þ; ðB17Þ

we will have

−
�
1

2
~N0TUT

NBNUN
~N0 þ H:c:

�
¼ −

jMmBj
2

j1 − ~αjδN jjðð ~NR
1 Þ2 − ð ~NI

1Þ2Þ

−
jMmBj

2
j1þ ~αjδN jjðð ~NR

2 Þ2 − ð ~NI
2Þ2Þ − jMjReðmBδϵÞð ~NR

1
~NR
2 − ~NI

1
~NI
2Þ þ jMjImðmBδϵÞð ~NI

1
~NR
2 þ ~NR

1
~NI
2Þ

with δϵ ¼ iαjδN j
ϵ̄1 − ϵ̄2

2
e−ið ~ω1þ ~ω2Þ=2: ðB18Þ

From (B14) and (B18) we obtain the mass2 terms,

Vð2Þ
~N

¼ 1

2
~n0TM2

~n ~n
0; with ~n0T ¼ ð ~NR

1 ; ~N
I
1; ~N

R
2 ; ~N

I
2Þ ðB19Þ

and

M2
~n ¼

0
BBBBB@

ð ~M0
1Þ2 0 −jMjReðmBδϵÞ jMjImðmBδϵÞ
0 ð ~M0

2Þ2 jMjImðmBδϵÞ jMjReðmBδϵÞ
−jMjReðmBδϵÞ jMjImðmBδϵÞ ð ~M0

3Þ2 0

jMjImðmBδϵÞ jMjReðmBδϵÞ 0 ð ~M0
4Þ2

1
CCCCCA; ðB20Þ

where

ð ~M0
1Þ2 ¼ jMj2ð1 − jδN jÞ2 − jmBMjj1 − ~αjδN jj; ð ~M0

2Þ2 ¼ jMj2ð1 − jδN jÞ2 þ jmBMjj1 − ~αjδN jj;
ð ~M0

3Þ2 ¼ jMj2ð1þ jδN jÞ2 − jmBMjj1þ ~αjδN jj; ð ~M0
4Þ2 ¼ jMj2ð1þ jδN jÞ2 þ jmBMjj1þ ~αjδN jj: ðB21Þ

The coupling of ~n0 states with the fermions emerges
from the F term of the superpotential lTYνNhu. Following
the transformations, indicated above, we will have

ðlTYνNhuÞF → ~hulTYν
~N

¼ e−i ~ω2=2 ~hulTYνUNðρueið ~ω2− ~ω1Þ=2; ρdÞ ~n0;

with ρu ¼
1ffiffiffi
2

p
�
1 i

0 0

�
;

ρd ¼
1ffiffiffi
2

p
�
0 0

1 i

�
: ðB22Þ

Performing the diagonalization of the matrix (B20)
by the transformation VT

~nM
2
~nV ~n ¼ ðMDiag

~n Þ2, ~n0 ¼ V ~n ~n,
the fermion coupling with the scalar ~n eigenstates
will be

~hulTYF ~n with YF ¼ Yν
~V0V ~n;

~V0 ¼ UNðρue−i ~ω1=2; ρde−i ~ω2=2Þ: ðB23Þ

The coupling with the slepton ~l is derived from the
interaction term hu~l

TðYνM�
N
~N� − Aν

~NÞ. Going from ~N
to the ~n states, we obtain
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hu~l
TYB ~n with YB ¼ ðYνM�

N
~V0� − Aν

~V0ÞV ~n: ðB24Þ

For given values of M;mB, and mA, with the help of
Eqs. (B20), (B23), and (B24), we will have coupling
matrices YF, YB and all other quantities needed for
calculation of the baryon asymmetry created via the decays
of the ~n1;2;3;4 states.

3. Asymmetry via ~n decays

Now we are ready to discuss the contribution to the net
baryon asymmetry from the out of equilibrium resonant
decays of the right-handed sneutrinos (RHSN). As we have
seen, with SUSY breaking terms, the masses of RHSN’s
differ from their fermionic partners’ masses. Thus we have
mass-eigenstate RHSN’s ~ni¼1;2;3;4 with masses ~Mi¼1;2;3;4,
respectively. With the SUSY scaleMS smaller (at least by a
factor of 3) than the scale M, the states ~ni remain nearly
degenerate.
For the resonant ~n decays we will apply the resummed

effective amplitude technique [17]. Effective amplitudes for
the real ~ni decay, say into the lepton lα (α ¼ 1, 2, 3) and
antilepton l̄α, respectively, are given by [17]

Ŝαi ¼ Sαi −
X
j

Sαj
Πjið ~MiÞð1 − δijÞ

~M2
i − ~M2

j þ Πjjð ~MiÞ
;

ˆ̄Sαi ¼ S�αi −
X
j

S�αj
Πjið ~MiÞð1 − δijÞ

~M2
i − ~M2

j þ Πjjð ~MiÞ
; ðB25Þ

where Sαi is a tree level amplitude and Πij is a two point
Green function’s (polarization operator of ~ni − ~nj) absorp-
tive part. The CP asymmetry is then given by

ϵsci ¼
P

αðjŜαij2 − j ˆ̄Sαij2ÞP
αðjŜαij2 þ j ˆ̄Sαij2Þ

: ðB26Þ

With YF and YB given by Eq. (B23) and (B24) we can
calculate the polarization diagram’s (with external legs ~ni
and ~nj) absorptive part Πij, which at the one-loop level is
given by

ΠijðpÞ ¼
i
8π

ðp2Y†
FYF þ p2YT

FY
�
F þ Y†

BYB þ YT
BY

�
BÞij;
ðB27Þ

where p denotes the external momentum in the diagram
and upon evaluation of (B26), for Π we should use (B27)
with p ¼ ~Mi.
In an unbroken SUSY limit, neglecting finite temper-

ature effects (T → 0), the ~N decay does not produce lepton
asymmetry due to the following reason. The decays of ~N in
the fermion and scalar channels are, respectively, ~N → l ~hu
and ~N → ~l�h�u. Since the rates of these processes are the

same due to SUSY (at T ¼ 0), the lepton asymmetries
created from these decays cancel each other. With T ≠ 0,
the cancellation does not take place and one has

~ϵi ¼ ϵið ~ni → l ~huÞΔBF; ðB28Þ

with a temperature dependent factor ΔBF given in [42].8

Therefore, we just need to compute ϵið ~ni → l ~huÞ, which is
the asymmetry created by ~ni decays in two fermions. Thus,
in (B25) we take Sαi ¼ ðYFÞαi and calculate ϵið ~ni → l ~huÞ
with (B26). The baryon asymmetry created from the lepton
asymmetry due to ~n decays is

~nb
s
≃ −8.46 × 10−4

X4
i¼1

~ϵi
ΔBF

ηi

¼ −8.46 × 10−4
X4
i¼1

ϵið ~ni → l ~huÞηi; ðB29Þ

where an effective number of degrees of freedom (including
two RHN superfields) g� ¼ 228.75 was used. ηi are

efficiency factors that depend on ~mi ≃ ðv sin βÞ2
M 2ðY†

FYFÞii
and take into account temperature effects by integrating the
Boltzmann equations [42].
In Table IV we give results for the neutrino model

discussed in Sec. III A. These are obtained for the SUSY
particle masses ¼ MS and for the different values of pairs
ðmA;mBÞ (see also the caption of Table IV). Upon the

TABLE IV. Values of Δnb
s ¼ ~nb

s —contributions to the baryon
asymmetry via decays of the right-handed sneutrinos for cases
given in Table III [i.e., for values of a2 giving ðnbs Þmax given in
Table III]. These values correspond to the phases δ ¼ −0.378 and
ϕþ ¼ −1.287.

ðmA;mBÞ
¼ ð100i; 500Þ GeV

ðmA;mBÞ
¼ ð500; 1000Þ GeV

Case 104 × a2 1011 × ~nb
s

104 × a2 1011 × ~nb
s

ðI−Þ 0.016 0.25 0.016 0.24
ðI:1Þ 0.0159785 0.25 0.0159785 0.25
ðI:2Þ 0.0299 0.24 0.0299 0.24
ðI:3Þ 0.0987 0.24 0.0987 0.24
ðI:4Þ 0.3237 0.24 0.3237 0.24
ðI:5Þ 1.05655 0.23 1.05655 0.23
ðII−Þ 0.0229 0.25 0.0229 0.24
ðII:1Þ 0.0229 0.25 0.0229 0.24
ðII:2Þ 0.02986 0.24 0.02986 0.24
ðII:3Þ 0.09835 0.24 0.09835 0.24
ðII:4Þ 0.322 0.24 0.322 0.24
ðII:5Þ 1.05 0.23 1.05 0.23

8This expression is valid with alignment Aν ¼ mAYν, which
we are assuming at the GUT scale, and thus Eq. (B28) can be well
applicable for our estimates.
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calculations, with obtained values of ~mi, according to
Ref. [42] we picked up the corresponding values of ηi
and used them in (B29). From Table IV we see that a
contribution to the net baryon asymmetry from the RHS
decays is suppressed ~nb

nb
< 3 × 10−2, i.e., is less than 3%.

From Table IV we also see that the complexity of mA
practically does not change the results. This happens
because the mA in the YB coupling matrix appears in front
of the Yν [see Eq. (B24)], which is strongly suppressed.
From the structure of (B20), one can also make sure that
the complexity of mB will not affect the results. We have

checked this by varying the phases of mB. For instance, for
case (I.1) and mA ¼ 500 GeV, mB ¼ 1000 × feiπ=3;
eiπ=2; e2iπ=3g GeV we have obtained ~nb

s ≃ 0.24 × 10−11.

Suppression of ~nb
s will always happen for the value of

jmBj in the range of a few 100 GeV to a few TeV, because
the mass degeneracy of ~ni states is lifted in such a way that
resonant enhancement of ~nb

s does not happen. (This is unlike
the case of soft leptogenesis [42], which requires
jmBj≲ 10 MeV. Considering the latter value unnatural,
we did not pursue such possibilities within our studies.)
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