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Scalar tops in the supersymmetric model affect the potential of the standard model-like Higgs at the
quantum level. In light of the equivalence theorem, the deviation of the potential from the standard model
can be traced by longitudinal gauge bosons. In this work, high-energy longitudinal W boson scattering is
studied in a TeV-scale scalar top scenario. Oð1–10%Þ deviation from the standard model prediction in
the differential cross section is found, depending on whether the observed Higgs mass is explained only by
scalar tops or by additional contributions at a higher scale.
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I. INTRODUCTION

The recent discovery of the Higgs boson confirmed the
standard model (SM) of particle physics [1,2]. Since then,
Higgs properties have been measured at the LHC and found
to be consistent with the standard model prediction [3];
besides, there has been no sign beyond the standard model
in the experiment. It is widely believed, however, that the
standard model is not the ultimate theory. Superstring theory
is one of candidates for the “theory of everything.” It requires
supersymmetry (SUSY) due to consistency, which gives
rise to lots of phenomenological consequences beyond the
standard model. For example, it provides a candidate for
dark matter, and three gauge coupling constants are unified
at the grand unification scale. Supersymmetry affects the
Higgs sector, too. In SUSY, another Higgs doublet must be
introduced for the phenomenologically acceptable Higgs
mechanism to work. In the supersymmetric Higgs sector,
the electroweak symmetry breaking (EWSB) is induced by
renormalization flow of parameters in the Higgs sector,
which is a solution to the origin of the EWSB since in the
SM it is induced by the ad hoc tachyonic Higgs mass term.
In spite of such a drastic extension, the Higgs sector in the
supersymmetric model reduces to the one in the SM below
the electroweak scale when superpartners are much heavier
than the electroweak scale. Considering the current status,
i.e., no sign of a new particle so far, this might be the case,
and then it might be difficult to observe a clue of super-
symmetry even in future collider experiments.
In such a circumstance, it is worth recalling that the

observed 125 GeV Higgs mass cannot be explained in
SUSY at tree level. It is explained by scalar top (“stop”)
loop contribution, for example, in the minimal supersym-
metric standard model (MSSM) [4–9]. This fact indicates
that the stop has an impact on the SM Higgs potential at
the quantum level, which is similar to the Higgs sector in
classical scale-invariant model. In a simple classical scale-
invariant model, (a) SM singlet scalar(s) is (are) introduced.
They affect the Higgs potential at the quantum level, which
induces the EWSB radiatively. In this framework, the

singlet loop determines the curvature of the Higgs potential
around the minimum, i.e., the Higgs mass. Although Higgs
properties, such as mass, production, and decay rates at
collider experiments, are almost consistent with the SM
values, the Higgs self-couplings are predicted to signifi-
cantly deviate from the SM ones [10–12]. This means that
Higgs potential is the same locally around the minimum but
not in a global picture. Such an effect is imprinted in
fictitious bosons in the Higgs doublet, which are absorbed
into longitudinal polarization of the gauge bosons. While
the measurement of the Higgs self-couplings is one of
main goals of the next-generation lepton collider, e.g., the
International Linear Collider (ILC), the deviation from the
SM in the Higgs sector can be also probed at the LHC in
the gauge boson scattering process. It is pointed out in
Ref. [13] that the differential cross sections of longitudinal
gauge boson scattering processes Wþ

LW
þ
L → Wþ

LW
þ
L and

Wþ
LW

−
L → Wþ

LW
−
L are changed by more than Oð10%Þ in

the model, which is described by off-shell Higgs. Namely,
the discrepancy between the classical scale-invariant model
and the SM can be found in off-shell Higgs in the
propagator, for which the longitudinal gauge boson scatter-
ing is a good probe.
In the supersymmetric model, stops are expected to play

a role similar to the singlet scalars. In this paper, we analyze
the longitudinal gauge boson scattering in the framework
of the supersymmetric model. Following the analysis in
Ref. [13], we formulate the leading-order amplitudes of
the processes and discuss the deviation from the standard
model prediction numerically.
In the study, we consider stops with a mass of less than a

few TeV. Such a light stop scenario is motivated by the
naturalness argument, and part of parameter space of the
scenario has already been excluded by the direct search
at the LHC. In Ref. [14], scalar top pair production is
analyzed in both a simplified model and phenomenologi-
cally tempered SUSY models in conserved R-parity using
Run 1 data. The updated studies at

ffiffiffi
s

p ¼ 13 TeV [15–18]
have shown that a lighter stop mass region m~t1 ≲ 850 GeV
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is excluded at 95% C.L. when the lightest neutralino
mass m~χ0

1
is less than about 300 GeV. On the other hand,

m~t1 ≳400GeV and m~χ0
1
≳300GeV (with m~t1 > m~χ0

1
) is still

allowed. Another possibility is R-parity violation. Without
R-parity, the lightest neutralino decays to the standard
model particles, and thus the above analysis cannot be
applied. In the R-parity-violated scenario, where especially
LiLjEc

k or LiQjDc
k types with light flavor indices exist, the

stop mass below 1 TeV is excluded [19,20]. On the other
hand, in Uc

iD
c
jD

c
k-type R-parity violation, a stop lighter

than 1 TeV has not been excluded [21,22]. Thus, various
possibilities have yet to be probed for the light stop scenario.
The naturalness-inspired light stop scenario in the minimal
supersymmetric standard model will be searched at the LHC
with more data (see, e.g., Refs. [23–25] for recent studies).
The electroweak precision test and future lepton collider
may be other powerful options for the light stop search [26].
We show that high-energy longitudinal gauge boson scat-
tering is another tool for the indirect search of the TeV-scale
stop. We note that the present work focuses on the rather
theoretical study of longitudinal W boson scattering. To
discuss the discovery potential at collider experiments,
one needs full simulation of the process, for example,
pp → WWjj, which is not covered in this paper. It is
known that the observation of high-energy (over TeV)
longitudinal gauge boson scattering would be challenging
even in Run 2 at the LHC. We will discuss the issues in the
last section, along with future prospects.

II. LIGHT SCALAR TOP SCENARIO

In this paper, we discuss two types of scenarios regarding
the origin of the Higgs mass in the supersymmetric model:
(a) Higgs mass is explained in the MSSM particle

contents.
(b) Other contributions besides the MSSM particles make

the observed Higgs mass.
We assume that the other contributions to the Higgs
mass are provided in a higher scale than stop mass, e.g.,
heavy vectorlike matters for scenario (b) (see, for example,
Refs. [27–37]). To be concrete, we consider mass spectra
m~t ≪ ~m for both cases. Here, m~t and ~m are the stop mass
scale (defined later) and the mass scale of the rest of
superparticles, respectively. It is similar to the so-called
split supersymmetry model discussed in Ref. [38]. In split
supersymmetry, gauginos are Oð1–10 TeVÞ, and the other
superparticles are much heavier. In the present discussion,
we consider that stops (and the left-handed sbottom) are
also around the TeV scale. Just to keep the grand unified
theory (GUT) multiplet structure, we assume that the right-
handed stau has TeV mass,1 which does not affect the

following analysis. Namely, our discussion comprises the
SM-like Higgs with the scalar top, and it is independent of
the details of the other sector. In Appendix, we also discuss
the m~t ∼ ~m case for reference, which is also useful for an
analytic check of the later calculation. In this paper, we do
not argue the naturalness in the Higgs sector but focus on
the consequence of a TeV-scale stop in the gauge boson
scattering.
To define the relevant parameters for the Higgs mass,

we give the MSSM superpotential along with soft SUSY
breaking terms,

WMSSM ¼ λtQ3 ·HutcR þ μHHu ·Hd þ � � � ; ð1Þ

Lsoft ¼ Atλt ~Q3 ·Hu~t�R −m2
Lj ~Q3j2 −m2

Rj~tRj2 þ � � � ; ð2Þ

where Q3 ¼ ðtL; bLÞT , tcR, Hu ¼ ðHþ
u ; H0

uÞT , and Hd ¼
ðH0

d; H
−
d ÞT are chiral superfields of the third-generation

left-handed quark doublet, right-handed quark singlet
(tilded fields are their superpartners), up-type Higgs dou-
blet, and down-type Higgs doublet, respectively, and
A · B≡ ATϵB (ϵ ¼ iσ2). An ellipsis indicates irrelevant
terms in our following discussion. We assume that all
parameters are real for simplicity. In the supersymmetric
model, the stop loop contribution has a significant impact
on the SM Higgs mass. In our study, we adopt the
renormalization group (RG) method to determine the
Higgs mass [8]. In the reference, the matching conditions
at the scale μ≃ μ~t ∼m~t are given by

λSMH ðμ~tÞ ¼ λSM
0

H ðμ~tÞ þ
NCðySM0

t ðμ~tÞÞ4
ð4πÞ2

�
− log

�
μ2~t
m2

~t

�

þ X2
t

m2
~t

�
1 −

X2
t

12m2
~t

��
; ð3Þ

ySMt ðμ~tÞ ¼ ySM
0

t ðμ~tÞ; ð4Þ

where λSMH (ySMt ) and λSM
0

H (ySM
0

t ) are the Higgs quartic
coupling (top Yukawa coupling) in the energy regions
μ < m~t and m~t ≤ μð< ~mÞ, respectively. NC ¼ 3, m~t ¼ffiffiffiffiffiffiffiffiffiffiffiffiffim~t1m~t2
p (m~t1 , m~t2 are stop masses), and Xt ¼
At þ μH cot β (tan β ¼ hH0

ui=hH0
di). λSMH must coincide

with the Higgs quartic coupling in the SM. In Eq. (3),
the second term on the right-hand side is the threshold
correction by integrating out stops. In the numerical
analysis, we solve RG equations for the gauge coupling
constants, top Yukawa coupling, and Higgs quartic cou-
pling. [In the numerical study, we will use more accurate
expression for the condition (3). See the later discussion.]
For scenario (a), we need to determine Xt for a given mL;R

to obtain the observed Higgs mass. Thus, we solve the
RG equations in the region mt ≤ μ where mt is the top
mass. We refer to Refs. [39,40] for mt ≤ μ ≤ μ~t and

1For example, gauge coupling unification is kept at the level
of 0.7–1% for ~m ¼ 106–12 GeV and m~t ¼ 1 TeV in one-loop
calculation.
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μ~t ≤ μ ≤ μSUSYð∼ ~mÞ, respectively. The RG equations
for μSUSY ≤ μ are well known, e.g., see Ref. [41].
Here, matching conditions at μ≃ μSUSY, λSM

0
H ðμSUSYÞ ¼

1
8
g2ZðμSUSYÞcos22β, and ySM

0
t ðμSUSYÞ ¼ λtðμSUSYÞ sin β

[g2Z ¼ g02 þ g2 where g0 and g are the gauge coupling
constants of Uð1ÞY and SUð2ÞL, respectively] should be
used. (The solutions in this region are unnecessary for the
computation of the scattering amplitudes. We use them for
a check of the GUT unification.) We have checked that the
obtained Higgs mass is consistent with the results by using
the FeynHiggs package [42]; i.e., it agrees within about
2 (6) GeV in the Xt < 0 ð>0Þ region. This accuracy suffices
for leading-order analysis of longitudinal gauge boson
scattering discussed below. On the other hand, for scenario
(b), assuming an additional contribution to the Higgs
quartic coupling at high energy, such as by vectorlike
matters, we only need to solve the RG equations in μ ≤ μ~t
in the SM particle contents. In the later analysis, we will
take μ~t ¼ m~t and μSUSY ¼ ~m.
Note that Eq. (3) corresponds to leading-order compu-

tation in the order counting method shown in Ref. [13].
In the literature, an auxiliary expansion parameter ξ is
introduced to define the leading-order term for each
physical quantity. Following their analysis, we assign

λSM;SM0
H → ξ2λSM;SM0

H ; ySM;SM0
t → ξ1=2ySM;SM0

t ;

g0 → ξg0; g → ξg: ð5Þ

In this assignment, any physical quantities, e.g., P, can
be given as P ¼ ξn

P∞
i¼0 piξ

i in perturbative expansion.
Then, we define p0 as the leading order. Getting back to
Eq. (3), both first and second terms in the right-hand side
are counted as ξ2, which means that not only the first term
but also the second term is the leading order. Thus, we
regard it as the leading-order matching condition. In
Eq. (5), we have additionally assigned the ξ counting for
g0 and g for consistency, which is discussed later [see
Eqs. (10) and (11)]. With this assignment, we have
neglected terms such as g2λSMH and g4 in Eq. (3), which
are ξ4. In the following discussion, we use this method to
compute the scattering amplitudes at the leading order.
Before performing the actual calculation, let us estimate

the scattering amplitude. As pointed out in Ref. [13], the
deviation from the SM in the amplitude high-energy gauge
boson scattering is written in terms of the off-shell region
of the Higgs propagator. Although the model is different,
scalar tops are expected to play a role similar to that of
the singlet scalars in the reference. Then, the deviation
from the SM at the leading-order calculation is roughly
estimated as

ΔA ∼
Ncy4t
ð4πÞ2

�
log

�
p2

m2
~t

�
þO

�
X2
t

p2

��
; ð6Þ

for jp2j ≫ m2
Z (mZ is the Z boson mass), where yt ∼ ySMt ∼

ySM
0

t , and p is the typical momentum of the scattering
process. The logarithmic term, which is from divergent stop
loop diagrams, is the dominant part for jp2j ≫ m2

~t , X
2
t , and

it can be understood in terms of the RG flow of the Higgs
quartic coupling. However, as emphasized in Ref. [13],
detailed kinematics, such as energy dependence or angular
distribution, of the scattering process cannot be described
merely in RG computation. In addition, the second term
of the bracket, which cannot be taken into account by RG
computation, may also be comparable to the logarithmic
term when jp2j ∼m2

~t , X
2
t . Our main goal is to quantitatively

show the behavior of the gauge boson scattering amplitudes
in the existence of scalar tops in the SUSY model.

III. NAMBU-GOLDSTONE BOSON SCATTERING

A. Equivalence theorem

Since we are interested in high-energy longitudinal gauge
boson scattering, the equivalence theorem can be applied in
our calculation. The equivalence theorem tells us that the
high-energy longitudinal gauge boson (W�

L , ZL) corresponds
to Nambu-Goldstone (NG) boson (G�, G0). First, we will
check the validity of the equivalence theorem quantitatively.
To this end, we compare the differential cross section in
center-of-mass frame for the processes Wþ

LW
�
L → Wþ

LW
�
L

andGþG� → GþG� in the SM. The results are summarized
in Table I. Here, we use the tree-level analytic formulas given
in Ref. [13] and take the same input parameters, i.e., mW ¼
80.385 GeV (W boson mass), mZ ¼ 91.1876 GeV, mh ¼
125.03 GeV [43,44], and g ¼ 0.65178. θ is the scattering
angle. The deviations between GþGþ and Wþ

LW
þ
L

(cos θ ¼ 0) are 14%, 4.9%, 1.2%, 0.19%, and 0.047%
for center-of-mass energy

ffiffiffi
s

p ¼ 0.6 1, 2, 5, and 10 TeV,
respectively. On the other hand, for WþW− (GþG−)
scattering, the deviations are 21%, 10%, 2.5%, 0.40%,
and 0.10% in the same

ffiffiffi
s

p
but for cos θ ¼ 0.5. It is seen

that the deviation gets smaller for larger
ffiffiffi
s

p
as expected. In

TABLE I. Differential cross section for Wþ
LW

þ
L → Wþ

LW
þ
L

and GþGþ → GþGþ (upper) and Wþ
LW

þ
L → Wþ

LW
þ
L and

GþG− → GþG− (lower).

Wþ
LW

þ
L vs. GþGþ (cos θ ¼ 0Þffiffiffi

s
p

[TeV] 0.6 1 2 5 10

½dσ=d cos θ�GþGþ [pb] 9.571 3.446 0.8614 0.1378 0.03446
½dσ=d cos θ�Wþ

LW
þ
L
[pb] 8.361 3.286 0.8513 0.1376 0.03444

Wþ
LW

−
L vs. GþG− (cos θ ¼ 0.5Þffiffiffi

s
p

[TeV] 0.6 1 2 5 10

½dσ=d cos θ�GþG− [pb] 1.509 0.5431 0.1358 0.02173 0.005431
½dσ=d cos θ�Wþ

LW
−
L
[pb] 1.913 0.5974 0.1392 0.02181 0.005437
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the backward region, on the other hand, the differential cross
section is suppressed due to a cancellation in the tree-level
amplitude. In such a region, the other one-loop contributions
besides (scalar) top and bottom, i.e., electroweak corrections,
including the Sudakov logarithm [45,46], become numeri-
cally important [47]. It is discussed in Ref. [47] that the finite
decay width of W bosons must be taken into account by
using the complex mass scheme [48] or considering the
actual decay chains of W bosons [49] for consistent
calculation. Since those issues are beyond the scope of
the present study, we discard backward region.2

In the later numerical analysis, we discuss the differential
cross section in the SM and the supersymmetric model at
the level of Oð1–10%Þ. Thus, to substitute the NG boson
scattering for longitudinal W boson scattering at less than
about 0.1%, we will mainly consider

ffiffiffi
s

p
≥ 2 TeV. Note

that the number of events where the W boson system has
the invariant mass over 2 TeV is expected to be limited even
in Run 2 at the LHC. As mentioned in the Introduction, we
try to show a potential of WW scattering for the study of
beyond the SM in a long-term period, considering in the
future a high-energy frontier experiment, such as the Future
Circular Collider.

B. Scattering amplitudes

In this subsection, we will calculate theGþG� → GþG�
scattering amplitude. The interaction terms which are
relevant for the scattering processes in our current
setup are

L ¼ −λSM0
H jGþG−j2 − ySM

0
t Xtð ~b�L~tRG− þ ~bL~t�RG

þÞ

−
�
ðySM0

t Þ2 − 1

2
g2Z

�
−
1

2
þ 2

3
sin2θW

�
cos2β

�
j ~bLj2jGþj2

−
�
ðySM0

t Þ2 þ 1

2
g2Z

2

3
sin2θW cos2β

�
j~tRj2jGþj2; ð7Þ

where the couplings are defined in Eqs. (3) and (4) and θW
is the Weinberg angle. In the following calculation, we take
MS scheme in dimensional regularization and use LoopTools

[50] for the numerical study.

Let us discuss GþGþ → GþGþ scattering first. The
scattering amplitudes in the supersymmetric model and
the SM are given by the form

AGþGþ ¼ Atree
GþGþ þAt-b

GþGþ þA~t- ~b
GþGþ ; ð8Þ

ASM
GþGþ ¼ ASM;tree

GþGþ þASM;t-b
GþGþ ; ð9Þ

where “tree,” “t-b,” and “~t- ~b” indicate the tree-level
amplitude, top-bottom loop amplitude, and stop-sbottom
loop amplitude, respectively, which are given by

Atree
GþGþ ¼ −4λSM0

H −
g2Z
2

�
t
u
þ u

t
þ 1

�
; ð10Þ

ASM;tree
GþGþ ¼ −4λSMH −

g2Z
2

�
t
u
þ u

t
þ 1

�
; ð11Þ

At-b
GþGþ ¼ −

2NcðySM0
t Þ4

ð4πÞ2 ½B0ðt; m2
t ; m2

t Þ þ B0ðu;m2
t ; m2

t Þ�;

ð12Þ

ASM;t-b
GþGþ ¼ −

2NcðySMt Þ4
ð4πÞ2 ½B0ðt; m2

t ; m2
t Þ þ B0ðu;m2

t ; m2
t Þ�;

ð13Þ

where t¼ðp1−k1Þ2, u¼ðp1−k2Þ2 [pi and ki (i, j ¼ 1, 2)
are momenta of incident and scattered particles, respec-
tively], and B0 is the loop function defined in Eq. (B.5) in
Ref. [13] without 1=ϵ̄. The couplings are renormalized
ones, and their μ dependence is implicit. Here, we have

taken the leading terms in the jtj; juj ≫ m2
Z limit. A~t- ~b

GþGþ

consists of three types of diagrams, circle, triangle, and box
types, which are shown in Fig. 1. We can derive them
straightforwardly as

A~t- ~b
GþGþ ¼ A~t- ~b;cir

GþGþ þA~t- ~b;tri
GþGþ þA~t- ~b;box

GþGþ ; ð14Þ

with

A~t- ~b;cir
GþGþ ¼ NCðySM0

t Þ4
ð4πÞ2 ½s4θtB0ðt; m2

~t1
; m2

~t1
Þ þ c4θtB0ðt; m2

~t2
; m2

~t2
Þ þ 2s2θtc

2
θt
B0ðt; m2

~t1
; m2

~t2
Þ þ B0ðt; m2

~bL
; m2

~bL
Þ� þ ðt → u termÞ;

ð15Þ

A~t- ~b;tri
GþGþ ¼ 2NCðySM0

t Þ4X2
t

ð4πÞ2 ½s4θtC0ð0; t; 0; m2
~bL
; m2

~t1
; m2

~t1
Þ þ c4θtC0ð0; t; 0; m2

~bL
; m2

~t2
; m2

~t2
Þ þ 2s2θt c

2
θt
C0ð0; t; 0; m2

~bL
; m2

~t1
; m2

~t2
Þ

þ s2θtC0ð0; t; 0; m2
~t1
; m2

~bL
; m2

~bL
Þ þ c2θtC0ð0; t; 0; m2

~t2
; m2

~bL
; m2

~bL
Þ� þ ðt → u termÞ; ð16Þ

2Here, note that we do not insist that the forward region is effective for our study. As we will see later, it is dominated by γ and Z boson
exchange diagrams and not so efficient for seeing the deviation from the SM. (Central or semicentral regions are more promising.)

KOJI ISHIWATA and YUKI YONEKURA PHYSICAL REVIEW D 96, 015009 (2017)

015009-4



A~t- ~b;box
GþGþ ¼ 2NCðySM0

t Þ4X4
t

ð4πÞ2 ½s4θtD0ð0; 0; 0; 0; u; t; m2
~bL
; m2

~t1
; m2

~bL
;m2

~t1
Þ þ c4θtD0ð0; 0; 0; 0; u; t; m2

~bL
; m2

~t2
; m2

~bL
; m2

~t2
Þ

þ 2s2θtc
2
θt
D0ð0; 0; 0; 0; u; t; m2

~bL
; m2

~t1
; m2

~bL
; m2

~t2
Þ�: ð17Þ

Loop functions C0 andD0 are those defined in Ref. [50].
m ~bL

is the left-handed sbottom mass. Since we consider that
the right-handed sbottom mass is much larger than the
third-generation left-handed squark mass, the lighter sbot-
tom is mostly composed of bL; thus, m ~bL

≃mL. θt is the

mixing angle in stop sector defined as ð~t1; ~t2ÞT ¼ Zð~tL; ~tRÞT
with orthogonal matrix Z11 ¼ cos θt ≡ cθt , Z12 ¼ sin θt ≡
sθt . To be consistent with ξ expansion analysis, we have
omitted terms such as ðySM0

t Þ2g2Z and g4Z in Eq. (15), which

are Oðξ3Þ and Oðξ4Þ, respectively, in ξ expansion. We note
that the explicit μ dependence coming from the B0 function
is canceled at the leading order by the RG flow of λSMH
(λSM

0
H ). Since our goal is to compute the deviation at leading

order in ξ expansion, we take μ ¼ m~t in the amplitude
hereafter.
Another scattering amplitude for the process GþG− →

GþG− can be obtained by replacing the Mandelstam
variable u by s.
Before going to the numerical analysis, let us check low-

energy and high-energy limits. In the low-energy limit, the
amplitudes AGþGþ and AGþG− should coincide with those
in the SM. To see this, we define ΔAGþG� :

ΔAGþG� ¼ AGþG� −ASM
GþG� : ð18Þ

Then, using the matching conditions (3) and (4), they are
simply given by

ΔAGþG� ¼ A~t- ~b
GþG� þ 4NCðySMt ðm~tÞÞ4

ð4πÞ2
X2
t

m2
~t

�
1 −

X2
t

12m2
~t

�
:

ð19Þ

In the low-energy limit, s; jtj; juj ≪ m2
~t (but s; jtj; juj ≫

m2
Z), and taking m~t1 ≃m~t2 ≃mL ≃m~t, the stop-sbottom

loop contribution behaves as

A~t- ~b;cir
GþG� →

4NCðySM0
t ðμÞÞ4

ð4πÞ2 log

�
μ2

m2
~t

�����
μ¼m~t

; ð20Þ

A~t- ~b;tri
GþG� →

8NCðySM0
t ðμÞÞ4X2

t

ð4πÞ2
�
−

1

2m2
~t

�����
μ¼m~t

; ð21Þ

A~t- ~b;box
GþG� →

2NCðySM0
t ðμÞÞ4X4

t

ð4πÞ2
�

1

6m4
~t

�����
μ¼m~t

; ð22Þ

which leads to

A~t- ~b
GþG� → −

4NCðySMt ðm~tÞÞ4
ð4πÞ2

�
X2
t

m2
~t

�
1 −

X2
t

12m2
~t

��
: ð23Þ

Thus, ΔAGþG− → 0, which means that the amplitude
asymptotically approaches the SM one in the low-energy
limit as expected.
In numerical calculation, m~t1 ≃m~t2 ≃m~t is not always

satisfied. Therefore, in the later analysis, we use the
following expressions instead of Eqs. (19) and (3):

FIG. 1. Stop-sbottom loop diagrams which induce GþGþ
scattering. Time flows upward, and “crossed” means crossed
diagram for final-state bosons. Circle-type, triangle-type, and

crossed box-type diagrams correspond toA~t- ~b;cir
GþGþ ,A

~t- ~b;tri
GþGþ ,A

~t- ~b;box
GþGþ

in Eq. (14), respectively.
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ΔAGþG� ¼ A~t- ~b
GþG� −A~t- ~b

GþG�js→0; ð24Þ

λSMH ðμ~tÞ ¼ λSM
0

H ðμ~tÞ −
1

4
A~t- ~b

GþG�js→0: ð25Þ

In the high-energy limit s; jtj; juj ≫ m~t; jXtj, on the other hand,

A~t- ~b
GþGþ →

4NCðySM0
t ðm~tÞÞ4

ð4πÞ2
�
log

�
m2

~tffiffiffiffiffi
tu

p
�
− 2þm2

~t

t

�
log

m2
~t

−t
− 1

�
þm2

~t

u

�
log

m2
~t

−u
− 1

�
þ X2

t

2t
log2

�
m2

~t

−t

�
þ X2

t

2u
log2

�
m2

~t

−u

��

þO
�
m4

~t ; X
4
t

jtj2; juj2
�
; ð26Þ

A~t- ~b
GþG− →

2NCðySM0
t ðm~tÞÞ4

ð4πÞ2
�
log

�
m2

~tffiffiffiffiffiffiffi
−st

p
�
− 2þm2

~t

s

�
log

m2
~t

s
− 1

�
þm2

~t

t

�
log

m2
~t

−t
− 1

�
−
iπ
2

�
1 − 2

m2
~t

s

�

þ X2
t

2s

�
log2

�
m2

~t

s

�
− π2 þ 2iπ log

�
m2

~t

s

�	
þ X2

t

2t
log2

�
m2

~t

−t

��
þO

�
m4

~t ; X
4
t

s2; jtj2
�
: ð27Þ

The first line on the right-hand side comes from circle
diagram, which agrees with the native estimation (6) and
can be understood in terms of the RG flow of the Higgs
quartic coupling. Meanwhile, the others are derived in the
explicit calculation of Feynman diagrams, which cannot
be described by the RG equations and are necessary
ingredients for the numerical analysis of the scattering
processes.

IV. NUMERICAL RESULTS

Now, we are ready to give the numerical result. To this
end, we use the quantity

ΔGþG� ¼ jAGþG�j2 − jASM
GþG�j2

jASM
GþG�j2 ; ð28Þ

which corresponds to the deviation from the SM for the
differential cross section.
Figure 2 shows the result for the GþGþ process as a

function of
ffiffiffi
s

p
for the fixed scattering angle, cos θ ¼ 0.

We take mL ¼ mR ¼ 0.5, 1, and 2 TeV (left) and mL ¼
2mR ¼ 1 and 2 TeV (right) with Xt ¼ 0.5mL at μ ¼ m~t,
which corresponds to scenario (b) discussed in Sec. II.
Roughly speaking, the left (right) panel covers the situation
of the degenerate (split) mass spectrum in the stop sector.

FIG. 2. Deviation from the SM for the GþGþ scattering process, defined in Eq. (28), as a function of center-of- mass energy
ffiffiffi
s

p
.

The scattering angles are taken as cos θ ¼ 0. (Left) mL ¼ mR ¼ 0.5 (red dotted), 1 (purple dashed), and 2 (blue dot-dashed) TeV with
Xt ¼ 0.5mL at μ ¼ m~t. In Xfit

t (purple solid) line, Xt ¼ 1.82 TeV, which gives the observed Higgs mass for mL ¼ mR ¼ 1 TeV, is
taken. (Right) mL ¼ 2mR ¼ 1 (red dotted) and 2 (purple dashed) TeV with Xt ¼ 0.5mL at μ ¼ m~t. In Xfit

t (red solid) line,
Xt ¼ 1.45 TeV, which gives the observed Higgs mass, is taken.
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For scenario (a), the results for mL ¼ mR ¼ 1 TeV with
Xt ¼ Xfit

t ¼ 1.82 TeV (left) and mL ¼ 2mR ¼ 1 TeV with
Xt ¼ Xfit

t ¼ 1.45 TeV (right) are given. Here, we omit
another larger value of jXtj to give the observed Higgs
mass since it would not be phenomenologically acceptable

due to the vacuum instability bound Xt=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

~t1
þm2

~t2

q
≲ ffiffiffi

3
p

[51] (see also the earlier analysis to give the bound

Xt=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

~t1
þm2

~t2

q
≲ ffiffiffi

7
p

[52].)3

It is seen that the deviation increases monotonically asffiffiffi
s

p
gets large for fixed mL;R and Xt. It is attributed to the

logarithmic term [first term of Eq. (26)], which originates
in the stop-sbottom loop and can be understood by RG
running of the Higgs quartic coupling.4 A smaller mL;R

gives a larger deviation. For example, ΔGþGþ ¼ 16 (28)%,
7 (15)%, and 2 (6)% for

ffiffiffi
s

p ¼ 5 (10) TeV for mL;R ¼ 0.5,
1, and 2 TeV with Xt ¼ 0.5mL, respectively. This is
because the logðm2

~t =
ffiffiffiffiffi
tu

p Þ term, which is dominant in

A~t− ~b
GþGþ [see Eq. (26)], contributes constructively in the

total amplitude for
ffiffiffi
s

p
> m~t. It is true for the split mass

spectrum (right panel).
When Xt ¼ Xfit

t , on the other hand, ΔGþGþ gets smaller
compared to the result with the samemL;R but Xt ¼ 0.5mL.
To understand the behavior, we plot ΔGþGþ as a function of
Xt for various

ffiffiffi
s

p
in Fig. 3 for mL ¼ mR ¼ 1 TeV (left)

and mL ¼ 2mR ¼ 1 TeV (right). It is found that ΔGþGþ

decreases as Xt increases for Xt ≲ Xfit
t , which can be

understood from Eqs. (24) [or (19)] and (26). The second
term on the right-hand side of Eq. (24) is positive and

destructively interferes with A~t- ~b
GþGþ for Xt ≲ Xfit

t ð∼m~tÞ.
For larger jcos θj, the deviation gets smaller since Z

and γ exchange terms which are proportional to 1=u or 1=t
dominate the scattering amplitude. For example, when
cos θ ¼ 0.5, ΔGþGþ ¼ 11ð18Þ%, 4.8(10)%, and 2(4)%
for

ffiffiffi
s

p ¼ 5ð10Þ TeV mL ¼ mR ¼ 0.5, 1, and 2 TeV with
Xt ¼ 0.5mL, respectively.
GþG− scattering has similar behavior except for a bump,

which corresponds to a resonance at
ffiffiffi
s

p ≃ 2m~t in Fig. 4.
This bump is due to the discontinuity of the first derivative
of B0ðq2; m2

1; m
2
2Þ with respect to q2 at q2 ≃ ðm1 þm2Þ2.

For
ffiffiffi
s

p ≲ 2m~t, the stop-sbottom loop (dominated by
circle diagrams) is positive, which constructively interferes
with tree plus top-bottom loop contributions. In the
region

ffiffiffi
s

p ≳ 2m~t, on the other hand, ΔGþG− monotonically
decreases. This is because the dominant term
logðm2

~t =
ffiffiffiffiffiffiffi
−st

p Þ in Eq. (27) is negative, which is destructive
in the total amplitude at the high-energy range. For
example, ΔGþG− ¼ −29 ð−42Þ%, −11 ð−25Þ%, and 6
ð−9Þ% for

ffiffiffi
s

p ¼ 5ð10Þ TeV, and cos θ ¼ 0.5 for
mL ¼ mR ¼ 0.5, 1, and 2 TeV with Xt ¼ 0.5mL, respec-
tively (left panel). Qualitatively, the same behavior is seen
for the split mass case (right panel). Regarding Xt depend-
ence, it is seen that jΔGþG− j gets smaller for Xt ¼ Xfit

t

similarly to the GþGþ case. Figure 5 clarifies the behavior.
It is found that jΔGþG− j decreases in the Xt ≲m~t region,
which is attributed to the second term on the right-hand side
of Eq. (24) as explained in the GþGþ case.
Thus, in both the GþGþ and GþG− scattering processes,

it would be difficult to observe the deviation from the SM in

FIG. 3. Xt and
ffiffiffi
s

p
dependence of the amplitude for GþGþ process. mL ¼ mR ¼ 1 TeV (left) and mL ¼ 2mR ¼ 1 TeV (right)

are taken. Line contents are
ffiffiffi
s

p ¼ 2 (green dot-dashed), 4 (blue dashed), 8 (orange dotted), and 16 TeV (purple solid). Locations of Xfit
t

are also indicated.

3We have checked that in this region of Xt the ρ parameter is
within the 2σ bound of the observed value Δρ ¼ ð4.2� 2.7Þ ×
10−4 [53] based on Refs. [23,54–56]. It is also confirmed that
Higgs-gluon-gluon coupling is within 25% [57] of the SM value
referring to Refs. [58,59].

4The calculation is valid in a much higher
ffiffiffi
s

p
value, and a

larger deviation is given in the energy range. However, it might be
unnecessary information for a realistic (future) collider search;
thus, we have omitted it.
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the parameter space jXtj ∼m~t, especially Xt ≃ Xfit
t ,

since ΔGþG� is a few percent. In other words, scenario
(a) is like a “blind spot” for the TeV-scale stop search in the
longitudinal W boson scattering processes. In scenario (b),
on the other hand, Oð1–10%Þ deviation is expected
for

ffiffiffi
s

p ¼ 1–10 TeV.

V. CONCLUDING REMARKS

In this paper, we have studied high-energy longitudinal
W boson scattering with a light scalar top of which the mass
is a few hundred GeV to a few TeV. They affect the SM
Higgs potential at the quantum level, and consequently
the deviation from the standard model in longitudinal
gauge boson scattering is expected from the equivalence
theorem. Applying the equivalence theorem, we have
computed charged Nambu-Goldstone boson scattering
processes and substituted them as high-energy Wþ

LW
�
L

scattering processes. In the study, we consider two

scenarios: (a) Higgs mass is explained in the MSSM
particle contents, and (b) other contributions besides the
MSSM particles make the observed Higgs mass. It has been
found that Oð1–10%Þ deviation in the differential cross
section is predicted depending on stop mass and kinemat-
ics. As an example of b, for

ffiffiffi
s

p ¼ 5 (10) TeV and
cos θ ¼ 0, the deviation in the Wþ

LW
þ
L process is 16

(28)% and 7 (15)% when both left- and right-handed stop
masses (mL and mR) are 0.5 and 1 TeV with the mixing
parameter Xt ¼ 0.5mL, respectively. Similarly, in Wþ

LW
−
L,

it is −29 ð−42Þ% and −11 ð−25Þ% but for cos θ ¼ 0.5. For
scenario (a), on the other hand, it has been discovered that
the deviation gets smaller, e.g., 2 (4)% and 4 ð−4Þ% for
mL ¼ mR ¼ 1 TeV with the appropriate Xt for

ffiffiffi
s

p ¼
5ð10Þ in Wþ

LW
þ
L and Wþ

LW
−
L, respectively. The same

behavior is seen for the mL ≠ mR case. Thus, in such a
case, it would be challenging to see the existence of the stop
in WLWL scattering.

FIG. 5. Same as Fig. 3 but for the GþG− process taking cos θ ¼ 0.5.

FIG. 4. Same as Fig. 2 but for the GþG− scattering process taking cos θ ¼ 0.5.
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High-energy longitudinal gauge boson scattering has
started to be measured at the LHC [60,61]. However, the
observation of Oð10%Þ deviation would be difficult even in
Run2 at theLHC.This is because the number of eventswhich
has over a few TeV invariant mass of theW boson system is
suppressed due to gauge cancellation [62]. (We have checked
this by using the MadGraph package [63].5) Thus, at least an
upgraded program, such as theHigh Luminosity LHC,would
be necessary. Or the Future Circular Collider, which is planed
to operate at 100 TeV center-of-mass energy, would be more
promising for the study of the gauge boson scattering. In such
a high-energy experiment, the observation of stop or sbottom
pair production might be a more direct and easier way to
observe a clue of the supersymmetry. As mentioned in the
Introduction, however, there are model dependence in the
data analysis, e.g., details of the decay modes, or violation
of R-parity. High-energy longitudinal gauge boson scattering
would be complementary to the direct searches. We have
provided the theoretical ingredients for the numerical study
and discussed feasibility of the discovery of scalar tops
in the longitudinal gauge boson scattering. The next step
will be to perform a full simulation for hadron or lepton
collider experiments with various energies, for which
Refs. [47,49,64–73] are useful. We leave it to future work.
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APPENDIX: ANALYTIC CHECK

We will check that the GþGþ and GþG− scattering
amplitudes reduce to those in the SM in low-energy limit
by using the analytic Higgs mass formula for the
~m ∼m~t case.
First of all, we need to use the Lagrangian after the

following replacement:

λSM
0

H →
1

8
g2Zcos

22β; ySM
0

t → λt sin β: ðA1Þ

Consequently, the matching conditions are

λSMH ðμ~tÞ ¼
1

8
g2Zcos

22βðμ~tÞ

þ NCðySM0
t ðμ~tÞÞ4
ð4πÞ2

�
− log

�
μ2~t
m2

~t

�

þ X2
t

m2
~t

�
1 −

X2
t

12m2
~t

��
; ðA2Þ

ySMt ðμ~tÞ ¼ λt sin βðμ~tÞ: ðA3Þ

In the MSSM where ~m ∼m~t, the SM Higgs mass
is given by analytically using the effective potential
[4–7]6

ðmMSSM
h Þ2 ≃m2

Zcos
22β

þ 2Ncðλt sin βÞ4v2
ð4πÞ2

�
log

�
m2

~t

m2
t

�

þ X2
t

m2
~t

�
1 −

X2
t

12m2
~t

��
: ðA4Þ

Using this expression, it is found that the Xt dependence
on mMSSM

h and the one obtained by using the RG
equation in the text agree within around 1 GeV when
we take μ ¼ m~t for top Yukawa coupling. Hereafter, we
take μ ¼ m~t.
GþGþ and GþG− scattering amplitudes are easily

obtained by using the previous result along with the above
replacement and matching conditions. Now, let us see
the low-energy limit, s; jtj; juj ≪ m2

~t (but s; jtj; juj ≫ m2
Z).

A~t− ~b
GþG� corresponding to Eq. (23) is the same expression.

Then, combining with

At-b
GþGþ → −

4NcðySMt Þ4
ð4πÞ2

�
log

�
μ2ffiffiffiffiffi
tu

p
�
þ 2

�����
μ¼m~t

; ðA5Þ

At-b
GþG− → −

4NcðySMt Þ4
ð4πÞ2

�
log

�
μ2ffiffiffiffi
st

p
�
þ 2

�����
μ¼m~t

; ðA6Þ

and Eq. (A4), we obtain

AGþGþ → −
2ðmMSSM

h Þ2
v2

−
g2Z
2

�
t
u
þ u

t
þ 1

�

−
2NcðySMt Þ4

ð4πÞ2
�
log

�
m4

t

tu

�
þ 4

�
; ðA7Þ

AGþG− → −
2ðmMSSM

h Þ2
v2

−
g2Z
2

�
s
t
þ t
s
þ 1

�

−
2NcðySMt Þ4

ð4πÞ2
�
log

�
m4

t

st

�
þ 4

�
: ðA8Þ

This is exactly the amplitude including the top-bottom loop
in the SM for mMSSM

h ¼ mh [13].

5We thank Yasuhiro Shimizu for pointing this out and
information useful for performing MadGraph5.

6For review, see Ref. [41]. For diagrammatic calculation, see,
e.g., Ref. [9]. It is shown that the diagrammatic calculation agrees
well with the result in the effective potential approach.
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