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We study a simple one-loop induced neutrino mass model that contains both bosonic and fermionic dark
matter candidates and has the capacity to explain the muon anomalous magnetic moment anomaly. We
perform a comprehensive analysis by taking into account the relevant constraints of charged lepton flavor
violation, electric dipole moments, and neutrino oscillation data. We examine the constraints from lepton
flavor-changing Z boson decays at the one-loop level, particularly when the involved couplings contribute
to the muon g − 2. It is found that BRðZ → μτÞ≃ ð10−7–10−6Þ while BRðτ → μγÞ≲ 10−11 in the
fermionic dark matter scenario. The former can be probed by the precision measurement of the Z boson at
future lepton colliders.
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I. INTRODUCTION

Even though the standard model (SM) of particle physics
has been very successfully predicting or explaining most
experimental results and phenomena, it still has a few
outstanding problems with empirical observations. One is
the origin of neutrino mass as inferred from neutrino
oscillation experiments. We still do not know whether it
is of Dirac or Majorana type and whether it has a normal or
inverted hierarchy. Another one is the existence of dark
matter in the Universe. Despite its immense gravitational
effects at the cosmological scale, we do not know what
kind of object it is and how it interacts with SM particles
otherwise.
Radiative seesaw models provide one of the promising

scenarios to explain the neutrino oscillation data and dark
matter candidates simultaneously. In particular, one-loop
models have various unique applications to elementary
particle phenomenology such as flavor predictive models1

in the neutrino sector [2–4] and leptogensis [5–7].
However, leptogenesis in this framework tends to rely
on the mechanism of resonant effect or a large hierarchy
among the neutrino Yukawa couplings in order to satisfy
the neutrino oscillation data and evade the washout
problem simultaneously. This could be resolved by intro-
ducing extra neutral fermions in such a way that these

fermions decouple from the physical spectrum at the
electroweak (EW) scale.
In this work, we add to the SM weak isospin singlet and

doublet colorless fermions. We show how to make the six
heavy neutral fermions decouple at the EW scale by
invoking a modified Casas-Ibarra parametrization method
[8], leaving the three light fermions as the active neutrinos.
Furthermore, we discuss how the model can explain the
discrepancy of the muon anomalous magnetic moment
from the SM prediction and contribute to the relic density
of dark matter (DM). We present a comprehensive analysis
to find the parameter space that can satisfy constraints
such as charged lepton flavor-violating decays, electric
dipole moments, direct detection searches of DM,
Z → l̄ilj decays, and neutrino oscillation data. One of
the most important predictions of this model is that
BRðZ → μτÞ can be as large as Oð10−6Þ, which is just 1
order smaller than the current experimental upper bound,
while BRðτ → μγÞ ≲ 10−11 in the fermionic DM scenario.
Such a large BRðZ → μτÞ can be probed by precision
measurements of the Z boson at future lepton colliders such
as the ILC [9], FCC-ee [10], CEPC [11], etc.
This paper is organized as follows. Section II introduces

our model and gives the relevant formulas of various
physical quantities. Section III presents a comprehensive
analysis that takes into account many current data to
constrain the parameter space of the model. We have
separate discussions about bosonic and fermionic DM
candidates in the model. We summarize our conclusions
in Sec. IV.

II. MODEL SETUP

In this section, we describe the setup of our model. We
only introduce new colorless fields to the SM. The contents
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1For example, some specific two-zero textures are obtained if

an additional symmetry is imposed, with the ability to predict the
mass hierarchy of neutrinos, the scale of third neutrino mass, and
so on [1]. Note that here this property does not appear in any two-
loop or higher-loop induced radiative neutrino models.
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of fields without participating in the strong interactions and
their charges are given in Table I. We add three isospin-
doublet, vectorlike exotic fermions L0, three isospin-
singlet, Majorana fermions NR, and two isospin-singlet
scalars S and φ to the SM.2 Here S has to be a complex field
to induce nonzero neutrino mass, but φ can be a real
field for simplicity. We assume that only the SM-like Higgs
field Φ and the new real scalar φ develop nonzero vacuum
expectation values (VEVs), denoted by v=

ffiffiffi
2

p
and v0,

respectively. We also impose a Z2 symmetry, under which
only L0, NR, and S have odd parity, to ensure the stability of
DM candidate(s). In the case of a fermionic DM candidate
in the model, φ plays an important role in explaining its
relic density.
The relevant Yukawa Lagrangian under these sym-

metries is given by

−LY ¼ ðylÞijðL̄LÞiΦðeRÞj þ fijðL̄LÞiðL0
RÞjS

þ gijðL̄0
LÞiðNRÞj ~Φþ ðyNÞij

2
φðN̄c

RÞiðNRÞj

þ ðyEÞijφðL̄0
LÞiðL0

RÞj þ
ðMNÞi

2
ðN̄c

RÞiðNRÞi
þ ðMLÞiðL̄0

LÞiðL0
RÞi þ H:c:; ð2:1Þ

where i;j∈f1;2;3g are the species indices and ~Φ≡iσ2Φ�,
with σaða ¼ 1; 2; 3Þ denoting the Pauli matrices. The first
term of LY generates the SM charged-lepton masses ml ¼
ylv=

ffiffiffi
2

p
after the EW spontaneous breaking of Φ. Notice

that here MN and ML are assumed to be diagonal from the
beginning without loss of generality.
In the following, we divide our discussions into sub-

sections on the scalar potential, the exotic fermion sector,
the neutrino mass, flavor-violating radiative lepton decays,
the muon anomalous magnetic moment and electric dipole
moments, the γγ decay mode of the Higgs boson, flavor-
changing leptonic Z decays, and the dark matter candidates.

A. Scalar potential

The most general gauge-invariant scalar potential at a
renormalizable level is

VðΦ;φ;SÞ¼m2
ΦjΦj2þλΦ

4
jΦj4þμ3φφþ

m2
φ

2
φ2þμ2

3
φ3þλφ

4
φ4

þm2
S2
jSj2þλSjSj4þμΦφjΦj2φþλΦφ

2
jΦj2φ2

þλΦSjΦj2jSj2þμS2 jSj2φþ
λSφ2

2
jSj2φ2

þ
�
m2

S1

2
S2þμS1

2
S2φþλS1

4
S4þλS2

3
jSj2S2

þλ0ΦS

2
jΦj2S2þλSφ1

4
S2φ2þH:c:

�
; ð2:2Þ

where the scalar fields can be parametrized as

Φ¼
� wþ

vþhþizffiffi
2

p

�
; φ¼ v0 þσ; S¼ SRþ iSIffiffiffi

2
p ; ð2:3Þ

where v≃ 246 GeV is the VEVof the Higgs doublet, and
w� and z are respectively the Nambu-Goldstone (NG)
bosons that become the longitudinal components of W and
Z bosons after the EW symmetry breaking. For the SU(2)-
singlet fields, φ is assumed to develop the VEV v0, while S
is inert to be consistent with the Z2 symmetry.
The terms in the last line of Eq. (2.2) yield a mass

splitting between SR and SI . In this analysis, we assume
that m2

S1
≠ 0 and μS1 ¼ λS1 ¼ λS2 ¼ λ0ΦS ¼ λSφ1

¼ 0 for
simplicity. Therefore, the masses of SR and SI are respec-
tively reduced to

m2
SR

¼ m2
S2
þm2

S1
þ λΦS

2
v2 þ λSφ2

2
v02 þ μS2v

0;

m2
SI
¼ m2

S2
−m2

S1
þ λΦS

2
v2 þ λSφ2

2
v02 þ μS2v

0: ð2:4Þ

Imposing the tadpole conditions, ∂V=∂hjv ¼ 0 and
∂V=∂σjv0 ¼ 0, the resulting mass eigenvalues and mixing
matrix for the CP-even boson mass matrix

MHðh; σÞ ¼
�
m2

hh m2
hσ

m2
hσ m2

σσ

�
ð2:5Þ

are respectively given by [12]

OTðαÞMHðh;ϕÞOðαÞ ¼
�m2

H1
0

0 m2
H2

�
; ð2:6Þ

with

O¼
�
cosα −sinα

sinα cosα

�
and sin2α¼ 2m2

hσ

m2
hh−m2

σσ
; ð2:7Þ

where H1 is the SM-like Higgs (i.e., mH1
¼ 125 GeV) and

H2 is the additional CP-even Higgs boson. Notice that here

TABLE I. Contents of colorless fermion and scalar fields in the
model, and their charge assignments under SUð2ÞL×Uð1ÞY×Z2.

Lepton fields Scalar fields

LL eR L0 NR Φ S φ

SUð2ÞL 2 1 2 1 2 1 1
Uð1ÞY −1=2 −1 −1=2 0 1=2 0 0
Z2 þ þ − − þ − þ

2In fact, the minimal setup is to have only two species for each
of L0 and NR if the lightest neutrino is massless.
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m2
hh, m

2
σσ, m2

hσ as well as mHi
ði ¼ 1; 2Þ can be rewritten in

terms of the parameters in the Higgs potential (2.2). In our
analysis, mH1;2

and α are fixed by the tree-level relations.
One-loop contributions can be found in Ref. [13].
In the large v0 limit, the Higgs boson masses are

reduced to

m2
H1

≃2λΦv2−
λ2Φφv

2

2λφ
; m2

H2
≃2λφv02þ

λ2Φφv
2

2λφ
: ð2:8Þ

As discussed in Ref. [14], vacuum metastability of the SM
can be cured by the presence of doublet-singlet mixing
since now λΦ > λSMΦ ≡m2

H1
=ð2v2Þ≃ 1=8.

B. Exotic fermion sector

We define the isospin-doublet exotic fermion fields as

L0
LðRÞ ≡

�
N0

E0−

�
LðRÞ

: ð2:9Þ

The 3 × 3 mass matrix of the charged exotic fermion,
denoted by ME, is then given by ME ¼ ML þ yEv0, which
can be cast into the diagonal MD

E by a biunitary trans-
formation, i.e.,

MD
E ¼ ðVCÞLMEðV†

CÞR; ð2:10Þ

where ðVCÞL;R are the rotation matrices for the left-handed
and right-handed charged exotic fermions, respectively.
Nonetheless, without loss of generality, we assume here
that ðVCÞL ¼ ðVCÞR ¼ 1, meaning that ME is already
diagonalized, for simplicity in the numerical analyses.
On the other hand, the 9 × 9 mass matrix for the neutral

fermions in the basis of ½N0C
R; N

0
L; N

C
R� is given by

M ¼

2
64

0 M†
E 0

M�
E 0 m�

LR

0 m†
LR M�

N

3
75; ð2:11Þ

where MN ¼ MNR
þ yNv0 and mLR ¼ gv=

ffiffiffi
2

p
. The mass

matrix M can be diagonalized by a 9 × 9 unitary mixing
matrix VN as MD ¼ VNMVT

N and

2
64
N0C

R

N0
L

NC
R

3
75≡ VT

N

2
64
ψC
IR

ψJL

ψC
KR

3
75; ð2:12Þ

where ψ ðCÞ
i (i ¼ I, J, K) are the mass eigenstates, each of

which has three components. In what follows, we will use
ψa with a ¼ 1–9 to refer to the nine physical components
of neutral fermions. To obtain an explicit VN for the
numerical analyses, we assumemLR andMN to be diagonal

for simplicity. With the assumed diagonal ME, mLR and
MN , one can diagonalize Eq. (2.11) via a 3 × 3 matrix for
each “generation” of the neutral fermions.

C. Neutrino mass

First, we rewrite the terms relevant for the neutrino mass
in terms of the mass eigenstates as

−LY ∋ Fiaðν̄LÞiPRψaðSR þ iSIÞ

with Fia ¼
1ffiffiffi
2

p
X3
j¼1

fijðV†
NÞja; ð2:13Þ

where PR ¼ 1
2
ð1þ γ5Þ is the right-handed projection oper-

ator. Then the dominant contribution to the active neutrino
mass matrix mν is given at the one-loop level, as shown in
Fig. 1. The explicit mass formula is given by

ðmνÞαβ ¼
X9
a¼1

FαaMaFβa

ð4πÞ2

×

�
m2

SR

m2
SR
−M2

a
ln
m2

SR

M2
a
−

m2
SI

m2
SI
−M2

a
ln
m2

SI

M2
a

�
; ð2:14Þ

summing all possible neutral fermions running in the loop.
The structure of this formula is the same as that of a Ma
model [15] except for the rank of the mass matrix MN .
The observed mixing matrix, the Pontecorvo-Maki-

Nakagawa-Sakata (PMNS) matrix UPMNS [16], can always
be realized by introducing the Casas-Ibarra parametrization
[8], given by

ðFÞ3×9 ¼ U�
PMNS

2
64
m1=2

ν1 0 0

0 m1=2
ν2 0

0 0 m1=2
ν3

3
75OR−1=2;

or f3×9 ¼
ffiffiffi
2

p
FVN;

with Raa ≡ Ma

ð4πÞ2
�

m2
SR

m2
SR

−M2
a
ln
m2

SR

M2
a
−

m2
SI

m2
SI
−M2

a
ln
m2

SI

M2
a

�
;

ð2:15Þ

whereO is a 3 × 9 orthogonal matrix with complex values,
which can be decomposed into three 3 × 3 matrices
O≡O1 þO2 þO3, each of which is orthogonal with
complex components as O. However, since the last six

FIG. 1. One-loop induced Majorana neutrino mass in the
model.
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columns of the mass matrix do not contribute to the active
neutrino masses, we assume them to have null components;
i.e., O2 ¼ O3 ¼ 0. Therefore, we have the parametrization

O1 ¼

2
64

c13c12 c13s12 s13
−c23s12− s23s13c12 c23c12− s23s13s12 s23c13
s23s12− c23s13c12 −s23c12− c23s13s12 c23c13

3
75;

ð2:16Þ

where sðcÞij ≡ sinðcosÞδij (i, j ¼ 1, 2, 3). It also implies
that the six heavy neutral fermions can assume any large
mass eigenvalues M4–9. Then the neutrino mass eigenval-
ues mdiag

ν ≡ ðmν1 ; mν2 ; mν3Þ is given by

m†
νmν ¼ UPMNS

2
64
m2

ν1 0 0

0 m2
ν2 0

0 0 m2
ν3

3
75U†

PMNS; ð2:17Þ

which is subject to the constraints of neutrino oscillation
data in Table 1 of Ref. [17]:

sin2θ12 ¼ 0.304; sin2θ23 ¼ 0.452;

sin2θ13 ¼ 0.0218; δPMNS ¼
306

180
π: ð2:18Þ

We take the Majorana CP-violating (CPV) phases to be
zero. Furthermore, in our numerical analysis we take the
following neutrino masses as an explicit example:

mν1 ¼ 0 eV; mν2 ¼
ffiffiffiffiffiffiffiffiffiffiffi
0.750

p
× 10−2 eV;

mν3 ¼
ffiffiffiffiffiffiffiffiffiffiffi
24.57

p
× 10−2 eV: ð2:19Þ

D. Radiative lepton decays with flavor violation

Lepton flavor-violating (LFV) processes arise from the
Yukawa term with the matrix coefficient f:

LY ∋ F0
ial̄iPRE0

aðSR þ iSIÞ þ H:c:

with F0
ia ¼

1ffiffiffi
2

p fijðV†
CÞja; ð2:20Þ

where ðl1;l2;l3Þ≡ ðe; μ; τÞ. A generic one-loop radiative
LFV decay process is plotted in Fig. 2. The corresponding
decay branching ratio is given by (for i ≠ j)

BRðli → ljγÞ ¼
48π3αemCij

G2
F

����X3
a¼1

X
J¼R;I

F0
jaF

0
ia
�

32π2
2þ 3raJ − 6r2aJ þ r3aJ þ 6raJ ln raJ

6m2
SJ
ð1 − raJÞ4

����
2

; ð2:21Þ

where the fine structure constant αem ≃ 1=128, the Fermi
constant GF ≃ 1.17 × 10−5 GeV−2, ðC21; C31; C32Þ≃
ð1; 0.1784; 0.1736Þ, and raJ ≡ ðMEa

=mSJÞ2. The current
experimental upper bounds at 90% confidence level (C.L.)
are [18,19]

BRðμ→ eγÞ < 4.2× 10−13; BRðτ → eγÞ < 3.3× 10−8;

BRðτ → μγÞ < 4.4× 10−8: ð2:22Þ

Note that any constraints on lepton flavor-violating proc-
esses li → ljlkll at the one-loop level are less stringent
than those of li → ljγ given above [20]. Also, processes
such as τ → μνν̄ may arise from penguin diagrams by
replacing γ in Fig. 2 with the Z boson. However, such
deviations will be smaller than the current bounds. Thus,
we do not pursue them hereafter.

We note in passing that the interaction Eq. (2.20) together
with aH1 − SR − SI vertex gives rise toH1 → μτ at the one-
loop level. In this model, theH1 → μτ mode is proportional
to either mμ or mτ due to the chiral structures of the μ − E0

a

and τ − E0
a couplings, resulting in ðmμ;τ=mH1

Þ2 suppres-
sions other than an ordinary one-loop suppression factor in
this decay. It is thus hard to obtain BRðH1 → μτÞ≃
Oð0.1Þ%, which is hinted at by the recent LHC data [21,22].

E. Anomalous magnetic moment of muon
and electric dipole moments

The discrepancy of the muon g − 2 between the
experimental measurement and the SM prediction is given
by [23]

Δaμ ¼ ð26.1� 8.0Þ × 10−10: ð2:23Þ

FIG. 2. LFV processes induced at the one-loop level in the
model.
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In our model, the leading contribution comes from the same
term in Eq. (2.20) at the one-loop level as discussed in the
previous subsection. Its form is found to be [24–26]

Δað1Þμ ≈
X3
a¼1

X
J¼R;I

jF0
2aj2

16π2

Z
1

0

dx
x2ð1− xÞ

xðx− 1Þ þ xr0a þ ð1− xÞr00J
;

ð2:24Þ

where r0a ≡ ðMEa
=mμÞ2 and r00J ≡ ðMSJ=mμÞ2.

As a subleading contribution, we have the Barr-Zee
diagrams [27,28] at the two-loop level, as depicted in
Fig. 3. The relevant interactions are

LHiĒaEa
¼ −

X
i;a

HiĒaðgSHiĒaEa
þ iγ5gPHiĒaEa

ÞEi; ð2:25Þ

where

gSH1ĒaEa
¼ sαjyEa

jcϕa
; gPH1ĒaEa

¼ sαjyEa
jsϕa

; ð2:26Þ

gSH2ĒaEa
¼ cαjyEa

jcϕa
; gPH2ĒaEa

¼ cαjyEa
jsϕa

; ð2:27Þ

where sðcÞα and cðsÞϕa
are the shorthand notations of

sinðcosÞα, and cosðsinÞϕa, respectively.
It is known that the HZ-type Barr-Zee diagram is

accidentally suppressed by the Zμ̄μ coupling that is
proportional to ð1=4− sin2 θWÞ≃0.02 with θW being the
weak mixing angle. On the other hand, the Hγ-type Barr-
Zee contribution takes the form

Δað2Þμ ≈ −
X3
a¼1

αem
4π3

m2
μ

MEa
v
jyEa

jsαcαcϕa
½fðτa1Þ − fðτa2Þ�;

ð2:28Þ

where

fðτaiÞ ¼
τai
2

Z
1

0

dx
1 − 2xð1 − xÞ
xð1 − xÞ − τai

ln

�
xð1 − xÞ

τai

�
; ð2:29Þ

with τai ≡ ðMEa
=mHi

Þ2. It should be noted that the negative
coefficient of fðτa2Þ is a consequence of the orthogonality
of the rotation matrix OðαÞ defined in Eq. (2.7). This
implies that the Barr-Zee contributions would be highly
suppressed provided mH1

≃mH2
.

Even in the case ofmH1
≠mH2

, fðτaiÞ≃13=18þðlnτaiÞ=3
in the limit τai ≫ 1, and Eq. (2.28) is reduced to

Δað2Þμ ≈ −
X3
a¼1

αem
12π3

m2
μ

MEa
v
jyEa

jsαcαcϕa
ln

�
m2

H2

m2
H1

�

≲ −sgnðcϕa
Þð2.8 × 10−12Þ × ln

�
m2

H2

m2
H1

�
; ð2:30Þ

where we have fixed sα ¼ 0.1, jcϕa
j ¼ 1, jyEa

j ¼ 1 and
ME ¼ 100 GeV in the last line. For sgnðcϕa

Þ ¼ þ1, one
must havemH2

< mH1
ð¼ 125 GeVÞ in order to generate the

positive contribution, and it is the other way around for

sgnðcϕa
Þ ¼ −1. However, Δað2Þμ cannot reach the Oð10−9Þ

level in either case since the contribution is logarithmic.
Moreover, themixing angleαwould vanish if the twomasses
are too far from each other. Thus, the Barr-Zee contributions
by themselves cannot be sufficiently sizable to explain the
muon (g − 2) anomaly, as will be shown in Sec. III.
Since the couplings F0

ia are generally complex, they can
induce electric dipole moments (EDMs) for electron (de),
neutron (dn), and so on. The current experimental upper
bounds on de and dn are respectively given by [29]

jdej < 8.7 × 10−29 e cm and jdnj < 2.9 × 10−26 e cm:

ð2:31Þ

In this model, the electron EDM imposes the strongest
constraint on the CPV phases, so that we will focus on it.
We note in passing that the one-loop diagram is propor-
tional to jF0

laj2 and hence does not induce the EDMs. The
nonzero contributions to de are induced by the same Barr-
Zee diagram as in Fig. 3 [27], and thus

df ¼ dHγ
f þ dHZ

f : ð2:32Þ

As in the muon g − 2 case, the HZ-type Barr-Zee diagram
is subdominant due to the accidentally suppressed Zēe
coupling, and theHγ-type Barr-Zee contribution is cast into
the form

dHγ
e

jej ¼
X3
a¼1

αem
8π3

m2
e

MEa
v
jyEa

jsαcαsϕa
½gðτa1Þ−gðτa2Þ�; ð2:33Þ

where

gðτaiÞ ¼
τai
2

Z
1

0

dx
1

xð1 − xÞ − τai
ln

�
xð1 − xÞ

τai

�
: ð2:34Þ

FIG. 3. A Barr-Zee diagram.
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As mentioned above, the two contributions of H1;2 are
destructive owing to the property of the orthogonal rotation
matrix. Since gðτaiÞ≃1þðlnτaiÞ=2 in the limit of τai ≫ 1,
one gets

dHγ
e

jej ¼
X3
a¼1

αem
16π3

m2
e

MEa
v
jyEa

jsαcαsϕa
ln

�
m2

H2

m2
H1

�
: ð2:35Þ

F. Signal strengths of H1 → γγ channel

Due to the mixing between the two Higgs bosons, the
couplings of H1 with other SM particles are universally
suppressed by the common factor cos α.3 However, the
loop-induced γγ and γZ channels receive additional con-
tributions from the exotic charged fermions, as seen from
the Barr-Zee diagram in Fig. 3. Since the γZ mode has not
been measured yet, we focus only on the γγ mode in what
follows. Nevertheless, the relative sizes of the deviations
from the SM values in both modes are expected to be
the same.
The signal strength of H1 → γγ is approximately

given by

μγγ ¼
�����cα þ AS

E

ASM

����2þ
���� AP

E

ASM

����2
�
c2αΓtot

SM

Γtot
H1

; ð2:36Þ

where

Γtot
H1

¼ c2αΓtot
SMjw=oΓðH1→γγðZÞÞ þ ΓðH1 → γγðZÞÞ

þ ΓðH1 → Eþ
i E

−
j Þ þ ΓðH1 → SRSRÞ

þ ΓðH1 → SISIÞ þ ΓðH1 → ψ iψ jÞ;

ASM ¼ −6.49 [30], Γtot
SM ≃ 4.1 MeV [31], and AS;P

E are
respectively given by

AS
E ¼ 2vsαjyEa

jcϕa

MEa

τaf1þ ð1 − τaÞfHðτaÞg;

AP
E ¼ 2vsαjyEa

jsϕa

MEa

τafHðτaÞ; ð2:37Þ

with τa ≡ 4M2
Ea
=m2

H1
and the loop function fHðτÞ given in

Ref. [32]. Assuming the dominance of SM contributions,
Eq. (2.36) shows that the pseudoscalar couplings have
minor effects on μγγ.

In the small α and large ME limit, one finds

μγγ ≃ c2α

�
1þ 8vjyEa

jcϕa
tα

3MEa
ASM

�
: ð2:38Þ

The deviation is mostly controlled by c2α rather than AS
E.

Hence μγγ is generally reduced in the model.
Since both jdej and μγγ are affected by the E0

a loops, we
briefly comment on their correlations in the parameter space.
Figure 4 shows jdej and μγγ in the plane of ðjyEa

j;ϕaÞ. As a
typical example, we set cα ¼ 0.95 and ME1

¼ ME2
¼

ME3
¼ 400 GeV, and assume all the jyaj and ϕa are

universal, respectively. Contours of jdej¼8.7×10−29 ecm
are plotted for mH2

¼ 500 GeV (black solid curves) and
150 GeV (black dotted curves). Regions to the right of each
set of black curves are excluded by the electronEDM limit at
90% C.L. The smaller mH2

case is less sensitive to the
electron EDM because of the cancellation mechanism at
work, as can be seen from Eq. (2.33), thereby allowingmore
parameter space.
As for the Higgs diphoton signal strength, we display

μγγ ¼ 0.9 (red dashed curve), 1.0 (red solid curve) and 1.1
(red dotted curve), respectively. As mentioned above, μγγ is
less than unity in most parameter space, which is due
mainly to the factor of c2α. However, the loop effects of E0

a

FIG. 4. Contours of jdej ¼ 8.7 × 10−29 e cm in the case of
mH2

¼ 500 GeV (black solid curves) and 150 GeV (black dotted
curves). Regions to the right of each set of black curves are
excluded by the electron EDM bound. Also plotted are the Higgs
diphoton signal strength μγγ ¼ 0.9 (red dashed curves), 1.0 (red
solid curve) and 1.1 (red dotted curve), respectively. Here, we
take cα¼0.95, ME1

¼ME2
¼ME3

¼400GeV, jyE1
j¼jyE2

j¼jyE3
j

and ϕ1 ¼ ϕ2 ¼ ϕ3.

3Although H1 → ττ; bb̄, etc. can be modified by the doublet-
singlet Higgs mixing, the current LHC data on them are not
stringent enough to exclude the parameter space that we will
explore below.
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can be constructive to the SM contribution for cϕa
< 0, and

render μγγ ≥ 1 if jyEa
j≳ 0.5.

G. Flavor-changing leptonic Z boson decays

Here we consider the decay of the Z boson to two
charged leptons of different flavors at the one-loop level, as

shown in Fig. 5. The amplitudes of such decay modes
involve the Yukawa couplings F0

ia, some of which can be of
Oð1Þ in order to achieve a sizable contribution to the muon
g − 2. After summing up the three diagrams, the UV
divergences cancel out and the finite part is cast into
the form

BRðZ → l−
i l

þ
j Þ ¼

GF

3
ffiffiffi
2

p
π

m3
Z

ð16π2Þ2Γtot
Z

�
s2W −

1

2

�
2
����X3
a¼1

X
J¼R;I

F0
iaF

0
ja

�½F2ðEa; SJÞ þ F3ðEa; SJÞ�
����
2

; ð2:39Þ

where

F2ða; bÞ ¼
Z

1

0

dxð1 − xÞ ln ½ð1 − xÞm2
a þ xm2

b�;

F3ða; bÞ ¼
Z

1

0

dx
Z

1−x

0

dy
ðxy − 1Þm2

Z þ ðm2
a −m2

bÞð1 − x − yÞ − Δ lnΔ
Δ

;

with Δ≡ −xym2
Z þ ðxþ yÞðm2

a −m2
bÞ þm2

b and the total
Z decay width Γtot

Z ¼ 2.4952� 0.0023 GeV [33]. From
Eqs. (2.21) and (2.39), one can see that the flavor changing
neutral current couplings F0

iaF
0
ja

� identically appear in
li → ljγ and Z → lilj, and hence they can be correlated
with each other. However, one crucial difference is their
decoupling properties. The former modes would be sup-
pressed as the particles in the loops become heavy while the
latter can grow logarithmically. This difference may stem
from the different structures in the form factors: the former
of the dipole type and the latter of the vector one. A similar
nondecoupling behavior of the LFV Z decays can be found
in Ref. [34], where BRðZ → μτÞ can grow with the quartic
power of an internal particle mass.
The current lepton flavor-changing Z boson decay

branching ratios are found to be [33]

BRðZ → e�μ∓Þ < 1.7 × 10−6;

BRðZ → e�τ∓Þ < 9.8 × 10−6;

BRðZ → μ�τ∓Þ < 1.2 × 10−5; ð2:40Þ

where the upper bounds are quoted at 95% C.L. We have
scanned the parameter space and found that all these
constraints are less stringent than those from the LFV

processes, as well as the flavor-conserving processes
BRðZ → l�l∓Þ (l ¼ e, μ, τ).

H. Dark matter candidates

In our model, we have both bosonic SRðIÞ and fermionic
ψ1 DM candidates, which will be generically denoted by X.
To analyze each of the two scenarios, we simply assume
that any quartic couplings and trilinear couplings involving
the DM candidate after the EW symmetry breaking are
negligibly small except for the quartic couplings that are
required to be sufficiently larger in order to retain the
vacuum stability. In the case of the bosonic DM candidate,
it is easy to evade the constraints of direct detection
searches. Moreover, we focus on the DM mass regime
of 1 GeV≲MX ≲ 100 GeV. As a consequence, the
X → H1H1 decay is kinematically forbidden.
In our numerical analysis, we will take a somewhat

relaxed range of 0.11≲ Ωh2 ≲ 0.13 in comparison with the
one reported by the Planck collaboration, Ωh2 ≈ 0.12 [35].
Bosonic DM.—We first consider the bosonic DM can-

didate SI. The case of having SR as the lighter scalar boson
and DM candidate is phenomenologically the same. The
most stringent upper bound on the spin-independent DM-
nucleon scattering cross section reported by the LUX

FIG. 5. One-loop contribution to the Z → l−
i l

þ
j decay.
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experiment [36] is σN ≲ 2.2 × 10−46 cm2 at around
MX ¼ 50 GeV. We will adopt this upper bound for the
entire range of DM mass considered in this work for
simplicity.
The cross section of SI scattering with a nucleon is

given by

σSIðSIN→ SINÞ≈
����29þ7

9

X
q¼u;d;s

fq

����2 λ2ΦSm
4
N

4πðmSI þmNÞ2m4
H1

≈ ð3.29×10−29 cm2Þ

×
λ2ΦSm

4
N

4πðmSI þmNÞ2m4
H1

; ð2:41Þ

where mN ≈ 0.939 GeV is the neutron mass, and we
assume that mH1

¼ mH2
for simplicity. In the second line,

fu ¼ 0.0110, fd ¼ 0.0273 and fs ¼ 0.0447 are used. For
mSI ¼ 50 GeV, one finds an upper bound on λΦS:

λΦS ≲ 0.0083: ð2:42Þ
We can always choose λΦS that satisfies this bound without
affecting other phenomenological discussions.
As shown in Fig. 6, the dominant annihilation cross

section that affects the DM relic density derives from the fij
couplings between the neutrinos and exotic fermions.
Written in the mass eigenbasis, the scattering cross section
is given by4

σvrel ≈
X9
a¼1

X3
i;j¼1

jFiaFT
ajj2M2

a

4πðM2
a þM2

XÞ2
þOðv2relÞ: ð2:43Þ

This shows that the DM annihilation to a pair of neutrinos is
dominantly S-wave, a consequence of the t- and u-channel
mediators being Majorana particles. The relic density Ωh2
is then given by [37]

Ωh2 ≈
1.07 × 109xfffiffiffiffiffiffiffiffiffiffiffiffiffi
g�ðxfÞ

p
MPaeff

with aeff ¼
X9
a¼1

X3
i;j¼1

jFiaFT
ajj2M2

a

4πðM2
a þM2

XÞ2
; ð2:44Þ

where the Planck massMP≈1.22×1019GeV, g�ðxf≈25Þ≈
100 is the total number of effective relativistic degrees of
freedom at the time of freeze-out, and xf ≈ 25 is defined by
MX=Tf at the freeze-out temperature Tf.
The only currently available possibility to detect the

bosonic DM indirectly is the IceCube experiment [38],
since the bosonic DMs annihilate into neutrinos. However
it requires that the DM have a large cross section and a mass

at the PeV scale, which is far beyond the DMmass range of
interest to us.
Fermionic DM.—In the case of a fermionic DM, the

lightest one of the nine ψa bosons may not be a DM
candidate. This is because a neutral fermion originated
from the gauge doublet N0 cannot be a DM candidate, as it
has been ruled out by the direct detection searches via the Z
boson portal. Hence, only the lightest one of the gauge
singlet fermion N can be a DM candidate. Here we assume
mLR ≈ 0 for simplicity and, as a consequence, do not need
to worry about the Z portal due to the mixing between N
and N0. Nevertheless, we still have to take into account the
Higgs portal as another channel for the direct detection
constraint. The spin independent cross section between the
lightest gauge singlet N and the nucleon mediated by the
two Higgs bosons is given by

σN ≈ ð3.29 × 10−29 cm2Þ

×
μ2XRe½ðyNÞ11�2m2

Ns
2
αc2α

πv2

���� 1

m2
H1

−
1

m2
H2

����2; ð2:45Þ

where μX ≡MXmN=ðMX þmNÞ is the reduced mass. For
Re½ðyNÞ11�≃ 0 or mH1

≃mH2
, the spin-independent DM

cross section is highly suppressed. As in the cases of the
muon g − 2 and the electron EDM at the two-loop level [see
Eqs. (2.28) and (2.33)], the destructive interference between
the two contributions is a direct result of the orthogonality of
the rotation matrix OðαÞ. The importance of such a can-
cellation in the spin-independent DM cross section is
emphasized in Refs. [39,40] (see also Refs. [13,41]).
The cross section of the DM relic density arises from the

interactions involving the yN couplings as shown in Fig. 7,
and its form is given by

ðσvrelÞ≈
X
f

Nf
Cm

2
fs

2
αc2αsβ3f

8πv2

× ½Re½ðyNÞ11�2β2Xþ Im½ðyNÞ11�2�jGj2

þ
X

V¼Z;W

SVm4
Vs

2
αc2αβV

4πv2
½Re½ðyNÞ11�2β2Xþ Im½ðyNÞ11�2�

×

�
3þ s2

4m4
V
β2V

�
jGj2; ð2:46Þ

FIG. 6. Dominant annihilation cross section in the bosonic DM
scenario.

4We have confirmed that the Oðv2relÞ term in the annihilation
cross section is so small that it does not affect our conclusions
below.
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where βF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4M2

F=s
p

ðF ¼ f; X; VÞ and

G ¼ 1

s −m2
H1

þ imH1
ΓH1

−
1

s −m2
H2

þ imH2
ΓH2

; ð2:47Þ

with s being the Mandelstam variable, the summation of f
running over all the SM fermions, Nf

C ¼ 1 for leptons,
Nf

C ¼ 3 for quarks, and SV ¼ 1=2 (1) for V ¼ Z (W). In
Eq. (2.47), the first term includes the SM fermion pairs, and
the second one the SM weak gauge boson pairs.
From Eqs. (2.46) and (2.47), one can see that σvrel ∝

M2
X=m

4
H1

for MX ≪ mH1
≪ mH2

, and σvrel ∝ 1=M2
X for

mH1
≪ MX ≪ mH2

. On the other hand,H2 comes into play
if mH2

≃mH1
ormH2

≃MX. For instance, there would be a
partial cancellation between the H1 and H2 contributions
for mH1

≃mH2
. Furthermore, σvrel would be resonantly

enhanced if MX ≃mH1
=2 or mH2

=2.
The total decay width of H1 is modified when the

H1 → XX channel is open, and that of H2 is dominated by
ΓH2→2X. That is,

ΓH1
≈ c2αΓtot

SM þ ΓH1→2X and ΓH2
≈ ΓH2→2X; with

ΓHi→2X ¼ mHi
O2

2i

16π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4M2
X

m2
Hi

s �
Re½ðyNÞ11�2

�
1 −

4M2
X

m2
Hi

�

þ Im½ðyNÞ11�2
�

ð2:48Þ

for i ¼ 1, 2. We expect ΓHi
≪ mHi

(i ¼ 1, 2), and the relic
density of DM is given by

Ωh2 ≈
1.07 × 109ffiffiffiffiffiffiffiffiffiffiffiffiffi
g�ðxfÞ

p
MPJðxfÞ

; ð2:49Þ

where again g�ðxf ≈ 25Þ ≈ 100 and JðxfÞ is given by [3,42]

JðxfÞ ¼
Z

∞

xf

dx

"R∞
4M2

X
ds

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s − 4M2

X

p
ðσvrelÞK1ð

ffiffi
s

p
MX

xÞ
16M5

XxK2ðxÞ2
#
;

ð2:50Þ

where K1;2 are the modified Bessel functions of the second
kind of order 1 and 2, respectively. We find that the solution
to obtain a sizable muon g − 2 correction is at around half

the mass of the mediating particle. Therefore, we fixMX ≈
mH1

=2 ≈ 62.5 GeV and close the H1 → XX channel.5

Notice that here we have to apply the exact formula
Eq. (2.50), which is unlikely to the case of bosonic DM,
to get the correct relic density at around the pole, integrat-
ing s from 4M2

X to infinity. Furthermore, we fix mH2
¼

150 GeV and sα ≈ 0.1 for numerical analyses. We then find
that the upper bound on jðyNÞ11j2 is 0.81 from the direct
detection searches. When using jðyNÞ11j2 ¼ 0.81, we fur-
ther obtain ΓH2

≈ 1.32 GeV, much less than mH2
, while

ΓH1
is virtually the same as the SM value. Therefore, the

resonance condition MX ≈mH1
=2 ≈ 62.5 GeV provides a

sufficient enhancement for the DM annihilation cross
section to render the desired DM relic density. In the
above numerical estimation, ReðyNÞ11 plays a much less
significant role in the determination of Higgs boson widths
and DM annihilation rate. We therefore take it to be 0 for
simplicity.
It is worth considering the indirect DM detection via

extra photon emissions, as measured and reported by the
Fermi-LAT experiment. For example, the monochromatic
anomaly of a DM of mass 43 GeVand an annihilation cross
section of Oð10−11Þ GeV−2 [43] might be realized by
judiciously tuning mH2

in the current model.

III. NUMERICAL ANALYSIS

In this section, we present our results in the exploration
of allowed parameter space that satisfies all the constraints
discussed in the previous section. We concentrate on the
region in which we can simultaneously obtain a sizable
muon g − 2 toward an explanation for the observed
anomaly and have a bosonic or fermionic DM candidate.
In such an exercise, we fix the Higgs boson mixing angle to
have sα ¼ 0.1. The value of electron EDM is predicted at
around 10−30–10−28 e cm, close to the current experimental
upper bound.
As alluded to before, we takemLR,MN , VC and VN to be

diagonal for simplicity in our numerical analyses. Our
findings have little dependence on these assumptions.

FIG. 7. Dominant annihilation cross section in the fermionic DM scenario.

5Although we have another solution MX ≈mH2
=2, MX ≈

mH1
=2 is more promising for direct detection. Thus, we focus

on this solution. Note also that the direct detection bound is
more stringent than the invisible decay of the SM Higgs boson at
this scale.
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Bosonic DM case.—Before delving into a detailed
discussion of the bosonic DM case, we remind the reader
that the mass matrix of exotic neutral fermions can be
assumed to have ME, mLR ≪ MN , as only the smallest
three masses are constrained by the active neutrino
oscillation. As confirmed numerically, the matrix MN

can take any sufficiently large values without affecting our
results. Thus, we can take any (large) mass eigenvalues
for the six heavy exotic neutral fermions, and realize
baryogenesis via a high-scale leptogenesis as described
below.
Explicitly, we scan the following parameter ranges:

0≲ ðReðδ23Þ;Reðδ13Þ;Reðδ12ÞÞ≲ π; 0.1≲ ðImðδ23Þ; Imðδ13Þ; Imðδ12ÞÞ≲ 10;

jϕ1;2;3j≲ 2π; jyE1;2;3
j≲ 1;

MX ≲ 100 GeV; mH1
≲mH2

≲ 600 GeV; 1.2MX ≲mSR ≲ 300 GeV;

100 GeV≲ME1
≲ 500 GeV; ME1ð2Þ ≲ME2

ðME3
Þ ≲ 2000 GeV;

1.2MX ≲mLR1
≲ 500 GeV; mLR1ð2Þ ≲mLR2

ðmLR3
Þ ≲ 2000 GeV: ð3:1Þ

Here each range of ðδ23; δ13; δ12Þ is the typical scale to fit
the neutrino oscillation data. Moreover, we take the
perturbativity limit as 4π for all the fij couplings. We
have randomly prepared 106 points in the above-mentioned
parameter space, and found that 360 of them pass all the
constraints, where we neglect the negative solutions of
muon g − 2. Figure 8 is a scatter plot showing the DMmass
and Δaμ of these allowed parameter sets. Although the
allowed MX spans over the entire range of interest to this
work, the muon g − 2 is at most of Oð10−12Þ, far less than
the required Δaμ ¼ Oð10−9Þ. It should be noted that the
couplings F0 appearing in the g − 2 formula (2.24) are
related to the couplings F entering the DM relic density
(2.43) via F0 ¼ FVN under the currently adopted texture of
M defined in Eq. (2.11). For most of the scanned parameter
space, it turns out that the couplings F are small, and
thus the points in Fig. 8 are denser in the region where

MX ≲ 10 GeV to be consistent with the observed DM relic
density. Our scan analysis shows that F0 are not allowed to
exceed Oð0.01Þ in order to avoid the overabundant DM
relic density. This in turn prevents Δaμ from being
sufficiently large. Note that if the DM annihilation cross
section is dominated by the P-wave rather than the S-wave,
the couplings F could be larger.
Here, we also comment on some experimental con-

straints from LFV processes. The strongest one comes from
BRðμ → eγÞ < 4.2 × 10−13. However, it could be evaded if
the couplings F0 take specific forms. Focusing on the
dependence of F0 in muon g − 2, one finds

Δaμ ∝ jF0
21j2 þ jF0

22j2 þ jF0
23j2;

while

BRðμ → eγÞ ∝ F0
11F

0�
21 þ F0

12F
0�
22 þ F0

13F
0�
23:

Thus, there should be some parameter space where F0
21, F

0
22

and F0
23 are large while F

0
11, F

0
12 and F0

13 are small enough
to satisfy the constraint of μ → eγ. However, one should
note that the texture ofM as well as the relation F0 ¼ FVN
do not always grant such a region, and the bosonic DM
scenario presented here is indeed the case. We will see a
working case in the fermionic DM scenario below.
Before moving on to the fermionic DM case, we com-

ment on a possibility of leptogenesis. In the standard high-
scale leptogenesis, CP violation arises from the vertex of
L̄LNR

~Φ, and the decays ofNR generate a lepton asymmetry
which is eventually converted to the baryon asymmetry
through a sphaleron process [44]. In our model, however,
such a term is forbidden by the Z2 symmetry. Nevertheless,
owing to the similar term gL̄0

LNR
~Φ, the lepton asymmetry

may still arise by the decays of NR. The CPV parameter in
this case is

0 20 40 60 80 100
10 4

0.001

0.01

0.1

1

MX GeV

a
10

12

FIG. 8. Scatter plot of allowed ranges of MX and Δaμ × 1012

for the bosonic DM case. It is found that Δaμ cannot reach
Oð10−9Þ in the bosonic DM case. Such a small muon g − 2 is due
to the fact that the couplings F0 appearing in (2.24) are con-
strained by the upper bound of F, as determined by the observed
DM relic density.
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ϵi ¼
P

j½ΓðNi → L0
jϕÞ − ΓðNi → L̄0

jϕ̄Þ�P
j½ΓðNi → L0

jϕÞ þ ΓðNi → L̄0
jϕ̄Þ�

¼ 1

8π

1

ðg†gÞii
X
k≠i

Im½ðg†gÞ2ii�½fðξkÞ þ gðξkÞ�; ð3:2Þ

with ξk ¼ M2
Nk
=M2

Ni
and

fðξÞ¼
ffiffiffi
ξ

p �
1−ð1þξÞ ln1þξ

ξ

�
; gðξÞ¼

ffiffiffi
ξ

p
1−ξ

: ð3:3Þ

Here, the masses of ϕ and L0 are neglected. It should be
noted that unlike the ordinary case, the coupling g is not
restricted by the low-energy neutrino data, giving rise to a
sufficient CP asymmetry. Since an estimate of the final
baryon number density is highly model dependent, the
detailed analysis will be given elsewhere. In contrast to the
bosonic DM scenario, the above leptogenesis would not
work in the fermionic DM scenario, where the right-handed
neutrino is the DM candidate, as discussed below.
Fermionic DM case.—First of all we fix mLR ¼ 0 for

simplicity. The condition avoids the possibility of mixing
between the gauge singlet and doublet. We therefore do not
need to worry about the more stringent constraint from
spin-independent DM-nucleon scattering via the Z boson
portal. In this case, the lightest entry ofMN is automatically
identified as the DM mass. Second, we fix ReðyNÞ11 ¼ 0
and ImðyNÞ11 ¼ 0.9 as given by the most conservative
bound from the direct detection searches. We then obtain
ΓH1

≈ 0.0041 GeV and ΓH2
≈ 1.32 GeV. We also take the

resonance condition MX ≈ 62.5 GeV so as to get the
correct relic density Ωh2 ≈ 0.12. We further make an
assumption of mass degeneracy:ME1

≈mSR ≈mSI . It plays
a crucial role in obtaining a sizable muon g − 2 due to the
loop function in Eq. (2.21).6

In addition to the above assumptions, we further take
ME ≡MEi

, ϕ≡ ϕi, yE ≡ yEi
(i ¼ 1, 2, 3) for simplicity.

We scan the following parameter ranges:

0≲ ðReðδ23Þ;Reðδ13Þ;Reðδ12ÞÞ≲ π; 0.1≲ ðImðδ23Þ; Imðδ13Þ; Imðδ12ÞÞ≲ 10;

jϕ1;2;3j≲ 2π; 0.01≲ jyEj≲ 1;

mH1
≲mH2

≲ 500 GeV; 200 GeV≲ME ≲ 1000 GeV;

1.2MX ≲MN2
≲ 1000 GeV; MN2

≲MN3
≲ 1500 GeV: ð3:4Þ

Moreover, we take the perturbativity limit as 4π for all the
fij couplings.

We have randomly prepared 1.5 × 106 points in the
above-mentioned parameter space, and found that 630 of
them pass all the constraints, including 1.5 × 10−9 ≲ Δaμ≲
4.0 × 10−9.
Figure 9 shows the scatter plots of allowed ranges for the

muon g − 2 (top), BRðτ → μγÞ (middle), and BRðZ → μτÞ
(lower) as a function of ME. The muon (g − 2) and

6One can readily check that the loop function becomes
very small if there is a big mass difference among them. Here
we take these mass differences to be of order 10−5–10−3 and
10−11–10−8 GeV, respectively.
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FIG. 9. Scatter plots of allowed ranges for Δaμ (top plot),
BRðτ → μγÞ (middle plot) and BRðZ → μτÞ (lower plot) as a
function of ME, satisfying 1.5 × 10−9 ≲ Δaμ ≲ 4.0 × 10−9. This
figure indicates an upper bound on ME of around 1 TeV, which
comes from the constraint of neutrino oscillation data.
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BRðτ → μγÞ would be suppressed with increasing ME as
expected. However, BRðZ → μτÞ can in principle grow as
ME increases owing to the nondecoupling property, as
mentioned in Sec. II G. The suppression of BRðZ → μτÞ
observed here actually comes from the suppression of the
flavor changing neutral current couplings that are con-
trolled by the neutrino mass generation. Figure 10 shows
the scatter plot of the allowed range for the electron
EDM as a function of mH2

, satisfying 1.5 × 10−9 ≲ Δaμ≲
4.0 × 10−9. Here the red and blue dots are for 0 ≤ ϕ ≤ π=4
and π=4 < ϕ ≤ π=2, respectively. One finds that the
electron EDM tends to grow as mH2

(ϕ) increases
(decreases), which directly follows from Eq. (2.35).
Our numerical studies show that BRðτ → μγÞ ≲ 10−11,

which is 2 orders of magnitude smaller than the future
sensitivity of 10−9 at Belle II [45], while BRðZ → μτÞ lies
just below the current experimental bound of 1.2 × 10−5 in
Eq. (2.40) and larger than about 1.0 × 10−7. Therefore, the
latter channel can be readily tested by a Giga-Z type
experiment at lepton colliders (for earlier studies, see,
e.g., Ref. [46]). Notice here that the typical scales of
BRðZ→eμÞ and BRðZ → eτÞ are 10−7, while BRðμ → eγÞ
and BRðτ → eγÞ run over wide ranges, satisfying exper-
imental upper bounds.

IV. SUMMARY

We have proposed a model of one-loop induced
Majorana mass for neutrinos. In analyzing the phenom-
enological aspects of the model, we have discussed
radiative lepton decays with flavor violation, the muon
anomalous magnetic moment, electric dipole moments
(EDMs), Higgs to γγ decay, flavor-changing leptonic Z
decays, and scenarios with a bosonic or fermionc dark
matter (DM) candidate. We have scanned the parameter
space to find experimentally allowed regions. A nice
feature of the model is that we can take an arbitrarily
large scale forMN without affecting the neutrino oscillation
data. This enables the possibility of realizing baryogenesis
via high-scale leptogenesis.
We conclude that one cannot get a sizable contribution to

the muon g − 2 to match data in the bosonic DM scenario,
since it conflicts with the constraints of both DM relic
density and BRðμ → eγÞ. In this case, the correction to
muon g − 2 is at most Oð10−12Þ, about 3 orders of
magnitude smaller than the experimental bound.
For the fermionic DM scenario, on the other hand, we

have shown that under various constraints it is possible to
achieve 1.5×10−9≲Δaμ≲4.0×10−9 while satisfying the
DM relic density and the direct detection bound provided
that the DM mass is about mH1

=2. Remarkably, through
parameter scanning we also have found that BRðZ → μτÞ
often lies near the current experimental bound of 1.2×10−5,
while BRðτ → μγÞ is well suppressed. This is a testable
smoking gun at future lepton colliders.
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