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The model proposed by Georgi and Machacek enables the Higgs sector to involve isospin triplet scalar
fields while retaining a custodial SUð2ÞV symmetry in the potential and, thus, ensuring the electroweak ρ
parameter to be one at tree level. This custodial symmetry, however, is explicitly broken by loop effects of the
Uð1ÞY hypercharge gauge interaction. In order to make the model consistent at high energies, we construct
the most general form of the Higgs potential without the custodial symmetry, and then we derive the one-loop
β functions for all the model parameters. Assuming the δi quantities describing the custodial symmetry
breaking to be zero at low energy, we find that jδij are typically smaller than the magnitude of the Uð1ÞY
gauge coupling and the other running parameters in the potential also at high energy without spoiling
perturbativity and vacuum stability. We also clarify that the mass degeneracy among the SUð2ÞV 5-plet and
3-plet Higgs bosons is smoothly broken by ∼0.1% corrections. These results show that the amount of the
custodial symmetry breaking is kept well under control up to energies close to the theory cutoff.
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I. INTRODUCTION

The discovered scalar particle with a mass of 125 GeVat
the LHC run-I experiment shows properties which are
consistent with those of the Standard Model (SM) Higgs
boson [1]. This experimental fact suggests that the Higgs
sector should be constructed by at least one isospin doublet
scalar field. Due to the still poor experimental accuracy,
there are various possibilities for extensions of the Higgs
sector, which are predicted in many new physics scenarios,
from the minimal form assumed in the SM. Therefore, the
open question is then “what is the true shape of the Higgs
sector?”
One of the most important hints to narrow down the

structure of the Higgs sector comes from the electroweak ρ
parameter, which is defined by the ratio of the strength of
the charged electroweak current to the neutral one at zero
momentum transfer. It is well known that its experimental
value is quite close to unity, and in fact the global fit
analysis gives ρexp ¼ 1.00037� 0.00023 [2]. On the other
hand, the tree-level ρ parameter can be expressed by the
ratio of the weak gauge boson masses in an arbitrary Higgs
sector, which is a sum of contributions from the scalar
multiplets φi with hypercharge Yi, isospin Ti and vacuum
expectation value (VEV) vi [3],

ρtree ¼ m2
W

m2
Zcos

2θW
¼
P

jjvjj2½TjðTj þ 1Þ − Y2
j �

2
P

ijvij2Y2
i

; ð1Þ

where θW is the weak mixing angle. Requiring that, in
Eq. (1), the contribution to the numerator equals that to the
denominator for a fixed multiplet φi, we obtain

Ti ¼
1

2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 12Y2

i

q
− 1
�
: ð2Þ

The combinations of Ti and Yi satisfying the above
equation are ðTi; YiÞ ¼ ð0; 0Þ, ð1=2; 1=2Þ and (3,2).1

Therefore, the introduction of the scalar multiplets with
the above assignments does not change the value of ρtree

from 1, regardless of the value of their VEVs.
On the contrary, if we introduce scalar multiplets with

Ti ≥ 1 not satisfying Eq. (2), ρtree can be different from 1.
In such a case, there are two ways to avoid the constraint
from ρexp, namely, (i) tuning the exotic VEVs2 to be quite
small, or (ii) taking an alignment among the exotic VEVs
so as to have a custodial SUð2ÞV symmetric potential.
The former way is evident, since the contribution to
the deviation in ρtree from unity is proportional to the
squared VEVs as seen in Eq. (1). The latter way gives
phenomenologically interesting consequences due to non-
negligible exotic VEVs. One of the most characteristic
consequences is seen in the SM-like Higgs boson (h)
couplings to the weak gauge bosons hVV (V ¼ W, Z),
which can be larger than the SM prediction [5–7]. Such
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1The next possibility is ðTi; YiÞ ¼ ð25=2; 15=2Þ, but the
introduction of such scalar multiplet breaks the perturbative
unitarity due to too large gauge couplings for component scalar
fields [4].

2Here, the exotic VEV means that of a scalar multiplet not
satisfying Eq. (2).
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phenomena cannot be realized in nonminimal Higgs sectors
constructed only by singlet and/or doublet scalar fields.
The model by Georgi and Machacek [8,9] (hereafter,

simply called the GM model), whose Higgs sector is com-
posed of one iso-doublet with Y ¼ 1=2 and two iso-triplets
with Y ¼ 1 and Y ¼ 0, is the simplest3 concrete realization
which satisfies ρtree ¼ 1 by the requirement (ii) explained
above. Basic phenomenological properties of the Higgs
bosons in the GM model, e.g., decays and productions, have
been discussed in Refs. [11,12]. After the discovery of the
125GeVHiggsboson, thecolliderphenomenologyof theGM
model has been discussed in Refs. [13,14] at the LHC and in
Ref. [15] at future eþe− colliders.
In the GM model, the two triplet fields can be packaged

as an SUð2ÞL × SUð2ÞR bi-triplet, and the doublet Higgs
field forms a bi-doublet by itself. As a result, the Higgs
potential is invariant under the global SUð2ÞL × SUð2ÞR
symmetry. If we take the VEV of the bi-triplet field to be
proportional to the 3 × 3 unit matrix, which corresponds to
taking the two triplet VEVs to be the same, the SUð2ÞL ×
SUð2ÞR symmetry breaks down to the custodial SUð2ÞV
symmetry.
However, it is known that this custodial SUð2ÞV sym-

metry is broken at quantum level due to the Uð1ÞY
hypercharge gauge boson loop effect [16]. In this paper,
we quantitatively investigate how this custodial SUð2ÞV
symmetry is broken at high energies by solving the one-loop
renormalization group equations (RGEs) for scalar quartic
couplings. We will show that in order to have consistent β
functions, we need to start from the most general form of the
Higgs potential invariant under the SUð2ÞL ×Uð1ÞY gauge
symmetry. We then numerically evaluate all the running
coupling constants with the initial condition that all the
SUð2ÞV-breaking parameters vanish at low energy. We find
that the amount of the custodial symmetry breaking is well
kept under control, thus making the custodial symmetric
scenario also accessible at high energies.
This paper is organized as follows. In Sec. II, we present

the most general form of the Higgs potential in the GM
model. We then discuss the relation between the general
form and the custodial symmetric one, and define the limit

to recover the latter at tree level. In Sec. III, we clarify the
inconsistency in the derivation of the β functions starting
from the custodial symmetric form of the potential. In
Sec. IV, we first derive the allowed region in the parameter
space by bounds from triviality and vacuum stability as a
function of the cutoff scale. We then calculate the magni-
tude of parameters describing the custodial symmetry
breaking at high energies. We also show the prediction
of the mass spectrum for the Higgs bosons at the TeV scale.
Conclusions are given in Sec. V. In Appendix A, we list
some useful relations between the SUð2ÞL × SUð2ÞR bi-
doublet and bi-triplet form of the scalar fields and the usual
SUð2ÞL doublet and triplet ones. In Appendix B, the mass
formulas for all the scalar bosons are given in the general
case (but assuming the two triplet VEVs to be the same)
and in the custodial symmetric case. In Appendix C, the
analytic expressions for the one-loop β functions for all the
parameters of the GM model are presented.

II. THE MOST GENERAL POTENTIAL
FOR THE GM MODEL

The scalar sector of the GM model is composed of the
complex isospin doublet ϕ with Y ¼ 1=2, the complex
triplet χ with Y ¼ 1 and the real triplet ξ with Y ¼ 0 fields.
These fields can be expressed by

ϕ ¼
�
ϕþ

ϕ0

�
; χ ¼

 χþffiffi
2

p −χþþ

χ0 − χþffiffi
2

p

!
; ξ ¼

 ξ0ffiffi
2

p −ξþ

−ξ− − ξ0ffiffi
2

p

!
;

ð3Þ
where the neutral components are parametrized as

ϕ0 ¼ 1ffiffiffi
2

p ðϕr þ vϕ þ iϕiÞ; χ0 ¼ 1ffiffiffi
2

p ðχr þ iχ0i Þ þ vχ ;

ξ0 ¼ ξr þ vξ; ð4Þ
with vϕ, vχ and vξ being the VEVs for ϕ0, χ0 and ξ0,
respectively. The most general form of the Higgs potential,
invariant under the SUð2ÞL ×Uð1ÞY gauge symmetry, is
given by

Vðϕ; χ; ξÞ ¼ m2
ϕðϕ†ϕÞ þm2

χ trðχ†χÞ þm2
ξ trðξ2Þ

þ μ1ϕ
†ξϕþ μ2½ϕTðiτ2Þχ†ϕþ H:c:� þ μ3trðχ†χξÞ þ λðϕ†ϕÞ2

þ ρ1½trðχ†χÞ�2 þ ρ2trðχ†χχ†χÞ þ ρ3trðξ4Þ þ ρ4trðχ†χÞtrðξ2Þ þ ρ5trðχ†ξÞtrðξχÞ
þ σ1trðχ†χÞϕ†ϕþ σ2ϕ

†χχ†ϕþ σ3trðξ2Þϕ†ϕþ σ4ðϕ†χξϕc þ H:c:Þ; ð5Þ
where ϕc ¼ iτ2ϕ�. Although μ2 and σ4 can be complex, we assume them to be real for simplicity. In this CP-conserving
case, the potential is described by 16 independent real parameters. Conventionally, the model with the potential given in
Eq. (5) has not been referred to as the GMmodel. Rather, the GMmodel has been known as the case where the potential has
a global SUð2ÞL × SUð2ÞR symmetry. In this paper, we will regard the model with Eq. (5) as the generalized GM model.

3This mechanism (ii) can be generalized for models with scalar multiplets with Ti > 1 as discussed in Ref. [10].
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Instead of using the scalar fields given in Eq. (3), let us write the potential with the global SUð2ÞL × SUð2ÞR symmetry in
terms of the SUð2ÞL × SUð2ÞR bi-doublet Φ and the bi-triplet Δ scalar fields:

Φ ¼
�

ϕ0� ϕþ

−ϕ− ϕ0

�
; Δ ¼

0
B@

χ0� ξþ χþþ

−χ− ξ0 χþ

χ−− −ξ− χ0

1
CA: ð6Þ

It takes the following form:

VðΦ;ΔÞ ¼ m2
ΦtrðΦ†ΦÞ þm2

ΔtrðΔ†ΔÞ
þ λ1trðΦ†ΦÞ2 þ λ2½trðΔ†ΔÞ�2 þ λ3tr½ðΔ†ΔÞ2� þ λ4trðΦ†ΦÞtrðΔ†ΔÞ

þ λ5tr

�
Φ† τ

a

2
Φ
τb

2

�
trðΔ†taΔtbÞ

þ μ̄1tr

�
Φ† τ

a

2
Φ
τb

2

�
ðP†ΔPÞab þ μ̄2trðΔ†taΔtbÞðP†ΔPÞab; ð7Þ

where τa and ta (a ¼ 1–3) are the 2 × 2 and 3 × 3 matrix representations of the SUð2Þ generators, respectively. The matrix
P is defined as

P ¼

0
B@

−1=
ffiffiffi
2

p
i=

ffiffiffi
2

p
0

0 0 1

1=
ffiffiffi
2

p
i=

ffiffiffi
2

p
0

1
CA: ð8Þ

The potential given in Eq. (7) is described by nine independent terms.4 Taking the vacuum alignment configuration, i.e.
vΔ ≡ vχ ¼ vξ, the SUð2ÞL × SUð2ÞR symmetry is spontaneously broken down to the custodial SUð2ÞV symmetry, and the
electroweak ρ parameter is predicted to be unity at tree level.
By using the relations presented in Appendix A, we find the following correspondence between the parameters defined in

Eq. (5) and those defined in Eq. (7):

m2
ϕ ¼ 2m2

Φ; m2
χ ¼ 2m2

Δ; m2
ξ ¼ m2

Δ; μ1 ¼ −
μ̄1ffiffiffi
2

p ; μ2 ¼ −
μ̄1
2
; μ3 ¼ 6

ffiffiffi
2

p
μ̄2;

λ ¼ 4λ1; ρ1 ¼ 4λ2 þ 6λ3; ρ2 ¼ −4λ3; ρ3 ¼ 2ðλ2 þ λ3Þ; ρ4 ¼ 4λ2; ρ5 ¼ 4λ3;

σ1 ¼ 4λ4 − λ5; σ2 ¼ 2λ5; σ3 ¼ 2λ4; σ4 ¼
ffiffiffi
2

p
λ5: ð9Þ

From the above equations, we can express 7 out of the 16 parameters of the potential in Eq. (5) (let us choose m2
ξ , μ2, ρ3;4;5

and σ4;5) in terms of the others:

m2
ξ ¼

1

2
m2

χ ; μ2 ¼
1ffiffiffi
2

p μ1;

ρ3 ¼
1

2
ρ1 þ

1

4
ρ2; ρ4 ¼ ρ1 þ

3

2
ρ2; ρ5 ¼ −ρ2; σ3 ¼

1

2
σ1 þ

1

4
σ2; σ4 ¼

1ffiffiffi
2

p σ2: ð10Þ

It is convenient to describe the effect of the custodial symmetry breaking in terms of the following quantities δi:

δ1 ≡m2
ξ −

m2
χ

2
; δ2 ≡ μ2 −

μ1ffiffiffi
2

p ; δ3 ≡ ρ3 −
ρ1
2
−
ρ2
4
; δ4 ≡ ρ4 − ρ1 −

3

2
ρ2;

δ5 ≡ ρ5 þ ρ2; δ6 ≡ σ3 −
σ1
2
−
σ2
4
; δ7 ≡ σ4 −

σ2ffiffiffi
2

p : ð11Þ

We then define the custodial symmetric limit by δi → 0, where the 16 independent parameters of the general potential are
consistently reduced to 9.

4The custodial symmetric potential does not contain any CP-violating parameters.
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The mass formulas for all the physical Higgs bosons are
presented in Appendix B for the general case given in
Eq. (5) with the two triplet VEVs vχ and vξ to be the same.
This relation vχ ¼ vξ is weakly broken at the TeV scale as
we will show in Sec. IV as long as we take δi → 0 at low
energy. In Appendix B, we also derive the mass formulas in
the custodial symmetric case, in which all the physical
Higgs boson states are classified into the SUð2ÞV 5-plet
ðH��

5 ; H�
5 ; H

0
5Þ, 3-plet ðH�

3 ; H
0
3Þ and two singlets (H and

h), and the masses of the Higgs boson belonging to the
same SUð2ÞV multiplet are degenerate. Thus, there are only
four independent masses for the Higgs bosons, i.e. the mass
of the 5-plet ðmH5

Þ, that of the 3-plet ðmH3
Þ, and those of

the two singlets mH and mh. We will identify h to be the
discovered Higgs boson at the LHC with a mass of
125 GeV, i.e., mh ¼ 125 GeV.
Finally, let us discuss the vacuum stability condition,

namely the requirement that the potential does not fall down
into a negative (infinite) value at any direction of the scalar
field space. In Ref. [17], the vacuum stability condition has
been derived in the custodial symmetric case. In the general
GM model, there are five more independent quartic cou-
plings. The necessary condition to guarantee the vacuum
stability is here derived by assuming two nonvanishing
complex fields at once. Taking into account all the directions,
we obtain the following inequalities:

λ ≥ 0; ρ3 ≥ 0; ρ1 þ ρ2 ≥ 0; ρ1 þ
ρ2
2
≥ 0;

ρ4 þ
ρ5
2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ρ3ðρ1 þ ρ2Þ

p
≥ 0;

ρ4 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ρ3ðρ1 þ ρ2Þ

p
≥ 0;

ρ4 þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ3ð2ρ1 þ ρ2Þ

p
≥ 0;

ρ4 þ ρ5 þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ3ð2ρ1 þ ρ2Þ

p
≥ 0;

σ1 þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðρ1 þ ρ2Þ

p
≥ 0;

σ1 þ σ2 þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðρ1 þ ρ2Þ

p
≥ 0;

σ1 þ
σ2
2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2λð2ρ1 þ ρ2Þ

p
≥ 0;

σ3 þ
ffiffiffiffiffiffiffiffiffi
2λρ3

p
≥ 0: ð12Þ

Before closing this section, we briefly review the other
parts of the Lagrangian related to the Higgs fields. The
kinetic Lagrangian is given by

Lkin ¼
1

2
trðDμΦÞ†ðDμΦÞ þ 1

2
trðDμΔÞ†ðDμΔÞ; ð13Þ

where the covariant derivatives are expressed as

DμΦ ¼ ∂μΦ − ig2
τa

2
Wa

μΦþ ig1BμΦ
τ3

2
; ð14Þ

DμΔ ¼ ∂μΔ − ig2taWa
μΔþ ig1BμΔt3: ð15Þ

Equation (13) can also be written in terms of the ϕ, χ and ξ
fields, as

Lkin ¼ jDμϕj2 þ tr½ðDμχÞ†ðDμχÞ� þ 1

2
tr½ðDμξÞ†ðDμξÞ�;

ð16Þ
with

Dμϕ ¼
�
∂μ −

i
2
g2τaWa

μ −
i
2
g1Bμ

�
ϕ;

Dμχ ¼ ∂μχ −
i
2
g2½τaWa

μ; χ� − ig1Bμχ;

Dμξ ¼ ∂μξ −
i
2
g2½τaWa

μ; ξ�: ð17Þ

The gauge boson masses are then given by

m2
W ¼ g22

4
ðv2ϕ þ 4v2χ þ 4v2ξÞ; m2

Z ¼ g22
4cos2θW

ðv2ϕ þ 8v2χÞ:

ð18Þ
From Eq. (1), we can see that, in the custodial symmetric
case, i.e., vχ ¼ vξ ¼ vΔ, ρtree ¼ 1 is satisfied. In this limit, it
is convenient to introduce the angle β relating to the two
VEVs vϕ and vΔ by tan β≡ vϕ=ð2

ffiffiffi
2

p
vΔÞ. Also, the SM

VEV v is identified by v2 ¼ v2ϕ þ 8v2Δ ¼ ð ffiffiffi
2

p
GFÞ−1 ≃

ð246 GeVÞ2 with GF being the Fermi constant. The
Higgs boson couplings to gauge bosons are obtained from
Eq. (16). As it was already mentioned in the previous
section, the SM-like Higgs boson couplings to gauge bosons
hVV (V ¼ W, Z) can be larger than the SM prediction:

κV ≡ gGMhVV
gSMhVV

¼ sin β cosα − 2

ffiffiffi
2

3

r
cos β sin α; ð19Þ

where gGMhVV ðgSMhVVÞ is the hVV coupling in the GM model
(SM), and α is the mixing angle between the CP-even Higgs
bosons defined in Eq. (B27). Clearly, κV can be larger than 1,
because of the factor 2

ffiffiffiffiffiffiffiffi
2=3

p
in the second term of κV , which

comes from the Clebsch-Gordan coefficient of the SUð2ÞL
triplet representation field.
Finally, the Yukawa Lagrangian is given as follows5:

LY ¼ −ytQ̄3
Liτ

2ϕ�tR − ybQ̄3
LϕbR − yτL̄3

LϕτR þ H:c:;

ð20Þ

5In the GM model, there is another possible Yukawa term,
written as Lc

Liτ
2χLL, which provides Majorana masses for the

left-handed neutrinos. This is known as the type-II seesaw
mechanism [18]. In our paper, we do not take into account this
Yukawa coupling, because it is negligibly small as compared to
the Yukawa couplings for the doublet Higgs field given in
Eq. (20).
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where we only show the third generation fermion part
with Q3

L ¼ ðt; bÞTL and L3
L ¼ ðντ; τÞTL. The fermion masses

are obtained as mf ¼ yfv sin β=
ffiffiffi
2

p
(f ¼ t, b, τ) by taking

hϕ0i ¼ v sin β=
ffiffiffi
2

p
.

III. INCONSISTENCY IN THE β-FUNCTION
CALCULATION FOR THE CUSTODIAL

SYMMETRIC CASE

As we already explained in the Introduction, we encoun-
ter an inconsistency in the calculation of the RGEs, if we
start from the Higgs potential defined in Eq. (7). The source
of such inconsistency is the Uð1ÞY gauge interaction in the
kinetic Lagrangian for the Higgs fields, which explicitly
breaks the custodial symmetry at tree level. In fact, the
kinetic Lagrangian given in Eq. (13) is not invariant under
the transformations Φ → ΦU†

RðΔ → ΔU†
RÞ, where UR is

the SUð2ÞR transformation matrix, due to the generator
τ3ðt3Þ. This breaking term affects the scalar potential sector
at loop level; i.e., there appear additional operators which
break the custodial symmetry and cannot be expressed in
terms of Φ and Δ defined in Eq. (6). We note that this
breaking effect due to the Uð1ÞY gauge interaction is also
present in the SM. In that case, however, the custodial
symmetry emerges accidentally after writing down all the
possible renormalizable terms in the potential, so that no
additional operators can be generated radiatively. There-
fore, there is no such inconsistency in the SM.
In order to clarify this problem, let us show as an

example, the calculation of the one-loop β functions for the
dimensionless couplings ρ1, ρ2 and ρ3 given in Eq. (5).
These can be derived by considering the one-loop vertex
function for the χ4r term (denoted as Γ̂χ4r

) and that for the ξ4r
term (denoted as Γ̂ξ4r

) as follows [χr and ξr are introduced in
Eq. (4)],

Γ̂χ4r
¼ Γtree

χ4r
þ Γ1PI

χ4r
; Γ̂ξ4r

¼ Γtree
ξ4r

þ Γ1PI
ξ4r

; ð21Þ

where we have separately indicated the tree-level and the
one-loop one-particle irreducible (1PI) diagram contribu-
tions. Let us concentrate on the Oðg41Þ terms, so that we do
not take into account the contribution from the wave
function renormalization of the scalar fields which provides
Oðg21Þ terms in the β function.
The terms arising from the tree-level diagrams turn out

to be

Γtree
χ4r

¼ −6ðρ1 þ ρ2Þ;
Γtree
ξ4r

¼ −12ρ3 ¼ −6ρ1 − 3ρ2 − 12δ3; ð22Þ

where we used Eq. (11). From the one-loop 1PI diagrams,
we obtain the following contribution to the Oðg41Þ term:

Γ1PI
χ4r

¼ 1

16π2
18g41 ln μ

2 þ � � � ; Γ1PI
ξ4r

¼ 0þ � � � ;

where we have displayed only terms proportional to ln μ2

with μ being an arbitrary scale from the dimensional
regularization. Because the renormalized vertex function
must not depend on μ, the following equation should be
satisfied

d
d ln μ

Γ̂χ4r
¼ d

d ln μ
Γ̂ξ4r

¼ 0; ð23Þ

from which we obtain

βðρ1Þjg4
1
¼ −

1

16π2
6g41 − 4βðδ3Þ;

βðρ2Þjg4
1
¼ 1

16π2
12g41 þ 4βðδ3Þ; ð24Þ

where the β function for a parameter X is defined by

βðXÞ≡ d
d ln μ

X: ð25Þ

Next, let us consider the χþþχ−−χrχr and χþþχ−χ−χr
vertices. By following the same steps, we get

Γ̂χþþχ−−χrχr ¼ −2ρ1 þ
1

16π2
6g41 ln μ

2 þ � � � ; ð26Þ

Γ̂χþþχ−χ−χr ¼ −
ffiffiffi
2

p
ρ2 þ � � � ; ð27Þ

which give

βðρ1Þjg4
1
¼ 1

16π2
6g41; βðρ2Þjg4

1
¼ 0: ð28Þ

By comparing Eqs. (24) and (28), it is clear that we need a
nonvanishing contribution from δ3; otherwise, the β func-
tions for the same coupling obtained by considering
different vertices do not have the same form. In particular,
compatibility requires

βðδ3Þ ¼ −
1

16π2
3g41: ð29Þ

Conversely, δ3 vanishes in the custodial symmetric poten-
tial (together with all the other δ-terms), thus giving rise to
the mentioned inconsistency in the computation of the β
functions. This issue is not particular of ρ1 and ρ2, but
rather it is common to all the other couplings in the
custodial limit. Therefore, in order to obtain a consistent
description in terms of the RGEs, we need to introduce the
custodial symmetry breaking parameters, or in other words,
we need to start from the most general potential given in
Eq. (5). In Appendix C, we present the expressions of the
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one-loop β functions for all the 16 parameters of the general
potential, those for the three gauge couplings, and those for
the top and bottom Yukawa couplings.
In Fig. 1, we show the scale dependence of the

dimensionless couplings which are evaluated by numeri-
cally solving the one-loop RGEs. We here take all the δi
parameters to be zero at the initial scale μ0 ¼ mZ, namely,
we assume the custodial symmetric scenario at μ0. The
three panels display the running behavior for three different
configurations of the initial values of the ρ1, ρ2, σ1 and σ2
parameters. We can see that the values of δi become
nonzero at μ > μ0 and their magnitudes monotonically
increase, but the maximal value of jδij at μ > μ0 is typically
smaller than the maximal magnitude of the other running
scalar couplings at the same scale μ. We will further discuss
the values of the running δi parameters and their relative
size to the other running scalar parameters at high energies
in the next section. Depending on the initial values, Landau
poles can appear at different energy scales, e.g. μ ∼ 1016

and ∼1017 GeV in the center and right panel of Fig. 1,
respectively. Requiring the absence of Landau poles within
a certain energy scale constrains the parameter space. This
feature will be discussed in the next section.

IV. NUMERICAL RESULTS

In this section, we discuss some numerical consequences
of the evolution in energy of the couplings of the GM

model by using the one-loop RGEs. We use the general
setup but assuming the custodial SUð2ÞV symmetry in the
Higgs potential at low energy in order to keep the
electroweak ρ parameter to be unity. This is realized by
taking δi → 0 as defined in Eq. (11).
We first survey the parameter region allowed by the

bounds from vacuum stability and triviality as functions of
the cutoff scale Λcutoff . The former one is defined in such a
way that all the inequalities given in Eq. (12) are satisfied
up to Λcutoff , in which all the dimensionless parameters
should be understood as functions of the scale μ. The latter
is defined by requiring that there is no Landau pole up to
Λcutoff . Here, we impose the following criteria as the
triviality bound for all the dimensionless parameters:

jλðμÞj ≤ 4π; jρiðμÞj ≤ 4π;

jσjðμÞj ≤ 4π for μ0 ≤ μ ≤ Λcutoff ; ð30Þ

where i ¼ 1;…; 5 and j ¼ 1;…; 4. The initial scale μ0 is
fixed to be mZ. In addition to the vacuum stability and
triviality bounds, we also require that all the squared
masses for the physical Higgs bosons are positive at μ0.
We want to show the behavior of the custodial symmetry

breaking parameters δi at high energies according to the
evolution of the parameters as given by the RGEs. In
particular, we want to check if the custodial symmetry is
only weakly broken at high energies. Since we take the
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FIG. 1. Running of the dimensionless coupling constants in the case of μ1 ¼ 100 GeV, μ3 ¼ 0 and tan β ¼ 5. We take the values of
(ρ1 ρ2, σ1, σ2) parameters at the initial scale μ ¼ μ0ð¼ mZÞ to be (0,0,0,0), (0.1,0.1,0,0) and (0,0,−0.4,0.4) for the left, center and right
panels, respectively. The value of λ at μ0 is fixed to satisfy mh ¼ 125 GeV.

BLASI, DE CURTIS, and YAGYU PHYSICAL REVIEW D 96, 015001 (2017)

015001-6



custodial symmetric scenario (δi → 0) at μ0, all the other
parameters at μ0 are determined according to Eq. (10).
In the numerical analysis, we choose the following seven

parameters in the potential, with δi ¼ 0, as inputs,

ρ01; ρ
0
2; σ

0
1; σ

0
2; μ

0
1; μ

0
3; tan β0; ð31Þ

where X0 ≡ Xðμ0Þ. Notice that the tadpole conditions vary
by changing μ, so that the value of tan β also depend on μ.
For this reason, we introduce tan β0 ¼ tan βðμ0Þ. The value
of λ0 is determined so as to satisfy mh ¼ 125 GeV.
We first consider the case with ρ01 ¼ ρ02 ¼ σ01 ¼ σ02 ¼ 0 as

a starting point. In Fig. 2, we show the allowed parameter
space on the μ01– tan β

0 plane with μ03 ¼ 0. The black, blue

and red shaded regions are allowed from the requirement of
Λcutoff ≥ 104, 108 and 1015 GeV, respectively. In this figure,
we also show the contour of the scaling factor κ0V whose tree-
level formula is given in Eq. (19). We see that the large
Λcutoff is allowed in a limited interval of tan β0 depending on
the value of μ01. For example, the allowed region with
Λcutoff ≥ 1015 GeV is obtained in the case with 3≲ tan β0 ≲
10 (20≲ tan β0 ≲ 80) for μ01 ¼ 100 (1000) GeV. This can be
understood by the fact that this region requires a smaller
value of λ0 to satisfy mh ¼ 125 GeV as compared to the
outside region, which makes the appearance of the Landau
pole at a higher-energy scale. We also see that in this
configuration, κ0V > 1 is predicted in the most of the
parameter region on this μ01– tan β

0 plane. Finally, we
checked that the allowed region from the triviality and the
vacuum stability bounds and the behavior of κ0V do not
depend so much on the value of μ03 as long as we take μ03 to
be not too large to give a negative value of m2

H5
. In fact, by

requiring m2
H5

> 0, from Eq. (B22) we obtain

μ03 < 2μ01tan
2β0 þ vðρ02 cos β0 þ 3σ02 tan β

0 sin β0Þ; ð32Þ

Let us show the previously derived bounds in terms of the
masses of extra Higgs bosons, namely, the custodial 3-plet
massmH3

and the 5-plet mass mH5
at μ0. In Fig. 3, we show

the allowed parameter space on the mH3
–mH5

plane with
ρ01 ¼ ρ02 ¼ σ01 ¼ σ02 ¼ 0 and fixed values of tan β0, i.e.,
tan β0 ¼ 5 (left) and tan β0 ¼ 10 (right). Again, we show
the contour of the κ0V value by the green dashed curves.
Similarly to Fig. 2, the black, blue and red shaded regions are
allowed by requiring Λcutoff to be larger than 104, 108 and
1015 GeV, respectively. In this plot, the values of μ01 and μ03
are determined for each point on this plane through
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FIG. 2. The shaded region is allowed by the triviality and the
vacuum stability bounds with the required cutoff scale to be larger
than 1015 GeV (red), 108 GeV (blue) and 104 GeV (black). We
take ρ01 ¼ ρ02 ¼ σ01 ¼ σ02 ¼ μ03 ¼ 0. The green dashed lines show
the contour of κ0V .

FIG. 3. The shaded region is allowed by the triviality and the vacuum stability bounds with the required cutoff scale to be larger than
1015 GeV (red), 108 GeV (blue) and 104 GeV (black) GeV. The value of tan β0 is chosen to be 5 (left panel) and 10 (right panel). We
take ρ01 ¼ ρ02 ¼ σ01 ¼ σ02 ¼ 0. The green dashed lines show the contour of the κ0V value.

EFFECTS OF CUSTODIAL SYMMETRY BREAKING IN THE … PHYSICAL REVIEW D 96, 015001 (2017)

015001-7



Eqs. (B22) and (B23). As a typical behavior, larger mH3
and

mH5
are allowed with higher Λcutoff for the case with larger

values of tan β0. This property can also be seen in Fig. 2,
where a larger value of μ01 which provides larger values of
mH3

andmH5
, is allowed for a larger value of tan β0. It is also

seen that the region with mH3
≥ mH5

and κ0V > 1 is favored
by the triviality and the vacuum stability bounds.
Now, let us consider the case with the boundary con-

ditions different from ρ01 ¼ ρ02 ¼ σ01 ¼ σ02 ¼ 0. In Fig. 4,
each dot is allowed by the triviality and vacuum stability
bounds with Λcutoff ≥ 1015 GeV in the case of μ01 ¼
100 GeV, μ03 ¼ 0 and tan β0 ¼ 5. Here, we scan the four
inputs ðρ01; ρ02; σ01; σ02Þ within the range from −1 to þ1.
From the upper (lower) panels, we can see the allowed
region on the ρ01–ρ

0
2 (σ01–σ

0
2) plane. We checked that the

shape of the allowed region does not change so much if we
change the values of ðμ01; μ03; tan β0Þ as long as they are
allowed with Λcutoff ≥ 1015 GeV as shown in Fig. 2. In this
figure, the dots in the left panels show the range of

MaxðjδijÞ with i ¼ 3;…; 7 and those in the right panels
represent the range of the ratio R defined by R≡
MaxðjδijÞ=Maxðjλj; jρjj; jσkjÞ with j ¼ 1, 2 and k ¼ 1, 2.
The three different colors show the different ranges of
MaxðjδijÞ or R, where the range is indicated inside the
figure. We find that at μ ¼ 1014 GeV the value of MaxðjδijÞ
can go up to ∼0.6 which is ∼g02, while the value of R is
smaller than 1. In addition, by looking at the upper-left
figure, the value of MaxðjδijÞ ∼ 0.6 is only reached by a
large jρ0j j value such as ρ1;2 ≃ 0.4 with ρ2;1 ≃ −ρ1;2, while
in most of the region with jρjj≲ 0.3, we have a milder
value of MaxðjδijÞ ≲ 0.3. On the contrary, by looking at the
upper-right figure, we find that a larger value of R (but still
less than 1) is obtained for a smaller jρ0j j values. If we look
at the lower-left figure, it is difficult to see a correlation
between the value of MaxðjδijÞ and the σ0k parameters. This
suggests that the value of MaxðjδijÞ is almost determined by
ρ0j which are blind in this plane. The upper and lower right

FIG. 4. Values of MaxðjδijÞ (i ¼ 3;…; 7) (left) and R≡MaxðjδijÞ=Maxðjλj; jρjj; jσkjÞ (j ¼ 1, 2 and k ¼ 1, 2) (right) at
μ ¼ 1014 GeV on the ρ01–ρ

0
2 plane (upper panels) and the σ01–σ

0
2 plane (lower panels). For all the figures, we take μ01 ¼ 100 GeV,

μ03 ¼ 0 and tan β0 ¼ 5.
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figures show a similar behavior of R, i.e., smaller values of
jσ0kj give a larger value of R.
We have checked for all the points considered in the

former parameter scan that the signal strengths μX for the
SM-like Higgs boson h, defined as

μX ≡ σðgg → hÞ × BRðh → XXÞjGM model

σðgg → hÞ × BRðh → XXÞjSM
;

ðX ¼ γ; Z;W; τÞ; ð33Þ
are typically given to be within 0.9≲ μX ≲ 1.1. This is
well inside the 95% C.L. range of μX allowed by the
combined ATLAS and CMS analyses using the data
of the LHC run-I experiment [1]. In addition, we have
also checked that the magnitude of the electroweak
ΔSð≡SGM model − SSMÞ parameter6 is given to be smaller
than 0.01. This is also allowed at 95% C.L. by the
electroweak data fits [19].
Summarizing we have checked that, if we vary the

initial conditions on ρ01, ρ
0
2, σ

0
1 and σ02 in a natural range,

the custodial symmetry breaking parameters δi keep
values smaller than the other parameters in the potential.
Finally, we show the predictions for the masses of the

Higgs bosons at μ ¼ 1 TeV to see how the running
parameters δi affect the spectrum. In order to calculate
the Higgs boson masses at μ > μ0, we need to evaluate
not only the running of the dimensionless couplings,
but also that of the dimensionful parameters μ1;2;3 and
m2

ϕ;χ;ξ (their one-loop β functions are presented in
Appendix C). At a given scale μ, we need to re-impose
the tadpole conditions which give three different values
of vϕ, vχ and vξ. We find that the difference between vχ
and vξ at the TeV scale is quite small, i.e. Oð1Þ GeV
level, so that the mass formulas given in Appendix B
give a good enough approximation to derive the spec-
trum at μ ¼ 1 TeV.
In Table I, we show the running masses of the SUð2ÞV

5-plet Higgs bosons ðm̄H��
5
; m̄H�

5
; m̄H0

5
Þ, the 3-plet Higgs

bosons ðm̄H�
3
; m̄H0

3
Þ and the singlet Higgs boson m̄H0 at

μ ¼ 1 TeV for the three different sets of the initial values
at μ0 ¼ mZ written in the first column of the table. For the

input values at μ0, we here fixmH5
,mH3

and tan β0 instead of
inputting μ01, μ03 and tan β0, and also take ρ01 ¼ ρ02 ¼
σ01 ¼ σ02 ¼ 0. All the three sets are allowed by both triviality
and vacuum stability bounds with Λcutoff > 1015 GeV. We
note that other choices with nonzero values of the inputs ρ01;2
and σ01;2 do not change so much the mass spectrum at 1 TeV
from the results given in this table as long as we assume
Λcutoff > 1015 GeV. We can see that the breaking of the
mass degeneracy among the 5-plet Higgs bosons and that
among the 3-plet Higgs bosons is only given to be
Oð1Þ GeV level. In addition, the running mixing angle γ̄
between H�

3 and H�
5 is given to be ∼0.1 or smaller.

From the above results, we conclude that in the TeV
region the mass spectrum of the Higgs bosons or, equiv-
alently, the Higgs potential with the custodial SUð2ÞV
symmetry still provides a good approximation to describe
the scenario once the loop effect of the custodial symmetry
breaking is taken into account.
Before closing this section, let us briefly comment

on the signatures of the 5-plet and 3-plet Higgs bosons
and the current bounds on their masses at collider experi-
ments. Concerning the 5-plet Higgs bosons, since they do
not couple to fermions at tree level, their main decay modes
are given by diboson channels, i.e.,H��

5 → W�W�,H�
5 →

W�Z and H0
5 → WþW−=ZZ (see, e.g., [14]). In Ref. [20],

the 95% C.L. upper limit on the branching ratio
(H��

5 → W�W�) times the cross section of the vector
boson fusion process (qq̄0 → qq̄0W�W� → qq̄0H��

5 ) has
been set using the 8 TeV data at the LHC with an integrated
luminosity of 19.4 fb−1. From this analysis, the 95% C.L.
lower bound on the mass of H��

5 can be extracted to be
about 300 GeV when the triplet VEV vΔ is taken to be
25 GeV corresponding to tan β≃ 3.3. These bounds
become weaker for smaller (larger) value of vΔ ðtan βÞ.7

TABLE I. (first column): Initial values of mH5
, mH3

, mH , tan β0 and κ0V . For all the three sets, we take ρ01 ¼ ρ02 ¼ σ01 ¼ σ02 ¼ 0.
(second column): Running masses for the SUð2ÞV 5-plet Higgs bosons ðm̄H��

5
; m̄H�

5
; m̄H0

5
Þ, the 3-plet Higgs bosons ðm̄H��

5
; m̄H�

5
; m̄H0

5
Þ,

the singlet Higgs boson m̄H0 , and the mixing angle γ̄ between H�
3 and H�

5 at μ ¼ 1 TeV. All the masses are given in GeV unit.

mH5
mH3

mH tan β0 κ0V ðm̄H��
5
; m̄H�

5
; m̄H0

5
Þ ðm̄H�

3
; m̄H0

3
Þ m̄H0 sin γ̄

400 300 250 5 1.00 (589, 591, 592) (577, 576) 570 −0.14
300 400 441 5 1.03 (521, 522, 522) (544, 544) 555 −0.011
600 650 673 10 1.01 (951, 951, 951) (956, 956) 959 −0.013

6It has been known that the electroweak T parameter cannot be
predicted in the GM model, because it depends on one additional
degree of freedom with respect to the SM case [16].

7In Ref. [21], the mass bound on doubly charged Higgs bosons
H�� decaying into W�W� was also derived in the Higgs triplet
model whose Higgs sector is composed of one doublet ðY ¼ 1=2Þ
plus one triplet (Y ¼ 1) fields. From the pair production and the
associated production with a singly charged Higgs boson, the
lower bound on mH�� was obtained to be about 84 GeV at
95% C.L. using the LHC run-1 data set. A similar bound can be
applied to the mass of H��

5 in the GM model without depending
on vΔ.
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In Ref. [22], a search for singly charged Higgs bosons
decaying into the WZ mode via the W and Z boson fusion
process has been performed by using the 13 TeV data set at
the LHC with an integrated luminosity of 15.2 fb−1. The
bound is much weaker than that obtained from the search
for the W�W� channel. In fact, for vΔ ≲ 35 GeV
(tan β ≲ 2.3), no bound ia taken on the mass of H�

5

at 95% C.L.
Concerning the 3-plet Higgs bosons, their phenomeno-

logical properties are quite similar to those of singly
charged Higgs bosons and a CP-odd Higgs boson in the
Type-I 2-Higgs doublet model (2HDM) in the alignment
limit [23]. In our notation, tan β plays the same phenom-
enological role as that in the Type-I 2HDM, i.e., the
Yukawa couplings for H�

3 and H0
3 are proportional to

cot β. Therefore, the main decay modes of H�
3 and H0

3 are
typically tb and tt̄, respectively, as long as these are
kinematically allowed. For lighter 3-plet Higgs bosons
below the tb and tt̄ threshold, H�

3 → τν and H0
3 → bb̄=ττ

can be dominant, respectively. A dedicated study for the
phenomenology of the 3-plet Higgs boson have been done
in Ref. [14].

V. CONCLUSIONS

We have discussed the high-energy behavior of the GM
model, particularly shedding light on the effect of the
custodial symmetry breaking by using the one-loop RGEs.
In order to obtain a consistent form of the one-loop β
functions, we start from the most general Higgs potential
without the custodial SUð2ÞV symmetry, which is described
by 16 independent parameters in the case of CP-

conservation. The custodial symmetric version of the
potential is obtained by taking all seven δi parameters,
describing the breaking of the custodial symmetry, to
be zero.
We then numerically derived the evolution with

energy of δi under the assumption that they all vanish
at μ0 ¼ mZ as initial condition. First, we surveyed the
parameter region allowed by the triviality and the
vacuum stability constraints as a function of the cutoff
scale Λcutoff . Requiring the model to be consistent up to
a high-energy scale, e.g. Λcutoff ≥ 1015 GeV, we obtain a
strong correlation between the dimensionful trilinear
coupling μ1 and tan β and between the mass of the
custodial 5-plet Higgs boson and that of the 3-plet
Higgs boson at μ ¼ μ0. We then extracted the typical
size of the δi parameters at high energies. We found
that, in the configurations with Λcutoff ≥ 1015 GeV, the
maximal value of jδij can be up to ∼0.6 at
μ ¼ 1014 GeV, and it is smaller than the maximal value
of the input parameters in the potential (λ, ρ1;2 and σ1;2).
In addition, in order to quantify the effects of the

custodial symmetry breaking, we derived the running
masses of the Higgs bosons and the running mixing
angle γ̄ between the H�

3 and H�
5 at μ ¼ 1 TeV. We

found that the deviation from the custodial symmetric
limit is quite small, namely, the mass splitting among
the Higgs bosons belonging to the same SUð2ÞV
multiplet is of the order of 1 GeV, and sin γ̄ ∼ 0.1.
This means that once custodial symmetry is realized at
low energy (mZ scale), it also approximately holds at the
TeV scale which is now being surveyed at the LHC
experiments.

APPENDIX A: RELATIONS AMONG SCALAR FIELDS

Relations between the fields Φ and Δ defined in Eq. (6) and ϕ, χ and ξ defined in Eq. (3) are given as

trðΦ†ΦÞ ¼ 2ϕ†ϕ; ðA1Þ

trðΔ†ΔÞ ¼ 2trðχ†χÞ þ trðξ2Þ; ðA2Þ

tr

�
Φ† τ

a

2
Φ
τb

2

�
ðP†ΔPÞab ¼ −

1ffiffiffi
2

p ϕ†ξϕ −
1

2
½ϕTðiτ2Þχ†ϕþ H:c:�; ðA3Þ

trðΔ†taΔtbÞðP†ΔPÞab ¼ 6
ffiffiffi
2

p
trðχ†χξÞ; ðA4Þ

½trðΔ†ΔÞ�2 ¼ 4½trðχ†χÞ�2 þ 2trðξ4Þ þ 4trðχ†χÞtrðξ2Þ; ðA5Þ

trðΔ†ΔΔ†ΔÞ ¼ 6½trðχ†χÞ�2 − 4trðχ†χχ†χÞ þ 2trðξ4Þ þ 4trðχ†ξÞtrðξχÞ; ðA6Þ

tr

�
Φ† τ

a

2
Φ
τb

2

�
trðΔ†taΔtbÞ ¼ −ϕ†ϕtrðχ†χÞ þ 2trϕ†χχ†ϕþ

ffiffiffi
2

p
ðϕ†χξϕc þ H:c:Þ: ðA7Þ

We note trðξ4Þ ¼ ½trðξ2Þ�2=2.
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APPENDIX B: MASS FORMULAS

Let us present the mass formulas for the Higgs bosons of
the GM model with the general potential defined in Eq. (5)
and vχ ¼ vξ ¼ vΔ.
The mass of the doubly charged scalar states

χ��ð≡H��
5 Þ is given by

m2
H��

5

¼ v
4
½4

ffiffiffi
2

p
sβtβμ2 − 2cβμ3

− vðc2βρ2 þ 2s2βσ2 þ
ffiffiffi
2

p
s2βσ4Þ�: ðB1Þ

For the singly charged scalar states, the weak eigenstates
(ξ�, ϕ�, χ�) are related to the mass eigenstates (G�, H�

3 ,
H�

5 ), with G
� being the Nambu-Goldstone (NG) bosons to

be absorbed into the longitudinal components of the W�
bosons, by the following orthogonal transformation:

0
B@

ϕ�

ξ�

χ�

1
CA ¼

0
B@

1 0 0

0 1ffiffi
2

p − 1ffiffi
2

p

0 1ffiffi
2

p 1ffiffi
2

p

1
CA
0
B@

sβ cβ 0

cβ −sβ 0

0 0 1

1
CA

×

0
B@

1 0 0

0 cγ −sγ
0 sγ cγ

1
CA
0
B@

G�

H�
3

H�
5

1
CA: ðB2Þ

The mixing angle γ and the mass eigenvaluesm2
H�

3

andm2
H�

5

for the H�
3 and H�

5 states, respectively, are expressed by

m2
H�

3

¼ ðM2
�Þ11c2γ þ ðM2

�Þ22s2γ þ 2ðM2
�Þ12cγsγ; ðB3Þ

m2
H�

5

¼ ðM2
�Þ11s2γ þ ðM2

�Þ22c2γ − 2ðM2
�Þ12cγsγ; ðB4Þ

tan 2γ ¼ 2ðM2
�Þ12

ðM2
�Þ11 − ðM2

�Þ22
; ðB5Þ

where

ðM2
�Þ11 ¼

v
8

�
4

cβ
ðμ1 þ

ffiffiffi
2

p
μ2Þ − vðσ2 þ

ffiffiffi
2

p
σ4Þ
�
; ðB6Þ

ðM2
�Þ22 ¼

v
8
½4sβtβðμ1 þ

ffiffiffi
2

p
μ2Þ − 4cβμ3

− vðs2βσ2 þ 5
ffiffiffi
2

p
s2βσ4 − 2c2βρ5Þ�; ðB7Þ

ðM2
�Þ12 ¼

v
8
½4tβðμ1 −

ffiffiffi
2

p
μ2Þ þ vsβðσ2 −

ffiffiffi
2

p
σ4Þ�: ðB8Þ

For the CP-odd scalar states, the weak eigenstates (χi,
ϕi) are related to the mass eigenstates (G0, H0

3), with G0

being the NG boson to be absorbed into the longitudinal
component of the Z boson, by the following orthogonal
transformation:

�
χi

ϕi

�
¼
�
cβ −sβ
sβ cβ

��
G0

H0
3

�
: ðB9Þ

The squared mass m2
H0

3

for H0
3 is expressed by

m2
H0

3

¼
ffiffiffi
2

p
μ2v
cβ

−
ffiffiffi
2

p

4
v2σ4: ðB10Þ

Finally, for the CP-even Higgs states, we define the
following basis:

0
B@

ξr

ϕr

χr

1
CA ¼

0
BBB@

1ffiffi
3

p 0 −
ffiffi
2
3

q
0 1 0ffiffi
2
3

q
0 1ffiffi

3
p

1
CCCA
0
B@

~H
~h
~H0
5

1
CA; ðB11Þ

where the three states ~H, ~h and ~H0
5 are not mass eigenstates

in general. The squared mass matrix elements, in the basis
( ~H, ~h and ~H0

5), are expressed as

ðM2
evenÞ11 ¼

v
6

�
2sβtβðμ1 þ 2

ffiffiffi
2

p
μ2Þ þ

3

2
cβμ3 þ vc2βð2ρ1 þ 2ρ2 þ ρ3 þ 2ρ4Þ

�
; ðB12Þ

ðM2
evenÞ22 ¼ 2s2βv

2λ; ðB13Þ

ðM2
evenÞ12 ¼

vsβffiffiffi
6

p ½−μ1 − 2
ffiffiffi
2

p
μ2 þ vcβðσ1 þ σ2 þ σ3 þ

ffiffiffi
2

p
σ4Þ�; ðB14Þ

ðM2
evenÞ13 ¼

v

6
ffiffiffi
2

p ½−4sβtβðμ1 −
ffiffiffi
2

p
μ2Þ þ vc2βð2ρ1 þ 2ρ2 − 2ρ3 − ρ4Þ�; ðB15Þ

ðM2
evenÞ23 ¼

vsβ
2
ffiffiffi
6

p ½2
ffiffiffi
2

p
μ1 − 4μ2 þ vcβð

ffiffiffi
2

p
σ1 þ

ffiffiffi
2

p
σ2 − 2

ffiffiffi
2

p
σ3 − σ4Þ�; ðB16Þ

ðM2
evenÞ33 ¼

v
6

�
2
ffiffiffi
2

p
sβtβð

ffiffiffi
2

p
μ1 þ μ2Þ − 3cβμ3 þ vc2βðρ1 þ ρ2 þ 2ρ3 − 2ρ4Þ −

9ffiffiffi
2

p vs2βσ4

�
: ðB17Þ
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The relation of the basis ð ~H; ~h; ~H0
5Þ to the mass eigenstates

is obtained by an orthogonal transformation,

0
B@

~H
~h
~H0
5

1
CA ¼ Reven

0
B@

H

h

H0
5

1
CA; ðB18Þ

where Reven can be expressed in terms of three independent
mixing angles.
In the custodial symmetric limit defined in Eq. (10), we

obtain

ðM2
�Þ12 ¼ ðM2

evenÞ13 ¼ ðM2
evenÞ23 ¼ 0; ðB19Þ

ðM2
�Þ22ð¼m2

H�
5

Þ ¼ ðM2
evenÞ33ð¼m2

H0
5

Þ ¼ m2
H��

5

; ðB20Þ

ðM2
�Þ11ð¼m2

H�
3

Þ ¼ m2
H0

3

: ðB21Þ

Therefore, we can clearly reproduce the custodial sym-
metric results; namely, ðH��

5 ;H�
5 ;H

0
5Þ and ðH�

3 ;H
0
3Þ

are the custodial 5-plet (H��
5 ; H�

5 ; H
0
5) and the 3-plet

ðH�
3 ; H

0
3Þ, respectively. Because of the no-mixing dis-

played in Eq. (B19), the Higgs bosons belonging to the
different custodial multiplets are not mixed with each other.
In addition, the degeneracy of masses for Higgs bosons
belonging to the same custodial multiplet follows:

m2
H5

¼ v
4
½4sβtβμ1 − 2cβμ3 − vðc2βρ2 þ 3s2βσ2Þ�; ðB22Þ

m2
H3

¼ v
cβ

μ1 −
v2

4
σ2: ðB23Þ

For the CP-even Higgs bosons, the 3 × 3 matrix Reven
becomes the block diagonal form as Reven ¼ diagðRðαÞ; 1Þ
which is described by only one mixing angle α. We, thus,

express the custodial singlet Higgs bosons H and h by the
linear combination of the ~H and ~h states as�

~H
~h

�
¼ RðαÞ

�
H

h

�
: ðB24Þ

The two squared mass eigenvalues and the mixing angle α
are expressed as

m2
H ¼ ðM2

evenÞ11c2α þ ðM2
evenÞ22s2α þ 2ðM2

evenÞ12cαsα;
ðB25Þ

m2
h ¼ ðM2

evenÞ11s2α þ ðM2
evenÞ22c2α − 2ðM2

evenÞ12cαsα;
ðB26Þ

tan 2α ¼ 2ðM2
evenÞ12

ðM2
evenÞ11 − ðM2

evenÞ22
; ðB27Þ

where

ðM2
evenÞ11 ¼

v
8
½8sβtβμ1 þ 2cβμ3 þ vc2βð6ρ1 þ 7ρ2Þ�;

ðB28Þ
ðM2

evenÞ22 ¼ 2v2s2βλ; ðB29Þ

ðM2
evenÞ12 ¼

ffiffiffi
6

p

8
vsβ½−4μ1 þ vcβð2σ1 þ 3σ2Þ�: ðB30Þ

APPENDIX C: β FUNCTIONS

In this Appendix, we give the analytic expressions of the
one-loop β functions for all the model parameters. The
definition of the β function is given in Eq. (25).
The β functions for the three gauge couplings gi (i ¼ 1,

2, 3) and the Yukawa couplings for the top (yt) and bottom
(yb) quarks are given by

βðg3Þ ¼
g33

16π2
ð−7Þ; βðg2Þ ¼

g32
16π2

�
−
11

6

�
; βðg1Þ ¼

g31
16π2

47

6
; ðC1Þ

βðytÞ ¼
1

16π2

�
9

2
y3t þ

3

2
y3b − yt

�
8g23 þ

9

4
g22 þ

17

12
g21

��
; ðC2Þ

βðybÞ ¼
1

16π2

�
9

2
y3b þ

3

2
y3t − yb

�
8g23 þ

9

4
g22 þ

5

12
g21

��
: ðC3Þ

For the ten dimensionless parameters in the potential given in Eq. (5), we have

16π2βðλÞ ¼ 3

8
ð3g42 þ 2g22g

2
1 þ g41Þ þ 24λ2 − 6ðy4t þ y4bÞ þ 3σ21 þ 3σ1σ2 þ

5σ22
4

þ 6σ23 þ 2σ24

− 3λðg21 þ 3g22 − 4y2t − 4y2bÞ; ðC4Þ
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16π2βðρ1Þ ¼ 15g42 − 12g21g
2
2 þ 6g41 þ 28ρ21 þ 24ρ1ρ2 þ 6ρ22 þ 6ρ24 þ 4ρ4ρ5 þ 3ρ25

þ 2σ21 þ 2σ1σ2 − 12ρ1ðg21 þ 2g22Þ; ðC5Þ

16π2βðρ2Þ ¼ 24g21g
2
2 − 6g42 þ 24ρ1ρ2 þ 18ρ22 − 2ρ25 þ σ22 − 12ρ2ð2g22 þ g21Þ; ðC6Þ

16π2βðρ3Þ ¼ 2ð3g42 þ 22ρ23 þ 3ρ24 þ 2ρ4ρ5 þ ρ25 þ 2σ23 − 12g22ρ3Þ; ðC7Þ

16π2βðρ4Þ ¼ 2½3g42 þ ρ4ð8ρ1 þ 6ρ2 þ 10ρ3 þ 4ρ4Þ þ 2ρ5ðρ1 þ ρ2 þ ρ3Þ
þ ρ25 þ 2σ1σ3 þ σ2σ3 þ σ24 − 3ρ4ðg21 þ 4g22Þ�; ðC8Þ

16π2βðρ5Þ ¼ 2½3g42 þ ρ5ð2ρ1 þ 4ρ3 þ 8ρ4 þ 5ρ5Þ − σ24 − 3ρ5ð4g22 þ g21Þ�; ðC9Þ

16π2βðσ1Þ ¼ 3g41 − 6g21g
2
2 þ 6g42 þ 2σ1ð6λþ 8ρ1 þ 6ρ2 þ 2σ1Þ þ 2σ2ð2λþ 3ρ1 þ ρ2Þ

þ 2ð6ρ4σ3 þ 2ρ5σ3 þ σ24Þ þ σ22 −
3

2
σ1ð5g21 þ 11g22 − 4y2t − 4y2bÞ; ðC10Þ

16π2βðσ2Þ ¼ 12g21g
2
2 þ 4σ2½λþ ρ1 þ 2ðρ2 þ σ1Þ þ σ2� þ 4σ24

−
3

2
σ2ð5g21 þ 11g22 − 4y2t − 4y2bÞ; ðC11Þ

16π2βðσ3Þ ¼ 3g42 þ 2σ3ð6λþ 10ρ3 þ 4σ3Þ þ ð3ρ4 þ ρ5Þð2σ1 þ σ2Þ þ 4σ24

−
3

2
σ3ðg21 þ 11g22 − 4y2t − 4y2bÞ; ðC12Þ

16π2βðσ4Þ ¼
σ4
2
½4ð2λþ 2ρ4 − ρ5 þ 2σ1 þ 2σ2 þ 4σ3Þ − 3ð3g21 þ 11g22 − 4y2t − 4y2bÞ�: ðC13Þ

Finally, the β functions for the dimensionful trilinear (μ1;2;3) and bilinear (m2
ϕ;χ;ξ) couplings are given by

16π2βðμ1Þ ¼
μ1
2
ð8λþ 16σ3 − 3g21 − 21g22 þ 12y2t þ 12y2bÞ þ 16μ2σ4 − 2μ3σ2; ðC14Þ

16π2βðμ2Þ ¼ 4μ1σ4 þ
μ2
2
ð8λþ 8σ1 þ 12σ2 − 9g21 − 21g22 þ 12y2t þ 12y2bÞ − 2μ3σ4; ðC15Þ

16π2βðμ3Þ ¼ −2μ1σ2 − 8μ2σ4 þ 2μ3ð2ρ1 þ 4ρ2 þ 4ρ4 − 2ρ5 − 3g21 − 9g22Þ; ðC16Þ

16π2βðm2
ϕÞ ¼

3

2
m2

ϕð8λ − g21 − 3g22 þ 4y2t þ 4y2bÞ þ 3m2
χð2σ1 þ σ2Þ þ 12m2

ξσ3

þ 3μ21 þ 12μ22; ðC17Þ

16π2βðm2
χÞ ¼ 2m2

ϕð2σ1 þ σ2Þ þ 2m2
χð8ρ1 þ 6ρ2 − 3g21 − 6g22Þ þ 4m2

ξð3ρ4 þ ρ5Þ
þ 4μ22 þ 2μ23; ðC18Þ

16π2βðm2
ξÞ ¼ 4m2

ϕσ3 þ 2m2
χð3ρ4 þ ρ5Þ þ 4m2

ξð5ρ3 − 3g22Þ þ μ21 þ μ23: ðC19Þ
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