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According to the ideal walking technicolor paradigm, large mass anomalous dimensions arise in gauged
Nambu–Jona-Lasinio (NJL) models when the four-fermion coupling is sufficiently strong to induce
spontaneous symmetry breaking in an otherwise conformal gauge theory. We therefore study the SUð2Þ
gauged NJL model with two adjoint fermions using lattice simulations. The model is in an infrared
conformal phase at small NJL coupling while it displays a chirally broken phase at large NJL couplings. In
the infrared conformal phase, we find that the mass anomalous dimension varies with the NJL coupling,
reaching γm ∼ 1 close to the chiral symmetry breaking transition, de facto making the present model the
first explicit realization of the ideal walking scenario.
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I. INTRODUCTION

In technicolor and (fundamental) compositeHiggsmodels,
four fermion interactions naturally emerge near the electro-
weak scale when trying to endow the Standard Model
fermions with a mass term [1–4]. They appear as an effective
description of a more fundamental high energy model.1

Four fermion interactions can play a dual purpose, in
addition to fermion mass generation, they can dramatically
change the dynamics of the new strongly interacting sector
[9] and improve on the original walking paradigm [10] by
greatly extending the number of potential relevant theories
that can be used to break the electroweak symmetry
dynamically and, last, but not the least, increase the anoma-
lous dimension of the technifermion mass operator [9]. We
refer also to [11–13] for pointing out the importance of the
effects of strong four-fermion interactions on thedynamics of
gauge theories.

In particular, in technicolor models producing the correct
mass for the top quark requires balancing flavor changing
neutral currents and thequarkmass termarising fromthesame
high energy interaction. In purely fermionicmodels of single-
scale fermion mass generation, the flavor changing neutral
currents are suppressed by the high energy scale, and themass
term can be enhanced in a walking technicolor model with a
large mass anomalous dimension [10]. A number of issues
plague the Walking realization within a gauge theory with a
given fermion representation.The first issue is that thenumber
of flavors cannot be modified, continuously reducing sub-
stantiallythenumberof theories thatcanbejustbelowthenear-
conformal transition. Secondly, neither higher-order precise
computations2 [15–18] nor lattice results [19] so far support
large enoughmass anomalous dimensions for theories within
the conformal window of [15,16,20,21]. Lastly, we are not
guaranteed that the transition is continuous in the number of
flavors [22].
However, a significant four fermion coupling can

increase the mass anomalous dimension [9,23] while
allowing us to get arbitrarily close to the lower boundary
of the conformal window [9]. Ideally, a walking techni-
color model could be constructed by allowing a strong
four fermion interaction to induce chiral symmetry break-
ing when the gauged theory in absence of the four-fermion
interactions is infrared conformal.3
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1For an explicit fundamental fermionic realization in both the
technicolor and composite Higgs case using chiral gauge theo-
ries, see [5]. We note that a novel microscopic realization for
partial compositeness has been put forward in [6]. The recent
fully composite realization overcomes earlier bottlenecks for
partial compositeness, when expected to emerge from pure
fermion realizations, such as the unlikely existence of anoma-
lously large anomalous dimensions [7] for the composite baryon
of the theory, and the fact that no truly fully viable microscopic
description exists [8]. Interestingly, four fermion interactions
naturally emerge around the electroweak scale also in the fully
fledged microscopic construction introduced in [6].

2The first use of rigorous computations to elucidate the
conformal dynamic properties of physical quantities such as the
S parameter appeared in [14].

3Mass generation has also been analyzed in the context of extra
dimensional setups (see, for instance [24,25]), which however
cannot be considered on the same footing as fundamental theories
[26]. Recently, analyses using crossing symmetry in conformal
field theories have added extra constraints for the scalar operator
with the lowest dimension [27,28]. However, the constraints are
not generally applicable to the operator relevant for flavor as
demonstrated in [29].

PHYSICAL REVIEW D 96, 014512 (2017)

2470-0010=2017=96(1)=014512(9) 014512-1 Published by the American Physical Society

https://doi.org/10.1103/PhysRevD.96.014512
https://doi.org/10.1103/PhysRevD.96.014512
https://doi.org/10.1103/PhysRevD.96.014512
https://doi.org/10.1103/PhysRevD.96.014512
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


It is for the reasons above that we investigate the SUð2Þ
gauged NJL [30] (gNJL) model with two flavors of
fermions transforming in the adjoint representation using
lattice simulations. It was first realized and predicted in
[20,21,31] that the theory, at zero NJL coupling, could
display (near) conformality. These results triggered a number
of important lattice studies at zero NJL coupling [32–47],
agreeing on the infrared conformality of the theory.
Therefore, the gauged NJL model has an infrared conformal
phase at small NJL coupling. It is natural to expect that at
strong NJL coupling, the four fermion interaction induces
chiral symmetry breaking. A similar model with no infrared
conformal phase has been studied in [48,49].
To be precise here, we study a model in which the NJL

operator breaks the flavor symmetry and cannot be induced
by the gauge coupling. An infrared fixed point (IRFP)
exists at vanishing NJL coupling. It is possible that this
fixed point may extend into a line of IR fixed points
parametrized by the NJL coupling, with varying anomalous
dimensions. In this case, the mass anomalous dimension is
expected to increase with the NJL coupling [9]. We study
this possibility by measuring the anomalous dimension at
several values of the NJL coupling. Although here we focus
on the infrared dynamics of the theory, there are a number
of interesting UV possibilities that are outside the scope of
this work4 Here, we consider the model as an effective
theory defined with an ultraviolet cutoff at some energy
scale much higher than the inverse lattice spacing, and we
will not address the issue of taking the continuum limit.
In Sec. II of this work, we introduce the lattice model in

detail and discuss its symmetry properties. In Sec. III, we
present a sketch of the phase diagram. In Sec. IV, we study
the chiral symmetry breaking transition and find the critical
NJL coupling. In Sec. V, we measure the mass anomalous
dimension as a function of the NJL coupling in the infrared
conformal phase. Finally, we conclude in Sec. VI. We find

numerical evidence to support the ideal walking scenario
with mass anomalous dimensions growing towards unity as
function of the NJL coupling from its infrared conformal
value for the gauge theory. Since the global symmetry of
the model in the continuum is Uð1Þ × Uð1Þ that breaks
spontaneously to U(1) for large four-fermion coupling, the
model can be viewed as a first step towards a model of
dynamical electroweak symmetry breaking, but it can also
be used in other model building contexts, including
composite dark matter models and inflation [62–67].

II. THE MODEL

We study the SUð2Þ gauged NJL model with two Dirac
fermion flavors in the adjoint representation of the gauge
group. The lattice action of the model is

S ¼ β
X
x;μ<ν

Lx;μνðUÞ

þ
X
x;y

Ψ̄ðxÞDWðx; yÞΨðyÞ þ
X
x

m0Ψ̄ðxÞΨðxÞ

−
X
x

a2g2½Ψ̄ðxÞΨðxÞΨ̄ðxÞΨðxÞ�

−
X
x

a2g2½Ψ̄ðxÞiγ5τ3ΨðxÞΨ̄ðxÞiγ5τ3ΨðxÞ�; ð1Þ

where Lx;μνðUÞ is the Wilson plaquette gauge action and U
the gauge field, DW is the Wilson Dirac operator and a is
the lattice spacing. We perform lattice simulations using the
hybrid MonteCarlo (HMC) algorithm and handle the four
fermion term using auxiliary fields,

S ¼ βL
X
x;μ<ν

Lx;μνðUÞ

þ
X
x

Ψ̄ðxÞ½DW þm0 þ σðxÞ þ π3ðxÞiγ5τ3�ΨðxÞ

þ σðxÞ2 þ π3ðxÞ2
4a2g2

: ð2Þ

The original action is recovered by integrating over the
fields σ and π.
The four fermion term preserves a Uð1Þ ×Uð1Þ com-

ponent of the full SUð4Þ flavor symmetry of the gauge
model. We will refer to the unbroken direction in the
symmetry group as diagonal and the other directions as
nondiagonal. While a SUð2Þ × SUð2Þ symmetry would be
ideal, the auxiliary field representation would suffer from a
sign problem. We contend here to study a model with a
more restricted symmetry group as a representative case.
Since the four fermion term reduces the symmetry of the

action at zero quark mass, the coupling g does not receive
additive renormalization. The chiral symmetry is fully
broken by the Wilson term and restored at a critical value
of the bare massm0 ¼ mcðβ; gÞ. It is instructive to study the
partially conserved axial current (PCAC) relation in the

4For example, according to recent results, calculable in a
perturbative regime, gNJL models can be seen as a special case of
gauge Yukawa models [50]. A gauge Yukawa model, even when
manifestly perturbative, under certain conditions can be viewed
as a composite theory [50–53] and reduce to a gNJL model at a
high energy scale. Furthermore, when the gauge coupling runs
sufficiently slowly, a gNJL model may be renormalizable with a
nontrivial coupling. In [54], the model was studied in the limit of
standing gauge coupling and was found to be renormalizable with
a nontrivial NJL coupling. Similar models were studied in [55,56]
and were found to be nontrivial with sufficiently slowly running
gauge coupling. If a nonperturbative ultraviolet fixed point
emerges in an NJL theory, the absence of an ultraviolet cutoff
renders the theory fundamental according to Wilson. Recently,
the first rigorous results in four dimensions for the (non)existence
of fully interacting ultraviolet fixed point appeared in (super-
symmetric) gauged Yukawa theories in [57–60]. These results led
to the recent discovery of the first example of a calculable
radiative symmetry breaking mechanism for UV complete QFTs
at low energies akin to the radiative symmetry breaking that
occurs in the supersymmetric Standard Model [61].
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model. The relation is obtained through a variation of the
action by an infinitesimal axial transformation (for details
in the case of gauge theories, see [68]). It is identical in the
diagonal and nondiagonal directions up to a term arising
from the variation of the NJL term,

∂μhAI;d
μ ðxÞOi ¼ 2m̄hPdðxÞOi

− 4a2ḡ2ð1 − δd;3ÞhS0ðxÞPdðxÞOi; ð3Þ

where ḡ is a renormalized NJL coupling. For convenience,
the order 1 and a terms have been absorbed into a
renormalized axial current. Thus,

AI;d
μ ðxÞ ¼ ZAΨ̄ðxÞγμγ5τdΨðxÞ þ acA∂μPdðxÞ; ð4Þ

PdðxÞ¼ Ψ̄ðxÞγ5τdΨðxÞ and S0ðxÞ¼ Ψ̄ðxÞΨðxÞ; ð5Þ
where τd are the generators of the flavor symmetry group
and τ1, τ2, and τ3 are the Pauli matrices.
The stability of the expansion is guaranteed if ḡ is at most

order 1. In general, we neglect any terms arising at order a
or higher, including the cA term, but the second term Eq. (3)
describes the breaking of the nondiagonal axial symmetries
and must be retained.
The chiral symmetry is restored when ∂μhAI;3

μ Oi ¼ 0,
and thus, m̄ ¼ 0. On the critical surface, the nondiagonal
PCAC relations with d ¼ 1 and 2 read

∂μhAI;d
μ ðxÞOi ¼ −4a2ḡ2hS0ðxÞPdðxÞOi: ð6Þ

The symmetry appears to be broken by an a2 term at
nonzero g. However, the scaling of the coupling ḡ is
nontrivial, and the term does not necessarily scale as a2.
The divergence of the axial current can be measured and
specifically when the chiral symmetry is broken we find
large values.
The nondiagonal PCAC relation provides a convenient

way of measuring the chiral condensate without the need
for additive renormalization. The scalar density S0ðxÞ on
the right-hand side of Eq. (3) can be split into the chiral
condensate ΣL ¼ P

xhS0ðxÞi=V and S0SðxÞ ¼ S0ðxÞ − ΣL.
By choosing O ¼ PdðyÞ with d ¼ 1, 2 on the critical
surface, Eq. (3) becomes

∂μhAI;d
μ ðxÞPdðyÞi ¼ ð2m̄ − 4a2ḡ2ΣLÞhPdðxÞPdðyÞi

− 4a2ḡ2hS0SðxÞPdðxÞPdðyÞi: ð7Þ

The last term vanishes at large separations, and the PCAC
mass m̄ can be measured using the diagonal PCAC relation.
The chiral condensate can then be measured by calculating
the correlators in the first and second terms.
The observable ḡ2ΣL measures the breaking of the

nondiagonal axial flavor symmetry, which is only broken
if ḡ and ΣL are nonzero. We may choose a renormalization

scheme in which either or both receive a multiplicative
renormalization. For example, it is possible to choose
ḡ ¼ g, in which case, the renormalization coefficient for
the chiral condensate depends on both couplings g and β.
Here, we in fact only measure the combination and do
not employ separate renormalization schemes for the two
quantities.

III. PHASE DIAGRAM

The phase diagram of the lattice model considered here
shares some features of the phase diagrams of both the
lattice SU(2) adjoint model with Wilson fermions and the
ungauged NJL model. In particular, at strong gauge
coupling, corresponding to small β s, there is a bulk phase
in which the chiral zero quark line becomes a first order
transition line, and small quark masses can therefore not be
attained. In the weak coupling phase and zero quark mass,
the phase diagram is split into two regions, an infrared
conformal region at weak NJL coupling with intact chiral
symmetry and a region of strong NJL coupling where the
chiral symmetry is spontaneously broken. When perform-
ing simulations on a fixed lattice volume, a region with a
nonzero expectation value for the Polyakov loops is present
at large enough β corresponding to small physical volumes.
At β ¼ ∞ in this small volume region, the model reduces to
the ungauged NJL model studied in [69].
A sketch of the phase diagram at zero mass is shown in

Fig. 1. It includes the following significant regions:
(1) The physically interesting region, which is split into

two phases:

0 1 2 3 4 5
β

0

0.1

0.2

0.3

0.4

0.5

g 1.a.

1.b.

3. 2.

β=∞

FIG. 1. A sketch of the phase diagram at zero quark mass.
Phases 1.a and 1.b are the physical infrared conformal and
chirally broken regions. The solid line shows the large N ladder
approximation result for the critical line separating the phases
(the χSB line), and circles denote its measured locations. In
region 2 at β > βmax, the Polyakov loop grows with β, indicating
significant finite size effects. At L ¼ 16, we find βmax ≳ 3. In
phase 3, there is a first order bulk transition instead of a critical
line, and the quark mass cannot be taken to zero. The squares
denote the measured boundaries of this phase.
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(a) The infrared conformal phase at g < gcðβÞ. The
masses of all composite states approach zero on
the critical surface m ¼ mcðβ; gÞ with a behavior
characterized by an anomalous dimension γmðgÞ.

(b) The chirally broken phase at g > gcðβÞ. Here, the
diagonal pseudoscalar meson mass approaches
zero on the critical surface as a square root of
the quark mass, while other states remain massive.
The combination ḡ2ΣL has a nonzero expectation
value, and it is as an order parameter for the broken
chiral symmetry.

(2) A small volume region at β > βmaxðLÞ. At
β < βmaxðLÞ, the Polyakov loop

LP ¼ 1

4

�X
μ

jPμj
�
; ð8Þ

Pμ ¼
1

L3

X
xν≠μ

Y
xμ

Ux;μ; ð9Þ

has a small expectation value that approaches zero
when L → ∞. When β > βmaxðLÞ, the expectation
value grows with β, approaching 1 at β → ∞. The
ungauged NJLmodel exists in the limit β → ∞, where
the small volume region extends to the limit L → ∞.
The region is divided into chirally broken and sym-
metric phases by the χSB line.

(3) A bulk phase at small β. At β < βcðgÞ, the critical
surface is replaced by a first order transition. The
transition is marked by a jump in the plaquette
expectation value and, based on the observation at
g ¼ 0, we expect a jump in the quark mass. Since the
quark mass jumps from a positive to a negative value,
zero quark mass cannot be reached. At vanishing four-
fermion coupling, it was found in previous studies that
βcð0Þ≃ 2. Here, we found that at β ¼ 1.7, the first
order transition persists up to g < 0.3.

(4) An unphysical flavor-parity broken region, with a
nonzero expectation value of

hπ3i ¼
1

V

�X
x

π3ðxÞ
�
: ð10Þ

The critical surface in the chirally broken region 1.b
is the second order transition boundary between the
flavor-parity broken phase and the physical positive
mass phase. There are several unphysical phases on
the negative mass side of the critical surface corre-
sponding to different fermion doubler modes. The
existence of a clear order parameter for the flavor-
parity broken phase helps in identifying the critical
surface without measuring the diagonal pseudosca-
lar meson mass.

We find numerical evidence for the phases and transitions
described using lattice simulations. We generate configura-
tions of the gauge field U and the auxiliary fields σ and π3

using the HMC algorithm. A full update consists of two
HMC updates, a trajectory that only updates the auxiliary
field, keeping the gauge field constant, and a trajectory that
updates both the auxiliary fields and the gauge field. In both
cases, we tune the time step to keep the acceptance rate above
80%. At small mass and large lattice size, we use the
Hasenbusch method to accelerate the HMC update [70].
The scans of the parameter space are performed using the
lattice size 84. We produce at least 200 configurations after
thermalization for each of these measurements.
The transition into the bulk phase 3 is shown in Fig. 2. In

previous studies at g ¼ 0 [33,35], a crossover was observed
at β > βc ≈ 2 and a first order transition at β < βc. The
transition can be identified by a jump in the plaquette
expectation value. We observe a crossover at β ¼ 2.25 at
several values of g. As the four fermion coupling g is
increased, the transition becomes smoother and moves to
smaller bare mass. We observe what appears to be a first
order transition at β ¼ 1.7 and g < 0.3. At β ¼ 1.7 and
g ¼ 0.3, the behavior of the plaquette again changes
continuously, and we find a critical mass, signified by
hπ3i gaining a nonzero expectation value.
An example of the transition to the small volume region 2

is shown in Fig. 3. The figure shows the Polyakov loop

0.6

0.65

0.7

0.75
g=0.05
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FIG. 2. The plaquette expectation value as a function of the bare
mass at several values of g and β ¼ 2.25 (left) and β ¼ 1.7
(middle) and the expectation value hπ3i at β ¼ 1.7 (right). At the
larger β, we observe only a crossover, and a critical line can be
found. At β ¼ 1.7 and g < 0.3, we see a first order transition into
the bulk phase. In this case, the transition happens at a positive
quark mass, preventing studies at the critical line. At larger
g ¼ 0.3, we find no first order transition, and there is a critical
line signaled by a nonzero expectation value hπ3i.
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β
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FIG. 3. The Polyakov loop expectation value as a function of
the gauge coupling β at L ¼ 8, g ¼ 0.1, and m0 ¼ 0.

RANTAHARJU, PICA, and SANNINO PHYSICAL REVIEW D 96, 014512 (2017)

014512-4



expectation value as a function of β at m0 ¼ 0. The four
fermion coupling has no observable effect to the Polyakov
loop in this case. The Polyakov loop is small at β ≲ 2.25 and
grows with βwhen β > 2.25. Wemonitor the Polyakov loop
in all of our runs in order to avoid large finite size effects.

IV. THE CHIRAL SYMMETRY
BREAKING TRANSITION

The Nambu–Jona-Lasinio model predicts a second order
transition between the chirally symmetric and broken
phases [30]. A strong gauge interaction also tends to cause
chiral symmetry breaking and decreases the value of the
critical NJL coupling needed to trigger the transition [23].
In the more familiar case of a small number of flavors in the
fundamental representation, the gauge interaction causes
spontaneous chiral symmetry breaking in the full phase
space of the model. A transition may nevertheless occur
between a phase dominated by the gauge interaction and a
phase dominated by the NJL interaction.
In the case of the SU(2) gauge interaction with four

flavors in the fundamental representation, this transition
was observed in lattice studies [48,49]. These results
strongly point to a first order transition. In the same model,
a second order transition was observed in the finite volume
phase. In the adjoint SU(2) model, the gauge interaction
does not cause spontaneous chiral symmetry breaking, and
the properties of the transition may be completely different.
We study the transition using the nondiagonal meson

masses and the condensate

m̄NDðtÞ ¼
P

x∂0hAND
μ ðt;xÞPNDð0ÞiP

xhPNDðt;xÞPNDð0Þi : ð11Þ

At large enough t, by using Eq. (7), we find

m̄NDðtÞ ¼ −4a2ḡ2ΣL: ð12Þ

The left panel of Fig. 4 shows several representative
examples of the t dependence of m̄NDðtÞ.

As noted in [69], the diagonal pseudoscalar meson
correlation function has a disconnected contribution.
Instead of using this noisy observable, we identify the
critical surface using the second order transition into
the parity broken phase. In the flavor-parity broken phase,
the condensate hπ3i defined by Eq. (10) acquires a nonzero
expectation value, and the susceptibility

χπ ¼
��X

x
π3ðxÞ

�
2
�
−
��X

x
π3ðxÞ

��
2

ð13Þ

diverges on the critical surface.
We locate the critical surface via lattice simulations at

two lattice spacings, β ¼ 2.25 and β ¼ 3. We use the
lattices of size L ¼ 16 and, at β ¼ 3, we use two simu-
lations at L ¼ 20 for comparison. Figure 5 shows hπ3i (left
panel) and χπ (right panel) measured at g ¼ 0.3 and
β ¼ 2.25. The autocorrelation times for the observables
considered in this paper are at most of order 20 close to the
critical regions. Our error analysis takes the autocorrelation
times into account using a bootstrap blocking procedure.
As the transition is expected to be in the mean-field
universality class, we fit the behavior of the condensate to

hπ3iðm0; gÞ ¼ CπðgÞðmcðgÞ −m0Þ0.5 ð14Þ

at fixed β. The values of mcðgÞ and the χ2 value per degree
of freedom (d.o.f.) for each fit are given in Table I. In
addition to the statistical error, we include an estimate of
systematic error from varying the fit range.
We use an interpolating function to find additional

parameter sets on the critical surface, listed in Table I
without corresponding values of mc. We parametrize the
critical surface as

mcðβÞ ¼ c0ðβÞ þ c1ðβÞ=gþ c2ðβÞ=g2: ð15Þ

The statistical and systematic errors on the critical mass
are small and consequently, the χ2=d.o.f. of this fit is large.
The values are found in Table II. In order to quantify the
systematic error introduced by the interpolation function,
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FIG. 4. Left: The m̄NDðtÞ as a function of t. The t dependence
of the condensate provides a measure of discretization effects.
Right: The condensate m̄ND as a function of bare mass with β ¼
2.25 and L ¼ 16.
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FIG. 5. The expectation value hπ3i (left) and the susceptibility
χπ (right) with β ¼ 2.25 and g ¼ 0.3.
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we measure the condensate m̄ND at three values of g at
β ¼ 2.25 around the transition. The values are shown in the
right panel of Fig. 4. An expected deviation of ∼0.01 in
the mass results in a similar deviation of ∼0.02 in the
condensate.
We then measure m̄ND and the nondiagonal pseudoscalar

(NDP) and nondiagonal vector (NDV) meson masses on
the critical surface at zero quark mass in the phase 1.b, by
using lattices with time extent T ¼ 2L. The values of g and
m0 used in this step are listed in Table I.

Figure 6 shows the condensate m̄ND and the masses of
the nondiagonal pseudoscalar and vector mesons. Each of
these quantities is expected to scale to zero at the second
order χSB line at zero quark mass, and we fit them to the
lowest order behavior

am̄ND ¼ CΣðg − gcÞβΣ ; ð16Þ

amX ¼ CXðg − gcÞβX ; ð17Þ

where X ¼ NDP or NDV. The exponents and the location
of the χSB line gc are given in Table III along with the
χ2=d.o.f. values. The values of gc are also shown in Fig. 1.
Systematic errors from varying the fit range are included in
the values. To control finite volume effects, at β ¼ 3, we
have performed two sets of measurements at L ¼ 20. By
comparing to L ¼ 16 volume, we find a significant differ-
ence at g ¼ 0.35 but no visible difference at g ¼ 0.375.
These results indicate that the transition is compatible with
a second order transition although we cannot yet rule out a
weak first order transition. A better understanding of the
order of the transition will require simulations with larger
lattice sizes and closer to the critical line.

V. MASS ANOMALOUS DIMENSION

In the infrared conformal phase 1.a, chiral symmetry is
not spontaneously broken: the weak four fermion inter-
action has no effect on the vacuum and the couplings flow
to an infrared fixed point. At g ¼ 0, the IR fixed point has
been found in previous studies with a mass anomalous
dimension between 0.3 and 0.4. Here, we study the IR fixed
point of the model at 0 < g < gc. At g > 0, the model may

TABLE I. Simulation parameters L, β, g, and m0 used to study
the chiral symmetry breaking transition. The critical mass mc is
recovered from the scaling fit Eq. (14). The errors quoted include
an estimate of systematic uncertainty found by varying the fit
range. The mass m0 is the actual value of the parameter used in
simulations.

L β g m0 mc χ2=d.o.f.

16 2.25 0.27 −2.345 −2.348ð1Þ 0.89
0.275 −2.367 −2.3659ð8Þ 0.25
0.28 −2.391
0.29 −2.435
0.3 −2.478 −2.4772ð9Þ 0.31
0.31 −2.518
0.32 −2.558 −2.5579ð4Þ 0.70
0.33 −2.594
0.35 −2.661 −2.6609ð5Þ 0.73
0.4 −2.817
0.5 −3.05 −3.0496ð2Þ 0.78

16 3 0.35 −2.577 −2.577ð4Þ 0.66
0.375 −2.666 −2.6660ð5Þ 0.67
0.39 −2.715
0.4 −2.745 −2.745ð1Þ 0.23
0.41 −2.777
0.42 −2.806
0.425 −2.820 −2.822ð1Þ 0.82
0.43 −2.835
0.45 −2.889 −2.8893ð8Þ 0.07

20 3 0.35 −2.574 −2.5736ð3Þ 0.14
0.375 −2.665 −2.6653ð7Þ 0.91

TABLE II. The parametrization of the critical surface given in
Eq. (15).

L β c0 c1 c2 χ2=d.o.f.

16 2.25 −4.220ð6Þ 0.679(5) −0.047ð1Þ 8.8
16 3 −4.4ð1Þ 0.86(8) −0.073ð2Þ 1.8
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FIG. 6. The condensate m̄ND (left) and the nondiagonal
pseudoscalar (NDP) and vector (NDV) meson masses at β ¼
2.25 (left) and β ¼ 3 (right).

TABLE III. The scaling dimensions and coefficients in Eqs. (16) and (17). The errors include an estimate of the systematic error from
varying the fit range.

β χ2=d.o.f. gc CΣ βΣ CNDP βNDP CNDV βNDV

2.25 0.72 0.274(3) 1.7(1) 0.52(3) 4.1(1) 0.33(3) 4.1(1) 0.31(2)
3 0.95 0.335(2) 2.0(1) 0.62(3) 6.0(2) 0.54(2) 6.1(2) 0.54(1)
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be attracted to a different IR fixed point than at g ¼ 0 with
different critical exponents. These IR fixed points would
then lie on a continuous line of RG fixed points, and the
mass anomalous dimension would depend on the four
fermion coupling γmðgÞ. On the other hand, if the coupling
g is irrelevant in the IR, the model stays in the basin of
attraction of the same IR fixed point, and the mass
anomalous dimension must be independent of the values
of g up to the critical value. Because the infrared fixed
points of the renormalization group flow are stable, it is
expected that the critical behavior is independent of the
lattice cutoff a.
In order to determine the value of the mass anomalous

dimension, it is worth noting that the fermion matrix DW þ
mþ σðxÞ þ iγ5τ3π3ðxÞ is not normal, and the method used
in [41] fails. Here, we use a direct method of deforming the
IR conformal model with a fermion mass. In this case, the
masses of all states follow the hyperscaling relation

LmX ¼ fðxÞ; ð18Þ

where x≡ Ljm0 −mcj
1

1þγm . We measure the masses of the
nondiagonal pseudoscalar and vector mesons using four
lattice sizes, L ¼ 16, 18, 20, and 24 with lattice dimensions
L3 × 2L, at β ¼ 2.25, and several values of the bare mass.
In order to estimate γm, we make use of the asymptotic

behavior of fðxÞ as x → ∞,

fðxÞ ¼ aXxþ bX: ð19Þ

The linear behavior is only valid for large enough x,
provided that Eq. (18) applies, i.e., that L is large enough
and m0 −mc is sufficiently small.
As the exact range of validity of the asymptotic finite size

scaling formula above is not known a priori, we perform a
fit to Eq. (19) and exclude the data points at heavy quark
masses and small x so that the final fit describes the data
well. The fits are shown in Fig. 7 for four different values of
the coupling g and the values of mc and γm so obtained are
reported in Table IV. The measurements have relatively
large systematic errors from the variation of the fit range,
but the fit is fairly robust in all cases.
At small NJL coupling, g ¼ 0.05 and g ¼ 0.1, we find an

anomalous dimension γm ¼ 0.5ð2Þ, compatible with esti-
mates at g ¼ 0. However, when we increase the NJL
coupling to g ¼ 0.2 and g ¼ 0.25, we find an increasing
anomalous dimension. Interestingly, the anomalous dimen-
sion is compatible with 1 close to the χSB line.
In addition to the possibility of a line of fixed points,

there is another possible interpretation of the result. The
two lower values of g could be attracted to the IRFP at
g ¼ 0 and have the same anomalous dimension. Similarly,
the anomalous dimensions at the two larger values of the
NJL coupling are compatible with each other. The model at
these two parameter values could be attracted to a single
second fixed point. The basins of attraction of the two fixed
points would form two distinct phases within region 1.a.
However, we observe no evidence for a phase transition
inside the infrared conformal region.

VI. CONCLUSIONS

We provided a first mapping of the phase diagram of the
SUð2Þ gauged NJL model with two flavors of fermions in
the adjoint representation regularized on a lattice. This first
numerical evidence supports the conjectures put forward in
[9,23]. The phase diagram presents some features observed
in the phase diagrams of an infrared conformal gauge
model and a pure NJL model. In particular, in the weak
coupling phase of the lattice model, there is an infrared
conformal phase at small g and a transition into a chirally
broken phase at a critical value gc of the four fermion
coupling.
In the ungauged NJL model, the transition into the

chirally broken phase is second order. The addition of a
gauge interaction can modify the dynamics of the transition
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FIG. 7. A hyperscaling fit to the nondiagonal meson masses at
g ¼ 0.05, 0.1, 0.2, and 0.25 and β ¼ 2.25. The data points with
filled in symbols are included in the fit. The points corresponding
to the vector meson have been shifted to the right by Δx ¼ 2.

TABLE IV. Results from hyperscaling fits. The second error
estimates the effect of varying the fit range.

g χ2=d.o.f. mc γm

0.05 1.5 −1.241ð3Þþ0.005
−0.005 0.5ð1Þþ0.2

−0.1
0.1 0.6 −1.357ð1Þþ0.001

−0.004 0.54ð6Þþ0.2
−0.2

0.2 0.9 −1.8276ð5Þþ0.001
−0.001 0.89ð3Þþ0.1

−0.04
0.25 1.0 −2.196ð1Þþ0.001

−0.002 1.06ð5Þþ0.1
−0.05
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and in [48,49], a first order transition was found in a model
with no infrared conformal phase. Here, we studied the
transition with two different gauge couplings and found a
behavior compatible with a second order transition.
However, larger lattices will be required to reach deeper
into the critical region of small masses and, with the present
data, a first order transition [22] cannot be ruled out.
The mass anomalous dimension γm has been investi-

gated, which is an important quantity for model building
beyond the Standard Model. In various approximations, it
has a large value close to the χSB line. In ideal walking, the
NJL interaction is used to break chiral symmetry, naturally
creating a walking model with a large mass anomalous
dimension. We measured γmðgÞ at four values of the four
fermion coupling g and found larger values with increasing
NJL coupling. Close to the χSB line, we find γm ∼ 1. The
systematic errors on the values of γm are relatively large,
and we plan to improve them by measuring the anomalous
dimension with additional values of the NJL coupling
and using larger lattice sizes at smaller quark masses. This
preliminary analysis, still needing further tests, indicates
that the present model can be viewed as the first realization
of the ideal walking scenario.

In the future, it would therefore be very interesting to
investigate the low energy spectrum of the theory near the
ideal walking region, including the mass of the spin-one
resonances and the lightest scalar state to see if the former
are near degenerate [71] and the latter displays pseudodi-
laton couplings [21,31,72–77] and a parametrically light
mass [31]. To this end, one can compare the spectrum and
couplings with the isosinglet scalar extended chiral per-
turbation theory of [78,79]. Finally, it would be interesting
to test intriguing holographic descriptions of gNJL models
[80] with our realization.
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