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We present a precise lattice computation of pseudoscalar and vector heavy-light meson masses for
heavy-quark masses ranging from the physical charm mass up to ≃4 times the physical b-quark mass. We
employ the gauge configurations generated by the European Twisted Mass Collaboration (ETMC) with
Nf ¼ 2þ 1þ 1 dynamical quarks at three values of the lattice spacing (a≃ 0.062; 0.082; 0.089 fm) with
pion masses in the range Mπ ≃ 210–450 MeV. The heavy-quark mass is simulated directly on the lattice
up to≃3 times the physical charm mass. The interpolation to the physical b-quark mass is performed using
the ETMC ratio method, based on ratios of the meson masses computed at nearby heavy-quark masses, and
adopting the kinetic mass scheme. The extrapolation to the physical pion mass and to the continuum limit
yields mkin

b ð1 GeVÞ ¼ 4.61ð20Þ GeV, which corresponds to m̄bðm̄bÞ ¼ 4.26ð18Þ GeV in the MS scheme.
The lattice data are analyzed in terms of the heavy-quark expansion (HQE) and the matrix elements
of dimension-four and dimension-five operators are extracted with a good precision, namely,
Λ̄ ¼ 0.552ð26Þ GeV, μ2π ¼ 0.321ð32Þ GeV2, and μ2GðmbÞ ¼ 0.253ð25Þ GeV2. The data also allow for
a rough estimate of the dimension-six operator matrix elements. As the HQE parameters play a crucial role
in the inclusive determination of the Cabibbo-Kobayashi-Maskawa matrix elements Vub and Vcb, their
precise determination on the lattice may eventually validate and improve the analyses based on fits to the
semileptonic moments.
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I. INTRODUCTION

The precise determination of the Cabibbo-Kobayashi-
Maskawa (CKM) matrix element Vcb is crucial for testing
the Standard Model predictions for the rare decays driven
by the charged current b → c transition and in the quest for
new physics effects. The information on the CKM entry
Vcb can be obtained from both inclusive and exclusive
semileptonic B-meson decays. In the first case the operator
product expansion (OPE) is usually adopted to describe the
nonperturbative hadronic physics in terms of a few param-
eters that can be extracted from experimental data on
inclusive B → Xclνl decays together with the CKM
element Vcb (see, e.g., Refs. [1,2] and references therein).
In the second case the relevant hadronic inputs are the
semileptonic form factors describing the B → D�ðDÞlνl
decays. The latter are computed using nonperturbative
methods, like lattice QCD (LQCD) simulations. As is well
known, there is a long-standing tension of about 3 standard
deviations between the values of Vcb obtained from
inclusive or exclusive semileptonic B-meson decays [3],

although new evidence suggests that part of this discrep-
ancy may be due to the way the experimental data have
been analyzed [4].
The aim of this work is to address the lattice determination

of some of the parameters appearing in the OPE analysis of
the inclusive B-meson decays. Indeed, the same parameters
(or combinations thereof) also appear as coefficients of the
heavy-quark expansion (HQE) for the pseudoscalar (PS)
and vector (V) heavy-light meson masses. So far, only the
charmed and beauty mesons masses,MDð�Þ andMBð�Þ , could
be used to constrain the HQE parameters, and the conver-
gence of the HQE is certainly questionable in the first case.
Moreover, only two points are insufficient to determine the
coefficients of the HQE for the meson masses with useful
precision: they could be pinned down in a much more
effective way if one had the meson masses corresponding to
heavy quarks with masses between the physical charm and
b-quark masses [5], mc and mb, or even above mb. In this
work we employ LQCD as a virtual laboratory to compute
these meson masses with good accuracy.
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We have performed a precise lattice computation of PS
and V meson masses for heavy-quark masses ranging from
the physical charm mass up to ≃4 times the physical
b-quark mass, using the gauge configurations generated
by the European Twisted Mass Collaboration (ETMC) with
Nf ¼ 2þ 1þ 1 dynamical quarks at three values of the
lattice spacing (a≃ 0.062; 0.082, and 0.089 fm) and with
pion masses in the range Mπ ≃ 210–450 MeV.
Heavy-quark masses are simulated directly on the lattice

up to ≃3 times the physical charm mass. The interpolation
to the physical b-quark mass is obtained by adopting the
ETMC ratio method [6], based on ratios of (spin-averaged)
meson masses computed at nearby heavy-quark masses. At
variance with previous applications of the ETMC ratio
method to B physics [6–9], in this work we will adopt the
heavy-quark mass defined in the kinetic scheme [10,11]
instead of the pole mass. The reason is that the kinetic mass
is a short-distance mass free from the main renormalon
ambiguities plaguing the pole mass [10–14]. This makes
the choice of the kinetic scheme quite attractive for the
analysis of inclusive B-meson decay data [15]. The
extrapolation to the physical pion mass and to the con-
tinuum limit yields mkin

b ð1 GeVÞ ¼ 4.61ð20Þ GeV, which
is in agreement with the results of the OPE analysis of
the inclusive semileptonic B-meson decays [1,2]. Our result
corresponds to m̄bðm̄bÞ ¼ 4.26ð18Þ GeV in theMS scheme,
which is in agreement with the findings of Ref. [9] as well
with other lattice determinations (see, e.g., Ref. [16]).
Then, the ETMC ratio method is applied above the

physical b-quark mass to provide heavy-light meson
masses towards the static point. The lattice data are
analyzed in terms of HQE, taking into account the
anomalous dimension and the radiative corrections up to
orderOðα2sÞ for the chromomagnetic operator [17–19]. The
matrix elements of dimension-four and dimension-five
operators, for which radiative corrections are known up
to orderOðα2sÞ, are extracted with a good precision, namely,

Λ̄ ¼ 0.552ð26Þ GeV; ð1Þ

μ2π ¼ 0.321ð32Þ GeV2; ð2Þ

μ2GðmbÞ ¼ 0.253ð25Þ GeV2: ð3Þ

The data also allows to estimate the size of two combina-
tions of the matrix elements of dimension-six operators, for
which radiative corrections are not yet available, namely,

ρ3D − ρ3ππ − ρ3S ¼ 0.153ð34Þ GeV3; ð4Þ

ρ3πG þ ρ3A − ρ3LS ¼ −0.158ð84Þ GeV3: ð5Þ

All of the above HQE parameters, as well as the physical
c- and b-quark masses, are highly correlated. Therefore the

full covariance matrix is provided (see Tables IV–V). Our
results (1)–(5), which are specific to the kinetic scheme,
represent the first unquenched lattice determinations of the
HQE parameters.
Ours is not the first attempt to extract the HQE parameters

from the lattice. In the past, Λ̄, μ2π , and μ2GðmbÞ have been
estimated using quenched lattice QCD simulations [20–23].
The lattice evaluations of Refs. [21,22] were based on the
subtraction of power divergences generated by themixing of
the relevant operators with those of lower dimensionality.
Instead, our approach is similar to the one adopted in
Ref. [23] and, more recently, in Ref. [24].
The paper is organized as follows. In Sec. II we describe

the simulation details. In Sec. III we present the extraction
of ground-state PS and V meson masses from the relevant
two-point correlators. In Sec. IV we describe the basic
features of the ETMC ratio method. In Sec. V we determine
the b-quark mass in the kinetic scheme by analyzing the
spin-averaged meson masses, while in Sec. VI we analyze
the hyperfine mass splitting and determine the mass
difference (MB� −MB). In Sec. VII we apply the ETMC
ratio method to calculate the PS andVmesonmasses beyond
the physical b-quark mass and we perform their analysis in
the HQE. Finally, Sec. VIII contains our conclusions.

II. SIMULATION DETAILS

The gauge ensembles used in this work have been
generated by ETMC with Nf ¼ 2þ 1þ 1 dynamical
quarks, which include in the sea (besides two light
mass-degenerate quarks) the strange and charm quarks
with masses close to their physical values [25,26]. The
ensembles are the same as those adopted in Refs. [9,27] to
determine the up, down, strange, charm, and bottom-quark
masses.
In the ETMC setup the Iwasaki action [28] for the gluons

and the Wilson maximally twisted-mass action [29–31] for
the sea quarks are employed. Three values of the inverse
bare lattice coupling β and different lattice volumes are
considered, as shown in Table I, where the number of
configurations analyzed (Ncfg) corresponds to a separation
of 20 trajectories.
At each lattice spacing different values of the light

sea-quark mass are considered, and the light valence and
sea-quark masses are always taken to be degenerate, i.e.,
msea

l ¼ mval
l ¼ ml. In order to avoid the mixing of strange

and charm quarks in the valence sector we adopt a
nonunitary setup in which the valence strange and charm
quarks are regularized as Osterwalder-Seiler fermions [32],
while the valence up and down quarks have the same action
as the sea. Working at maximal twist, such a setup
guarantees an automatic OðaÞ improvement [31,33].
Quark masses are renormalized through the renormaliza-
tion constant (RC) Zm ¼ 1=ZP, computed nonperturba-
tively using the RI0-MOM scheme (see Ref. [27]).
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We have considered three values of the valence
charm-quark mass, which are needed to interpolate
smoothly in the physical charm region. The valence-quark
masses are in the following ranges: 3mphys

ud ≲ml ≲ 12mphys
ud

and 0.7mphys
c ≲mc ≲ 1.1mphys

c . In order to extrapolate up
to the b-quark sector we have also considered seven
values of the valence heavy-quark mass mh in the range
1.1mphys

c ≲mh ≲ 3.3mphys
c ≈ 0.8mphys

b .
The lattice scale is determined using the experimental

value of fπþ , while the physical up/down, strange, and

charm-quark masses are obtained by using the experimental
values for Mπ, MK , and MDs

, respectively [27]. The values
of the strange and charm sea-quark masses corresponding
to the ETMC ensembles of Table I were calculated in
Ref. [27], obtaining a slight mistuning. It was shown that
such a mistuning may produce changes in the determi-
nation of the physical quark masses that are smaller than
other systematic uncertainties.
In Ref. [27] eight branches of the analysis were

considered. They differ in:

TABLE I. Values of the valence-quark bare masses considered for the 15 ETMC gauge ensembles with Nf ¼ 2þ 1þ 1 dynamical
quarks (see Ref. [27]). Ncfg stands for the number of (uncorrelated) gauge configurations used in this work.

ensemble β V=a4 Ncfg aμl aμc aμh > aμc

A30.32 1.90 323 × 64 150 0.0030 f0.21256; 0.25000; 0.29404g f0.34583; 0.40675; 0.47840; 0.56267;
0.66178; 0.77836; 0.91546g,A40.32 150 0.0040

A50.32 150 0.0050
A40.24 243 × 48 150 0.0040
A60.24 150 0.0060
A80.24 150 0.0080
A100.24 150 0.0100
B25.32 1.95 323 × 64 150 0.0025 f0.18705; 0.22000; 0.25875g f0.30433; 0.35794; 0.42099; 0.49515;

0.58237; 0.68495; 0.80561gB35.32 150 0.0035
B55.32 150 0.0055
B75.32 75 0.0075
B85.24 243 × 48 150 0.0085
D15.48 2.10 483 × 96 90 0.0015 f0.14454; 0.0150; 0.19995g f0.23517; 0.27659; 0.32531; 0.38262;

0.45001; 0.52928; 0.62252gD20.48 90 0.0020
D30.48 90 0.0030

TABLE II. The input parameters for the eight branches of the analysis of Ref. [27]. The renormalized quark
masses and the RC ZP are given in the MS scheme at a renormalization scale of 2 GeV. With respect to Ref. [27] the
table includes an update of the values of the lattice spacing and, consequently, of all the other quantities.

β 1st 2nd 3rd 4th

a−1 (GeV) 1.90 2.224(68) 2.192(75) 2.269(86) 2.209(84)
1.95 2.416(63) 2.381(73) 2.464(85) 2.400(83)
2.10 3.184(59) 3.137(64) 3.248(75) 3.163(75)

mphys
ud (GeV) 0.00372(13) 0.00386(17) 0.00365(10) 0.00375(13)

mphys
c (GeV) 1.183(34) 1.193(28) 1.177(25) 1.219(21)

ZP 1.90 0.5290(73)
1.95 0.5089(34)
2.10 0.5161(27)

β 5th 6th 7th 8th

a−1 (GeV) 1.90 2.222(67) 2.195(75) 2.279(89) 2.219(87)
1.95 2.414(61) 2.384(73) 2.475(88) 2.411(86)
2.10 3.181(57) 3.142(64) 3.262(79) 3.177(78)

mphys
ud (GeV) 0.00362(12) 0.00377(16) 0.00354(9) 0.00363(12)

mphys
c (GeV) 1.150(35) 1.158(27) 1.144(29) 1.182(19)

ZP 1.90 0.5730(42)
1.95 0.5440(17)
2.10 0.5420(10)
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(1) the continuum extrapolation adopting for the scale
parameter either the Sommer parameter r0 or the
mass of a fictitious PS meson made up of strange
(charm)-like quarks;

(2) the chiral extrapolation performed with fitting
functions chosen to be either a polynomial expan-
sion or a chiral perturbation theory ansatz in the
light-quark mass;

(3) the choice between the methods M1 and M2, which
differ by Oða2Þ effects, used to determine the mass
RC Zm ¼ 1=ZP in the RI’-MOM scheme.

In the present analysis we make use of the input parameters
corresponding to each of the eight branches of Ref. [27].
The central values and the errors of the input parameters,
evaluated using bootstrap samplings with Oð100Þ events,
are collected in Table II. Throughout this work all of the
results obtained within the above branches are averaged
according to Eq. (28) of Ref. [27].

III. EXTRACTION OF GROUND-STATE
MESON MASSES

The ground-state mass of PS and V mesons can be
determined by studying the appropriate two-point correla-
tion functions at large (Euclidean) time distances t from the
source, viz.,

CPSðtÞ ¼
�X

x⃗

P5ðx⃗; tÞP†
5ð0; 0Þ

�
⟶
t≥tPSmin

ZPS

2MPS

× ½e−MPSt þ e−MPSðT−tÞ�; ð6Þ

CVðtÞ ¼
1

3

�X
i;x⃗

Viðx⃗; tÞV†
i ð0; 0Þ

�
⟶
t≥tVmin

ZV

2MV

× ½e−MVt þ e−MVðT−tÞ�; ð7Þ

where MPSðVÞ is the PS(V) ground-state mass and tPSðVÞmin

stands for the minimum time distance at which the PS(V)
ground state can be considered well isolated. In Eqs. (6)–
(7), ViðxÞ ¼ q̄1ðxÞγiq2ðxÞ and P5ðxÞ ¼ q̄1ðxÞγ5q2ðxÞ re-
present, respectively, the interpolating fields for V and PS
mesons, made of two valence quarks q1 and q2 with bare
masses μ1 and μ2. We set opposite values for the Wilson
parameters of the two valence quarks (r1 ¼ −r2), because
this choice guarantees that the cutoff effects on the PS mass
are O½a2ðμ1 þ μ2Þ� [31]. In what follows we will consider
the quark q1 to be either in the charm region or above, i.e.,
q1 ¼ c, h, while the quark q2 is always taken to be a light
quark with bare mass μl (see Table I).
The PS(V) ground-state mass,MPSðVÞ, can be determined

from the plateau of the effective mass Meff
PSðVÞðtÞ at large

time distances, viz.,

Meff
PSðVÞðtÞ

≡ arcosh

�
CPSðVÞðt − 1Þ þ CPSðVÞðtþ 1Þ

2CPSðVÞðtÞ
�

⟶
t≥tPSðVÞmin

MPSðVÞ:

ð8Þ

The statistical accuracy of the meson correlators (6)–(7)
can be significantly improved by the use of the “one-end”
trick stochastic method [34,35], which employs spatial
stochastic sources at a single time slice chosen randomly.
Besides the use of local interpolating quark fields, in the
case of charm or heavier quarks it is also a common
procedure to adopt Gaussian-smeared interpolating quark
fields [36] in order to suppress the contribution of the
excited states more quickly, leading to an improved
projection onto the ground state at relatively small time
distances. For the values of the smearing parameters, we set
kG ¼ 4 and NG ¼ 30. In addition, we apply APE smearing

FIG. 1. Left panel: Effective masses of the four correlators CLL
PS ðtÞ, CLS

PSðtÞ, CSL
PSðtÞ, and CSS

PSðtÞ, calculated for a (cl) meson using
Eq. (8) in the case of the ETMC gauge ensemble B55.32 (corresponding to a pion mass≃380 MeV). Right panel: The same as in the left
panel, but for the vector correlators CLL

V ðtÞ, CLS
V ðtÞ, CSL

V ðtÞ, and CSS
V ðtÞ.
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to the gauge links [37] in the interpolating fields with
parameters αAPE ¼ 0.5 and NAPE ¼ 20.
We have implemented smeared fields both in the source

and in the sink. We have therefore evaluated two-point
correlation functions corresponding to the four possible
combinations generated by using local/smeared fields at
the source/sink, namely, CLL

PSðVÞðtÞ, CLS
PSðVÞðtÞ, CSL

PSðVÞðtÞ,
and CSS

PSðVÞðtÞ, where L and S denote local and smeared

operators, respectively.
For the whole set of charm and heavier quark masses

shown in Table I, the SL correlation functions exhibit the
best signal-to-noise ratio, as illustrated in Fig. 1 for a (cl)
meson in the case of the gauge ensemble B55.32.
Thus, the SL correlators have been used to extract the

ground-state masses from the plateau of the effective mass

(8) in the range tPSðVÞmin ≤ t ≤ tPSðVÞmax . The stability of the
extracted ground-state masses with respect to changes of

both tPSðVÞmin and tPSðVÞmax has been studied and our choices for
the values of tPSmin ¼ tVmin ¼ tmin, tPSmax, and tVmax in the charm
sector are given in Table III.

The quality of the plateaux of the effective mass (8) is
illustrated in Fig. 2 for a series of both PS and V heavy-light
(hl) mesons in the case of the gauge ensemble A40.32.
It can be seen that the higher the heavy-quark mass, the
smaller the value adopted for tmax, while the value chosen
for tmin is independent of the heavy-quark mass.
We have checked our determination of the ground-state

masses MPSðVÞ by employing an alternative method,
namely, the generalized eigenvalue problem (GEVP)
method of Ref. [38], which is based on the simultaneous
use of the four correlators CLL

PSðVÞðtÞ, CLS
PSðVÞðtÞ, CSL

PSðVÞðtÞ,
and CSS

PSðVÞðtÞ. It turns out that the GEVP method provides

ground-state masses that are in nice agreement with those
determined directly from the effective mass of the SL
correlators with a slightly larger uncertainty. Finally, we
have also checked that the impact of increasing by two units
the values adopted for tmin in Table III on the extracted PS
and vector-meson masses is negligible within present
statistical uncertainties.

IV. THE ETMC RATIO METHOD

Since the lattice spacing of the ETMC gauge ensembles
does not allow to directly simulate a b quark on the lattice,
the determination of quantities in the beauty sector requires
alternative strategies. In this respect a very suitable method
is represented by the ETMC ratio method, which has
already been applied in the Nf ¼ 2 framework [6–8] as
well as in the Nf ¼ 2þ 1þ 1 case [9] to determine the
mass of the b quark, the leptonic decay constants, and the
bag parameters of BðsÞ mesons.
The ETMC ratio method consists of three main steps.

The first one is the calculation of the observable of interest
at heavy-quark masses around the charm scale, for which
relativistic simulations are reliable with well-controlled
discretization errors. In the second step, appropriate ratios

TABLE III. Values of tmin ¼ tPSmin ¼ tVmin, t
PS
max, and tVmax chosen

to extract the ground-state signal from the effective mass (8),
evaluated for heavy-light mesons with valence-quark content
(cl), using the SL correlators (i.e, smeared quark fields in the
source and local ones in the sink) in the case of the ETMC gauge
ensembles of Table I.

β V=a4 tmin=a tPSmax=a tVmax=a

1.90 323 × 64 10 30 20
243 × 48 10 20 18

1.95 323 × 64 12 22 20
243 × 48 12 20 18

2.10 483 × 96 16 44 36

FIG. 2. Left panel: Effective masses of the correlator CSL
PS ðtÞ calculated for various (hl) mesons using Eq. (8) in the case of the ETMC

gauge ensemble A40.32 (corresponding to a pion mass ≃320 MeV). Right panel: The same as in the left panel, but for the vector
correlator CSL

V ðtÞ. The solid lines identify the plateau region tmin ≤ t ≤ tmax selected for each value of the heavy-quark mass.
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of the observable are evaluated at increasing values of the
heavy-quark mass up to a scale ≈3 times the charm-quark
mass (i.e., around 3 GeV). The crucial point is that the static
limit of the ratios is exactly known from heavy-quark
effective theory (HQET) arguments. The final step of the
computation is a smooth interpolation of the lattice data
from the charm region to the infinite mass point, so that the
value of the observable at the b-quark or B-meson mass can
be determined.
The great computational advantage of the ratio method

is that B-physics computations can be carried out using the
same relativistic action setup with which the lighter quark
computations are performed. Moreover, an extra simulation
at the static point limit is not necessary, while the exact
information about it is automatically incorporated in the
construction of the ratios of the observable. It should also
be stressed that the use of ratios greatly helps in reducing
the discretization errors.
As already explained in the Introduction, we are inter-

ested in studying the heavy-quark mass dependence of the
following meson mass combinations:

Mavð ~mhÞ≡MPSð ~mhÞ þ 3MVð ~mhÞ
4

; ð9Þ

ΔMð ~mhÞ≡MVð ~mhÞ −MPSð ~mhÞ; ð10Þ

where ~mh ¼ mkin
h ðμsoftÞ is the renormalized heavy-quark

mass in the kinetic scheme [11] at a soft cutoff μsoft, which
is chosen to be equal to μsoft ¼ 1 GeV. For the sake of
clarity, in what follows the renormalized quark mass in the
MS scheme at a renormalization scale μ will be denoted
by m̄hðμÞ.
At variance with previous applications of the ETMC

ratio method, in this work we will adopt the heavy-quark
mass ~mh defined in the kinetic scheme instead of the pole
massmpole

h . The main reason is that the relation between the
pole mass and the bare lattice masses μh suffers in
perturbation theory from infrared renormalon ambiguities
of order OðΛQCDÞ [10–14]. By the same token, the HQE
parameter Λ̄—which measures the difference between
the heavy-hadron and heavy-quark masses—is also
affected by renormalon uncertainties, and the same applies
to other HQE parameters. The kinetic mass ~mh offers a
solution to the above problem by subtracting the infrared
sensitive part from the pole mass [11,39], leading to a short-
distance mass and to HQE parameters free from renorma-
lon ambiguities.
The relation between the simulated bare heavy-quark

mass aμh (see Table I) and the kinetic mass ~mh can be
obtained in three steps. First, using the values of the lattice
spacing and of the RC ZP from Table II, one gets

m̄hð2 GeVÞ ¼ 1

ZPa
ðaμhÞ: ð11Þ

Then, the perturbative scale can be evolved from μ ¼
2 GeV to the value μ ¼ m̄h using next-to-next-to-next-to-
leading-order perturbation theory [40] with four quark
flavors (nl ¼ 4) and ΛNf¼4

QCD ¼ 297ð8Þ MeV [3], obtaining
in this way m̄hðm̄hÞ. Finally, the relation between the
kinetic mass ~mh and the MS mass m̄hðm̄hÞ is known up
to two loops [15], namely,

~mh ¼ m̄hðm̄hÞ
�
1þ 4

3

αsðm̄hÞ
π

�
1−

4

3
x−

1

2
x2
�
þ
�
αsðm̄hÞ

π

�
2

·

�
β0
24

ð8π2þ 71Þþ 35

24
þ π2

9
lnð2Þ− 7π2

12
−
ζ3
6

þ 4

27
xð24β0 lnð2xÞ− 64β0þ 6π2− 39Þ

þ 1

18
x2ð24β0 lnð2xÞ− 52β0þ 6π2− 23Þ

−
32

27
x3 −

4

9
x4
�
þOðα3sÞ

	
; ð12Þ

where x≡ μsoft=m̄hðm̄hÞ, β0 ¼ ð33 − 2nlÞ=12, and ζ3 ≃
1.20206. We remind the reader that in the limit μsoft → 0 the
kinetic mass ~mh coincides with the heavy-quark pole mass
mpole

h . Between the charm and bottom scales the ratio
~mh=m̄hðm̄hÞ varies in the range 0.8–1.1 and may be subject
to important higher-order corrections. In Sec. VII we will
take into account the ensuing theoretical uncertainty. Even
within the present Oðα2sÞ accuracy the uncertainty in the
determination of ~mh can be decreased by optimizing the
choice of the MS scale in Eq. (11): we leave this for future
improvements.

V. DETERMINATION OF THE b-QUARK MASS

We start by applying the ratio method to the quantity
Mavð ~mhÞ [see Eq. (9)]. To this end we construct a sequence
of heavy-quark masses ~mðnÞ

h such that every two successive
quark masses have a common fixed ratio λ, i.e., for
n ¼ 2; 3;…

~mðnÞ
h ¼ λ ~mðn−1Þ

h : ð13Þ
The series of masses starts at the physical charm-quark

mass ~mð1Þ
h ¼ ~mc ¼ 1.219ð41Þ GeV corresponding to the

result m̄cð2 GeVÞ ¼ 1.176ð36Þ GeV obtained in Ref. [27]
using the experimental mass of the Ds meson. For each
gauge ensemble the quantity Mavð ~mcÞ can be safely
computed by a smooth interpolation of the results corre-
sponding to the subset of the bare-quark masses in the
charm region (see aμc in Table I). The lattice data for
Mavð ~mcÞ depend on the (renormalized) light-quark mass
m̄l and on the lattice spacing a. They can be safely
extrapolated to the physical pion mass (see mphys

ud in
Table II) and to the continuum limit using a simple,
combined linear fit in both m̄l and a2 [thanks to the
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automatic OðaÞ improvement of our lattice setup], as
shown in Fig. 3. At the physical pion mass in the continuum
limit we get Mphys

av ð ~mcÞ ¼ 1.967ð25Þ GeV, which agrees
with the experimental value ðMD þ 3MD�Þ=4 ¼
1.973 GeV from the Particle Data Group (PDG) [3] as
well as with the result Mphys

av ð ~mcÞ ¼ 1.975ð11Þ GeV based
on the direct investigation of theD�- toD-meson mass ratio
of Ref. [41].
Analogously, for each gauge ensemble the quantities

Mavð ~mðnÞ
h Þ with n ¼ 2; 3;… can be evaluated by interpo-

lating the results corresponding to the subset of the bare
heavy-quark masses (see aμh in Table I).

Then, we construct the following ratios:

yMð ~mðnÞ
h ; λÞ ¼ Mavð ~mðnÞ

h Þ
Mavð ~mðn−1Þ

h Þ
~mðn−1Þ
h

~mðnÞ
h

¼ λ−1
Mavð ~mðnÞ

h Þ
Mavð ~mðn−1Þ

h Þ
;

ð14Þ

with n ¼ 2; 3;…. The advantage of considering the ratios
(14) is that the discretization effects affecting the spin-

averaged meson masses Mavð ~mðnÞ
h Þ and Mavð ~mðn−1Þ

h Þ are
typically above 10%, but they largely compensate in the
ratios (14) even at the largest values of the heavy-quark
mass. This is nicely illustrated in Fig. 4, where the difference
between the continuum results (black dashed lines) and
those obtained at the finest lattice spacing (green dashed
lines) differ by less than 1% both at intermediate values of
~mh (left panel) and at the highest values of ~mh (right panel).
Each of the ratios yMð ~mðnÞ

h ; λÞ is therefore extrapolated to
the physical pion mass and to the continuum limit using
again a combined linear fit in both m̄l and a2, obtaining a

value which will be denoted hereafter by ȳMð ~mðnÞ
h ; λÞ. We

have checked the possible impact of a few systematics in
the chiral and continuum limit extrapolations by consid-
ering either the inclusion of a quadratic term in the light-
quark mass or the exclusion of the data at the coarsest
lattice spacing (β ¼ 1.90). In both cases the differences of

the extrapolated values ȳMð ~mðnÞ
h ; λÞ are within the statistical

uncertainties.
In the static limit ~mh → ∞ the HQE predicts

lim ~mh→∞
Mavð ~mhÞ

~mh
¼ 1; ð15Þ

FIG. 3. The quantity Mavð ~mð1Þ
h Þ ¼ Mavð ~mcÞ versus the (renor-

malized) light-quark mass m̄l ¼ m̄lð2 GeVÞ for the various
ETMC gauge ensembles. The dashed lines are the results of a
linear fit in both m̄l and a2 at each value of the lattice spacing and
in the continuum limit. The diamond is the result at the physical
light-quark mass mphys

ud (see Table II) in the continuum limit.

FIG. 4. The ratios yMð ~mð4Þ
h ; λÞ (left panel) and yMð ~mð8Þ

h ; λÞ (right panel) versus the (renormalized) light-quark mass m̄l ¼ m̄lð2 GeVÞ
for the various ETMC gauge ensembles. The dashed lines are the results of a linear fit in both m̄l and a2. The diamonds correspond to

the values ȳMð ~mð4Þ
h ; λÞ and ȳMð ~mð8Þ

h ; λÞ, obtained at the physical light-quark mass mphys
ud (see Table II) in the continuum limit.
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which implies lim ~mh→∞ ȳMð ~mh; λÞ ¼ 1 for any value of λ.
Thus the ~mh dependence of ȳM can be described as a series
expansion in terms of 1= ~mh, namely,

ȳMð ~mh; λÞ ¼ 1þ ϵ1
~mh

þ ϵ2
~m2
h

þO
�

1

~m3
h

�
; ð16Þ

where the coefficients ϵ1;2 may depend upon λ. The lattice
data for the ratio ȳMð ~mh; λÞ are shown in Fig. 5 as a
function of the inverse heavy-quark mass 1= ~mh. It can be
seen that a linear fit, i.e., Eq. (16) with ϵ2 ¼ 0, is sufficient
to fit the data when taking into account the correlations
between the lattice points. For each of the eight branches of
the analysis (see Table II) the correlation matrix is con-
structed and the corresponding correlated χ2 variable is
minimized. The quality of the fit (16) with ϵ2 ¼ 0 is
illustrated in Fig. 5.
Finally, the chain equation

ȳMð ~mð2Þ
h ;λÞȳMð ~mð3Þ

h ;λÞ…ȳMð ~mðKþ1Þ
h ;λÞ¼λK

Mav



~mðKþ1Þ
h

�
Mavð ~mcÞ

;

ð17Þ

in which the various factors in the lhs are evaluated through
the fitting function (16), allows to determine the b-quark
mass ~mb by requiring that after K (integer) steps the

quantity Mavð ~mðKþ1Þ
h Þ matches the experimental value

ðMB þ 3MB� Þ=4 ¼ 5.314 GeV [3]. Then the b-quark mass
~mb is directly given by ~mb ¼ λK ~mc. In practice an iterative
procedure should be applied in order to tune the value of the
parameter λ once the value of the integer K is chosen.
Adopting K ¼ 10, we find λ ¼ 1.1422ð10Þ, which yields

~mb ¼ 4.605ð120Þstatð57Þsyst GeV ¼ 4.605ð132Þ GeV;
ð18Þ

where the systematic error comes from the eight branches
of the input parameters of Table II. Translated into the MS
scheme, the result (18) corresponds to m̄bðm̄bÞ ¼ 4.257
ð108Þstat ð52Þsyst GeV ¼ 4.257 (120) GeV, which is well
compatible with the ETMC determination m̄bðm̄bÞ ¼ 4.26
(10) GeV given in Ref. [9] and consistent with other lattice
determinations within 1 standard deviation (see, e.g., the
FLAG review [16]). The analysis of Ref. [9] shares the
same ETMC gauge ensembles, but it differs in i) the use of
the heavy-quark running mass m̄h ð2GeVÞ instead of the
kinetic mass ~mh, ii) a different definition of the ratios (14),
and iii) the use of the experimental values of B- and Bs-
meson masses instead of the spin-averaged B-meson mass
to determine the b-quark mass.
Before closing this section we note that the correlation ρ

between the determination (18) and the input value of the
charm mass is 100%, viz.,

ρ½ ~mb; ~mc� ¼ þ1: ð19Þ

We expect that such a strong correlation will play a role in
the extraction of the CKM element jVcbj from inclusive
semileptonic B-meson decays. Indeed, up to now in the
OPE treatment of inclusive data the charm and bottom-
quark masses have been considered as uncorrelated
parameters.

VI. ANALYSIS OF THE HYPERFINE
MESON MASS SPLITTING

In this section we apply the ratio method to the hyperfine
meson mass splitting ΔMð ~mhÞ [see Eq. (10)].
As in the case of the spin-averaged meson mass

Mavð ~mcÞ, for each gauge ensemble the quantity
ΔMð ~mcÞ at the triggering point ~mc is computed by
interpolating the results corresponding to the subset of
the bare-quark masses in the charm region (see aμc in
Table I). Then the lattice data for ΔMavð ~mcÞ are safely
extrapolated to the physical pion mass and to the continuum
limit using a combined linear fit in both m̄l and a2, as
illustrated in Fig. 6.
At the physical pion mass in the continuum limit we get

ΔMphysð ~mcÞ ¼ 140ð11Þ MeV, which nicely agrees with the
experimental valueMD� −MD ¼ 141.4 MeV fromPDG [3]
as well as with the result MD� −MD ¼ 144ð15Þ MeV
obtained in Ref. [41] from a direct investigation of the
D�- to D-meson mass ratio.
Analogously, for each gauge ensemble the quantities

ΔMð ~mðnÞ
h Þ with n ¼ 2; 3;… are evaluated by interpolating

the results corresponding to the subset of the bare heavy-
quark masses (see aμh in Table I). We now consider the
following ratios:

FIG. 5. Lattice data for the ratio ȳMð ~mh; λÞ versus the inverse
heavy-quark mass 1= ~mh. The solid line is the result of the HQE-
constrained fit (16) with ϵ2 ¼ 0, taking into account the corre-
lation matrix among the lattice points. The vertical dotted line
corresponds to the position of the inverse physical b-quark mass
1= ~mb.
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yΔMð ~mðnÞ
h ; λÞ≡ ~mðnÞ

h

~mðn−1Þ
h

ΔMð ~mðnÞ
h Þ

ΔMð ~mðn−1Þ
h Þ

cGð ~mðn−1Þ
h ; ~mbÞ

cGð ~mðnÞ
h ; ~mbÞ

¼ λ
ΔMð ~mðnÞ

h Þ
ΔMð ~mðn−1Þ

h Þ
cGð ~mðn−1Þ

h ; ~mbÞ
cGð ~mðnÞ

h ; ~mbÞ
; ð20Þ

where cGð ~mh; ~mbÞ is the short-distance Wilson coefficient
that multiplies the matrix element of the HQET chromo-
magnetic operator renormalized in the MS scheme at the
scale of the physical b-quark mass through a multiplicative
RC, ZCMOðm̄bÞ, viz.,

μ2Gðm̄bÞ≡ ZCMOðm̄bÞ
hBjh̄vGμνσ

μνhvjBi
2hBjBi ; ð21Þ

with hv being the field describing a heavy quark inside a
hadron moving with velocity v. Note that the ratio (20) is
independent of the reference scale of the physical b-quark
mass [see Eq. (24)].
The coefficient cG is given by the product of three

factors,

cG ¼ c̄G ·R ·
~mh

mpole
h

; ð22Þ

where c̄G matches the HQE chromomagnetic operator with
the corresponding one in QCD, R represents its running in
the MS scheme, and the factor ~mh=m

pole
h is introduced to

cancel the pole mass from the contribution of the chromo-
magnetic operator to the hyperfine splitting, improving in
this way the convergence of the perturbative expansion.
An alternative method to achieve this was presented in
Refs. [17,18].

The conversion coefficient c̄G is known up to three loops
in terms of αsðmpole

h Þ [19]. At two loops and in terms of
αsðm̄hÞ one gets

c̄G ¼ 1þ 13

6

αsðm̄hÞ
π

þ ð11.4744β0 − 9.6584Þ
�
αsðm̄hÞ

π

�
2

þOðα3sÞ: ð23Þ

The evolution factor R is given by

R ¼
�
αsðm̄hÞ
αsðm̄bÞ

� γ0
2β0 Rðm̄hÞ

Rðm̄bÞ
; ð24Þ

with

Rðm̄hÞ≡ 1þ r1
αsðm̄hÞ

π
þ r2 þ r21

2

�
αsðm̄hÞ

π

�
2

ð25Þ

and

r1 ¼
γ0
2β0

�
γ1
γ0

−
β1
β0

�
; r2 ¼

γ0
2β0

�
γ2
γ0

−
β1
β0

γ1
γ0

−
β2
β0

þ β21
β20

�
:

ð26Þ

In Eq. (26) the parameters βi and γi (i ¼ 0, 1, 2) are,
respectively, the loop coefficients of the QCD β function
and of the anomalous dimension γCMO of the chromomag-
netic operator, namely,

β0 ¼ ð33 − 2nlÞ=12; ð27Þ

β1 ¼
�
102 −

38

3
nl

��
16; ð28Þ

β2 ¼
�
2857 −

5033

9
nl þ

325

27
n2l

��
128 ð29Þ

and [19]

γ0 ¼
3

2
; ð30Þ

γ1 ¼
�
51 −

13

2
nl

��
12; ð31Þ

γ2 ¼ 27

�
ζ3
8
þ 899

1728

�
þ 45

48
π2

−
nl
4

�
5ζ3 þ

57

6
þ 5

18
π2
�
−
n2l
48

: ð32Þ

Moreover, from Eq. (12) one has

FIG. 6. The quantity ΔMð ~mð1Þ
h Þ ¼ ΔMð ~mcÞ versus the (renor-

malized) light-quark mass m̄l ¼ m̄lð2 GeVÞ for the various
ETMC gauge ensembles. The dashed lines are the results of a
linear fit in both m̄l and a2 at each value of the lattice spacing and
in the continuum limit. The black diamond is the result at the
physical light-quark mass mphys

ud (see Table II) in the continuum
limit.
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~mh

mpole
h

¼ 1 −
4

3

αsðm̄hÞ
π

x

�
4

3
þ 1

2
x

�

þ
�
αsðm̄hÞ

π

�
2

x

�
4

27
ð24β0 lnð2xÞ − 64β0 þ 6π2 − 23Þ

þ 1

18
xð24β0 lnð2xÞ − 52β0 þ 6π2 − 7Þ − 32

27
x2 −

4

9
x3
�
þOðα3sÞ: ð33Þ

Introducing the variable ~x≡ μsoft= ~mh ¼ xm̄h= ~mh and taking into account that the values of the coupling constant αs at the
two scales m̄h and ~mh differ by terms of order Oðα3sÞ, one finally obtains

cGð ~mh; ~mbÞ ¼
1

Rð ~mbÞ
�
αsð ~mhÞ
αsð ~mbÞ

� γ0
2β0

�
1þ αsð ~mhÞ

π

�
13

6
−
4

3
~x

�
4

3
þ 1

2
~x

�
þ r1

�

þ
�
αsð ~mhÞ

π

�
2
�
11.4744β0 − 9.6584þ r2 þ r21

2
þ 13

6
r1

þ 4

27
~xð24β0 lnð2~xÞ − 64β0 þ 6π2 − 65 − 12r1Þ

þ 1

18
~x2
�
24β0 lnð2~xÞ − 52β0 þ 6π2 −

73

9
− 12r1

�

−
32

27
~x3 −

4

9
~x4
�
þOðα3sÞ

	
: ð34Þ

The behavior of the coefficient cG, calculated at orders
OðαsÞ and Oðα2sÞ, is shown in Fig. 7 in the case of the
kinetic and pole-mass schemes, i.e., Eq. (34) with ~x ≠ 0
and ~x ¼ 0, respectively. It can be seen that the inclusion of
the mass factor ~mh=m

pole
h in Eq. (22) significantly improves

the convergence of the perturbative expansion, in agree-
ment with expectations.
The ratios (20) are extrapolated to the physical pion mass

and to the continuum limit using a combined linear fit in

both m̄l and a2, as shown in Fig. 8, obtaining a value which

will be denoted hereafter by ȳΔMð ~mðnÞ
h ; λÞ.

In the static limit ~mh → ∞ the HQE predicts

lim ~mh→∞ ~mh
ΔMð ~mhÞ

cGð ~mh; ~mbÞ
¼ 2

3
μ2Gð ~mbÞ: ð35Þ

The HQE constraint (35) implies lim ~mh→∞ yΔMð ~mh; λÞ ¼ 1

for any value of λ. Thus the ~mh dependence of ȳΔM can be
described as a series expansion in terms of 1= ~mh, namely,

ȳΔMð ~mh; λÞ ¼ 1þ Δϵ1
~mh

þ Δϵ2
~m2
h

þO
�

1

~m3
h

�
; ð36Þ

where the coefficients Δϵ1;2 may depend on λ. The lattice
data for the ratio ȳΔMð ~mh; λÞ are shown in Fig. 9 as a
function of the inverse heavy-quark mass 1= ~mh. Large
errors are visible at the heaviest heavy-quark masses at
variance with the spin-averaged case (see Fig. 5). This is
related to the larger uncertainties affecting the hyperfine
quantity ΔM, which becomes smaller as the heavy-quark
mass increases, at variance with the case of the spin-
averaged quantity Mav. As in the case of the spin-averaged
ratios, a linear fitting function can be applied to the lattice
data, taking into account the correlations between the lattice
points for each of the eight branches of the analysis. The
quality of the fit (36) with Δϵ2 ¼ 0 is illustrated in Fig. 9.
Using a chain equation analogous to Eq. (17) but

expressed in terms of the ratios (20) and adopting the

FIG. 7. The Wilson coefficient cG evaluated at orders OðαsÞ
(dashed lines) and Oðα2sÞ (solid lines) in the kinetic scheme (red
lines) and in the pole-mass scheme (blue lines), i.e., using
Eq. (34) with ~x ≠ 0 and ~x ¼ 0, respectively. The vertical dotted
lines correspond to the locations of the inverse physical b-quark
and c-quark masses.
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values of the parameters λ andK determined in the previous
section to reach the physical b-quark mass (18), we get for
the hyperfine B-meson mass splitting the result ΔMð ~mbÞ ¼
MB� −MB ¼ 40.2ð2.1Þ MeV, which is slightly below the
experimental value MB� −MB ¼ 45.42ð26Þ MeV [3], but
improves the result MB� −MB ¼ 41.2ð7.4Þ MeV of
Ref. [41], based on the direct investigation of the V to PS
meson mass ratios.
Before closing this section, we stress that throughout this

work we have adopted four quark flavors (nl ¼ 4)
and ΛNf¼4

QCD ¼ 297ð8Þ MeV [3] not only below, but also
above the physical b-quark mass (18). This is done mainly

for consistency with the ETMC gauge ensembles used in
this work and with the analyses of Ref. [27], in which all
the input parameters of Table II have been determined.

VII. DETERMINATION OF THE HQE EXPANSION
PARAMETERS

The chain equation (17), as well as the analogous one in
terms of the ratios (20), can be easily extended beyond the
physical b-quark point using the fitting functions (16) with
ϵ2 ¼ 0 and (36) with Δϵ2 ¼ 0. In the case of the spin-
averaged meson mass one obtains

Mavð ~mðnÞ
h Þ

~mðnÞ
h

¼ Mavð ~mcÞ
~mc

Yn
i¼2

ȳMð ~mðiÞ
h ; λÞ;

¼ Mavð ~mcÞ
~mc

Yn
i¼2

�
1þ ϵ1

λi−1 ~mc

�
; ð37Þ

where ~mðnÞ
h ¼ λn−1 ~mc, while for the hyperfine meson mass

splitting one gets

~mðnÞ
h

ΔMð ~mðnÞ
h Þ

cGð ~mðnÞ
h ; ~mbÞ

¼ ~mc
ΔMð ~mcÞ

cGð ~mc; ~mbÞ
Yn
i¼2

ȳΔMð ~mðiÞ
h ; λÞ;

¼ ~mc
ΔMð ~mcÞ

cGð ~mc; ~mbÞ
Yn
i¼2

�
1þ Δϵ1

λi−1 ~mc

�
:

ð38Þ
For values of n > K þ 1, Eqs. (37)–(38) provide V and PS
heavy-meson masses beyond the physical b-quark point.
In the static limit, Eq. (37) implies

FIG. 8. The ratios yΔMð ~mð4Þ
h ; λÞ (left panel) and yΔMð ~mð8Þ

h ; λÞ (right panel) versus the (renormalized) light-quark mass m̄l ¼
m̄lð2 GeVÞ for the various ETMC gauge ensembles. The solid lines are the results of a linear fit in both m̄l and a2. The black dots

correspond to the values ȳΔMð ~mð4Þ
h ; λÞ and ȳΔMð ~mð8Þ

h ; λÞ, obtained at the physical light-quark mass mphys
ud (see Table II) in the continuum

limit.

FIG. 9. Lattice data for the ratio ȳΔMð ~mh; λÞ versus the inverse
heavy-quark mass 1= ~mh. The solid line is the result of the HQE-
constrained fit (36) with Δϵ2 ¼ 0, taking into account the
correlation matrix among the lattice points. The vertical dotted
line corresponds to the position of the inverse physical b-quark
mass 1= ~mb.
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Z∞ ≡ lim ~mh→∞
Mavð ~mhÞ

~mh
¼ Mavð ~mcÞ

~mc

Y∞
i¼2

�
1þ ϵ1

λi−1 ~mc

�
:

ð39Þ

The HQE predicts that Z∞ should be equal to unity.
Numerically, we find Z∞ ¼ 1.023� 0.027, which is well
consistent with unity, but introduces a ≈3% uncertainty in
the static limit. In order to implement the exact condition
Z∞ ¼ 1, for each bootstrap event we divide Eq. (37) by the
definition (39), obtaining

Mavð ~mðnÞ
h Þ

~mðnÞ
h

¼
Q

n
i¼2 ½1þ ϵ1

λi−1 ~mc
�Q∞

i¼2 ½1þ ϵ1
λi−1 ~mc

� : ð40Þ

We have evaluated Eqs. (40) and (38) for n≲ 20, i.e., for
heavy-quark masses up to ~mh ≃ 4 ~mb. The results are
shown in Figs. 10 and 11. It can be seen that, thanks to
the definition (40), the data for the spin-averaged quantity
Mavð ~mhÞ= ~mh are quite precise: the uncertainties are at the
level of≃1% around the charm mass, of≃0.2% around the
bottom mass, and then vanish in the static limit.
Neglecting the effects of dimension-seven operators, the

HQE expansion of the heavy-meson masses reads [5]

Mavð ~mhÞ
~mh

¼ 1þ Λ̄
~mh

þ μ2π
2 ~m2

h

þ ρ3D − ρ3ππ − ρ3S
4 ~m3

h

; ð41Þ

~mhΔMð ~mhÞ ¼
2

3
cGð ~mh; ~mbÞμ2Gð ~mbÞ þ

ρ3πG þ ρ3A − ρ3LS
3 ~mh

;

ð42Þ

where Λ̄ is the so-called heavy-quark binding energy, μ2π is
the matrix element of the kinetic energy operator, and the
parameters ρ3i (i ¼ D; ππ; S; πG;A; LS) are the matrix
elements of the relevant local and nonlocal operators of
dimension six. From now on it is understood that all the
HQE parameters appearing in Eqs. (41)–(42) are given in
the kinetic scheme at the normalization point μsoft, which is
chosen to be equal to 1 GeV.
Taking into account the correlation matrix between the

lattice data shown in Figs. 10 and 11, the HQE fits (41)
and (42) yield

Λ̄ ¼ 0.551ð13Þstatð2Þsyst GeV ¼ 0.551ð13Þ GeV; ð43Þ

μ2π ¼ 0.314ð14Þstatð2Þsyst GeV2 ¼ 0.314ð15Þ GeV2; ð44Þ

ρ3D − ρ3ππ − ρ3S ¼ 0.174ð12Þstatð2Þsyst GeV3

¼ 0.174ð12Þ GeV3; ð45Þ

and

μ2Gð ~mbÞ ¼ 0.250ð18Þstatð8Þsyst GeV2 ¼ 0.250ð20Þ GeV2;

ð46Þ

ρ3πG þ ρ3A − ρ3LS ¼ −0.143ð57Þstatð21Þsyst GeV3

¼ −0.143ð60Þ GeV3: ð47Þ

The quality of the HQE fits is shown in Figs. 10 and 11 by
the dashed (central values) and solid (1 standard deviation)
lines. We stress the remarkable precision obtained for the
determinations of Λ̄ (≃2.4%), μ2π (≃4.8%), ðρ3D−ρ3ππ −ρ3SÞ
(≃6.9%), and μ2Gð ~mbÞ (≃8.0%), while the quantity
ðρ3πG þ ρ3A − ρ3LSÞ has a larger uncertainty (≃42%).

FIG. 10. Lattice data for the quantity Mavð ~mhÞ= ~mh [Eq. (40)]
versus the inverse heavy-quark mass ~mh. The dashed and solid
lines are the results of the HQE fit (41) in which the correlation
matrix between the lattice data is taken into account. The dashed
line corresponds to the central values of the fits, while the solid
lines represent 1 standard deviation. The vertical dotted lines
correspond to the positions of the inverse physical b-quark and
c-quark masses, 1= ~mb and 1= ~mc.

FIG. 11. Lattice data for the quantity ~mhΔMð ~mhÞ [see Eq. (38)].
The dashed and solid lines are the results of the HQE fit (42), in
which the correlation matrix between the lattice data is taken into
account. The dashed line corresponds to the central values of the fit,
while the solid lines represent 1 standard deviation. The vertical
dotted lines correspond to the positions of the inverse physical
b-quark and c-quark masses, 1= ~mb and 1= ~mc, respectively.
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The HQE fits (41)–(42) contain all of the terms generated
by effective operators up to dimension six, and in what
follows we will refer to the fits (41)–(42) as the “dimen-
sion-six” fit. We have also tried to include the possible
contributions arising from operators of dimension seven,
which means that a quartic term has to be added to Eq. (41)
and a quadratic one to Eq. (42), viz.,

Mavð ~mhÞ
~mh

¼ 1þ Λ̄
~mh

þ μ2π
2 ~m2

h

þ ρ3D − ρ3ππ − ρ3S
4 ~m3

h

þ σ4

~m4
h

; ð48Þ

~mhΔMð ~mhÞ ¼
2

3
cGð ~mh; ~mbÞμ2Gð ~mbÞ

þ ρ3πG þ ρ3A − ρ3LS
3 ~mh

þ Δσ4

~m2
h

: ð49Þ

We obtain

Λ̄ ¼ 0.552ð13Þstatð2Þsyst GeV ¼ 0.552ð13Þ GeV; ð50Þ

μ2π ¼ 0.325ð17Þstatð3Þsyst GeV2 ¼ 0.325ð17Þ GeV2; ð51Þ

ρ3D − ρ3ππ − ρ3S ¼ 0.133ð34Þstatð6Þsyst GeV3

¼ 0.133ð35Þ GeV3; ð52Þ

σ4 ¼ 0.0071ð55Þstatð10Þsyst GeV4 ¼ 0.0071ð55Þ GeV4;

ð53Þ

and

μ2Gð ~mbÞ ¼ 0.254ð20Þstatð9Þsyst GeV2 ¼ 0.254ð22Þ GeV2;

ð54Þ

ρ3πG þ ρ3A − ρ3LS ¼ −0.173ð74Þstatð25Þsyst GeV3

¼ −0.173ð79Þ GeV3; ð55Þ

Δσ4 ¼ 0.0092ð58Þstatð14Þsyst GeV4 ¼ 0.0092ð60Þ GeV4:

ð56Þ

It can be seen that the values of the HQE parameters related
to operators up to dimension-six are found to be consistent
between the “dimension-six” and “dimension-seven” fits.
In particular, the results (50), (51), and (54) of the
“dimension-seven” fit nicely confirm both the central
values and the uncertainties (43), (44), and (46) of the
“dimension-six” fit. The result (55) is consistent with the
corresponding one (45) within a larger uncertainty and,
finally, the terms (53) and (56) coming from dimension-
seven operators are found to be almost consistent with zero.
We note the following:
(1) Equations (44) and (46) and Eqs. (51) and (54)

imply ðμ2π − μ2GÞ ¼ 0.064ð19Þ GeV2 for the “dimen-
sion-six” fit and ðμ2π − μ2GÞ ¼ 0.072ð22Þ GeV2 for

the “dimension-seven” fit, respectively. These find-
ings represent a deviation from the so-called BPS
limit μ2π ¼ μ2G [42]. The deviation is equal to
≈20–25% of the kinetic energy term.

(2) Equations (45) and (47) [Eqs. (52) and (55)] imply
ρ3ππ þ ρ3S þ ρ3πG þ ρ3A ¼ ρ3D þ ρ3LS − 0.317ð65Þ GeV3

[0.306ð86Þ GeV3] for the “dimension-six”
[“dimension-seven”] fit. Since the sum ρ3ππ þ ρ3S þ
ρ3πG þ ρ3A is always positive definite [5], it follows
that ρ3D þ ρ3LS ≥ 0.317ð65Þ GeV3 [0.306ð86Þ GeV3]
for the “dimension-six” [“dimension-seven”] fit.
These results show a very sizable deviation from
the BPS limit ρ3D þ ρ3LS ¼ 0 at the level of ≈4.9 (3.6)
standard deviations.

The correlations among the b-quark mass and the HQE
parameters of the “dimension-six” and “dimension-seven”
fits are summarized in Tables IV and V, respectively. The
correlations can easily be taken into account by using our
bootstrap samplings, which are available upon request.
From Table IV it can be seen that the spin-averaged

parameters Λ̄, μ2π and ðρ3D − ρ3ππ − ρ3SÞ and, separately, the
hyperfine ones μ2G and ðρ3πG þ ρ3A − ρ3LSÞ are strongly
correlated or anticorrelated among themselves. Moreover,
since our bootstrap sampling takes into account the
correlations between the input parameters of Table II,
the data for the spin-averaged meson masses and the
hyperfine splitting are partially correlated. This induces a
partial correlation among the hyperfine and the spin-
averaged parameters. Finally, the b-quark mass ~mb, and
correspondingly also the charm mass ~mc [see Eq. (19)],
turn out to be strongly correlated with the spin-averaged
HQE parameters and only partially with the hyperfine ones.
In the case of the “dimension-seven” fit the correlations
(see Table V) appear to be milder than the corresponding
ones of the “dimension-six” fit.
As a further consistency check, we have repeated our

analysis in the case of the heavy-quark mass dependence of
the quantity M2

V −M2
PS, using the experimental value

M2
D� −M2

D at the triggering point. The corresponding data
are shown in Fig. 12 and the HQE expansion reads [5]

TABLE IV. Correlation matrix among the b-quark mass and the
HQE parameters of the “dimension-six” fit based on Eqs. (41)
and (42). The quantities ρ3 and Δρ3 stand for ρ3D − ρ3ππ − ρ3S and
ρ3πG þ ρ3A − ρ3LS, respectively.

~mb Λ̄ μ2π ρ3 μ2Gð ~mbÞ Δρ3

~mb 1.0 0.905 0.910 0.886 0.572 −0.488
Λ̄ 0.905 1.0 0.999 0.999 0.497 −0.420
μ2π 0.910 0.999 1.0 −0.998 0.501 −0.423
ρ3 0.886 0.999 −0.998 1.0 0.484 −0.408
μ2Gð ~mbÞ 0.572 0.497 0.501 0.484 1.0 −0.995
Δρ3 −0.488 −0.420 −0.423 −0.408 −0.995 1.0
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M2
V −M2

PS ¼
4

3
cGð ~mh; ~mbÞμ2Gð ~mbÞ

þ 2

3

ρ3πG þ ρ3A − ρ3LS þ 2Λ̄μ2Gð ~mbÞ
~mh

þ Δ~ρ4

~m2
h

:

ð57Þ

Taking into account the correlation matrix between the
lattice data, the HQE fit (57) (see the solid and dashed lines
in Fig. 12) yields

μ2Gð ~mbÞ ¼ 0.270ð17Þ GeV2; ð58Þ

ρ3πG þ ρ3A − ρ3LS þ 2Λ̄μ2Gð ~mbÞ ¼ 0.164ð46Þ GeV3; ð59Þ

Δ~ρ4 ¼ 0.010ð8Þ GeV4: ð60Þ

It can be seen that the result (58) for μ2Gð ~mbÞ is consistent
with the corresponding one given in Eq. (54). Using the
findings (50) for Λ̄ and (58) for μ2Gð ~mbÞ, Eq. (59) implies

ρ3πG þ ρ3A − ρ3LS ¼ −0.134ð67Þ GeV3; ð61Þ

which is compatible with the result (55) within the
uncertainties.
The results (43)–(47) and (50)–(56) of the dimension-six

and dimension-seven fits have been obtained by including
radiative corrections up to order Oðα2sÞ. Higher-order terms
might have an impact on the extraction of the HQE
parameters, which are expected to be maximal around
the charm mass region. Therefore, we have applied the
dimension-six fit (41)–(42) to the lattice data, limiting the
range of the heavy-quark masses either to ~mh ≥ 2 ~mc or to
~mh ≥ ~mb. The corresponding results are shown in Table VI
and compared with the ones obtained in the full range of
heavy-quark masses ~mh ≥ ~mc. It can be seen that the
parameters Λ̄, μ2π , and μ2Gð ~mbÞ (i.e., the matrix elements
of operators up to dimension five) are almost totally
insensitive to the range of heavy-quark masses considered,
whereas the dimension-six parameters ρ3D − ρ3ππ − ρ3S and
ρ3πG þ ρ3A − ρ3LS are only marginally sensitive to the pres-
ence of data in the charm region (i.e., they are consistent
within 1 standard deviation).
In order to obtain our final determinations of the

HQE parameters we perform the average of the results

TABLE V. Correlation matrix among the b-quark mass and the HQE parameters of the “dimension-seven” fit
based on Eqs. (48) and (49). The quantities ρ3 and Δρ3 stand for ρ3D − ρ3ππ − ρ3S and ρ3πG þ ρ3A − ρ3LS, respectively.

~mb Λ̄ μ2π ρ3 σ4 μ2Gð ~mbÞ Δρ3 Δσ4

~mb 1.0 0.910 0.811 0.394 0.196 0.538 −0.440 0.312
Λ̄ 0.910 1.0 0.886 0.439 0.223 0.466 −0.375 0.260
μ2π 0.811 0.886 1.0 0.082 0.568 0.443 −0.362 0.258
ρ3 0.394 0.439 0.082 1.0 −0.693 0.151 −0.108 0.057
σ4 0.196 0.223 0.568 −0.693 1.0 0.155 −0.137 0.111
μ2Gð ~mbÞ 0.538 0.466 0.443 0.151 0.155 1.0 −0.993 0.961
Δρ3 −0.440 −0.375 −0.362 −0.108 −0.37 −0.993 1.0 −0.986
Δσ4 0.312 0.260 0.258 0.057 0.111 0.961 −0.986 1.0

TABLE VI. Results obtained for the HQE parameters Λ̄, μ2π ,
ρ3D − ρ3ππ − ρ3S, μ

2
Gð ~mbÞ, and ρ3πG þ ρ3A − ρ3LS for different ranges

of the heavy-quark mass ~mh included in the “dimension-six” fit
(41)–(42).

HQE parameter ~mh ≥ ~mb ~mh ≥ 2 ~mc ~mh ≥ ~mc

Λ̄ (GeV) 0.552 (13) 0.552 (13) 0.551 (13)

μ2π (GeV2) 0.325 (15) 0.323 (16) 0.314 (15)

ρ3D − ρ3ππ − ρ3S (GeV3) 0.146 (31) 0.153 (24) 0.174 (12)

μ2Gð ~mbÞ (GeV2) 0.253 (22) 0.254 (22) 0.250 (20)

ρ3πG þ ρ3A − ρ3LS (GeV3) −0.133 ð69Þ −0.158 ð70Þ −0.143 ð60Þ

FIG. 12. Lattice data for the quantity M2
V −M2

PS versus the
inverse heavy-quark mass ~mh. The dashed and solid lines are the
result of the HQE fit (57), in which the correlation matrix
between the lattice data is taken into account. The dashed line
corresponds to the central values of the fits, while the solid lines
represent 1 standard deviation. The vertical dotted lines corre-
spond to the positions of the inverse physical b-quark and c-quark
masses, 1= ~mb and 1= ~mc. At the charm mass the experimental
value and the error from Ref. [3] are adopted.
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corresponding to the “dimension-six” and “dimension-
seven” fits as well as to the “dimension-six” fit with the
range of the heavy-quark masses limited to ~mh ≥ 2 ~mc (see
third column of Table VI). The average and the corre-
sponding uncertainty are evaluated according to Eq. (28) of
Ref. [27]. Moreover, we want to consider the impact of the
uncertainty in the conversion from the MS scheme to the
kinetic one at the charm mass on the extracted HQE
parameters As a matter of fact, a systematic shift of the
value of ~mc can propagate into the chain of the heavy-
quark masses, leading to a change of the values of the
extracted HQE parameters. Thus, we have shifted the
value of ~mc by 40 MeV [43] and repeated our whole
analysis, obtaining a change equal to 0.150 GeV for ~mb,
0.022 GeV for Λ̄, 0.027 GeV2 for μ2π, 0.017 GeV3 for
ρ3D − ρ3ππ − ρ3S, 0.013 GeV2 for μ2GðmbÞ, and 0.045 GeV3

for ρ3πG þ ρ3A − ρ3LS.
The inclusion of the above uncertainties (added in

quadrature) leads to the final results

~mc ¼ 1.219ð41Þð40Þconv GeV ¼ 1.219ð57Þ GeV; ð62Þ

~mb¼4.605ð132Þð150Þconv GeV¼4.605ð201ÞGeV; ð63Þ

Λ̄ ¼ 0.552ð13Þð22Þconv GeV ¼ 0.552ð26Þ GeV; ð64Þ

μ2π ¼ 0.321ð17Þð27Þconv GeV2 ¼ 0.321ð32Þ GeV2; ð65Þ

ρ3D−ρ3ππ−ρ3S¼0.153ð30Þð17Þconv GeV3¼0.153ð34ÞGeV3;

ð66Þ

μ2GðmbÞ ¼ 0.253ð21Þð13Þconv GeV2 ¼ 0.253ð25Þ GeV2;

ð67Þ

ρ3πG þ ρ3A − ρ3LS ¼ −0.158ð71Þð45Þconv GeV3

¼ −0.158ð84Þ GeV3; ð68Þ

where ðÞconv indicates the errors generated by the uncer-
tainty in the conversion from the MS scheme to the kinetic
one at the charm mass. The reduction of this source of
uncertainty will certainly deserve future investigations.
Before closing this section, we want to briefly comment

on the relation between our results and those obtained in
recent analyses of the inclusive semileptonic B-meson
decays [1,2].
We start by warning the reader that in this work μ2π and

μ2GðmbÞ refer to asymptotic matrix elements, i.e., matrix
elements of asymptotically heavy mesons, while the
inclusive semileptonic fits are sensitive to the matrix
elements of the same operators in the physical B meson.
The relations between the two concepts are

μ2πjB ¼ μ2πj∞ −
ρ3ππ þ 1

2
ρ3πG

~mb
þOð1= ~m2

bÞ; ð69Þ

μ2GðmbÞjB ¼ μ2GðmbÞj∞ þ ρ3S þ ρ3A þ 1
2
ρ3πG

~mb
þOð1= ~m2

bÞ:

ð70Þ

It should also be kept in mind that the semileptonic fits are
not very sensitive to μ2GðmbÞ and ρ3LS, which are mostly
determined by loose constraints based on heavy-quark
sum rules. In particular, the constraint μ2GðmbÞjB ¼
0.35ð7Þ GeV2 was applied in Refs. [1,2]. As a first
application of our results we can check their consistency
with this constraint. The values μ2πjB ¼ 0.432ð68Þ GeV2

and μ2πjB ¼ 0.465ð68Þ GeV2 were found in Refs. [1,2],
respectively, which differ only in the inclusion of higher-
order power corrections. Comparing these values with our
final result (63), it follows that the combination ρ3ππ þ 1

2
ρ3πG

should be large and negative, −0.51ð35Þ GeV2, where we
have taken the smaller value of μ2πjB from Ref. [1]. Since the
sum ρ3ππ þ ρ3S þ ρ3A þ ρ3πG is positive by definition, it also
follows that ρ3S þ ρ3A þ 1

2
ρ3πG > 0.51ð35Þ GeV2, or μ2GjB >

μ2Gj∞ þ 0.11ð8Þ GeV2 ¼ 0.36ð8Þ GeV2. Despite the large
errors, there is a clear indication that the constraint
employed in the semileptonic fits is adequate. We also
note that the large values taken by some of the nonlocal
matrix elements are consistent with the observations made in
Ref. [5]. A detailed discussion of our results in the context of
the heavy-quark sum rules and in particular of the zero-recoil
sum rule is postponed to a future publication.
Of course, in order to employ our results in other

observables (like the inclusive semileptonic decay rates
of the B meson), it is necessary that all of the matrix
elements are defined as short-distance quantities, not
affected by renormalons. As is well known, the OPE of
the inclusive semileptonic B-meson decay rate predicts [44]
that the corrections to the free-quark decay rate are sup-
pressed by two powers of the b-quark mass and can be
parametrized in terms of the HQE matrix elements μ2π
and μ2GðmbÞ. In terms of the heavy-quark pole mass the
radiative corrections to the free-quark decay rate are
plagued by renormalons, which however are canceled
out when the pole mass is replaced in favor of a short-
distance heavy-quark mass [12,45]. This is a crucial feature
for the OPE analysis of the inclusive semileptonic B-meson
decays, since the appearance of renormalons in the radi-
ative corrections of the leading-order decay rate may signal
the presence of nonperturbative corrections in the inverse
heavy-quark mass, which cannot be parametrized using the
same HQE matrix elements μ2π and μ2GðmbÞ extracted from
the analysis of heavy-meson masses. In principle, the
kinetic scheme is designed to achieve precisely that.
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VIII. CONCLUSIONS

We have presented a precise lattice computation of
pseudoscalar and vector heavy-light meson masses for
heavy-quark masses ranging from the physical charm mass
up to ≃4 times the physical b-quark mass, adopting the
gauge configurations generated by ETMC with Nf ¼ 2þ
1þ 1 dynamical quarks at three values of the lattice
spacing (a≃ 0.062; 0.082; 0.089 fm) with pion masses
in the range Mπ ≃ 210–450 MeV. The heavy-quark mass
has been simulated directly on the lattice up to≃3 times the
physical charm mass. The interpolation to the physical b-
quark mass has been performed using the ETMC ratio
method, based on ratios of the spin-averaged meson masses
computed at nearby heavy-quark masses.
The kinetic mass scheme has been adopted in order to

work with a short-distance mass free from renormalon
ambiguities (which is also often used in the analysis of the
inclusive semileptonic B-meson decays relevant for the
determination of the CKM entry Vcb). The extrapolation to
the physical pion mass and to the continuum limit yields
mkin

b ð1 GeVÞ ¼ 4.61ð20Þ GeV, which corresponds to
m̄bðm̄bÞ ¼ 4.26ð18Þ GeV in the MS scheme, and is in
agreement with the results of the OPE analysis of the
inclusive semileptonic B-meson decays [1,2].
Then, the ratio method was applied above the physical

b-quark mass to provide heavy-light meson masses towards
the static point. The lattice data were analyzed in terms of
the heavy-quark expansion and the matrix elements of
dimension-four and dimension-five operators were deter-
mined with a good precision, namely,

Λ̄ ¼ 0.552ð26Þ GeV; ð71Þ

μ2π ¼ 0.321ð32Þ GeV2; ð72Þ

μ2GðmbÞ ¼ 0.253ð25Þ GeV2: ð73Þ

The data has also allowed to estimate the size of two
combinations of the matrix elements of dimension-six
operators, namely,

ρ3D − ρ3ππ − ρ3S ¼ 0.153ð34Þ GeV3; ð74Þ

ρ3πG þ ρ3A − ρ3LS ¼ −0.158ð84Þ GeV3: ð75Þ

All of the above HQE parameters, as well as the physical
c- and b-quark masses, were found to be highly correlated
and therefore the full covariance matrix has been provided
(see Tables IV–V). We stress that our results (71)–(75),
which are specific to the kinetic scheme, represent the first
unquenched lattice determinations of the HQE parameters.
The extracted dimension-five and dimension-six HQE

parameters play an important role in the OPE analysis of
the inclusive semileptonic B-meson decays relevant for the
determination of the CKM entries Vub and Vcb. Combining
our lattice QCD findings with the results of recent analyses
of inclusive semileptonic decays, we have been able to test
the value of the chromomagnetic matrix element that is
currently employed in the inclusive semileptonic fits, which
provide to date the most precise determination of jVcbj.
Our results can also be used as additional constraints in
these fits. Another interesting future application concerns
the heavy-quark sum rules which constrain the form factor
entering the semileptonic decay B → D�lν at zero recoil;
here, the nonlocal correlators ρA;S;ππ;πG play an important
role (see Ref. [5]).
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