
Exploring Nf = 2 + 1 QCD thermodynamics from the gradient flow

Yusuke Taniguchi,1,* Shinji Ejiri,2,† Ryo Iwami,3,‡ Kazuyuki Kanaya,4,§ Masakiyo Kitazawa,5,6,∥
Hiroshi Suzuki,7,¶ Takashi Umeda,8,** and Naoki Wakabayashi3,††

(WHOT-QCD Collaboration)

1Center for Computational Sciences (CCS), University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan
2Department of Physics, Niigata University, Niigata 950-2181, Japan

3Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan
4Center for Integrated Research in Fundamental Science and Engineering (CiRfSE),

University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan
5Department of Physics, Osaka University, Osaka 560-0043, Japan

6J-PARC Branch, KEK Theory Center, Institute of Particle and Nuclear Studies,
KEK, 203-1, Shirakata, Tokai, Ibaraki 319-1106, Japan

7Department of Physics, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan
8Graduate School of Education, Hiroshima University, Higashihiroshima, Hiroshima 739-8524, Japan

(Received 9 November 2016; published 20 July 2017)

The energy-momentum tensor plays an important role in QCD thermodynamics. Its expectation value
contains information of the pressure and the energy density as its diagonal part. Further properties like
viscosity and specific heat can be extracted from its correlation function. A nonperturbative evaluation of it
on the lattice is called. Recently, a new method based on the gradient flow was introduced to calculate the
energy-momentum tensor on the lattice and has been successfully applied to quenched QCD. In this paper,
we apply the gradient flow method to calculate the energy-momentum tensor in (2þ 1)-flavor QCD
adopting a nonperturbativelyOðaÞ-improvedWilson quark action and the renormalization group-improved
Iwasaki gauge action. As the first application of the method with dynamical quarks, we study at a single but
fine lattice spacing a≃ 0.07 fm with heavy u and d quarks (mπ=mρ ≃ 0.63) and approximately physical s
quark (mηss=mϕ ≃ 0.74). With the fixed-scale approach, temperature is varied by the temporal lattice size
Nt at a fixed lattice spacing. Performing simulations on lattices with Nt ¼ 16 to 4, the temperature range of
T ≃ 174–697 MeV is covered. We find that the results of the pressure and the energy density by the
gradient flow method are consistent with the previous results using the T-integration method at
T ≲ 280 MeV (Nt ≳ 10), while the results show disagreement at T ≳ 350 MeV (Nt ≲ 8), presumably
due to the small-Nt lattice artifact of OððaTÞ2Þ ¼ Oð1=N2

t Þ. We also apply the gradient flow method to
evaluate the chiral condensate taking advantage of the gradient flow method that renormalized quantities
can be directly computed avoiding the difficulty of explicit chiral violation with lattice quarks. We compute
the renormalized chiral condensate in the MS scheme at renormalization scale μ ¼ 2 GeV with a high
precision to study the temperature dependence of the chiral condensate and its disconnected susceptibility.
Even with the Wilson-type quark action which violates the chiral symmetry explicitly, we obtain the chiral
condensate and its disconnected susceptibility showing a clear signal of pseudocritical temperature at
T ∼ 190 MeV related to the chiral restoration crossover.

DOI: 10.1103/PhysRevD.96.014509

I. INTRODUCTION

Precise determination of thermodynamic properties of
the quark matter is a key step towards understanding the
early evolution of the Universe as well as the nature of

neutron/quark stars. Numerical simulation of QCD on the
lattice provides us with the only way to study the nature of
the strongly coupled quark matter directly from the first
principles of QCD. Recently, the Yang-Mills gradient flow
[1–5] has introduced big advances in numerical determi-
nation of various observables in lattice QCD [6–8]. Fields
at positive flow time, t > 0, can be viewed as smeared
fields averaged over a mean physical radius of

ffiffiffiffi
8t

p
in four

dimensions. Salient features of the gradient flow are the UV
finiteness and the absence of short-distance singularities in
the operators constructed by flowed fields at t > 0. This
enables us to directly construct renormalized quantities in
terms of the flowed fields, i.e., a new renormalization
scheme can be introduced by the gradient flow. Because the
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flowed fields are defined nonperturbatively, we can evalu-
ate their nonperturbative expectation values directly on the
lattice. This opened us a large variety of possibilities to
significantly simplify the determination of physical observ-
ables on the lattice. In this paper, we determine the equation
of state (EOS) as well as the chiral condensate in (2þ 1)-
flavor QCD at finite temperatures, by applying the methods
of Refs. [9,10] using the gradient flow. The EOS in (2þ 1)-
flavor QCD has been calculated at the physical point and
extrapolated to the continuum limit using staggered-type
lattice quarks [11,12]. To avoid theoretical uncertainties
with staggered-type lattice quarks, calculations using
Wilson-type lattice quarks have been also attempted
[13,14]. See Ref. [15] for the recent status and related
developments on the lattice.
In this study, we extract the EOS from the diagonal

elements of the energy-momentum tensor, TμνðxÞ. The
energy-momentum tensor is the generator of continuous
coordinate translations and thus, is not uniquely given on
discrete lattices as a conserved current. An approach to
overcome this problem is to use finite observables which
are independent of the regularization in the continuum
limit. The gradient flow enables us to define such finite
observables. Unfortunately, these finite renormalized tensor
operators are not necessarily equal to the conserved energy-
momentum tensor but an appropriate combination of them
can be the energy-momentum tensor in a small flow time
limit [9,16]. In Refs. [9,16], coefficients needed to extract
the energy-momentum tensor which satisfies the Ward-
Takahashi identity associated with the translational invari-
ance from appropriate flowed tensor operators were
calculated, by using a small flow time expansion of flowed
operators [3]. In this method, we observe several lattice
operators at small t and take their vanishing t limit. The
coefficients relating these limiting values with the energy-
momentum tensor is calculated in a renormalized theory.
They can be computed by perturbation theory using the
asymptotic freedom at small t, and those for the quenched
case are computed in Ref. [16]. Finally, the EOS is given by
ϵ ¼ −hT00i and p ¼ P

ihTiii=3, where ϵ and p are the
energy density and the pressure, respectively. Some other
thermodynamic quantities, such as the bulk and shear
viscosities etc., can also be extracted from the energy-
momentum tensor. Here, we stress that, though these
coefficients are computed in perturbation theory, they are
used just to guide the t → 0 extrapolation. We thus consider
that our evaluation of the energy-momentum tensor is
essentially nonperturbative.1

The method was tested in quenched QCD by the
FlowQCD Collaboration in Ref. [19]. The resulting EOS
from the gradient flow shows a good agreement with the
previous results of the conventional integration and T-
integration methods [13,20–24].

In this paper, we extend the study of the energy-
momentum tensor and EOS to QCD with dynamical
quarks, adopting the method of Ref. [9]. The gradient flow
in full QCD was investigated by Lüscher in Ref. [4].
Because the raison d’etre of the gradient flow in our study
is the semilocal smearing of the fields, it is not mandatory
to introduce quarks in the dynamics of the flow in t. A
numerically easier way is to keep the quenched flow
equations for the gauge fields and combine them with a
gauge-covariant quenched flow equation for the quark
fields [4]. Fermionic operators, however, require additional
wave function renormalization of quark fields, which can
be carried out by normalizing the flowed quark fields by the
vacuum expectation value of a flowed quark kinetic
operator at zero temperature [9]. The coefficients required
to compute the energy-momentum tensor and EOS in full
QCD were computed in Ref. [9].
We note that the calculation of EOS by the gradient flow

method does not require the information of beta functions.
In a conventional calculation of EOS using the derivative
method, the integration method, or T-integration method,
evaluation of the nonperturbative beta functions is a big
numerical task, in particular, in full QCD for which we first
have to determine a line of constant physics in a multidi-
mensional coupling parameter space on zero-temperature
lattices and then measure the beta functions defined as the
slopes of each coupling parameter under a variation of the
lattice spacing a along the line of constant physics. With
the fixed-scale approach using the T-integration method,
the same set of zero-temperature configurations can be used
to compute EOS at all temperatures, provided that the beta
functions are available. If the beta functions are not
available, we have to carry out a series of systematic
zero-temperature simulations in a multidimensional param-
eter space to determine the beta functions, and thus, the
benefit of the fixed-scale approach is reduced. The gradient
flow method in part removes the weak point of the fixed-
scale approach.
In this study, we also calculate the chiral condensate.

Using the gradient flow method of Ref. [10], the proper
chiral condensate which satisfies the partially conserved
axial vector current (PCAC) relation is extracted through a
similar idea as the energy-momentum tensor.2 The temper-
ature dependence of the chiral condensate as well as its
disconnected susceptibility is studied, and a signal of chiral
crossover is observed at T ∼ 190 MeV.
The gradient flow method of Ref. [10] was also applied

to study the topological susceptibility in finite temperature
QCD [25]. Preliminary results of our study was reported in
Refs. [26,27].
This paper is organized as follows: In Sec. II, we define

our gradient flow equations and give explicit formulas for

1This idea has been tested in solvable models [17,18].

2A different method to compute the chiral condensate by using
the gradient flow has been discussed in Ref. [4].
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the energy-momentum tensor and the chiral condensate.
Our simulation parameters are summarized in Sec. III, and
the results of the numerical simulation for the energy-
momentum tensor and chiral condensate are presented in
Secs. IV and V, respectively. Section VI is devoted to our
conclusions and discussions. In Appendixes A
and B, we introduce our simulation algorithms for the
gradient flow and measurements with quarks. Definitions
of our running coupling and running masses, which are
necessary in the evaluation of conversion coefficients, are
given in Appendix C. Several additional tests on our data
for the energy-momentum tensor are presented in
Appendix D.

II. DEFINITION OF OBSERVABLES

A. Flow equations

Our flow equations are identical to those given in
Refs. [2,4]. That is, for the gauge field, we set3

∂tBμðt; xÞ ¼ DνGνμðt; xÞ; Bμðt ¼ 0; xÞ ¼ AμðxÞ; ð1Þ

where the field strength and the covariant derivative of the
flowed gauge field are

Gμνðt; xÞ ¼ ∂μBνðt; xÞ − ∂νBμðt; xÞ þ ½Bμðt; xÞ; Bνðt; xÞ�;
ð2Þ

and

DνGνμðt;xÞ¼ ∂νGνμðt;xÞþ ½Bνðt;xÞ;Gνμðt;xÞ�; ð3Þ

respectively. For the quark fields, we set

∂tχfðt; xÞ ¼ Δχfðt; xÞ; χfðt ¼ 0; xÞ ¼ ψfðxÞ; ð4Þ

∂tχ̄fðt; xÞ ¼ χ̄fðt; xÞΔ⃖; χ̄fðt ¼ 0; xÞ ¼ ψ̄fðxÞ; ð5Þ

where f ¼ u, d, s, denotes the flavor index, and

Δχfðt; xÞ≡DμDμχfðt; xÞ;
Dμχfðt; xÞ≡ ½∂μ þ Bμðt; xÞ�χfðt; xÞ; ð6Þ

χ̄fðt; xÞΔ⃖≡ χ̄fðt; xÞD⃖μD⃖μ;

χ̄fðt; xÞD⃖μ ≡ χ̄fðt; xÞ½∂⃖μ − Bμðt; xÞ�: ð7Þ

Note that our flow equations are independent of the flavor.

B. Energy-momentum tensor

We follow the proposal of Refs. [9,16,19], which
employs the gradient flow and the fermion flow and their
small flow time expansion [3] to define the energy-
momentum tensor. According to the reasoning of
Refs. [9,16], in terms of composite operators made out
from the flowed fields, the correctly normalized energy-
momentum tensor is given by4

TμνðxÞ ¼ lim
t→0

�
c1ðtÞ

�
~O1μνðt; xÞ −

1

4
~O2μνðt; xÞ

�

þ c2ðtÞ½ ~O2μνðt; xÞ − h ~O2μνðt; xÞi0�
þ c3ðtÞ

X
f¼u;d;s

½ ~Of
3μνðt; xÞ − 2 ~Of

4μνðt; xÞ

− h ~Of
3μνðt; xÞ − 2 ~Of

4μνðt; xÞi0�
þ c4ðtÞ

X
f¼u;d;s

½ ~Of
4μνðt; xÞ − h ~Of

4μνðt; xÞi0�

þ
X

f¼u;d;s

cf5ðtÞ½ ~Of
5μνðt; xÞ − h ~Of

5μνðt; xÞi0�
�
; ð8Þ

where h� � �i0 stands for thevacuum expectationvalue (VEV),
i.e., the expectation value at zero temperature. The operators
in the right-hand side of Eq. (8) are defined by

~O1μνðt; xÞ≡ Ga
μρðt; xÞGa

νρðt; xÞ; ð9Þ

~O2μνðt; xÞ≡ δμνGa
ρσðt; xÞGa

ρσðt; xÞ; ð10Þ

~Of
3μνðt; xÞ≡ φfðtÞχ̄fðt; xÞðγμD

↔

ν þ γνD
↔

μÞχfðt; xÞ; ð11Þ

~Of
4μνðt; xÞ≡ φfðtÞδμνχ̄fðt; xÞD

↔
χfðt; xÞ; ð12Þ

~Of
5μνðt; xÞ≡ φfðtÞδμνχ̄fðt; xÞχfðt; xÞ; ð13Þ

where

D
↔

μ ≡Dμ − D⃖μ; ð14Þ

and for the (2þ 1)-flavor QCD, the normalization factor
φfðtÞ is given by [9],

φfðtÞ≡ −
6

ð4πÞ2t2hχ̄fðt; xÞD
↔
χfðt; xÞi0

: ð15Þ

Note that, from above definitions, it follows that
3In what follows, the sum over repeated Lorentz indices,

μ; ν; ρ;…, over 0, 1, 2, and 3, and the sum of the adjoint indices,
a; b;…, are always understood. On the other hand, without
indicated otherwise, the summation over repeated flavor indices,
f, f0 ¼ u, d, s is not assumed.

4In this definition, we subtract the vacuum expectation value of
the operator which might be divergent.
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2h ~Of
3μνðt; xÞi0 ¼ h ~Of

4μνðt; xÞi0 ¼ −
6

ð4πÞ2t2 δμν: ð16Þ

The coefficients in Eq. (8) for (2þ 1)-flavor QCD are given
as [9],

c1ðtÞ ¼
1

ḡð1= ffiffiffiffi
8t

p Þ2 −
1

ð4πÞ2
�
9ðγ − 2 ln 2Þ þ 19

4

�
; ð17Þ

c2ðtÞ ¼
1

ð4πÞ2
33

16
; ð18Þ

c3ðtÞ ¼
1

4

�
1þ ḡð1= ffiffiffiffi

8t
p Þ2

ð4πÞ2
�
2þ 4

3
lnð432Þ

��
; ð19Þ

c4ðtÞ ¼
1

ð4πÞ2 ḡð1=
ffiffiffiffi
8t

p
Þ2; ð20Þ

cf5ðtÞ ¼ −m̄fð1=
ffiffiffiffi
8t

p
Þ
�
1þ ḡð1= ffiffiffiffi

8t
p Þ2

ð4πÞ2

×

�
4ðγ − 2 ln 2Þ þ 14

3
þ 4

3
lnð432Þ

��
; ð21Þ

where γ denotes the Euler constant and ḡðμÞ and m̄fðμÞ are
the running gauge coupling and the running quark mass of
the flavor f in the MS scheme at the scale μ, respectively.
In principle, one may use any lattice transcription for the

composite operators in Eqs. (9)–(13) as well as for the flow
equations (1), (4), and (5); in this sense, the above formula
for the energy-momentum tensor is “universal”. This
universality follows from the fact that any composite
operator of the flowed fields becomes a renormalized
operator [3,4] under the multiplicative renormalization of
the flowed quark fields (see also Ref. [28]). The normali-
zation factor (15) takes care of this multiplicative renorm-
alization of the flowed quark fields [9]. Such a
renormalized composite operator must be independent of
the regularization, i.e., the way of lattice discretization, for
example, after taking the continuum limit.

C. Scalar density and the chiral condensate

In Ref. [10], the small flow time behavior of a composite
operator of flowed quark fields is related to the quark scalar
density. For the renormalized scalar density of the form
(suppressing the flavor indices)

fψ̄fftA;Mg; tBgψgðxÞ; ð22Þ

where tA and tB denote the (antihermitian) generators of the
flavor group SUð3Þ and M is the renormalized quark mass
matrix of the form

M ¼

0
B@

mud 0 0

0 mud 0

0 0 ms

1
CA; ð23Þ

one has

fψ̄fftA;Mg; tBgψgðxÞ

¼ lim
t→0

�
1þ ḡð1= ffiffiffiffi

8t
p Þ2

ð4πÞ2
�
4ðγ − 2 ln 2Þ þ 8þ 4

3
lnð432Þ

��

×

� X
f;f0¼u;d;s

ffiffiffiffiffiffiffiffiffiffiffi
φfðtÞ

q ffiffiffiffiffiffiffiffiffiffiffiffi
φf0 ðtÞ

q
χ̄fðt; xÞ

× fftA; M̄ð1=
ffiffiffiffi
8t

p
Þg; tBgff0χf0 ðt; xÞ − VEV

�
: ð24Þ

In the last line, the vacuum expectation value (VEV) of the
first term on the same line is subtracted. In the right-hand
side, the running coupling ḡðμÞ and the running masses in
the matrix M̄,

M̄ðμÞ ¼

0
B@

m̄udðμÞ 0 0

0 m̄udðμÞ 0

0 0 m̄sðμÞ

1
CA; ð25Þ

are renormalized in the MS scheme at the scale μ.
The relation (24) is obtained in the following way [10]:

We define the scalar density (22) as the chiral rotation of the
pseudoscalar density fψ̄γ5ftA;MgψgðxÞ, where the chiral
rotation is defined by

ψðxÞ → eαγ5t
B
ψðxÞ; ψ̄ðxÞ → ψ̄ðxÞeαγ5tB ; ð26Þ

and, correspondingly, for the flowed quark fields,

χðxÞ → eαγ5t
B
χðxÞ; χ̄ðxÞ → χ̄ðxÞeαγ5tB : ð27Þ

The normalization of the pseudoscalar density is uniquely
fixed by the PCAC relation. The small flow time repre-
sentation of the pseudoscalar density was obtained in
Ref. [29]. Because the composite operators of the flowed
quark fields transform under the chiral transformation as if
they are simple products of elementary quark fields (i.e., no
nontrivial renormalization is required under the transfor-
mation), one obtains the relation (24) by the chiral trans-
formation (27) of the pseudoscalar density.
This argument based on the chiral transformation does

not necessarily require the subtraction of the VEV in
Eq. (24). We have to note, however, that the flavor singlet
part of the scalar density possesses the quantum number
identical to the vacuum and, when quarks are massive, its
expectation value can have terms proportional to M2=t
depending on the prescription, though the more conven-
tional divergence M2=a2 is prohibited by the finiteness of
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flowed operators.5 In fact, the small flow time behavior of the operator in the right-hand side of Eq. (24) is
estimated as

X
f;f0¼u;d;s

ffiffiffiffiffiffiffiffiffiffiffi
φfðtÞ

q ffiffiffiffiffiffiffiffiffiffiffiffi
φf0 ðtÞ

q
χ̄fðt; xÞfftA;Mg; tBgff0χf0 ðt; xÞ

∼t→0

�
−

12

ð4πÞ2
X

f¼u;d;s

�
fftA;Mg; tBgM

�
1

2t
þM2½γ þ lnð2M2tÞ� þOðtÞ

��
ff

þOðg2Þ
�
1

þ ½1þOðg2Þ�ψ̄ðxÞfftA;Mg; tBgψðxÞ þOðtÞ: ð28Þ

Therefore, when quarks are massive, the first term with the identity operator 1 diverges as t → 0. To remove such a term, we
subtract the VEV in Eq. (24). We may alternatively calculate the scalar density in the chiral limit, by first taking the chiral
limit M → 0 and then taking the small flow time limit t → 0. We leave this possibility for future study.
Now, by setting

tA ¼ tB ¼ i
2

0
B@

0 1 0

1 0 0

0 0 0

1
CA ð29Þ

in Eq. (24) and dividing the both sides by mu or md, we get

fψ̄uψugðxÞ þ fψ̄dψdgðxÞ ¼ lim
t→0

�
1þ ḡð1= ffiffiffiffi

8t
p Þ2

ð4πÞ2
�
4ðγ − 2 ln 2Þ þ 8þ 4

3
lnð432Þ

��

×
m̄udð1=

ffiffiffiffi
8t

p Þ
mud

½φuðtÞχ̄uðt; xÞχuðt; xÞ þ φdðtÞχ̄dðt; xÞχdðt; xÞ − VEV�; ð30Þ

while by setting

tA ¼ tB ¼ i
2

1ffiffiffi
3

p

0
B@

1 0 0

0 1 0

0 0 −2

1
CA ð31Þ

and using Eq. (30), we get

fψ̄ sψ sgðxÞ ¼ lim
t→0

�
1þ ḡð1= ffiffiffiffi

8t
p Þ2

ð4πÞ2
�
4ðγ − 2 ln 2Þ þ 8þ 4

3
lnð432Þ

��
m̄sð1=

ffiffiffiffi
8t

p Þ
ms

½φsðtÞχ̄sðt; xÞχsðt; xÞ − VEV�: ð32Þ

For clarity, let us denote the chiral condensate at t ≠ 0 without the VEV subtraction as fψ̄fψfgð0Þðt; xÞ,

fψ̄fψfgð0Þðt; xÞ ¼
�
1þ ḡð1= ffiffiffiffi

8t
p Þ2

ð4πÞ2
�
4ðγ − 2 ln 2Þ þ 8þ 4

3
lnð432Þ

��
m̄fð1=

ffiffiffiffi
8t

p Þ
mf

½φfðtÞχ̄fðt; xÞχfðt; xÞ�: ð33Þ

D. Finite flow time effects and lattice artifacts

To avoid boundary effects due to oversmearing, the smeared range of the gradient flow
ffiffiffiffi
8t

p
should not exceed

minðNt=2; Ns=2Þ × a. Thus, the measurements should be performed within flow times

t
a2

≤ t1=2 ≡ 1

8

�
min

�
Nt

2
;
Ns

2

��
2

: ð34Þ

5We would like to thank Tetsuya Onogi and Hidenori Fukaya for a discussion on this point.

EXPLORING Nf ¼ 2þ 1 QCD THERMODYNAMICS FROM … PHYSICAL REVIEW D 96, 014509 (2017)

014509-5



We then take the t → 0 limit as required in Eq. (8). A
typical form of small flow time effects in the energy-
momentum tensor would be

Tμνðt; xÞ ¼ TμνðxÞ þ tSμνðxÞ þOðt2Þ; ð35Þ

where Tμνðt; xÞ corresponds to that in Eq. (8) before taking
the t → 0 limit. SμνðxÞ is a sum of dimension-six operators
with the same quantum number, and Oðt2Þ is contribution
from higher dimensional operators. TμνðxÞ is our target
conserved energy-momentum tensor.
On finite lattices, however, we also have lattice artifacts

due to finite lattice spacing a. Since we adopt the non-
perturbatively OðaÞ-improved Wilson fermion, the lattice
artifact would start with Oða2Þ. Then, small lattice spacing
corrections to Tμνðt; xÞ at t > 0 would be

Tμνðt; x; aÞ ¼ Tμνðt; xÞ þ AμνðxÞ
a2

t
þ
X
f

BfμνðxÞðamfÞ2

þ CμνðxÞðaTÞ2 þDμνðxÞðaΛQCDÞ2
þ a2S0μνðxÞ þOða4Þ; ð36Þ

where Tμνðt; x; aÞ is the flowed tensor operator on the
lattice. Aμν, Bfμν, Cμν, and Dμν are contributions from
dimension-four operators, and S0μν is that from dimension-
six operators. We note that the a2=t term can appear to the
lowest order in a2 through mixing with dimension-four
operators. In the higher orders in a2, more singular terms
like 1=t2 can enter.
When we take the continuum limit before taking the

t → 0 limit, the Oða2Þ terms in Eq. (36), including all the
singular terms at t ¼ 0, are removed, and we can carry out
the t → 0 extrapolation safely. In numerical simulations,
however, it is sometimes favorable to take the continuum
extrapolation at a later stage of analyses. This exchange of
the order of limiting procedures is allowed if we can
remove the singular terms at t ¼ 0. We come back to this
issue in the actual t → 0 extrapolations in Sec. IV.
Similar to the case of the energy-momentum tensor, the

chiral condensate on finite lattices is expected to be

fψ̄fψfgð0Þðt; x; aÞ ¼ fψ̄fψfgð0Þðt; xÞ þ AðxÞ a
2

t

þ
X
f

BfðxÞðamfÞ2 þ CðxÞðaTÞ2

þDðxÞðaΛQCDÞ2 þ a2SðxÞ þOða4Þ
ð37Þ

to the lowest order of a2, where fψ̄fψfgð0Þðt; x; aÞ is the
flowed operator at finite lattice spacing before the VEV
subtraction. A, Bf, C, and D are contributions from

dimension-three operators, and S is that from dimension-
five operators. After taking the continuum limit, the scalar
density should be given by

fψ̄fψfgð0Þðt; xÞ ¼ fψ̄fψfgMSðxÞ þ
mf

t
NðxÞ

þ tS0ðxÞ þOðt2Þ; ð38Þ

where fψ̄fψfgMSðxÞ is the renormalized chiral condensate
in MS scheme. N is a contribution of dimensionless
operators, and S0 is that from dimension-five operators.
Thus, fψ̄fψfgð0Þðt; x; aÞ at finite lattice spacing and finite
quark mass has bothmf=t and a2=t singularities around the
origin.
When we take the chiral and continuum limits before

taking the t → 0 limit, these singular terms of the chiral
condensate at t ¼ 0 are removed, and we can do the t → 0
extrapolation safely. Conversely, when we can remove the
singular terms at t ¼ 0, we can exchange the order of the
three limiting procedures. The mf=t singularity can be
removed by the VEV subtraction discussed in Sec. II C.
Because the lattice spacing is the same in the VEV, we
expect that the a2=t singularity is also in part removed by
the VEV subtraction. We study this issue with the actual
data in Sec. V.

III. SIMULATION PARAMETERS
AND NUMERICAL PROCEDURES

Measurements of the energy-momentum tensor are
performed on Nf ¼ 2þ 1 gauge configurations generated
for Ref. [30]. In these calculations, we need to subtract the
zero-temperature values of the operators. The zero temper-
ature gauge configurations are also prepared which were
generated for Ref. [31]. These configurations are open to
the public on ILDG/JLDG [32].
The nonperturbatively OðaÞ-improved Wilson quark

action [33] and the renormalization-group improved
Iwasaki gauge action [34,35] are adopted. The bare
coupling constant is set to β ¼ 2.05, which corresponds
to a ¼ 0.0701ð29Þ fm (1=a≃ 2.79 GeV) with an input of
r0 ¼ 0.5 fm [36]. The nonperturbative clover coefficient is
cSW ¼ 1.628 at β ¼ 2.05, which is determined by the
Schrödinger functional method [37]. The hopping param-
eters are set to κu ¼ κd ≡ κud ¼ 0.1356 and κs ¼ 0.1351,
which correspond to heavy u and d quarks, mπ=mρ ≃ 0.63,
and almost physical s quark, mηss=mϕ ≃ 0.74, where ηss is
the strange pseudoscalar meson whose mass is phenom-
enologically estimated as mηss ≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m2

K −m2
π

p
. The bare

PCAC quark masses are

amud ¼ 0.02105ð17Þ; ams ¼ 0.03524ð26Þ; ð39Þ

where mud ¼ mu ¼ md is the degenerate mass of u and d
quarks [31].
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In this study, we adopt the fixed-scale approach [13,23]
in which the temperature T ¼ 1=ðaNtÞ is varied by
changing the temporal lattice size Nt with a fixed lattice
spacing a. This enables us to use one common zero-
temperature simulation to subtract zero-temperature con-
tributions at all temperatures. The equation of state using
the T-integration method [13] was obtained previously
using the same set of configurations [30].
The values of temperature at each Nt are given in Table I.

In the table, T=Tpc assuming the pseudocritical temperature
to be Tpc ¼ 190 MeV [30] is also listed. The spatial box
size is 323 for T > 0 and 283 for T ¼ 0. The values of t1=2
defined by Eq. (34) are also given in the Table.
The gauge observables (9) and (10) are measured every

five trajectories at T > 0 and every ten trajectories at
T ¼ 0. The fermionic observables (11), (12), and (13)
are measured every 50 trajectories at T > 0 and every 100
trajectories at T ¼ 0. Number of configurations used for
gauge and fermion measurements are summarized in
Table I.
Our numerical procedures to compute the fermionic

observables (11), (12), and (13) at t > 0 are given in
Appendix A. To evaluate fermionic observables, we use the
noisy estimator method. The number of noise vectors is 20
for each color. To reduce correlation among data points at
different values of t, we generate independent noise vectors
at each t. The statistical errors are estimated by the standard
jackknife analysis. After a study of the bin size dependence,
we choose the bin size of 100 trajectories for the energy-
momentum tensor and 300 trajectories for the chiral
condensate and susceptibility.
To compute observables at t > 0, we need flowed gauge

and quark fields. Our numerical algorithm for gradient flow
of gauge and quark fields is summarized in Appendix B.
We adopt the third order Runge-Kutta method [2,4] with
the step size of ϵ ¼ 0.02 to solve the differential equation
for both the gauge and quark fields.

For the flowed operators ~Oiμνðt; xÞ in Eqs. (9)–(13), we
adopt the lattice symmetric covariant differential. For the
quadratic terms of the field strength tensor GμνðxÞ in
Eqs. (9) and (10), there are several alternative choices of
lattice operators. In this study, we combine clover operator
with four plaquette Wilson loops and that with eight 1 × 2
rectangle Wilson loops such that the tree-level improved
field strength squared is obtained [38].

IV. RESULTS FOR THE
ENERGY-MOMENTUM TENSOR

The pressure and the energy density are given by an
averaged spatial component of the energy-momentum tensor
and the temporal component of the energy-momentum tensor,

p=T4 ¼
X
i

hTiii=ð3T4Þ; ϵ=T4 ¼ −hT00i=T4: ð40Þ

In Figs. 1 and 2, we show the results of the entropy density

ϵþ p
T4

¼ −
4

3T4

	
T00 −

1

4
Tμμ



ð41Þ

and the trace anomaly

ϵ − 3p
T4

¼ −
1

T4
hTμμi ð42Þ

as functions of t=a2. Seven subplots in each figure are
for the results at T ≃ 174, 199, 232, 279, 348, 464, and
697 MeV (Nt ¼ 16, 14, 12, 10, 8, 6, and 4, respectively)
from the top left to the bottom. The errors shown are
statistical only.

A. Extrapolation to t → 0

We extract physical results for the energy-momentum
tensor by extrapolating the data to t → 0. As discussed in
Sec. II D, on finite lattices, we have to take care of
unphysical singularities like a2=t around the origin. On
the other hand, our data shown in the figures indicates that,
except for the case of the highest temperature T ≃
697 MeV (Nt ¼ 4), we do have ranges of t=a2 in which
the data show well linear behavior. This suggests that the
singular terms like a2=t are numerically negligible when
t=a2 is not so small.
We first identify linear windows from the data shown in

Figs. 1 and 2 as ranges in t=a2 in which the data are well
linear under the condition that t=a2 < t1=2. The windows
are selected such that the linear fit discussed in the
following leads to χ2=Ndof ≤ Oð1Þ. We also require that
the window is common to all components of the energy-
momentum tensor on each lattice. The results for the linear
window are shown by a pair of dashed vertical lines in
Figs. 1 and 2, except for the case of T ≃ 697 MeV

TABLE I. Parameters for the numerical simulation: Temper-
ature in MeV, T=Tpc assuming Tpc ¼ 190 MeV, the temporal
lattice size Nt, t1=2 defined by Eq. (34), and the number of
configurations used in gauge and fermion measurements. The
bare gauge coupling parameter and the hopping parameters are
set to β ¼ 2.05, κud ¼ 0.1356, and κs ¼ 0.1351. Spatial box size
is 323 for T > 0 and 283 for T ¼ 0.

T[MeV] T=Tpc Nt t1=2
Gauge

configurations
Fermion

configurations

0 0 56 24.5 650 65
174 0.92 16 8 1440 144
199 1.05 14 6.125 1270 127
232 1.22 12 4.5 1290 129
279 1.47 10 3.125 780 78
348 1.83 8 2 510 51
464 2.44 6 1.125 500 50
697 3.67 4 0.5 700 70
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(Nt ¼ 4) for which no clear linear window is visible
below t1=2 ¼ 0.5. We note that the case of T ≃
464 MeV (Nt ¼ 6) may be marginal to clearly identify a
wide linear window because t1=2 ¼ 1.125 for this lattice is
also small.

At T ≲ 464 MeV, we perform a linear extrapolation

hTμνðt; aÞi ¼ hTμνi þ tSμν þOða2; t2Þ ð43Þ
adopting the linear windows of Figs. 1 and 2, to obtain the
physical results hTμνi for the energy-momentum tensor.
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FIG. 1. Entropy density ðϵþ pÞ=T4 as a function of the flow time. From the top left to the bottom: T ≃ 174, 199, 232, 279, 348, 464,
697 MeV (Nt ¼ 16, 14, 12, 10, 8, 6, and 4, respectively). The pair of dashed vertical lines indicates the window used for the fit at each T.
Black solid lines are the fit results with the linear fit Ansatz (43), and the big open circles at t ¼ 0 are the entropy density extracted from
the fits. Blue and green dashed curves together with blue upward triangles and green diamonds at t ∼ 0 are the fit results with the
nonlinear Ansatz (44) and linear þ log Ansatz (45), respectively. Errors are statistical only.
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Our linear fits and the results of extrapolation are shown
by black solid lines and big open circles at t ¼ 0 in Figs. 1
and 2.6 We note that the data at T ≲ 232 MeV are well

flat within the window. In fact, a constant fit leads to
results consistent with the linear fit within statistical
errors.
To confirm the validity of the linear window and to

estimate a systematic error due to the fit Ansatz, we also
make additional fits adopting two different fit Ansätze
using the data within the same window. One is a nonlinear
fit inspired from Eq. (36),

hTμνðt; aÞi ¼ hTμνi þ Aμν
a2

t
þ tSμν þ t2Rμν: ð44Þ
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FIG. 2. The same as Fig. 1 but for the trace anomaly ðϵ − 3pÞ=T4.

6As in the previous study in quenched QCD [19], we disregard
correlation among different flow times in this study. Our intro-
duction of independent noise vectors at each t should reduce the
correlation in fermionic contributions. The jagged behavior visible,
e.g., in Fig. 2 may be suggesting that the correlation is small in
several observables. However, we find that our statistics is not high
enough to discuss the correlation conclusively. We leave the study
of the correlation for the next step.

EXPLORING Nf ¼ 2þ 1 QCD THERMODYNAMICS FROM … PHYSICAL REVIEW D 96, 014509 (2017)

014509-9



Another is a linear þ log fit including an additional
1= log2ð ffiffiffiffi

8t
p

=aÞ term,

hTμνðt; aÞi ¼ hTμνi þ tSμν þ
Qμν

log2ð ffiffiffiffi
8t

p
=aÞ : ð45Þ

The latter is inspired from possible higher order corrections
to the matching coefficients ciðtÞ in Eqs. (17)–(21), which
are computed in one-loop perturbation theory [9] in our
study. As discussed in Ref. [39] [Eq. (7.14)], for a small but
finite flow time t, those perturbative one-loop coefficients
may contain error of the order ḡð1= ffiffiffiffi

8t
p Þ4=ð4πÞ4 ∼

1= log2ðtÞ associated with neglected higher-order loop
corrections. Though higher-order perturbative corrections
should be subdominant at small t because of the asymptotic
freedom, the formula (35) thus may in principle be
modified by Oð1= log2ðtÞÞ terms. A fit including all the
correction terms in (44) and (45) turned out to be unstable
due to too many fitting parameters.
The results of the nonlinear and liner þ log fits for the

entropy density and the trace anomaly at T ≲ 464 MeV
(Nt ≥ 6) are shown by blue and green dashed curves in
Figs. 1 and 2, respectively. In these figures, physical results
hTμνi extracted from these fits are shown by blue upward
triangles and green diamonds at t ∼ 0. We find that all the
three fits are almost indistinguishable in the windows and
describe the data within the windows well. We also note
that the nonlinear fit frequently fails to reproduce the
singular behavior at small t=a2 out of the linear window.
On the other hand, the linear þ log fit stays close to the
linear fit down to small t in most cases, but can slightly
deviate when the data are noisy, as seen in Fig. 2.
At T ≲ 464 MeV (Nt ≥ 6), we adopt the results of the

linear fit for our central values and take the difference
between the linear fit and the nonlinear or linear þ log fits
as an estimate of the systematic error due to the choice of the
fit Ansatz.We find that the differences are atmost a few times
of the statistical error at T ≲ 232 MeV (Nt ≥ 12), while a
larger difference can appear at higher temperatures.7

Finally, we estimate the systematic error from the one-
loop perturbative coefficients themselves. For the pertur-
bative coefficients, Eqs. (17)–(21), we need to know the
running gauge coupling ḡð1= ffiffiffiffi

8t
p Þ and the running quark

masses m̄fð1=
ffiffiffiffi
8t

p Þ. Definitions of these running coupling
and running masses are given in Appendix C. Inputs for
ḡðμÞ and m̄fðμÞ are the QCD scale ΛQCD and the bare quark
masses. For the QCD scale, we refer the value quoted in the
Particle Data Group [40]

Λð3Þ
MS

¼ 332ð19Þ MeV: ð46Þ

Since 1=
ffiffiffiffi
8t

p
plays a role of the renormalization scale, the

QCD scale appears with the form a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8ðt=a2Þ

p
ΛQCD in the

perturbative coefficients, where t=a2 is a dimensionless
flow time used on the lattice. In this combination of the
QCD scale, we should take into account the statistical error
in the lattice spacing. As the bare quark masses, we use the
PCAC masses of Eq. (39) obtained on the same zero-
temperature configuration as ours [31]. In the running
quark masses, the bare quark masses appear in the
combination of renormalization group invariant masses,
for which we should take into account the error in the
renormalization factor too. The values as well as the errors
for ḡðμÞ and m̄fðμÞ are estimated in Appendix C.
Our results of the equation of state in the t → 0 limit are

summarized in Table II and III. In these table, we give the
values of statistical error as well as the systematic errors
due to the perturbative coefficients and the fit Ansatz,
separately.
At T ≃ 697 MeV (Nt ¼ 4), because a clear linear

window is not available, we attempt a fit of the form
(44) adopting a fit range t=a2 ¼ ½0.1; 0.5 ¼ t1=2� shown by
dashed vertical lines in the bottom plots of Figs. 1 and 2,
but with dropping the t2 term to keep a nonvanishing DOF.
The results of hTμνi are shown by blue upward triangles at
t ∼ 0 in these plots. As seen from the resulting fits shown
by dashed curves, although the nonlinear fit Ansatz
describes the data at small t well, the lattice artifact term
is completely dominating over the linear term which
contain physical information. We thus consider that the
results at T ≃ 697 MeV (Nt ¼ 4) are not reliable and
disregard them in the followings.

B. Additional tests

To confirm the validity of the results, we made a couple
of additional tests on our numerical data. The results of the
tests are summarized in Appendix D.

TABLE II. Equation of state (pressure and energy density)
evaluated with the gradient flow method in the t → 0 limit. The
first parenthesis is for the statistical error estimated by a jackknife
method. The second and the third are for systematic errors due to

Λð3Þ
MS

and the bare quark masses in the perturbative coefficients.
The last parenthesis is for the systematic error due to the fit
Ansatz estimated using Eqs. (44) and (45).

T[MeV] p=T4 ϵ=T4

174 0.13ð60Þð þ4
−1 Þð1Þð þ0

−0.15Þ 2.75ð68Þð þ8
−14Þð1Þð þ30

−89 Þ
199 −0.42ð41Þð þ5

−0 Þð4Þð þ66
−19 Þ 8.54ð57Þð þ15

−24 Þð4Þð þ21
−70 Þ

232 1.12ð30Þð þ5
−4 Þð5Þð þ0

−23Þ 13.07ð38Þð þ11
−14 Þð5Þð þ54

−36 Þ
279 2.46ð19Þð þ6

−5 Þð3Þð þ0
−52Þ 14.74ð25Þð þ14

−17 Þð3Þð þ0
−1.68Þ

348 5.00ð10Þð þ4
−3 Þð2Þð þ31

−2.63Þ 16.15ð13Þð þ19
−23 Þð2Þð þ1.36

−31 Þ
464 7.596ð65Þð þ11

−4 Þð9Þð þ1
−33Þ 19.92ð8Þð14Þð1Þð þ42

−77 Þ
7We should, however, notice that the lattice artifacts

BfμνðamfÞ2þCμνðaTÞ2þDμνðaΛQCDÞ2þa2S0μνðxÞ of Eq. (36)
still remain and can be settled only after taking the continuum limit.
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Off diagonal components of the energy-momentum
tensor correspond to the momentum and stress density,
which should vanish on our lattices without external
sources. As discussed in Appendix D 1, we confirm that
they are consistent with zero within 2σ in the window
adopted in the fits in Sec. IVA.
We also study the gauge and quark contributions in

Eq. (8) separately and find that both contributions are
equally important in the equation of state, while the
singular term a2=t comes dominantly from the quark
contributions. See Appendix D 2 for details.
Finally, we examine if the results depend on the choice of

lattice operators for the field strength squared in Eqs. (9)
and (10) in Appendix D 3. We confirm that the dependence
is small.

C. Equation of state

Our results for the equation of state with the gradient
flow method are plotted in Figs. 3, 4, 5, and 6 as functions
of temperature. For the pressure and the energy density, we
have repeated the same set of analyses from the results of
the energy-momentum tensor at t > 0. Errors of our data
(red open circles) include the statistical error and the
systematic errors from the perturbative coefficients and
fit Ansatz.
Also shown in these figures by open triangles are the

results obtained previously by the T-integration method
using the same set of configurations [30]. We find that our
result of the gradient flow method is well consistent with
the result of the conventional method at T ≲ 279 MeV. On
the other hand, the two results show a deviation at
T ≳ 348 MeV. This may be due to a lattice artifact of
OððaTÞ2Þ ¼ Oð1=N2

t Þ from the discretization of thermal
modes. Our data suggest that such an artifact is not
negligible for Nt ≲ 8.

It should be kept in mind that a definite comparison is
possible only after taking the continuum limit.
Nevertheless, besides the results at Nt ≲ 8 which suffer
from the small-Nt artifact, we obtain good agreement
with a conventional method at Nt ≳ 10 on our finite
lattices. This may be suggesting that our a≃ 0.07 fm with
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FIG. 3. Entropy density ðϵþ pÞ=T4 as a function of temper-
ature. Red circles are our result with the gradient flow method.
Errors include both statistical and systematic errors. Black
triangles are previous results obtained by the T-integration
method [30].
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FIG. 5. The same as Fig. 3 but for the pressure p=T4.
In the T-integration method, the pressure is set to be zero at
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FIG. 6. The same as Fig. 3 but for the energy density ϵ=T4.
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improved gauge and quark actions is already quite close to
the continuum limit.
Here, we emphasize that the values of the beta

functions—aðdβ=daÞ, aðdκud=daÞ, and aðdκs=daÞ for
the present case—are not required with the gradient flow
method. This will help much to evaluate the equation of
state with dynamical quarks in future.

V. RESULTS FOR THE CHIRAL CONDENSATE
AND DISCONNECTED SUSCEPTIBILITY

A. Chiral condensate

In Fig. 7, we show the VEV subtracted chiral condensate
at T > 0 as a function of the flow time. We note that the
singularity at small t is quite mild in the subtracted chiral
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FIG. 7. Chiral condensate hfψ̄fψfgiwith VEV subtraction as a function of the flow time. The vertical axis is in lattice unit. Red open
circles and black open triangles are for f ¼ u (or d) and s, respectively. From the top left to the bottom: T ≃ 174, 199, 232, 279, 348,
464, and 697 MeV (Nt ¼ 16, 14, 12, 10, 8, 6, and 4, respectively). The filled symbols at t ¼ 0 are the renormalized chiral condensate
given by taking the t → 0 limit with the linear fit. Orange and blue dashed curves with open symbols at t ∼ 0 are the results of the
nonlinear fit for u and s quark, respectively. Magenta and green dashed curves with open symbols at t ∼ 0 are the results of the
liner þ log fit for u and s quark, respectively. Pair of dashed vertical lines shows the window used for the fits. Errors are statistical only.
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condensate at least at low temperatures. This suggests that
the VEV subtraction not only removes the mf=t singularity
but also reduces the a2=t singularity.
We adopt the same strategy as that for the energy-

momentum tensor to extract renormalized chiral conden-
sate with the VEV subtraction. In Fig. 7, results of the linear
fits using windows shown by a pair of vertical dashed lines,
are given by red and black solid lines for T ≲ 464 MeV.
Here, the windows are chosen so that the linear fit gives
χ2=Ndof ≤ Oð1Þ. The filled red circles and black triangles
at t ¼ 0 are the results of their t → 0 extrapolations. We
also perform nonlinear fits similar to Eq. (44) and liner þ
log fits similar to Eq. (45), adopting the same window. The
results of nonlinear fits are shown by orange and blue
dashed curves, and corresponding renormalized chiral
condensates are shown by orange and blue open symbols
at t ∼ 0. The results of linear þ log fits are shown by
magenta and green dashed curves associated with open
symbols at t ∼ 0. At T ≃ 464 MeV, the nonlinear and

linear þ log fits are not applicable because we do not have
enough number of data points in the window (Ndof ≤ 1).
From Fig. 7, we find that the results of the nonlinear and

the linear þ log fits at T ≲ 348 MeV are consistent with
those of the linear fits within 2σ of the statistical error. We
adopt the results of the linear fit for our central values and
take the deviation due to the nonlinear or linear þ log fits as
an estimate of the systematic error due to the fit Ansatz.
Final results for the renormalized chiral condensate with the
VEV subtraction, hfψ̄fψfgðxÞiMSðμ ¼ 2 GeVÞ with f ¼ u
(or d) and s, evaluated in the t → 0 limit, are summarized in
Tables IVand V. In Fig. 8, we show the renormalized chiral
condensates with the VEV subtraction in physical units as a
function of the temperature. Following a convention, the
sign is flipped in the figure. We find that the condensates
start to decrease just below T ∼ 199 MeV. This is con-
sistent with a previous estimation of the pseudocritical
temperature Tpc ∼ 190 MeV [30]. We also find that the
valence quark mass dependence is small in Fig. 8. This
suggests that the difference between these two condensates
are mostly subtracted out by that at zero temperature, i.e.,
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FIG. 8. Renormalized chiral condensate with the VEV sub-
traction, −hfψ̄fψfgiMSðμ ¼ 2 GeVÞ, in MS scheme as a function
of temperature. Following a convention, the sign is flipped in the
figure. The vertical axis is in unit of GeV3. Red circles are u (or d)
quark condensate and black triangles are that for s quark. Errors
include the statistical error and the systematic error from the
perturbative coefficients and fit Ansatz, except for the data at
T ≃ 464 MeV for which the systematic error due to fit Ansatz
was not estimated.

TABLE III. The same as Table II but for the entropy density and
trace anomaly evaluated with the gradient flow method in the
t → 0 limit.

T[MeV] ðϵþ pÞ=T4 ðϵ − 3pÞ=T4

174 2.90ð43Þð þ7
−11Þð0Þð þ76

−0 Þ 2.4ð2.4Þð þ1
−2 Þð0Þð þ7

−0 Þ
199 8.09ð41Þð þ15

−20 Þð0Þð þ5
−17Þ 9.8ð1.7Þð þ1

−4 Þð1Þð þ8
−2.8Þ

232 14.25ð28Þð þ16
−17 Þð0Þð þ91

−67 Þ 9.7ð1.2Þð0Þð2Þð þ3
−0 Þ

279 17.29ð23Þð þ19
−21 Þð0Þð þ0

−1.80Þ 7.38ð73Þð þ0
−3 Þð14Þð þ1.31

−0 Þ
348 21.25ð12Þð þ21

−24 Þð0Þð þ0
−63Þ 1.00ð37Þð þ8

−14Þð7Þð þ4.33
−1.08 Þ

464 27.53ð8Þð þ15
−14 Þð0Þð þ0

−85Þ −2.87ð23Þð þ10
−13 Þð4Þð þ0

−1.16Þ

TABLE IV. Renormalized chiral condensate with the VEV
subtraction and disconnected chiral susceptibility for u (or,
equivalently, d) quark, evaluated in the t → 0 limit. The values
are in lattice unit. The susceptibility is given in a unit of 10−8. The
first parenthesis is for the statistical error. The second is for

systematic error due to aΛð3Þ
MS

in the perturbative coefficients. The
last parenthesis is that due to the fit Ansatz estimated using
nonlinear and linear þ log fits. At T ≃ 464 MeV, the systematic
error due to fit Ansatz was not estimated. See text.

T [MeV] a3hfψ̄uψugðxÞiMS a6χdiscūu × 108

0 0 0.46ð15Þð þ4
−10Þð þ2

−0 Þ
174 0.000094ð28Þð þ28

−5 Þð þ0
−12Þ 2.19ð80Þð 415Þð þ0

−23Þ
199 0.000500ð53Þð þ9

−19Þð þ0
−47Þ 5.0ð1.7Þð þ1

−4 Þð þ0
−5 Þ

232 0.000967ð40Þð þ26
−51 Þð þ0

−34Þ 1.35ð30Þð þ7
−19Þð þ1

−0 Þ
279 0.001413ð42Þð þ29

−58 Þð þ0
−62Þ 1.04ð32Þð þ0

−3 Þð þ2
−0 Þ

348 0.001744ð44Þð þ46
−90 Þð þ0

−55Þ 1.07ð24Þð þ4
−5 Þð þ0

−10Þ
464 0.002800ð44Þð þ9

−31Þð−Þ 1.27ð13Þð7Þð−Þ

TABLE V. The same as Table IV but for s quark.

T [MeV] a3hfψ̄ sψsgðxÞiMS a6χdiscs̄s × 108

0 0 0.320ð88Þð þ20
−51 Þð þ17

−0 Þ
174 0.000066ð21Þð þ2

−4 Þð þ38
−9 Þ 1.41ð43Þð þ0

−6 Þð þ0
−16Þ

199 0.000396ð41Þð þ7
−15Þð þ0

−38Þ 3.3ð1.0Þð þ0
−2 Þð þ0

−4 Þ
232 0.000823ð31Þð þ23

−44 Þð þ0
−28Þ 1.04ð19Þð þ5

−14Þð þ1
−0 Þ

279 0.001325ð35Þð þ29
−57 Þð þ0

−52Þ 0.90ð25Þð þ0
−4 Þð þ4

−0 Þ
348 0.001794ð38Þð þ52

−99 Þð þ0
−60Þ 1.07ð26Þð þ4

−5 Þð þ0
−11Þ

464 0.003170ð38Þð þ14
−41 Þð−Þ 1.30ð15Þð7Þð−Þ
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the mass dependent part of the chiral condensate is almost
temperature independent.
At T ≃ 697 MeV (Nt ¼ 4), because no clear linear

window can be identified below t1=2 ¼ 0.5, we attempt a
nonlinear fit without the t2 term adopting the same fit range
t ¼ ½0.1; 0.5� as in Sec. IVA. The results are shown in the
last panel of Fig. 7. However, since the lattice artifact terms
are dominating in the fit range, we disregard the data at
T ≃ 697 MeV in the followings.

B. Disconnected chiral susceptibility

As a by-product of the chiral condensate calculation, we
study disconnected chiral susceptibility defined by

χdisc
f̄f

¼
	�

1

NΓ

X
x
fψ̄fψfgðxÞ

�
2



disconnected

−
�	
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FIG. 9. The same as Fig. 7 but for the disconnected chiral susceptibility χdisc
f̄f

ðμ ¼ 2 GeVÞ. From the top left to the bottom: T ≃ 0, 174,
199, 232, 279, 348, 464, and 697 MeV (Nt ¼ 54, 16, 14, 12, 10, 8, 6, and 4, respectively).
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where the connected quark loop contribution is dropped
from the scalar density two point function. Though this
quantity is not the physical susceptibility, it is easy to be
measured and may be used as a guide to detect the chiral
restoration transition. Because the VEV subtraction has no
effect on this quantity, we can compute it also at T ¼ 0.
In Fig. 9, we plot the disconnected chiral susceptibility as

a function of the flow time. We find good linear windows
below t1=2 at T ≲ 348 MeV (Nt ≥ 8) and a marginal
window at T ≃ 464 MeV (Nt ¼ 6), while at T ≃
697 MeV (Nt ¼ 4) no linear window can be identified
below t1=2 ¼ 0.5. We find that the linear and nonlinear fits
give completely consistent results for T ≲ 348 MeV, while
the linear þ log fit sometimes deviate but maximally by
about 1σ of the statistical error. At T ≃ 464 MeV, the
number of data points in the window is not enough to carry
out the nonlinear as well as the linear þ log fits. At
T ≃ 697 MeV, though we test the nonlinear fit adopting
the same fit range t ¼ ½0.1; 0.5� as in Secs. IVA and VA,
because the lattice artifact term is dominating in the fit as
shown in the last plot of Fig. 9, we do not take the result as
reliable and just disregard it.
Results of the renormalized disconnected chiral suscep-

tibility are summarized in the last columns of Tables IV
and V, and shown in Fig. 10 as a function of temperature.
Errors include the statistical error and the systematic errors
from the perturbative coefficients and the fit Ansatz. In
Fig. 10, we find a clear peak at T ≃ 199 MeV, which may
be indicating the pseudocritical point around this temper-
ature. This is consistent with a previous estimate of Tpc ∼
190 MeV for the chiral restoration crossover [30]. We also
note that, although the errors are large, the height of the
peak increases as we decrease the valence quark mass from

that of s to u (or d). Since the sea quark masses are not
varied, we do not attempt to extrapolate the results to the
chiral limit, but the tendency is consistent with our
expectation.

C. Chiral condensate without the VEV subtraction

Finally, we examine the effect of the VEV subtraction in
the chiral condensate. In Fig. 11, we show the unsubtracted
chiral condensate hfψ̄fψfgð0Þðt; x; aÞi averaged over lattice
points. Red open circles and black open triangles are for
f ¼ u (or d) and s, respectively. As discussed in Secs. II C
and II D, this quantity will have both mf=t and a2=t
singularities towards t → 0. We note that the singularity
of the subtracted chiral condensate shown in Fig. 7 at small
t is much milder than that of the unsubtracted chiral
condensate shown in Fig. 11, suggesting that the VEV
subtraction not only removes the mf=t singularity but also
reduces the a2=t singularity, as expected.
Adopting the same strategy as those for the energy-

momentum tensor and the subtracted chiral condensate, we
perform linear and nonlinear fits to the unsubtracted chiral
condensate, to extract the renormalized chiral condensate in
the t → 0 limit. The linear windows determined by a study
of χ2=Ndof of the linear fits are shown by the pair of vertical
dashed lines in Fig. 11. We note that the values of χ2=Ndof
are in general worse than those for the subtracted chiral
condensate, presumably due to the stronger singularities.
Results of the linear fits for the renormalized chiral
condensate are shown by filled red circles (u or d quark)
and black triangles (s quark) at t ¼ 0 in Fig. 11.8

Corresponding results of the nonlinear fits are shown by
green and blue open symbols at t ∼ 0 for T ≲ 348 MeV. At
T ≃ 464 MeV, the nonlinear fit is not applicable because
we do not have enough number of data points in the
window. At T ≃ 697 MeV (Nt ¼ 4), though we attempt a
nonlinear fit using the data in t ¼ ½0.1; 0.5�, because the
lattice artifact term is dominating in the fit, the results are
not reliable for physical discussions.
At T ≲ 348 MeV, the discrepancy between the two fit

Ansätze turned out to be 2%–5%. This suggests that the
singular terms in the unsubtracted chiral condensate are well
controlled within the linear windows. As in the previous
sections, we take the results of the linear fits as the central
values and take the difference between the linear and non-
linear fits as an estimate of the systematic error due to the fit
Ansatz. The results for the renormalized chiral condensate

without the VEV subtraction, hfψ̄ψgðxÞið0Þ
MS

ðμ ¼ 2 GeVÞ,
are shown by red circles (u or d quark) and black upward
triangles (s quark) in Fig. 12. At T ¼ 0, we obtain
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FIG. 10. Disconnected chiral susceptibility χdisc
f̄f

ðμ ¼ 2 GeVÞ
renormalized in MS scheme as a function of temperature. The
vertical axis is in unit of GeV6. Red circles are those of u (or d)
quark and black triangles are those for s quark. Errors include the
statistical error and the systematic errors from the perturbative
coefficients and fit Ansatz.

8χ2=Ndof of the linear fits are less than 5, except for those for
the strange quark condensate at T ¼ 0 and condensates at
T ¼ 464 MeV, for which χ2=Ndof exceed 10.
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a3hfψ̄uψugðxÞið0ÞMS

����
T¼0

¼−0.006841ð33Þðþ82
−0 Þðþ84

−170Þ;

ð48Þ

a3hfψ̄ sψ sgðxÞið0ÞMS

����
T¼0

¼ −0.008803ð24Þð þ94
−0 Þð þ159

−235Þ:

ð49Þ

The first parenthesis is for the statistical error, the second is

for the systematic error due to aΛð3Þ
MS

in the perturbative
coefficients, and the third is for the systematic error due to fit
Ansatz estimated using nonlinear and linear þ log fits.
To compare the results of the unsubtracted chiral con-

densate with those of the subtracted chiral condensate
discussed in Sec. VA, we add back the VEV’s given by
Eqs. (48) and (49) to the results of the subtracted chiral
condensate shown in Fig. 8. Results are shown by orange
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FIG. 11. The same as Fig. 7 but for the unsubtracted chiral condensate hfψ̄fψfgð0Þi. From the top left to the bottom: T ≃ 0, 174, 199,
232, 279, 348, 464, and 697 MeV (Nt ¼ 54, 16, 14, 12, 10, 8, 6, and 4, respectively).
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diamonds (u or d quark) and blue downward triangles
(s quark) in Fig. 12. We find that the results are completely
consistent with those of direct fits to the unsubtracted chiral
condensate.

VI. CONCLUSIONS AND DISCUSSIONS

In this paper, we apply the gradient flow method of
Refs. [9,16] to calculate the energy-momentum tensor in
(2þ 1)-flavor QCD. As the first test of energy-momentum
tensor evaluation in full QCD with the gradient flow
method, we choose a simulation point used in our previous
study of the equation of state with degenerate heavy u
and d quarks and almost physical s quark: mπ=mρ ≃ 0.63
and mηss=mϕ ≃ 0.74 at a single but fine lattice spacing
a≃ 0.07 fm.
The pressure, energy density, entropy density, and trace

anomaly are studied as a function of temperature. We found
that the results of the gradient flow method are consistent
with those of the T-integration method at low temperatures
T ≲ 280 MeV (Nt ≳ 10). However, deviation is found at
high temperatures T ≳ 350 MeV (Nt ≲ 8). This may be
due to a lattice artifact of OððaTÞ2Þ ¼ Oð1=N2

t Þ from the
discretization of thermal modes, which becomes severe at
high temperature in the fixed-scale approach.
Applying a similar idea using the gradient flow [10], we

also calculate the renormalized chiral condensate in MS

scheme. Although the Wilson-type quarks violates the
chiral symmetry explicitly, the gradient flow method
enables us to directly evaluate the chiral condensate and
its susceptibility on the lattice, without suffering from
power divergences. We find that the chiral condensate starts
to decrease just below T ≃ 199 MeV. This seems to be
indicating the nearby pseudocritical temperature corre-
sponding to the chiral restoration crossover. Accordingly,
we find that the disconnected chiral susceptibility shows a
clear peak around T ≃ 199 MeV. These results are con-
sistent with a previous estimate of Tpc ∼ 190 MeV for the
chiral restoration crossover [30].
Our study was made at a single lattice spacing and with

heavy u and d quarks. A definite conclusion on physical
observables can be made only after taking the continuum
limit with physical quark masses. To carry out the con-
tinuum extrapolation, we are planning to repeat the study at
different values of a. Nevertheless, the good agreement of
the equation of state with the conventional method at Nt ≳
10 seems to be suggesting that, besides the Oð1=N2

t Þ errors
at Nt ≲ 8, our lattices are already close to the continuum
limit for the quantities we studied. We are thus planning to
start another study just at the physical quark mass point.
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APPENDIX A: NUMERICAL ALGORITHM
FOR FLOWED QUARK OBSERVABLES

As Eqs. (11)–(13) show, to compute the thermal expect-
ation value of the energy-momentum tensor, we need to
compute expectation values,

tfμνðtÞ≡ 1

NΓ

X
x

hχ̄fðt; xÞγμðDν − D⃖νÞχfðt; xÞi; ðA1Þ

sfðtÞ≡ 1

NΓ

X
x

hχ̄fðt; xÞχfðt; xÞi; ðA2Þ

where NΓ ¼ P
x is the number of lattice points, both at

finite and zero temperatures. Note that the covariant
derivatives in Eq. (A1) refer to the flowed gauge field
Bμðt; xÞ at the flow time t.
The basic contraction of flowed quark fields is given by

[see Eq. (6.8) of Ref. [4],

 0

 0.05

 0.1

 0.15

 0.2

 0  100  200  300  400  500  600

ch
ira

l c
on

de
ns

at
e

T (MeV)

u quark
s quark
u quark
s quark

FIG. 12. Renormalized chiral condensate in MS scheme,

−hfψ̄fψfgðxÞið0ÞMS
ðμ ¼ 2 GeVÞ, as a function of temperature.

Following a convention, the sign is flipped in the figure. The
vertical axis is in unit of GeV3. Red circles and black upward
triangles are u (or d) and s quark condensate extracted directly
from the unsubtracted chiral condensate shown in Fig. 11. Orange
diamonds and blue downward triangles are u and s quark
condensate obtained by adding the VEV of Eqs. (48), (49) to
the subtracted chiral condensate shown in Fig. 8. Orange and blue
symbols are slightly shifted in the horizontal direction for
clarity. Errors include the statistical error and the systematic
error from the perturbative coefficients and fit Ansatz, while, at
T ≃ 464 MeV, the systematic error due to fit Ansatz was not
estimated.
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χfðt; xÞχ̄f0 ðs; yÞ
¼ δff0

X
v;w

Kðt; x; 0; vÞ½Sfðv; wÞ − cflδv;w�

× Kðs; y; 0; wÞ†; ðA3Þ

where Sfðx; yÞ is the quark propagator with the bare
mass mf0,

ðD
↔
þmf0ÞSfðx; yÞ ¼ δx;y; ðA4Þ

and Kðt; x; s; yÞ is the fundamental solution to the flow
equation, defined by

ð∂t − ΔÞKðt; x; s; yÞ ¼ 0; Kðt; x; t; yÞ ¼ δx;y; ðA5Þ

and cfl is an improvement coefficient associated with the
flowed quark field [4]. In Eq. (A3) and in what follows, the
dagger (†) implies the hermitian conjugation with respect to
the gauge and spinor indices only.
Carrying out the above contraction in Eqs. (A1) and

(A2), we have

tfμνðtÞ ¼ −
1

NΓ

X
x;y;v;w

�	X
α;i

½γμDx
νKðt; x; 0; vÞSfðv; wÞKðt; y; 0; wÞ†�αi;αiδy;x




−
	
δx;y

X
α;i

½Kðt; y; 0; vÞSfðv; wÞKðt; x; 0; wÞ†D⃖x
νγμ�αi;αi


�
; ðA6Þ

sfðtÞ ¼ −
1

NΓ

X
x;y;v;w

	X
α;i

fKðt; x; 0; vÞ½Sfðv; wÞ − cflδv;w�Kðt; y; 0; wÞ†gαi;αiδy;x


; ðA7Þ

where α denotes the spinor index which runs over 1, 2, 3, and 4, and i denotes the color index running over 1, 2, and 3. In
writing down Eq. (A6), we have used the fact that the term in Eq. (A3) with the improvement coefficient cfl does not
contribute, because the trace of a single gamma matrix vanishes. Note that K and Dν have no spinor indices.
We evaluate the above trace over space-time points stochastically (i.e., by the noise estimator). That is, we introduce a

randomly generated complex scalar field ηðxÞ (noise field) which fulfills

hηðxÞiη ¼ 0; hηðxÞηðyÞ�iη ¼ δx;y; ðA8Þ

where expectation values refer to the average over ηðxÞ. Then the above traces can be expressed as

tfμνðtÞ ¼ −
1

NΓ

�		X
α;i

�X
v;w

ξðt; 0; vÞ†Sfðv; wÞψμνðt; 0; wÞ
�
αi;αi



η




−
		X

α;i

�X
v;w

ψμνðt; 0; vÞ†Sfðv; wÞξðt; 0; wÞ�
αi;αi



η


�
; ðA9Þ

sfðtÞ ¼ −
1

NΓ

		X
α;i

�X
v;w

ξðt; 0; vÞ†½Sfðv; wÞ − cflδv;w�ξðt; 0; wÞ
�

αi;αi



η



: ðA10Þ

Here, we have defined the combinations,

ξðt; s; wÞ≡X
x

Kðt; x; s; wÞ†ηðxÞ; ðA11Þ

ψμνðt; s; wÞ≡ γμ
X
x

Kðt; x; s; wÞ†DνηðxÞ: ðA12Þ

Finally, by noting

Sfðv; wÞ ¼ γ5Sfðw; vÞ†γ5; ðA13Þ
we have
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tfμνðtÞ ¼ 2

NΓ
Re

		X
α;i

�X
v
ψμνðt; 0; vÞ†

X
w
Sfðv; wÞξðt; 0; wÞ

�
αi;αi



η



; ðA14Þ

sfðtÞ ¼ −
1

NΓ

		X
α;i

�X
v
ξðt; 0; vÞ†

X
w
Sfðv; wÞξðt; 0; wÞ

�
αi;αi



η




þ cfl
1

NΓ

		X
α;i

�X
v
ξðt; 0; vÞ†ξðt; 0; vÞ

�
αi;αi



η



: ðA15Þ

So the procedure to compute the expectation values (A1)
and (A2) consists of following steps:
(1) Take a gauge configuration.
(2) Generate a random single component complex field

ηðxÞ which satisfies Eq. (A8).
(3) Multiply ηðxÞ by a unit vector whose nonzero

spinor-color component is ðα; iÞ.
(4) Compute ξðt; 0; wÞ (A11) and ψμνðt; 0; wÞ (A12).

For this, we need to solve the following “adjoint
flow equations”:

ð∂s þ ΔÞξðt; s; wÞ ¼ 0;

ξðt; t; wÞ ¼ ηðwÞ; ðA16Þ

ð∂s þ ΔÞψμνðt; s; wÞ ¼ 0;

ψμνðt; t; wÞ ¼ γμDνηðwÞ; ðA17Þ

from s ¼ t to s ¼ 0 backward in the flow time.9

This is the hardest part of the computation,
and how to carry out this integration is described
in Appendix B 2.

(5) Using ξðt; 0; wÞ obtained above as the initial vector,
compute a new vector,

X
w

Sfðv; wÞξðt; 0; wÞ; ðA18Þ

by one of the standard methods. In the propagator
defined by Eq. (A4), the gauge field is the gauge
field without any flow (i.e., original link variables).

(6) Compute the following inner products:

2

NΓ
Re

X
v

ψμνðt; 0; vÞ†
X
w

Sfðv; wÞξðt; 0; wÞ; ðA19Þ

−
1

NΓ

X
v

ξðt; 0; vÞ†
X
w

Sfðv; wÞξðt; 0; wÞ; ðA20Þ

1

NΓ

X
v

ξðt; 0; vÞ†ξðt; 0; vÞ: ðA21Þ

(7) Change ðα; iÞ and go back to the step (3) and repeat
the above procedures for 4 × 3 times.

(8) Go back to the step (2) and repeat the above
procedures for enough numbers of random fields.

(9) Take a different gauge configuration and repeat the
above procedures for obtaining the Monte Carlo
average.

APPENDIX B: NUMERICAL ALGORITHM
FOR GRADIENT FLOW

1. Runge-Kutta integration for the gauge fields

The Wilson flow of the lattice gauge field Uðx; μÞ is
defined by

ð∂tVðt; x; μÞÞVðt; x; μÞ−1 ¼ −g20∂x;μSwðVÞ;
Vðt ¼ 0; x; μÞ ¼ Uðx; μÞ; ðB1Þ

where Sw is the Wilson plaquette action and

∂a
x;μfðUÞ ¼ d

ds
fðesXUÞ

����
s¼0

;

Xðy; νÞ ¼
�
Ta if ðy; νÞ ¼ ðx; μÞ;
0 otherwise;

ðB2Þ

and

∂x;μfðUÞ ¼ Ta∂a
x;μfðUÞ: ðB3Þ

It is convenient to write the flow equation (B1) in the
following abstract form:

∂tVt ¼ ZðVtÞVt: ðB4Þ

Then the third order Runge-Kutta integration which con-
structs Vtþϵ from Vt proceeds as follows [2]:

9Since Δ is the unit matrix in spinor space, we can avoid the
reputation of this integration over spinor indices.
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W0 ¼ Vt;

W1 ¼ exp

�
1

4
Z0

�
W0;

W2 ¼ exp

�
8

9
Z1 −

17

36
Z0

�
W1;

W3 ¼ exp

�
3

4
Z2 −

8

9
Z1 þ

17

36
Z0

�
W2; ðB5Þ

where Zi are given from the combination defined in
Eq (B4) by

Zi ¼ ϵZðWiÞ; i ¼ 0; 1; 2; ðB6Þ

and

Vtþϵ ¼ W3: ðB7Þ

With this integrator, the error in Vtþϵ turns out to be Oðϵ4Þ.

2. Adjoint Runge-Kutta integration for the quark field

To compute the expectation value of composite operators
containing flowed quark fields, we need to solve the adjoint
flow equations (A16) and (A17). Since the “initial con-
ditions” in these equations are given at the target flow time
t, we have to solve the flow equations backward in the flow
time. The equation that we want to solve can be written
abstractly as

∂sξs ¼ −ΔðVsÞξs: ðB8Þ

Then the third order adjoint Runge-Kutta integrator that
constructs ξs from ξsþϵ is given by

λ3 ¼ ξsþϵ;

λ2 ¼
3

4
Δ2λ3;

λ1 ¼ λ3 þ
8

9
Δ1λ2;

λ0 ¼ λ1 þ λ2 þ
1

4
Δ0

�
λ1 −

8

9
λ2

�
; ðB9Þ

where

Δi ¼ ϵΔðWiÞ; i ¼ 0; 1; 2; ðB10Þ

and

ξs ¼ λ0: ðB11Þ

The error in ξs is again Oðϵ4Þ. For the derivation of this
procedure, see Appendix E. 1 of Ref. [4].

In Ref. [4], the author noted that the time direction to
which the Runge-Kutta integrator proceeds is quite impor-
tant: One should use the Runge-Kutta steps as indicated as
above but not the reversed direction, because the reversed
direction is exponentially unstable. Thus, to carry out the
adjoint Runge-Kutta steps (B9) from t to t − ϵ, we have to
compute Runge-Kutta steps for the gauge field from 0 to t.
Then, for the next adjoint Runge-Kutta step from t − ϵ to
t − 2ϵ, if we do not keep any intermediate flowed gauge-
field configuration, we have to evolve the gauge field anew
from 0 to t − ϵ. In this way, to integrate Eqs. (A16) and
(A17) backward in time from s ¼ t to s ¼ 0, we have to
compute the flowed gauge field from the zero flow time to
intermediate flow times repeatedly. This large computa-
tional burden for the adjoint Runge-Kutta calculations can
be reduced by storing intermediate flowed configurations,
at the cost of the memory space.

APPENDIX C: RUNNING COUPLING
AND RUNNING MASSES

To use the coefficients (17)–(21), we need to have the
running coupling ḡð1= ffiffiffiffi

8t
p Þ and the running masses

m̄fð1=
ffiffiffiffi
8t

p Þ.
The renormalization group invariant scale (the Lambda

parameter) is defined by

Λ
μ
¼ ½b0ḡðμÞ2�−b1=ð2b20Þ exp

�
−

1

2b0ḡðμÞ2
�

× exp

�
−
Z

ḡðμÞ

0

dg

�
1

βðgÞ þ
1

b0g3
−

b1
b20g

��
; ðC1Þ

where μ is the renormalization scale, while the running
mass and the renormalization group invariant mass M are
related by

m̄ðμÞ ¼ M½2b0ḡðμÞ2�d0=ð2b0Þ exp
�Z

ḡðμÞ

0

dg

�
τðgÞ
βðgÞ −

d0
b0g

��
:

ðC2Þ

The renormalization group functions, βðgÞ and τðgÞ, are
known to the four-loop order in the MS or MS scheme [42].
For the SUðNÞ gauge theory with Nf fundamental fer-
mions, setting

βðgÞ ¼ −g3
X∞
k¼0

bkg2k; τðgÞ ¼ −g2
X∞
k¼0

dkg2k; ðC3Þ

the first two coefficients are given by [43,44]

b0 ¼ ð4πÞ−2
�
11

3
N −

2

3
Nf

�
; ðC4Þ
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b1 ¼ ð4πÞ−4
�
34

3
N2 −

�
13

3
N − N−1

�
Nf

�
; ðC5Þ

and [45,46]

d0 ¼ ð4πÞ−2ðN − N−1Þ3; ðC6Þ

d1 ¼ ð4πÞ−4ðN − N−1Þ
�
203

12
N −

3

4
N−1 þ 5

3
Nf

�
: ðC7Þ

For higher orders (k ≥ 2), setting

bk ¼ ð4πÞ−2k−2
Xk
l¼0

bk;lNl
f; dk

¼ ð4πÞ−2k−2ðN − N−1Þ
Xk
l¼0

dk;lNl
f; ðC8Þ

we have [47–49]

b2;0 ¼
2857

54
N3; ðC9Þ

b2;1 ¼ −
1709

54
N2 þ 187

36
þ 1

4
N−2; ðC10Þ

b2;2 ¼
56

27
N −

11

18
N−1; ðC11Þ

b3;0 ¼
150473

486
N4 −

40

3
N2 þ 44

9
ζð3ÞN4 þ 352ζð3ÞN2;

ðC12Þ

b3;1 ¼ −
485513

1944
N3 þ 58583

1944
N −

2341

216
N−1 −

23

8
N−3

−
20

9
ζð3ÞN3 −

548

9
ζð3ÞN þ 44

9
ζð3ÞN−1; ðC13Þ

b3;2 ¼
8654

243
N2 −

2477

243
−
623

54
N−2 þ 28

3
ζð3ÞN2

−
64

9
ζð3Þ þ 244

9
ζð3ÞN−2; ðC14Þ

b3;3 ¼
130

243
N −

77

243
N−1; ðC15Þ

and [50–53]

d2;0 ¼
11413

108
N2 −

129

8
þ 129

8
N−2; ðC16Þ

d2;1 ¼ −
1177

54
N þ 23

2
N−1 − 12ζð3ÞN − 12ζð3ÞN−1;

ðC17Þ

d2;2 ¼ −
35

27
; ðC18Þ

d3;0¼
460151

576
N3−

66577

576
Nþ50047

192
N−1þ1261

64
N−3

þ1157

9
ζð3ÞN3þ104ζð3ÞN−47ζð3ÞN−1þ42ζð3ÞN−3

−220ζð5ÞN3−220ζð5ÞN; ðC19Þ

d3;1 ¼ −
23816

81
N2 þ 10475

108
þ 37

3
N−2

−
889

3
ζð3ÞN2 − 170ζð3Þ − 111ζð3ÞN−2

þ 66ζð4ÞN2 þ 66ζð4Þ
þ 160ζð5ÞN2 þ 100ζð5Þ − 60ζð5ÞN−2; ðC20Þ

d3;2 ¼
899

162
N −

38

27
N−1 þ 20ζð3ÞN þ 20ζð3ÞN−1

− 12ζð4ÞN − 12ζð4ÞN−1; ðC21Þ

d3;3 ¼ −
83

81
þ 16

9
ζð3Þ: ðC22Þ

For N ¼ 3 and Nf ¼ 3, we have

b0 ¼ ð4πÞ−29; ðC23Þ

b1 ¼ ð4πÞ−464; ðC24Þ

b2 ¼ ð4πÞ−6 3863
6

; ðC25Þ

b3 ¼ ð4πÞ−8
�
3560ζð3Þ þ 140599

18

�
; ðC26Þ

and

d0 ¼ ð4πÞ−28; ðC27Þ

d1 ¼ ð4πÞ−4 364
3

; ðC28Þ

d2 ¼ ð4πÞ−6
�
17770

9
− 320ζð3Þ

�
; ðC29Þ

d3 ¼ ð4πÞ−8
�
−
297440

27
ζð3Þ − 16000

3
ζð5Þ

þ 48π4 þ 2977517

81

�
: ðC30Þ

Now, for our application, we adopt the MS scheme and
set μ ¼ 1=

ffiffiffiffi
8t

p
. Then, the left-hand side of Eq. (C1) reads
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aΛMS

ffiffiffiffiffiffiffiffiffiffiffi
8t=a2

q
: ðC31Þ

Then by solving Eq. (C1) with respect to ḡðμÞ numerically,
we have the running coupling ḡð1= ffiffiffiffi

8t
p Þ in the MS scheme.

Another option (although we do not use it in the present
paper) is an approximate formula quoted in the Particle
Data Group [40],

ḡðμÞ2¼ 1

b0t

�
1−

b1
b20

lnt
t
þb21ðln2t− lnt−1Þþb0b2

b40t
2

−
b31ðln3t− 5

2
ln2t−2 lntþ 1

2
Þþ3b0b1b2 lnt− 1

2
b20b3

b60t
3

�
;

t≡ ln

�
μ2

Λ2

�
: ðC32Þ
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FIG. 13. Off diagonal component Ti4=T4, which corresponds to the momentum density, as a function of the flow time t=a2. From the
top left to the bottom: T ≃ 174, 199, 232, 279, 348, 464, 697 MeV. Errors are statistical only.
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For ΛMS, we use the value [40],

Λð3Þ
MS

¼ 332ð19Þ MeV: ðC33Þ

Using [31]

aðβ ¼ 2.05Þ ¼ 0.0701ð29Þ fm; ðC34Þ

we have

aðβ ¼ 2.05ÞΛMS ¼ 0.0701ð29Þ × 332ð19Þ=197.3269718:
ðC35Þ

For the renormalization group invariant mass, we adopt
[31,54],

aðβ ¼ 2.05ÞM ¼ Zmðβ ¼ 2.05Þaðβ ¼ 2.05Þmu;d

¼ 1.862ð41Þ × ð0.02105� 0.00017Þ;
ðC36Þ

-1

-0.5

 0

 0.5

 1

 0  0.5  1  1.5  2

T
ij/

T
4

t/a2

T=174 MeV (Nt=16)

-1

-0.5

 0

 0.5

 1

 0  0.5  1  1.5  2

T
ij/

T
4

t/a2

T=199 MeV (Nt=14)

-1

-0.5

 0

 0.5

 1

 0  0.5  1  1.5  2

T
ij/

T
4

t/a2

T=232 MeV (Nt=12)

-1

-0.5

 0

 0.5

 1

 0  0.5  1  1.5  2

T
ij/

T
4

t/a2

T=279 MeV (Nt=10)

-1

-0.5

 0

 0.5

 1

 0  0.5  1  1.5  2

T
ij/

T
4

t/a2

T=348 MeV (Nt=8)

-1

-0.5

 0

 0.5

 1

 0  0.5  1  1.5  2

T
ij/

T
4

t/a2

T=464 MeV (Nt=6)

-1

-0.5

 0

 0.5

 1

 0  0.5  1  1.5  2

T
ij/

T
4

t/a2

T=697 MeV (Nt=4)

FIG. 14. The same as Fig. 13 but for the off diagonal component Ti≠j=T4 corresponding to the stress density.
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for u and d quarks, and

aðβ ¼ 2.05ÞM ¼ Zmðβ ¼ 2.05Þaðβ ¼ 2.05Þms

¼ 1.862ð41Þ × ð0.03524� 0.00026Þ;
ðC37Þ

for s quark. Then the running masses am̄udð1=
ffiffiffiffi
8t

p Þ and
am̄sð1=

ffiffiffiffi
8t

p Þ are given by Eq. (C2).

APPENDIX D: ADDITIONAL TESTS ON THE
ENERGY-MOMENTUM TENSOR

In this Appendix, we summarize our additional tests on
our results of the energy-momentum tensor discussed
in Sec. IV.
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FIG. 15. Breakup of contributions from gauge and quark operators in the entropy density ðϵþ pÞ=T4 as a function of the flow time
t=a2. From the top left: T ≃ 174, 199, 232, 279, 348, 464, 697 MeV (Nt ¼ 16, 14, 12, 10, 8, 6, and 4, respectively). Black squares are
contribution from gauge operators (9) and (10). Blue and green triangles are those from quark operators (11), (12), and (13) with ud and
s quarks. Red circles are the sum of all contributions. Pair of dashed vertical lines indicates the window used for the fit.
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1. Off diagonal components

In order to check validity of the formulation, we
calculate off diagonal components of the energy-
momentum tensor. In Fig. 13 and 14, we plot the off
diagonal components Ti4=T4 and Ti≠j=T4, which corre-
spond to the momentum and stress density, respectively, as
functions of t=a2.
We first confirm that the data are consistent with zero

within 2σ in the fit windows adopted in Sec. IVA. By
identifying windows for the linear fit for each data, we find

that the t → 0 extrapolation sometimes leads to a value
which is slightly off the 0. However, because the tendency
as a function of T is not uniform, we consider that this is
caused by an accidental fluctuation due to insufficient
statistics or an optimistic error estimation disregarding the
correlation in t=a2.

2. Gauge and quark contributions

One may interested in how the gauge and quark
operators contribute to the energy-momentum tensor
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FIG. 16. The same as Fig. 15 but for the trace anomaly ðϵ − 3pÞ=T4.
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quantitatively. In Figs. 15 and 16, the entropy density and
trace anomaly are plotted as a function of the flow time
t=a2, respectively. In these figures, we break up contribu-
tions from gauge operators (9) and (10) and those from
quark operators (11), (12), and (13) from ud and s quarks,
where the ud quark contribution is a mixture of those from
u and d quark.
In general, the magnitude of contributions from the gauge

and each quarks are almost the same for the energy and
entropy density. The trace anomaly is dominated by the
gauge contribution at T ≃ 200–350 MeV. On the other
hand, the quarks dominate at higher temperatures, which
however is suspected to be contaminated by a lattice artifact.
For the pressure, gauge and quark contributions are similar in
magnitude but opposite in sign at low temperatures. At high
temperatures, the quark contributions dominates but is also
suspected to be contaminated by a lattice artifact.
We note that the singular behavior a2=t in the equation of

state close to the origin comes dominantly from the quark
operators.

3. Lattice operators for the field strength

For the quadratic terms of the field strength tensorGμνðxÞ
in Eqs. (9) and (10), there are several alternative choices of

lattice operators. In this study, we construct clover operators
with four plaquette Wilson loops and with eight 1 × 2
rectangle Wilson loops. Combining these two clover
operators, we get the tree-level improved field strength
squared [38].
We also test a definition using the imaginary part of a

plaquette Wilson loop. In summary, we study the following
four alternatives [55]:

(i) the tree-level improved operator given by combining
two clover term contributions with four plaquette
and eight 1 × 2 rectangle Wilson loops,

(ii) the clover term with four plaquette Wilson loops,
(iii) the clover term with eight 1 × 2 rectangle Wilson

loops,
(iv) the imaginary part of the plaquette Wilson loop.

We adopt the first combination for the central value of our
estimations and estimate a part of theOða2Þ lattice artifacts in
the gauge operator by comparing the results of four
alternatives.
In Figs. 17 and 18, we plot the entropy density and

trace anomaly as functions of temperature by changing the
operator for the field strength squared. We confirm that
the results are consistent with each other, while that with the
clover term with eight 1 × 2 rectangles shows slight
deviation. This may be because the Oða2Þ lattice artifact is
severer for that definition. Disregarding the data at T ≃
697 MeV (Nt ¼ 4), we conclude that the systematic error
from the choice of the operators for the gauge contribution
is small.
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