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We show that a recent interesting idea to circumvent the difficulties with the continuation of parton
distribution functions to the Euclidean region, which consists in looking at equal time correlators between
proton states of infinite momentum, encounters some problems related to the power divergent mixing
pattern of deep inelastic scattering operators, when implemented within the lattice regularization.
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I. INTRODUCTION

It would be of the utmost phenomenological importance
to be able to compute the parton distribution function
directly from first principles in lattice QCD (LQCD) rather
than reconstructing it from its moments. In the most direct
naive approach this program is obstructed by the impos-
sibility of performing theWick rotation, which would allow
us to express the Minkowski amplitude in terms of
Euclidean quantities, suitable for LQCD simulations.
To bypass this difficulty it has been suggested in Ref. [1]

to work with the equal-time (E-T) product of two currents
taken between proton states in the limit of infinite three-
momentum. This quantity can be directly computed in
Euclidean region. Formally, i.e. ignoring renormalization
effects, this procedure yields the correct Bjorken limit for
the imaginary part of the matrix element of the product of
two currents taken close to the light cone (LC) between
proton states at rest.
We show in the present paper that the interesting

proposal of Ref. [1] is, however, still insufficient to
implement this program on the lattice because of the need
of power divergent subtractions required to renormalize
short-distance deep inelastic scattering (DIS) operators of
any dimension. These divergences are due to the existence
of trace operator mixings, formally irrelevant on the light
cone (in Minkowski space x2 ¼ 0), but affecting the
construction of renormalizable DIS operators at spacelike
separation (in Euclidean space x2 ¼ −z2 ≠ 0).
The plan of the paper is as follows. In Sec. II we illustrate

the problem with the continuation to the Euclidean region
of the amplitude whose imaginary part yields, in the
Bjorken limit, the DIS cross section. In Sec. III we review
the strategy proposed by Ji in his seminal paper [1] to
formally circumvent this difficulty, and we illustrate the

difficulties posed by the needs of renormalization in the
calculation of E-T correlators, which apparently prevent the
naive practical lattice implementation of the proposal. Short
conclusions can be found in Sec. IV. In Appendix A we
show that formally (i.e. ignoring renormalization effects)
the proposal of Ref. [1] indeed leads to the standard
expression of the DIS structure function. In Appendix B
we illustrate in a simple toy model the way in which
structure functions are deformed if power divergent mix-
ings are not properly taken care of.

II. THE PROBLEM WITH THE
EUCLIDEAN CONTINUATION

A. Generalities

In this section we want to illustrate the nature of the
problem one encounters with the Euclidean continuation of
the hadronic matrix elements of the product of two currents.
To reduce the argument to its essentials and avoid

irrelevant (for the purpose of this paper) kinematical
complications, we drop all flavor and Lorentz indices on
the hadronic currents. We shall then consider a hypothetical
theory of “scalar quarks” in which an appropriately
renormalized scalar current, jðxÞ¼ϕ2ðxÞ, carrying momen-
tum q (q2 < 0) hits a scalar “proton” at rest. The inclusive
cross section of this process is proportional to

Wðq2; q · pÞ≡
Z

d4xeiqxhpjjðxÞjð0Þjpi: ð1Þ

In DIS experiments one is interested in the behavior ofW in
the Bjorken limit

q2 → −∞ ð2Þ
with the ratio
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ω≡ −
q2

2p · q
ð3Þ

fixed. The spectral condition gives for ω the allowed kinematical region

0 ≤ ω ≤ 1: ð4Þ

In the Bjorken limit Eq. (1) is dominated by the light-cone singularities of the product of two currents giving rise to an
asymptotic expansion of the form

hpjjðxÞjð0Þjpi ≈
x2≈0

Δðx2Þ
X∞
n¼0

αnðμ2x2Þxμ1…xμnhpj ~OðnÞ
μ1…μnð0Þjpi; ð5Þ

where Δðx2Þ is the free scalar propagator [see Eq. (A2)], the αnðμ2x2Þ are logarithmically singular functions computable in

perturbation theory and ~OðnÞ
μ1…μnð0Þ is an appropriately renormalized version of the bare DIS operator

OðnÞ
μ1…μnð0Þ ¼ ϕð0Þ∂μ1…∂μnϕð0Þ ð6Þ

with subtraction point μ. It is important to keep in mind that the matrix elements of the ~OðnÞ’s give rise to several (UV finite)
form factors with tensor structures of the form

hpj ~OðnÞ
μ1…μnð0Þjpi ¼ AðnÞðμÞpμ1…pμn þ BðnÞðμÞpμ1…gμiμj…pμn

þ CðnÞðμÞpμ1…gμiμj…gμlμk…pμn þ…; ð7Þ

with possible multiple insertions of the metric tensor. Such
terms are subdominant in the light-cone expansion (5) with
respect to the first one, AðnÞ, and can be consequently
dropped. Therefore in the Bjorken limit we get (see
Appendix A)

Wðq2;q ·pÞ≈
Z

d4xeiqxΔðx2Þ
X∞
n¼0

αnðμ2x2ÞAðnÞðμÞðp · xÞn

≈
ωfðω;q2Þ

−q2
: ð8Þ

Equation (8) yields the structure function in terms of the
finite matrix elements, AðnÞðμÞ, defined in Eq. (7), in the
resummed form1

fðω; q2Þ ¼
X∞
n¼0

ð−1Þnβnðq2=μ2ÞAðnÞðμÞδðnÞðωÞ; ð9Þ

where δðnÞ is the nth derivative of the Dirac δ function [see
Eq. (B4)]. Equation (9) provides a formal definition of the
structure function fðω; q2Þ. The absolute normalization of

the αn coefficients in Eqs. (5) and (8) is fixed by matching
with the expansion of hpjjðxÞjð0Þjpi in perturbation
theory.
An important property, stemming from Eqs. (1) and (9),

is that the support of fðω; q2Þ in the variable ω is given by
Eq. (4). Equation (9), together with crossing symmetry, also
implies the well-known relation between the matrix ele-
ments of the local operators ~OðnÞ and the moments of the
structure functions2 expressed by the relations

Z
1

0

dωfðω; q2Þωn ≈ βnðq2=μ2ÞAðnÞðμÞ: ð10Þ

Equation (10) has been used several times in order to get
nonperturbative information on structure function moments
from LQCD.
It would clearly be of a great interest to find a

resummation of Eq. (9) allowing the direct computation
of the structure function, starting from the Euclidean lattice
regularized QCD.

B. Euclidean continuation

The most direct way of determining fðω; q2Þwould be to
compute it in lattice simulations starting from Eq. (1).1The precise relation between the coefficients αnðμ2x2Þ in x

space and βnðq2=μ2Þ in Fourier space is worked out in the
classical book of Ref. [2], and it is of no interest in this
discussion.

2The integral over ω should in fact be extended from −1 toþ1,
but crossing symmetry allows the restriction to the [0, 1] interval.
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Unfortunately, it is not possible to perform the Wick
rotation to continue the Minkowski amplitude into the
Euclidean region suitable for lattice QCD simulations. Let
us in fact consider the Minkowski amplitude

Tðq; pÞ≡
Z

d4xeiqxhpjTðjðxÞjð0ÞÞjpi; ð11Þ

the imaginary part of which is Wðq2; q · pÞ. If in Eq. (11)
we perform the “change of variables”

x0 ¼ −ix0E ð12Þ
r ¼ rE; ð13Þ

we can express the Minkowski amplitude in terms of
Euclidean quantities in the form

Tðq; pÞ ¼ −i
Z

d4xEeq
0x0EhpjTEðjðxEÞjð0ÞÞjpie−iq·r:

ð14Þ
Equation (14) is a meaningful formula under the condition
that it is well defined. Due to the presence of the growing
exponential eq

0x0E we must worry about the behavior of the
Euclidean T product as x0E → þ∞.
With the definition

Fðx0EÞ≡
Z

drhpjTEðjðxEÞjð0ÞÞjpie−iq·r; ð15Þ
we have

Fðx0EÞ ⟶
x0E→þ∞ð2πÞ3

X
n

jhnjjð0Þjpij2e−ðEn−mÞx0Eδðpn − qÞ;

ð16Þ
so that the condition under which the change of variables
[Eqs. (12)–(13)] is meaningful is

En −m > q0: ð17Þ
On the other hand, Tðq; pÞ in Eq. (11) develops an
imaginary part, Wðq; pÞ, only if an on-shell intermediate
state can be created, i.e. only if

En −m ¼ q0; ð18Þ
so, looking at Eq. (17), we conclude that while working in
the Euclidean region one cannot access Wðq; pÞ.

In view of this obstruction some new strategies have been
tried. A particularly promising one is the approach pro-
posed in Ref. [1] and developed in Refs. [3–10], which we
shall now discuss.

III. STRUCTURE FUNCTIONS FROM
EQUAL-TIME CORRELATORS

In our scalar model the proposal made in Ref. [1]
amounts to computing the (bare) structure function from
the formula

FðωÞ ¼ lim
Pz→þ∞

Pz

2π

Z þ∞

−∞
dzeizωPzhPzjϕð0ÞϕðzÞjPzi; ð19Þ

where jPzi denotes the state of a proton with momentum Pz
along the z axis and z is the space-time event ð0; 0; 0; zÞ.
Equation (19) expresses FðωÞ in terms of the matrix
element of a x0 ¼ 0 operator, which takes the same value
in Minkowski as well as in Euclidean time. Its computation
can be thus performed in principle in lattice QCD
simulations.
In order to see where the problems with renormalization

(and in particular with power divergent operator mixings)
lie, it is convenient to first rewrite Eq. (19), shifting the
Lorentz transformation from the proton state to the space-
time argument of the bilocal operator.
The Lorentz transformation which brings a proton with

momentum Pz at rest is

x00 ¼ x0 þ βzffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2

p ; z0 ¼ zþ βx0ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2

p ; ð20Þ

with

β ¼ Pzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ P2

z

p ; ð21Þ

so that the bilocal operator matrix element can be written as

hPzjϕð0ÞϕðzÞjPzi¼hmjϕð0Þϕ
�
Pz

m
z;0;0;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2þP2

z

p
m

z

�
jmi;

ð22Þ
with jmi a proton state at rest. Inserting Eq. (22) into
Eq. (19), one gets

FðωÞ ¼ lim
Pz→þ∞

Pz

2π

Z þ∞

−∞
dzeizωPzhmjϕð0Þϕ

�
Pz

m
z; 0; 0;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2
z þm2

p
m

z

�
jmi

¼ lim
Pz→þ∞

1

2π

Z þ∞

−∞
dyeiyωhmjϕð0Þϕ

�
y
m
; 0; 0;

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ m2

P2
z

q
m

y

�
jmi: ð23Þ

The problem of Eq. (23) with the mixing of trace operators is best exhibited by considering its moments. Let us, for
instance, compute the second moment3

3The ω integration has been formally extended over the whole real axis. The support of FðωÞ will take care of limiting it to the
allowed region (4).
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Z þ∞

−∞
ω2FðωÞdω ¼ lim

Pz→þ∞

Pz

2π

Z þ∞

−∞
dωdzω2eizωPzhmjϕð0Þϕ

�
Pz

m
z; 0; 0;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2
z þm2

p
m

z

�
jmi

¼ − lim
Pz→þ∞

1

P2
z

Z þ∞

−∞
dz

d2δðzÞ
dz2

hmjϕð0Þϕ
�
Pz

m
z; 0; 0;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2
z þm2

p
m

z

�
jmi

¼ − lim
Pz→þ∞

1

P2
z

d2

dz2
hmjϕð0Þϕ

�
Pz

m
z; 0; 0;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2
z þm2

p
m

z

�
jmijz¼0: ð24Þ

The connection between the second moment and the local operator of rank two in the E-T approach is therefore

Z þ∞

−∞
ω2FðωÞdω¼− lim

Pz→þ∞

1

P2
z

�
P2
z

m2
hmjOð2Þ

00 ð0ÞjmiþP2
zþm2

m2
hmjOð2Þ

33 ð0Þjmiþ2
Pz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2
zþm2

p
m2

hmjOð2Þ
03 ð0Þjmi

�
; ð25Þ

where formally

Oð2Þ
μν ¼ ϕð0Þ∂μ∂νϕð0Þ: ð26Þ

Ignoring divergences, everything works fine [11,12]. In
particular, we have (with gμν the Minkowski tensor)

hpjOð2Þ
μν jpi ¼ Að2Þpμpν þ Bð2Þgμν; ð27Þ

so that

Z þ∞

−∞
ω2FðωÞdω¼− lim

Pz→þ∞

�
Að2Þ−

Bð2Þ

P2
z

�
¼−Að2Þ: ð28Þ

We now discuss what happens (within perturbation theory)
in the case of a renormalizable field theory, like QCD. We
will compare the case of dimensional regularization with
the case of the lattice regularization.

A. Dimensional regularization

Adopting dimensional regularization, we will be insen-
sitive to power divergent mixings. We must therefore only
worry about the multiplicative renormalization of the bare
DIS operators.
In other words, in constructing the moment generat-

ing function it is enough to insert for every bare
DIS operator ϕð0Þ∂μ1…∂μnϕð0Þ the combination [see
Eqs. (6) and (9)]

βnðq2=μ2Þ ~OðnÞ
μ1…μn¼βnðq2=μ2ÞZnðϵ;μÞ½ϕð0Þ∂μ1…∂μnϕð0Þ�ϵ;

ð29Þ

where in dimensional regularization ϵ ¼ 4 −D. By
construction the matrix elements, AðnÞðμÞ, of the
operator Znðϵ; μÞ½ϕð0Þ∂μ1…∂μnϕð0Þ�ϵ are UV finite as
ϵ → 0. When multiplied by the Wilson coefficients

βnðq2=μ2Þ, they yield renormalization group invariant,
μ-independent quantities.
In order to proceed with the construction of the properly

renormalized, UV finite structure function, one introduces
the analytic continuation of the quantities

βnðq2=μ2Þ → Bðn; q2=μ2Þ; ð30Þ

AðnÞðμÞ → Aðn; μÞ ð31Þ

to complex values of n. In terms of the inverse Mellin
transforms

MBðω; q2=μ2Þ ¼
1

2π

Z
L
ðωÞ−n−1Bðn; q2=μ2Þdn; ð32Þ

MAðω; μÞ ¼
1

2π

Z
L
ðωÞ−n−1Aðn; μÞdn; ð33Þ

the required renormalized structure function is finally given
by the convolution formula [2]

~Fðω; q2Þ ¼
Z

1

ω

dω0

ω0 MBðω0; q2=μ2ÞMAðω=ω0; μÞ

¼ 1

2πi

Z
L
dnω−n−1Bðn; q2=μ2ÞAðn; μÞ; ð34Þ

where L is the line n0 þ iν in the complex n plane with n0
sufficiently large to ensure convergence of the integrals.
The moments of ~Fðω; q2Þ are the matrix elements of

the operators (29) that in the limit ϵ → 0 yield finite,
μ-independent quantities.
The second equality in Eq. (34) shows that the proper

way to carry out the summation over moments, formally
given by Eq. (9), is to perform the integral along the
line L in the complex n plane of the analytic continuation
of the AðnÞðμÞ amplitudes (which represent the hadron
matrix elements of the renormalized DIS operators)
times the Wilson coefficients βnðq2=μ2Þ (which inject
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the information about the anomalous dimensions of the
renormalized DIS operators). Clearly for the whole pro-
cedure to be meaningful, i.e. to yield an UV finite ~Fðω; q2Þ,
the UV finiteness of the (physically measurable4) moments
is necessary. In the next section we show that this cannot be
the case in the lattice regularization.

B. Lattice regularization

In the case of lattice regularized QCD the situation is not
so simple due to the appearance of two related problems.
The first is the need to perform power divergent subtrac-
tions to make the OðnÞ lattice operators finite. In fact, in
contrast with the usual LC approach, trace terms in the E-T
approach are not suppressed since x2 ¼ −z2 ≠ 0. The
second problem is that the support condition (4) is only
guaranteed for the leading contribution AðnÞ and will be
violated if trace terms are not appropriately subtracted.
Power divergences in the cutoff (Λ ¼ a−1) appear in the

moments of FðωÞ of Eq. (19) due to, as we said, mixing of
high dimension operators with lower dimensional ones
[14,15], preventing the Pz → ∞ limit to be taken.
In fact, referring again, as an example, to the second

moment associated to the local operator (26), we see that
the contribution from the mixing of a typical lower
dimensional “trace” operator, a−2ϕð0Þ2gμν, to Eq. (24) is

Z þ∞

−∞
ω2FðωÞdωjtrace operator ∝ −

1

a2P2
z

�
P2
z

m2
−
P2
z þm2

m2

�

¼ 1

a2P2
z
: ð35Þ

The correct procedure would be to send a → 0 first and
then Pz → ∞, as on the lattice the largest attainable
momentum is O(a−1). Thus, unless we perform a
nonperturbative subtraction of power divergent terms, the
Pz → ∞ limit cannot be taken.
As we recalled above, the existence of this difficulty is

also signalled by a problem with the support of Fðω; q2Þ.
In fact, the support condition Eq. (4) is guaranteed by
Eq. (5) for the leading light-cone singularity. On the
contrary, the trace terms are not related to the current-
hadron scattering and therefore will give contributions
for all values of ω. Their subtraction is essential for the
success of the Ji program.
Another way to expose these difficulties is to notice that,

although the matrix element of the bilocal operator in
Eq. (19) is “well-behaved” in z (it is only logarithmically
divergent for small z and exponentially damped for large z),
this circumstance is not enough to allow interpreting
its Fourier transform, FðωÞ, as the desired parton distri-
bution function. The reason is that the Fourier transform

of a logarithm5 is a function of ω, the moments of which are
all divergent, unless the support of FðωÞ is limited to the
physical region ½−1;þ1�, which is clearly not the case in
the case at hand.
In Appendix B we illustrate in a simple toy model the

way in which structure functions are deformed if power
divergent mixings are not properly taken care of.
It is important to stress that these power divergences have

nothing to do with the exponentiated linear divergence
related to the presence of the Wilson line which in QCD
makes the bilocal operator gauge invariant. This linear
divergence is not a lattice artefact. It would be there also in
the continuum, and it is due to the fact that the Wilson line
is a nonlocal operator joining points 0 and z [17–19].
References [20–22] only consider this linear divergence
and propose a method to take care of it.

IV. CONCLUSIONS

In the limit of large proton momentum it is possible to
express the Minkowski DIS structure functions in terms of
E-T Euclidean correlators, as suggested in Ref. [1] and
elaborated in Refs. [3–10].
On the lattice, however, the presence of power divergent

mixings with trace operators makes the situation problem-
atic. Such power divergences are not easy to eliminate and
hinder the reconstruction of the full parton distribution
function in terms of the Mellin convolution between the
E-T matrix elements of renormalized, subtracted local
operators and the corresponding Wilson coefficients.
Taking as an example the second moment, we have

shown that in a nutshell the problem is related to the
fact that, while in Minkowski metric trace operator con-
tributions are proportional to a−2xμxμ ¼ 0 (namely to a
quantity which is zero on the light cone), in the E-T
approach they are proportional to the nonvanishing com-
bination a−2z2 ≠ 0 and in matrix elements leave behind
terms like Eq. (35).
In the absence of an appropriate nonperturbative renorm-

alization procedure trace terms will contaminate Eq. (19) in
an unpredictable way.
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APPENDIX A: PARTONS
AND BILOCAL OPERATORS

We want to show that, ignoring renormalization effects,
Eq. (19) provides the correct definition of the DIS structure
function [11,12].

4For a recent compilation of DIS data see the references listed
in Ref. [13]. 5We recall the formula

R
eizω log jzjdz ¼ −1=2jωj [16].
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Let us consider the hadronic expression of the deep inelastic cross section in the parton approximation in the case of the
scalar current jðxÞ ¼ ϕ2ðxÞ. After contracting two of the ϕ’s into the scalar propagator, Δ, one gets

ð2πÞ4Wðq2; q · pÞ ¼
X
n

Z
dk
2jkj jhnjϕð0Þjpij

2ð2πÞ4δ4ðpþ q − pn − kÞ

¼
Z

d4xe−iq·xhpjϕð0ÞϕðxÞjpiΔðx2Þ; ðA1Þ

where we have introduced

Δðx2Þ≡
Z

dk
2jkj e

ik·x ¼
Z

d4kδðk2Þθðk0Þeikx ðA2Þ

with kμ ≡ ðjkj;kÞ the massless parton final momentum.
In the canonical parton model the quantity

hpjϕð0ÞϕðxÞjpi is regular and is evaluated in the limit
x2 → 0. Thus, we may write

~fðp · xÞ≡ hpjϕð0ÞϕðxÞjpijx2¼0 ¼
Z þ∞

−∞
dλfðλÞe−iλp·x

ðA3Þ

fðλÞ ¼ 1

2π

Z þ∞

−∞
~fðp · xÞeiλp·xdðp · xÞ ðA4Þ

and

ð2πÞ4Wðq2; q · pÞ ¼
Z þ∞

−∞
dλfðλÞ

Z
d4xe−iðqþλpÞ·xΔðx2Þ

¼ ð2πÞ4
Z þ∞

−∞
dλfðλÞδ½ðqþ λpÞ2�θ½ðqþ λpÞ0� ðA5Þ

which leads to [recall the definition (3)]

Wðq2; q · pÞ ≈ ωfðωÞ
−q2

: ðA6Þ

This relation allows us to express structure functions in
terms of the Fourier transform of a bilocal matrix element.

1. Traditional Light-Cone approach

If we take

x≡ ðz; 0; 0; zÞ; ðA7Þ
and the proton at rest, we have from Eqs. (A3) and (A4) the
spectral decomposition

fðλÞ ¼ m
2π

X
n

jhnjϕð0Þjmij2
Z þ∞

−∞
dzeizð−mþEn−pnzþλmÞ

¼
X
n

jhnjϕð0Þjmij2δ
�
En − pnz

m
− 1þ λ

�
; ðA8Þ

where jmi is the state of a proton at rest.

2. Equal-Time approach

In Ref. [1] it is proposed that the structure function may
be computed from Eq. (19). Introducing intermediate
states, we get

FðωÞ ¼ lim
Pz→þ∞

Pz

2π

X
n

jhnjϕð0ÞjPzij2
Z þ∞

−∞
dzeizωPze−izðpnz−PzÞ

¼ lim
Pz→þ∞

X
n

jhnjϕð0ÞjPzij2δ
�
ωþ 1 −

pnz

Pz

�
: ðA9Þ

To make contact with the expression (A8), it is convenient to transfer the Lorentz transformation from the proton to the
space-time arguments of operators. Using Eqs. (20) and (21), we find

hPzjϕð0ÞϕðzÞjPzi ¼ hmjϕð0Þϕ
�
Pz

m
z; 0; 0;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ P2

z

p
m

z

�
jmi

¼
X
n

jhnjϕð0Þjmij2eiðEn−mÞPzm ze−ipnz

ffiffiffiffiffiffiffiffiffi
m2þP2z

p
m z: ðA10Þ
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From the definition (19) we therefore have

FðωÞ ¼ lim
Pz→þ∞

Pz

X
n

jhnjϕð0Þjmij2δ
�
ωPz þ ðEn −mÞPz

m
− pnz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ P2

z

p
m

�

¼ lim
Pz→þ∞

X
n

jhnjϕð0Þjmij2δ
�
ωþ ðEn −mÞ

m
− pnz

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ m2

P2
z

q
m

�

¼
X
n

jhnjϕð0Þjmij2δ
�
ω − 1þ En − pnz

m

�
; ðA11Þ

which indeed coincides with Eq. (A8). This means that,
barring renormalization effects, formula (19) correctly
provides the Euclidean version of Eq. (A8).

APPENDIX B: TRACE OPERATORS
IN A TOY MODEL

To provide an intuition of the harm that the power
divergent mixings can cause in the construction of parton
distribution functions, we discuss a simple mathematical
example mimicking what happens if divergent trace oper-
ators are not properly subtracted out in the process of
renormalizing the leading twist DIS operators

OðnÞ
μ1…μn ¼ ϕð0Þ∂μ1…∂μnϕð0Þ: ðB1Þ

(1) If divergent mixings due to trace operators were
absent, the z dependence of the renormalized (finite)
matrix elements of the ϕðzÞϕð0Þ bilocal will only
occur through the combination Pzz. With reference
to the regularized theory after introducing the formal
definition

GðPzz;ΛÞ ¼ hPzjϕðzÞϕð0ÞjPzijΛ
¼

X
n

AðnÞðΛÞðPzzÞn; ðB2Þ

the (regularized) parton distribution function will be
given by

fðω;ΛÞ ¼ Pz

Z
∞

−∞
dzeiωPzzGðPzz;ΛÞ

¼ 2π
X
n

ð−1ÞnAðnÞðΛÞδðnÞðωÞ; ðB3Þ

where

δðnÞðωÞ ¼ ð−iÞn
2π

Z
∞

−∞
dxeiωxxn: ðB4Þ

A few observations are in order here. First of all, we
notice that Eq. (B3) does not depend on P. Secondly,
to make fðω;ΛÞ a renormalization group invariant

quantity, one must proceed as described in Sec. III
A, making use of the Mellin transform method to
give to each moment its correct running.

(2) In the presence of trace terms one needs to be more
careful and explicit about regularization. Thus, we
write for the matrix element, G, of the bilocal
operator the integral representation

GðPzz; z;ΛÞ ¼
Z

dke−
k2

Λ2eikzgðPzz; kÞ; ðB5Þ

where the exponential factor eikz has been intro-
duced to describe the effects of trace operators. In
fact, if Taylor expanded, it gives rise to power
divergent terms of the kind ðΛzÞn.
In this toy model the matrix element of the

properly subtracted leading twist operator is then
obtained by just crossing out the eikz factor from the
previous equation. If we do so, Eq. (B5) leads to the
parton distribution function

fðω;ΛÞ ¼ Pz

Z
∞

−∞
dzeiωPzz

Z
dke−

k2

Λ2gðPzz; kÞ

¼
Z

dke−
k2

Λ2 ~gðω; kÞ; ðB6Þ

where we have introduced the Fourier transform of g
with respect to its first argument

~gðω; kÞ ¼
Z

dyeiωygðy; kÞ: ðB7Þ

Vice versa, Eq. (B5) leads to the parton distribution
function

f̂ðω;ΛÞ ¼ Pz

Z
∞

−∞
dzeiωPzz

Z
dke−

k2

Λ2eikzgðPzz; kÞ

¼
Z

dke−
k2

Λ2 ~g

�
ωþ k

Pz
; k

�
: ðB8Þ

Owing to the Riemann-Lebesgue lemma the k
integral in Eq. (B8) converges even in the limit
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Λ → ∞. This analysis proves that mixings with trace
operators do not show up as (power) divergences in
the structure function [see Eq. (B8)]. Rather, at
finite Pz they deform the expression of the latter.
Unfortunately, in the lattice regularization one can-
not send Pz to infinity as Pz can never be made
larger than a−1.

(3) Within the simple toy model we are discussing, it is
not difficult to see that, if DIS operators are made
finite with the proper subtractions of power diver-
gent trace operators, the remaining finite trace
operator contributions to the structure function do
indeed vanish in the limit of large Pz.

In fact, the situation in which power divergent
trace operator mixings are subtracted out from the
bare DIS operator can be mimicked by stipulating
that the function gðPzz; kÞ has a well-convergent
behavior for large k with an exponential cutoff
scaled by some physical, finite mass parameter,
Λs. Thus, assuming for gðPzz; kÞ the behavior6

gðPzz; kÞ ∼ e−
jkj
ΛshðPzz; kÞ ðB9Þ

with hðPzz; kÞ a smooth, bounded function of k, we
can immediately send the UV cutoff, Λ to infinity as
the k integral is convergent. In this situation one gets

Pz

Z
∞

−∞
dzeiωPzz

Z
dkeikze−

jkj
ΛshðPzz; kÞ ⟶

Pz≫Λs

Z
dke−

jkj
Λs ~h

�
ωþ k

Pz
; k

�
¼

Z
dk~gðω; kÞ: ðB10Þ

The last expression exactly coincides with the last equality in Eq. (B6) after removing the UV cutoff. We recall that
we can safely take the limit Λ → ∞ in Eq. (B6) as the latter represents the expression of the structure function in the
case that trace operator mixings are absent.
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