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We present an improved result for the lattice computation of the proton decay matrix elements in Nf ¼
2þ 1 QCD. In this study, by adopting the error reduction technique of all-mode-averaging, a significant
improvement of the statistical accuracy is achieved for the relevant form factor of proton (and also neutron)
decay on the gauge ensemble ofNf ¼ 2þ 1 domain-wall fermions withmπ ¼ 0.34–0.69 GeV on a 2.7 fm3

lattice, as used in our previous work [1]. We improve the total accuracy of matrix elements to 10–15% from
30–40% for p → πeþ or from 20–40% for p → Kν̄. The accuracy of the low-energy constants α and β in the
leading-order baryon chiral perturbation theory (BChPT) of proton decay are also improved. The relevant
form factors of p → π estimated through the “direct” lattice calculation from the three-point function appear
to be 1.4 times smaller than those from the “indirect”method using BChPTwith α and β. It turns out that the
utilization of our result will provide a factor 2–3 larger proton partial lifetime than that obtained usingBChPT.
We also discuss the use of these parameters in a dark matter model.
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I. INTRODUCTION

Although proton decay has yet to be observed exper-
imentally, it is an important key observable in the search for
new physics beyond the Standard Model (SM). The
observed proton lifetime—i.e., τp > 8.2 × 1033 years for
p → π0eþ [2] (recently τp > 1.4 × 1034 years was reported
in Ref. [3]) or τp > 5.9 × 1033 years for p → Kþν̄ [4]—
imposes tight constraints on the parameter space of grand
unified theories (GUTs) and supersymmetric GUTs (SUSY-
GUTs). Currently, such an experimental bound might
exclude minimal SU(5) GUTs, and SUSY-GUT models
have been attractive as potential solutions of the hierarchy
problem and the coupling unification of the SM at the GUT
scale (∼1016 GeV). SUSY-GUTs will favor the p → Kþν̄
decay channel within the detectable region of proton decay
in future experiments (e.g., Hyper-Kamiokande [5]).
The main mode of proton decay through GUTs involves

a proton decaying into a pseudoscalar meson and an
antilepton. The operator product expansion (OPE) leads
to the decay amplitude of such processes written in terms of
the Wilson coefficients which contain all the details of the
high-energy part of a GUT, and the low-energy QCD
matrix elements of the proton and pseudoscalar states with
three-quark operators. Each QCD matrix element is further
decomposed into two form factors, called the relevant and
irrelevant form factors. Denoting the relevant form factor as
W0, the partial decay width reads

ΓðN→Pþ l̄Þ¼ mN

32π
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with mN , mP, and ml being the mass of the nucleon,
pseudoscalar meson, and antilepton, and CI being the
Wilson coefficient of the operator of type I (distinguishing
flavor and chiral structure), which also enters in WI

0.
Parameters in a given GUT model are encoded in the
Wilson coefficientsCI . The knowledge of the left-hand side
(experiment) and that of W0 reported in this work will be
transcribed into the knowledge of the GUT parameters,
namely, the proton lifetime bound restricts the GUT
parameters [6–24].
The relevant form factors are evaluated in the M̄S

scheme in the naive dimensional regularization at a typical
hadronic scale μ ¼ 2 GeV. The matching Wilson coeffi-
cients need to be calculated in the same way.1

The lattice computation of the proton decay matrix
elements has a rather long history. It started with the
calculation of the low-energy constants (LECs) α and β in
the quenched approximation Nf ¼ 0, where one needs to
use a baryon chiral perturbation theory [25] to obtain W0.
The uncertainties of these initial computations [26–28]
were successively reduced with systematic improvements
by employing the direct method [1,29,30], the continuum
limit of LECs with Nf ¼ 0 [31], nonperturbative renorm-
alization with the chirally invariant lattice formulation
[1,30,32], LECs computed with Nf ¼ 2þ 1 [32], and
finally the computation of W0 with Nf ¼ 2þ 1 (see
Table VI).

1In this study we estimate to one higher order inml=mN for the
antimuon final states. Simply replacing W0 with Wμ, which is
described later, will provide the partial decay width which is good
to Oðmμ=mNÞ.
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In our previous report [1], W0 was calculated using the
direct method with a proper dynamical fermion computa-
tion using the Nf ¼ 2þ 1 domain-wall fermion formu-
lation. There, the result for W0 was reported with all of the
relevant systematic uncertainties removed or properly
estimated. However, the precision was not satisfactory
because W0 for the pion and kaon final-state matrix
elements had 20–40% errors. Noticing that the fractional
error gets doubled in the partial decay width as it enters
quadratically in Eq. (1), it is necessary to have more precise
results for W0 in order to make them more useful.
A recent development of the algorithm to speed up the

measurement of the matrix element in lattice QCD—called
all-mode-averaging (AMA) [33–35]—enables us to further
improve the statistical precision of the proton decay matrix
element for the pion and kaon final states. This paper shows
the update of the lattice calculation of the proton decay
matrix element, in both “direct” and “indirect” measure-
ments, for all decay modes on the same gauge ensembles as
those used in Ref. [1]. As a consequence of increasing
statistical accuracy, a more reliable estimate of the sys-
tematic error can be realized.
In addition, we previously did not take into account the

muon mass effect for the case of a muon final state because
the effect is subdominant compared to other uncertainties.
However, with increased statistical accuracy, the effect of a
nonzero muon mass (106 MeV) is visible. We provide the
form factors for the muon final state separately from those
with positron or neutrino final states.
Here we also attempt to use our lattice computation as an

input for the proton decay matrix element for a model of
dark matter [36–38]. Although the kinematics of our lattice
setup is not so optimal, we can provide useful information
for such a dark matter model as by-products.
This paper is organized as follows. After presenting the

notation (Sec. II) and simulation parameters (Sec. III), we
show the updated result of the lattice evaluation of the low-
energy constants α and β in baryon chiral perturbation
theory (BChPT) for the indirect method in Sec. IV, and the
relevant form factorW0 of proton decay in Sec. V. In Sec. V
we also make an assessment of the unestimated systematic
error in the indirect method and focus on their use in the
estimate of the proton lifetime. A description of how our
results can be used in a dark matter model [36–38] is given
in Sec. VI. A test of the soft-pion theorem of our lattice
results is shown in Appendix B. Throughout the paper
dimensionful quantities are expressed in lattice units and
the lattice spacing “a” is suppressed in equations.

II. PROTON DECAY MATRIX ELEMENT

The lattice calculation is concentrated on the QCD
matrix element of theN → P transition, in whichN denotes
the nucleon (proton or neutron) and P is one of the
pseudoscalars from the π0, π�, K0, Kþ or η meson. At

the hadronic energy scale, only the lowest-dimensional
operators with baryon number violation are relevant. They
are the dimension-six four-fermi (three quarks and one
lepton) operators [39–41]. Since the on-shell lepton can be
omitted from the QCD matrix element, the transition form
factor from a nucleon NðkÞ state (source field) to a meson
PðpÞ state (sink field) with a momentum transfer q ¼ k − p
is represented as

hPðpÞjOΓΓ0 ðqÞjNðk; sÞi

¼ PΓ0

�
WΓΓ0

0 ðq2Þ − iq
mN

WΓΓ0
1 ðq2Þ

�
uNðk; sÞ: ð2Þ

For the physical kinematics −q2 ¼ m2
l , the contribution of

the W1 term is relatively small compared to the W0 term,
due to the suppression prefactor ml=mN. In ml ¼ eþ or ν̄,
W0 is only relevant to the proton decay matrix element
since the second term is me=mN ∼Oð10−3Þ, while in the
ml ¼ mμ case, because mμ=mN ∼Oð10−1Þ, the contribu-
tion of the W1 term to the matrix element is not negligible
for our target precision (below 10% precision). Namely, we
define

Wμ ≡W0ð−m2
μÞ þ

mμ

mN
W1ð−m2

μÞ: ð3Þ

We estimate W0 and W1 and provide W0ðq2 ¼ 0Þ for
the positron and neutrino final states and Wμ for the
antimuon final states. The baryon-number-violating
three-quark operator OΓΓ0

reads

OΓΓ0 ¼ UΓΓ0εijkðqiTCPΓqjÞPΓ0qk; ð4Þ
with the chiral projection PΓ ¼ ð1� γ5Þ=2, where “þ” is
for Γ ¼ R and “−“is for Γ ¼ L. qi is the quark flavor (up,
down, or strange) with color index i. UΓΓ0 denotes the
renormalization factor which was already computed using
the nonperturbative method [32].2 Using the symmetry of
parity transformation between different chirality combina-
tions (RL ⇔ LR or LL ⇔ RR) [30] enables us to reduce
four chirality combinations to two combinations: ΓΓ0 ¼ LL
and RL. Applying the exchange symmetry of u and d, we
have the equivalence of matrix elements between the proton
and neutron,

hπ0jðudÞΓuΓ0 jpi ¼ hπ0jðduÞΓdΓ0 jni; ð5Þ

2Recently, we found an error in our one-loop perturbative
formula which is used for matching between the M̄S scheme with
the naive dimensional regularization and the RI-SMOM renorm-
alization scheme [Eq. (C.8) in Ref. [30] and Eq. (46) in Ref. [32]].
(We thank Michael Buchoff and Michael Wagman for pointing
out that mistake.) After correcting this error, the impact of all
matrix element calculations is increased by about 6–7% for α, β,
and W0 [30,32,42]. In this paper we use the corrected value as
presented in Eq. (18).
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hπþjðudÞΓdΓ0 jpi ¼ −hπ−jðduÞΓuΓ0 jni; ð6Þ

hK0jðusÞΓuΓ0 jpi ¼ −hKþjðdsÞΓdΓ0 jni; ð7Þ

hKþjðusÞΓdΓ0 jpi ¼ −hK0jðdsÞΓuΓ0 jni; ð8Þ

hKþjðudÞΓsΓ0 jpi ¼ −hK0jðduÞΓsΓ0 jni; ð9Þ

hKþjðdsÞΓuΓ0 jpi ¼ −hK0jðusÞΓdΓ0 jni; ð10Þ

hηjðudÞΓuΓ0 jpi ¼ −hηjðduÞΓdΓ0 jni; ð11Þ

and furthermore, for the p → π channel, there is a relation
in the SU(2) isospin limit, which is good for our target
precision,

hπþjðudÞΓdΓ0 jpi ¼
ffiffiffi
2

p
hπ0jðudÞΓuΓ0 jpi: ð12Þ

Therefore, the total number of matrix element is 12. In this
paper we show the 12 principal matrix elements of
hPjOΓLjpi, for Γ ¼ R and L in lattice QCD.
Our target matrix element can be extracted from the

computation of the ratio of the three-point and two-point
functions. We use the same combination used in Eq. (21) of
Ref. [42],

RΓL
3 ðt; t1; t0; p⃗;PÞ ¼

tr½PCOΓLðt1; t; t0; p⃗Þ�
CPðt1; t; p⃗Þtr½P4CNðt; t0Þ�

ffiffiffiffiffiffiffiffiffiffiffiffi
ZPZN

p
;

ð13Þ

where the nucleon two-point function CNðt; t0Þ does not
have momentum, and the pseudoscalar two-point function
CPðt; t0;pÞ has spatial momentum p⃗. Here we also use the
two projection matrices P ¼ P4 ≡ ð1þ γ4Þ=2 and iP4γj.
The three-point function COΓLðt1; t; t0;pÞ depends on t − t0
(the time slice of the operator) and ts ¼ t1 − t0 (the source-
sink separation), as well as the injected momentum p⃗ in the
operator. The factors

ffiffiffiffiffiffi
ZP

p
and

ffiffiffiffiffiffi
ZN

p
are overlap factors of

the pseudoscalar and nucleon states to their interpolating
operators. Taking the trace of the two projection matrices

P4 and iP4γj, the asymptotic form of this ratio can be
expressed as a combination of W0 and W1,

lim
t1−t;t−t0→∞

RΓL
3 ðt; t1; t0; p⃗; P4Þ ¼ WΓL

0 þmN − Eπ

mN
WΓL

1 ;

ð14Þ

lim
t1−t;t−t0→∞

RΓL
3 ðt; t1; t0; p⃗; iP4γjÞ ¼

qj
mN

WΓL
1 ; ð15Þ

and by solving the linear algebra we derive WΓL
0 and WΓL

1

simultaneously.
Calculating the three-point function COΓLðt1; t; t0;pÞ in

Eq. (15) involves several steps. First, we compute the
forward quark propagator with the nucleon source located
at t ¼ t0 with a smeared source. Then, using the propagator
at the meson sink position t ¼ t1, the sequential source
computation is applied with an injection of momentum p⃗.
Then, the obtained backward propagator is contracted at the
operator position t ¼ t with two forward propagators from
the nucleon source. This process needs 1þ Np × 2 solver
computations for each gauge configuration, with Np being
the number of different meson momenta. The factor of 1 is
for a solver of the forward propagator, and the factor of 2 is
for the solvers having the valence masses of the ud and s
quarks. To achieve a good constraint on the fitting
parameters, we need to have a good lever arm for m
(different ensembles) and a variation of p⃗, which tends to
lead to a large computational cost. The AMA technique
[33–35,43] is useful for reducing the computational cost of
the quark propagator. It enables us to carry out the high
statistical measurement, even when using several momenta.

III. LATTICE SETUP

We use the same lattice gauge ensembles as in
Refs. [42,44,45], which are generated with Nf ¼ 2þ 1

domain-wall fermions (DWFs) and the Iwasaki gauge action
at β ¼ 2.13, corresponding to a−1 ¼ 1.7848ð6Þ GeV [45]
with a lattice size of 243 × 64 (≃2.65 fm3). The four
different quark masses m ¼ 0.005, 0.01, 0.02, and 0.03

TABLE I. Lattice ensemble set and parameters.m refers to the domain-wall fermion mass for the degenerate light
quarks (u and d). Ng is the number of approximations using both light and strange quark propagators. Neig denotes
the number of low modes used in the light-quark propagator, and “res” is value of the squared norm of the residual
vector for the sloppy solver in AMA. Values of hadron masses are measured with an extended quark source and sink
with gauge-invariant Gaussian smearing.

a−1 GeV m mπ (GeV) mK (GeV) mN (GeV) Neig Ng Res Nconf

1.7848(6) 0.005 0.340(1) 0.594(2) 1.179(5) 300 32 0.003 91
0.01 0.427(1) 0.626(1) 1.269(5) 300 32 0.003 55
0.02 0.574(1) 0.688(1) 1.452(4) 200 32 0.003 39
0.03 0.694(1) 0.744(2) 1.598(5) 200 32 0.003 44
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are used at the unitary point, and the corresponding pion,
kaon, and nucleon masses are given in Table I. In the
measurement of the two-point function of the pseudoscalar
meson and nucleon, we use the gauge-invariant Gaussian
smeared source and sink function with the interpolation

operator on APE-smeared link variable, whose parameter is
the same as in Ref. [42]. For the “indirect”method, the two-
point function including the baryon-number-violating oper-
ator [Eq. (4)] is computed using two nucleon source
operators,
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FIG. 1. RαðtÞ (upper) and RβðtÞ (lower) as a function of lattice time slice. The cyan band denotes the line and statistical error of
constant fitting within the fitting range.
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FIG. 2. Quark mass dependence of bare α and β. The straight lines are fits to the linear ansatz with three different fitting ranges:
(i) containing all data [solid line (blue)], (ii) excluding the heaviest point [dashed-dotted line (red)], and (iii) excluding the lightest point
[dashed line (green)] (see the text for details). Filled symbols represent the values in the chiral limit from the three fits.

TABLE II. Error budget of α and β at μ ¼ 2 GeV. The “χ” column is the systematic uncertainty due to chiral
extrapolation. The “a2” column denotes the systematic uncertainty due to Oða2Þ. The “ΔZ” and “Δa” columns are
systematic uncertainties from the renormalization factor and lattice spacing.

Systematic error
LECs Statistical error χ a2 ΔZ Δa

αðGeV3Þ ¼ −0.0144ð15Þ 0.0003 0.0005 0.0007 0.0012 0.0002

βðGeV3Þ ¼ 0.0144ð15Þ 0.0004 0.0005 0.0007 0.0012 0.0002
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N 5 ¼ εijkðuiTCγ5djÞuk; ð16Þ
N 45 ¼ εijkðuiTCγ4γ5djÞuk; ð17Þ

which are then averaged. On the other hand, in the “direct”
method for the two-point function in the ratio in Eq. (13), we
use only N 5 as the proton interpolation operator.
The renormalization factor needed to change the oper-

ators to those in the M̄S naive dimensional regularization
(NDR) scheme at μ ¼ 2 GeV is calculated using the RI/
MOM nonperturbative renormalization method combined
with the RI=MOM → M̄S matching factor calculated to
next-to-leading order in perturbation theory. The renorm-
alization factors of OΓ with M̄S NDR at μ ¼ 2 GeV are
given as

URL ¼ 0.705ð11Þð56Þ; ULL ¼ 0.706ð11Þð56Þ; ð18Þ
where the first error is statistical and the second is
systematic. The systematic error is dominated by the
truncation error in perturbative matching, which is done
to next-to-leading order. The estimate is from the size of
α2sðμ ¼ 2 GeVÞ obtained from the renormalization-group-
equation running starting from αsðMZÞ ¼ 0.1176ð2Þ
(see Ref. [30]).
In the computation of the three-point function, we use

ts ¼ 18 (≃1.98 fm) for the source-sink separation, which is
shorter than ts ¼ 22 (≃2.43 fm) used in Ref. [1]. Although
using a short source-sink separation will suppress the
statistical noise, we need to make sure the excited-state
contamination is negligible. As the contamination would be
more serious for smaller quark masses, we test such a

contamination effect by comparing the ratio RΓL
3 for

ts ¼ 18 and 22 at the lightest quark mass in Sec. IV.
We use three nonzero spatial momenta for the mesons,

p⃗ ¼ ð1; 0; 0Þ, (1,1,0), and (1,1,1), where the last one is a
new addition from the previous study [1]. This will provide
a good lever arm for the p2 direction as well as a wide
momentum range in the different kinematics (see Sec. VI).
The AMA technique is applied to the measurement of

the three-point and two-point functions.3 The low-mode
deflation is used in solving the even-odd decomposed
Dirac kernel with the conjugate gradient method. The
corresponding low-mode is computed suing the Lanczos
algorithm with Chebyshev polynomial acceleration, as
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FIG. 3. Effective mass of the nucleon, pion, and kaon from the
top to bottom panel. The different symbols denote data with
different momentum values: zero (circle), n⃗p ¼ ð1; 0; 0Þ (square),
n⃗p ¼ ð1; 1; 0Þ (diamond), and n⃗p ¼ ð1; 1; 1Þ (triangle). The quark
mass is m ¼ 0.005.
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FIG. 4. Bare W0ðtÞ for the p → π0 transition with Γ ¼ R (top)
and Γ ¼ R (bottom) with m ¼ 0.005. The different symbols
represent results with ts ¼ 22 (red) and ts ¼ 18 (blue). The left,
middle, and right panels are the results at the momenta
n⃗p ¼ ð1; 0; 0Þ, (1,1,0), and (1,1,1), respectively. The source
nucleon (t ¼ 5) and sink pion locations (27 or 23) have
separations of 22 and 18, respectively.

3For the two-point function CPðt1; t; p⃗Þ of the pion (or eta) in
the denominator of Eq. (13), we have used a Kuramashi-wall
source (as in Ref. [42]) for a heavier “light” quark mass, m ¼
0.02 and m ¼ 0.03, since there is not much gain for cost
reduction, and thus AMA was not applied in this case.
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0 including the central value and error of the LECs obtained in our
calculation. These error bands only include the statistical error.
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performed in Ref. [35]. The number of low modes Neig we
computed for each quark mass are given in Table I. The
approximation used in AMA is also constructed from the
sloppy solver using a relaxed stopping condition (0.003 for
the squared norm, which is compared to 10−8 for the “exact
solve” done once every configuration). Ng shown in Table I
is the number of such approximations we use in AMA.
Note that in the strange quark mass we use a sloppy solver
without deflation to avoid the additional computation of the
low mode. Even without the low mode of the strange quark,
AMA works rather well. Actually, we check that the
correlation between the exact solution and the approxima-
tion is smaller than 1=Ng.

IV. IMPROVED RESULT OF
LOW-ENERGY CONSTANTS

First, we update the “indirect” measurement from the
computation of LECs for the baryon-number-violating

interaction in the chiral Lagrangian [25] following the
method in Refs. [29–32,46]. In the “indirect”measurement,
once corresponding LECs are obtained from lattice QCD
(using BChPT together with the nucleon mass), couplings
to the axial current (axial charge), the pion decay constant
and its mass, and the proton decay amplitude can be
evaluated. Each matrix element is proportional to the
LECs depending on chirality: α (for RL) and β (for LL)
[25,29]. These are defined through the nucleon-to-vacuum
matrix elements. We write the quark flavor explicitly as

h0jðudÞRuLjpi¼αPRup; h0jðudÞLuLjpi¼βPLup; ð19Þ

with the proton spinor field up. The above matrix elements
can be extracted from the ratio of the two-point function at
large time-slice separation,

Rα¼
CR
NOðtÞ
CNðtÞ

ZN⟶
t→∞

α; Rβ¼
CL
NOðtÞ
CNðtÞ

ZN⟶
t→∞

β; ð20Þ
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with the nucleon decay operator O and the nucleon inter-
polatingoperator having the same flavor content. The nucleon
overlap factor ZN is also calculated from the nucleon two-
point function. From the practical point of view, thismethod is
much cheaper than the “direct” method since α and β are
obtainedwith a single computation of the quark propagator at
each quarkmass,whereas the directmethod needs at least two
additional propagators for each momentum value in the
computation of the three-point function.
Figure 1 plots our results for RαðtÞ and RβðtÞ obtained

after averaging them with two different nucleon interpolat-
ing operators N 4 and N 45. Fitting to the plateau is done in
the range t ∈ ½8; 18� for all cases, as shown by the straight
bar in Fig. 1, where the statistical error is included.
Figure 2 shows the quark mass dependence of the bare

values of α and β. We observe that lattice data behaves as a
linear function in our quark mass region, and the chiral
extrapolation to physical quark mass is carried out with a
linear function of the quark mass,

fð ~mÞ ¼ c0 þ c1 ~m; ð21Þ
with ~m ¼ mþmres, where the residual mass has been
estimated asmres ¼ 0.003152ð43Þ [42]. The (bare) physical
quark mass has been obtained as

~mphys
ud ¼ 0.001382 ð22Þ

from the renormalized one mphys
ud ¼ −0.001770ð79Þ [45].

To estimate the uncertainty due to using the linear extrapo-
lation, we use three different fitting ranges: (i) m ∈ ½0.005;
0.03� (3.4,2.7), (ii) m ∈ ½0.005; 0.02� (2.5,1.1), and

(iii) m ∈ ½0.01; 0.03� (2.5,2.5), where the numbers in the
brackets show the resultant χ2=d:o:f: for α and β, respectively.
The systematic error due to the assumption of linear behavior
is evaluated from themaximumdifference of the central values
between (i) and (ii), and (i) and (iii). The results are tabulated in
Table II. Compared to the previous work [32], the statistical
error has been improved to 2% from 10%, and the systematic
error of the chiral extrapolation is improved to 3% from 20%.
Although the error estimation procedure is the same as in the
previous work, because of the high statistical precision
available to us the systematic error is properly estimated.
We estimate the systematic error of the lattice artifact as

5%, which is evaluated from a comparison with different
lattice spacings for the hadron spectrum (see Ref. [42]). The
uncertainty in the renormalization factor, which is domi-
nated by the truncation error of the perturbative matching
and running beyond the next-to-leading order. This error
turns out to be the most dominant error.
The final value at μ ¼ 2 GeV in M̄S NDR scheme (18)

extrapolated to the physical quark [Eq. (22)] is

α¼ −0.0144ð3Þð21Þ GeV3; β ¼ 0.0144ð3Þð21Þ GeV3;

ð23Þ

where the first error is statistical and the second is systematic
(obtained in quadrature). The total error is around 15%,
which is improved from 22% [32]. The superficial relation
αþ β ¼ 0 is accidentally observed. The relation should hold
for the nonrelativistic limit and the approximate relation is
known to hold at least numerically in the quenched case
[30,47]. Here we have confirmed that it holds in the

TABLE III. Relative error of the systematic uncertainty in the chiral extrapolation estimated from three fitting
ranges: “light” is the fitting range without the heaviest point, “heavy” is the fitting range without the lightest point,
and “total” is the total one in quadrature. For reference, we also show the value of χ2d:o:f: in our fitting in the “χ2d:o:f:”
column.

Relative error in chiral extrapolation
Matrix element Total χ2d:o:f: Light χ2d:o:f: Heavy χ2d:o:f: Oðq4Þ χ2d:o:f: Oðmq2Þ χ2d:o:f:

hπ0jðudÞRuLjpi 1.8% 0.6 1.6% 0.8 0.8% 0.8 0.7% 0.6 0.3% 0.2

hπ0jðudÞLuLjpi 5.7% 1.4 3.8% 2.0 4.3% 1.2 2.3% 2.2 2.6% 1.9

hK0jðusÞRuLjpi 2.8% 1.4 2.7% 1.7 0.7% 1.5 0.7% 1.6 1.1% 1.4

hK0jðusÞLuLjpi 3.1% 1.7 0.8% 1.9 3.0% 1.7 1.0% 2.0 2.1% 0.2

hKþjðusÞRdLjpi 3.5% 1.3 3.4% 1.5 1.0% 1.5 1.6% 1.3 2.0% 0.8

hKþjðusÞLdLjpi 7.5% 1.6 2.3% 2.2 7.2% 1.5 3.3% 2.1 1.9% 2.7

hKþjðudÞRsLjpi 1.6% 0.9 1.0% 1.2 1.2% 1.1 1.3% 0.8 1.3% 0.1

hKþjðudÞLsLjpi 3.9% 1.7 2.1% 2.4 3.3% 1.6 1.4% 2.2 1.5% 1.7

hKþjðdsÞRuLjpi 2.7% 1.0 2.3% 0.8 1.4% 1.1 2.3% 1.0 0.7% 0.8

hKþjðdsÞLuLjpi 2.1% 1.8 1.5% 2.4 1.4% 1.8 0.8% 2.2 1.6% 0.8

hηjðudÞRuLjpi 39.7% 1.0 31.7% 1.0 23.8% 1.4 9.4% 1.0 4.7% 1.6

hηjðudÞLuLjpi 2.8% 1.0 1.3% 1.2 2.5% 1.1 1.9% 1.8 1.5% 0.7
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Nf ¼ 2þ 1 case with an improved precision. Using these
low-energy constants, the relevant form factor can be
computed via the BChPT formula (see Appendix A).

V. IMPROVED RESULTS FOR THE
RELEVANT FORM FACTORS

In this section, we show our improved results for the
form factors from the “direct” measurement in which we
compute the three-point function of N → P including the
baryon-number-violating operator. Compared to our pre-
vious study [1], the results are improved by the use of the
AMA technique. We also add one larger meson momentum
point np ¼ ð1; 1; 1Þ to the two nonzero momenta we had,
np ¼ ð1; 0; 0Þ and np ¼ ð1; 1; 0Þ. Thus, we are now able to
estimate the systematic error from the Oðq4Þ term.
In Fig. 3, we plot the effective mass of the nucleon, pion,

and kaon with the momentum we use in the construction of
the ratio (13). One clearly sees the plateau starting from

t ¼ 6 in these hadrons, so from here we can see that the
ground state is dominant from t ¼ 6.
Figure 4—in which we plot the time-slice dependence of

the matrix element extracted from the ratio (13) for the p →
π0 mode at our lightest point m ¼ 0.005—shows the com-
parison with two different source-sink separations, ts ¼ 18
and 22, corresponding to ts ¼ 1.98 and 2.43 fm, respectively.
The time separation ts ¼ 18 is new in this study and is four-
time slices shorter than the original ts ¼ 22 [1].We observe a
plateau for shorter separation at t ∈ ½12; 16�, where the
denominators are also dominated by the ground state (see
Fig. 3 and note that the source is located at t ¼ 5 here). The
plateaus from two separations are consistent and the shorter
separation yields significantly better statistical accuracy. Let
us note that the clear plateau is observed even in the largest
momentum case np ¼ ð1; 1; 1Þ. Hereafter, we only use the
result with ts ¼ 18, and further test the effect of excited-state
contamination by changing the fitting range below.
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Figure 5 shows the result of the plateau fit for W0 using
the fitting ranges t ∈ ½11; 17� and t ∈ ½12; 16� to study the
effect of excited-state contamination on the signal. We
observe that these values are consistent within 1 sigma error
in each q2, while the central value has slight tension,
especially for the lowest momentum in Γ ¼ L. In order to
estimate the systematic uncertainties including the effect
of excited-state contamination, we compare the results
using these fitting ranges. Such a comparison will be
discussed later.

A. Global fitting

To perform the extrapolation to the kinematic point and
physical pion mass simultaneously, we globally fit all
lattice data with the linear ansatz for the quark mass and
q2 dependence as

FW0
¼ A0 þ A1 ~mþ A2q2; ð24Þ

where ~m has the same definition as in Eq. (21). Figures 6
and 7 plot the renormalized W0ðq2Þ for every decay
channel and for each quark mass. We observe that lattice
data for each quark mass (which are denoted by the same
symbols in Figs. 6 and 7) has a linear q2 dependence. For
the mass dependence, we also observe a monotonic
decrease or increase when m is increasing. Even when
using the linear ansatz, χ2/d.o.f. is reasonably small (note
that we use uncorrelated fits), as presented in the first
“χ2d:o:f:” column of Table III.
We next study the uncertainties in the fitting related with

the mass dependence, following the method used in
Ref. [1]. The estimated errors are attributed to the
higher-order correction than OðmÞ and a part (at least)
of the finite-volume effect. Table III presents the errors
estimated with the discrepancy from the central value,
which is obtained in the full range m ∈ ½0.005; 0.03� and
two fitting ranges: m ∈ ½0.005; 0.02� for the “light” region
and m ∈ ½0.01; 0.03� for the “heavy” region. The error with
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the “light” region can be an estimate of the Oðm2Þ
correction since the exclusion of the heavy mass makes
a correction less than Oðm2Þ. On the other hand, the error
with the “heavy” region can (at least partly) be due to the
finite-volume effect, since the lightest point suffers most
from the effect with the fixed volume. In each range, χ2/
d.o.f. is not significantly large. The values presented in the
table are taken as the maximum error compared with the
result obtained in two t fitting ranges t ∈ ½12; 16� and
t ∈ ½11; 17�. The “total” error of the chiral extrapolation in
the table is calculated by adding the two errors (“light” and
“heavy”) in quadrature.
In a similar manner as the “light” error, theOðq4Þ error is

estimated from the difference of the results obtained with
the full range of q2 with all of the nonzero meson momenta
and the shorter range where the largest jq2j (np ¼ ð1; 1; 1Þ)
is neglected. The result is shown in the column labeled
“Oðq4Þ” in Table III. This error turns out to be smaller than
that of the “chiral” extrapolation.
As shown in Figs. 6 and 7, the q2 dependence obtained by

extrapolating the data in the “direct”method does not largely
differ from BChPT including α and β obtained in Sec. IV,
especially the fact that the p → π channels have a tendency
to be close to each other with increasing q2 > 0. There is a
discrepancy up to about a factor of 2 around the kinematics
point. Such a comparison will be discussed later.

B. Sequential fitting

In the global fitting we estimated a part of the
systematic errors due to omitting the higher-order terms
in the expansion of the light quark mass ~m and squared
momentum transfer q2. Those estimated are of Oð ~m2Þ and
Oðq4Þ. The remaining error is of Oð ~mq2Þ. For the estimate
we use the same method as in Ref. [1]. The procedure is
that first the q2 → 0 extrapolation is carried out for each
fixed quark mass with a linear function; then, the chiral
extrapolation is performed (see Figs. 8 and 9). By doing
this we are taking into account the q2 dependence in the
prefactor of the linear quark mass term A1 in Eq. (24). If
the result is different, it is attributed as the m effect in A1,
and thus is of Oð ~mq2Þ. The last column of Table III shows
the χ2 per degree of freedom for the final ~m linear fit. The
second to last column represents the systematic error
estimated in this analysis. It turns out to be subdominant
in the fitting errors.

C. The final results

Table IV presents a summary of the nucleon decay form
factors for each operator and final state with the statistical
and systematic errors. The statistical error is significantly
reduced to 1=4–1=6 from our previous study [1] and now
is subdominant. The systematic errors for the extra-
polation discussed above are combined and shown in the

TABLE IV. Table of the renormalizedW0 in the physical kinematics at 2 GeV in the M̄S NDR scheme. The fourth
column contains the relative error of the systematic uncertainties. “χ” comes from the chiral extrapolation given
from three different fitting ranges as explained in the text. The “q4” and “a2” columns are the uncertainties of the
higher-order correction thanOðq2Þ and the lattice artifact atOða2Þ, respectively. The “ms” column is the uncertainty
coming from using the unphysical strange quark mass. ΔZ and Δa are the errors of the renormalization factor and
lattice scale estimate, respectively.

Systematic error [%]
Matrix element W0 GeV2 Statistical[%] Total χ q4 mq2 a2 ms Δa ΔZ

hπ0jðudÞRuLjpi −0.131ð4Þð13Þ 3.0 9.7 1.8 0.7 0.3 5.0 � � � 0.6 8.1
hπ0jðudÞLuLjpi 0.134(5)(16) 3.4 11.6 5.7 2.3 2.6

hπþjðduÞRdLjpi −0.186ð6Þð18Þ 3.0 9.7 1.8 0.7 0.3

hπþjðduÞLdLjpi 0.189(6)(22) 3.4 11.6 5.7 2.3 2.6

hK0jðusÞRuLjpi 0.103(3)(11) 2.8 10.4 2.8 0.7 1.1 5.0 3.0 0.6 8.1

hK0jðusÞLuLjpi 0.057(2)(6) 3.5 10.7 3.1 1.0 2.1

hKþjðusÞRdLjpi −0.049ð2Þð5Þ 3.7 10.9 3.5 1.6 2.0

hKþjðusÞLdLjpi 0.041(2)(5) 4.4 13.1 7.5 3.3 1.9

hKþjðudÞRsLjpi −0.134ð4Þð14Þ 3.2 10.3 1.6 1.3 1.3

hKþjðudÞLsLjpi 0.139(4)(15) 3.0 10.9 3.9 1.4 1.5

hKþjðdsÞRuLjpi −0.054ð2Þð6Þ 3.6 10.6 2.7 2.3 0.7

hKþjðdsÞLuLjpi −0.098ð3Þð10Þ 2.8 10.3 2.1 0.8 1.6

hηjðudÞRuLjpi 0.006(2)(3) 30.0 42.1 39.7 9.4 4.7 5.0 � � � 0.6 8.1

hηjðudÞLuLjpi 0.113(3)(12) 3.1 10.2 2.8 1.9 1.5
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“ð ~mq2Þ-fit” column. Since we use a single lattice cutoff in
this study, the lattice artifact, which is aOða2Þ correction, is
estimated from the scaling study of the hadron spectrum, as
done in Ref. [42]. The mass of the valence strange quark
which participates in the matrix elements of the kaon final
state is set equal to its sea-quark mass,m ¼ 0.04. There is a
mismatch with the physical strange mass. The associated
systematic error is estimated using a subset of the m ¼
0.005 ensemble by settingm ¼ 0.343.4 The difference with
regards to the central value is 3% at most. We conserva-
tively take 3% as the systematic error of the form factors for
the process with the kaon final state due to the use of the
mismatched strange sea and valence quark masses. On the
other hand, the mismatch effect of the strange sea quark is

expected to be much less than that of the valence quark;
thus, it is negligible in the pion and eta final states. The
largest uncertainty comes from that of the renormalization
factor, which is dominated by the systematic error due to
the truncation of the perturbative matching [Eq. (18)]. The
total error (summed in quadrature) amounts to 10–15% for
the form factors with a pion or kaon final state.
Additionally, Table V presents the matrix element with a

muon final state, ml ¼ mμ.Wμ in Eq. (3) is made from two
form factors: W0 and W1. As seen in Figs. 10 and 11, the
magnitude of W1 in each matrix element is similar to W0,
and hence the W1 term multiplied by the factor mμ=mN ∼
0.1 inWμ has a roughly 10% effect on the matrix element in
the kinematics with a muon final state.
Note that for the matrix element with an eta final state we

are ignoring the disconnected diagram, which means there
remains additional uncertainty. However, the contribution
from the disconnected diagram is expected to be small due
to Okubo-Zweig-Iizuka suppression. A detailed study of
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FIG. 10. Renormalized W1 for Γ ¼ R. Each symbol is the same as in Fig. 6.

4The value comes from the physical strange quark mass used in
the previous study. The latest estimate of the physical strange
mass [45] turns out to be 0.03224, which is not large enough to
change the systematic error estimate.
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the eta sector including the disconnected diagram is beyond
the scope of this paper.
All of the final results for the relevant form factors of

proton decay W0 and Wμ with the “direct” method are
summarized in Fig. 12. The results are also compared with

those with the “indirect” method through BChPT using
lattice LECs (denoted as Wα;β

0 and Wα;β
μ ). The “indirect”

method always overestimates the form factor. The amount
is 25% or more except for two cases (hKþjðusÞR=LdLjpi).
In contrast to the previous study [1], each error becomes a
lot smaller, and now we clearly see the discrepancy
between W0;μ and Wα;β

0;μ for most cases.
The fact that the indirect method (which uses BChPT)

works poorly is understandable, as the physical kinematical
point for the outgoing pion is far from the soft pion limit,
where the ChPT description becomes arbitrarily precise.
We tested the soft pion theorem for the form factors of the
pion final state, which are found in Appendix B. There, the
results from the indirect and direct methods appear to be
consistent with each other in the soft pion limit.

VI. APPLICATION TO THE KINEMATICS
OF A DARK MATTER MODEL

In this section, we present some interesting applications
of the model using other kinematics, in which an energetic
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FIG. 11. Renormalized W1 for Γ ¼ L. Each symbol is the same as in Fig. 6.

TABLE V. Table of the renormalizedWμ [Eq. (3)], which is the
form factor in the physical kinematics with a final state of μþ.

Matrix element Wμ GeV2

hπ0jðudÞRuLjpi −0.118ð3Þð12Þ
hπ0jðudÞLuLjpi 0.119(4)(14)

hπ−jðduÞRuLjni −0.167ð4Þð16Þ
hπ−jðduÞLuLjni 0.169(5)(20)

hK0jðusÞRuLjpi 0.099(2)(10)

hK0jðusÞLuLjpi 0.061(2)(7)

hηjðudÞRuLjpi 0.011(2)(3)

hηjðudÞLuLjpi 0.108(3)(11)
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pion is emitted from a proton and dark matter (DM) appears
instead of a lepton. According to Refs. [36,37], the so-
called “induced nucleon decay (IND)” scenario, the proton
should decay to DM particles ðΨ;ΦÞ having the antibaryon
number with mass mΦ;Ψ ∼ 2–3 GeV. This model, moti-
vated by the hypothesis of an asymmetric DM model [48],
assumes that the net baryon number in the Universe is
symmetric, in which the SM particle sector has a baryon
number asymmetry while the particle X1 in the hidden
sector has the opposite asymmetry, and DM ðΨ;ΦÞ has
been generated from X1 decay in the early Universe. If it is
consistent with the Sakharov conditions, such decay should

have baryon number violation and CP violation in non-
thermal circumstances. In the IND model, the nucleon and
pseudoscalar are interacting with DM through X1, and thus
the scattering processes ΨN → Φ†P and ΦN → Ψ̄P occur.
The interesting feature of this model is that the QCD matrix
element is the same as that of the standard nucleon decay,
since the operator related to DM scattering is composed of
an effective three-quark interaction,

uRdRdRΨRΦ=Λ3 þ H:c:; ð25Þ

and the only difference is its kinematics of which q2 is
different from the on-shell lepton. In principle, the lattice
calculation is accessible to the matrix element at q2 values
relevant to this model, and thus we can also provide a more
accurate value for the prediction of this model.
The DM mass mΦ;Ψ ∼ 2–3 GeV is predicted from

cosmological observations and DM stability, which is
much heavier than the lepton mass, so that under momen-
tum conservation the pion has finite momentum, which is
shifted to the region −q2 < 0 (to the right of zero in Figs. 6,
7, 10, and 11). Recalling the formula for the transition
form factor in Eq. (2), the relevant form factors are bothW0

and W1, since the DM mass is heavy, q2 ∼ 4m2
Φ;Ψ > m2

p.
A typical meson momentum in the IND model is
jp⃗j ¼ 1 GeV, in which the kinematics of the IND model
is q2 ≃ 1 GeV2. Figure 13 plotsW0;1 andW

α;β
0;1 extrapolated

to q2 ¼ 1 GeV2 using lattice results. Focusing on the pion
channel, one sees that the “direct” lattice calculation
provides 25–50% of the value ofWα;β

0;1 used for the estimate
of the proton lifetime in the IND model [36,37].
Concerning the convergence issue of BChPT at tree level
applied to energetic mesons arising in this kinematics, our
lattice result indicates such a difference from an evaluation
based on tree-level BChPT may not be negligible. One sees
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that a possible effect on the proton decay amplitude when
using W0;1 in our results may be a factor of 4 or greater
suppression compared with the results obtained with
BChPT. This potentially large systematic error needs to
be considered when one uses BChPT for this purpose.

VII. SUMMARY AND DISCUSSION

In this paper we presented an improved computation of
the proton decay matrix element using the all-mode-
averaging technique on Nf ¼ 2þ 1 domain-wall fermion
configurations. Compared to previous work [1] (also see
Table VI), the statistical error has been significantly
reduced for both the low-energy constant in BChPT and
the matrix element extracted from the three-point function.
Our analysis using the precise lattice data with three

different momenta, by which we add one more higher
q2, can evaluate a higher-order correction than Oðq2Þ. The
systematic uncertainty for the chiral extrapolation due to
using the unphysical pion around mπ ¼ 0.33 GeV is still
larger than the Oðq4Þ and Oðmq2Þ corrections, while its
magnitude strongly depends on the chirality of the baryon-
number-violating operator. This uncertainty can be reduced
in future work by using a larger volume than 3 fm3 for the
physical pion mass generated by the RBC-UKQCD
Collaboration [45]. Currently, the dominant errors come
from the uncertainties of the renormalization factor and
lattice artifact correction, and those may be reduced by
further efforts using the renormalization scheme and a
comparison with finer lattices [45]. The final result of W0;μ

is presented in Tables IV and V, in which the total error in
the pion channel for the e, ν, and μ final states is 10–14%,

TABLE VI. Comparison of the matrix element calculations in lattice QCD from Nf ¼ 0 to Nf ¼ 3 with several groups. The errors of
α, β, andW0 are the total error, which is combined with the statistical and systematic errors in quadrature. We remark that � denotes the
results obtained using renormalization constants with perturbative matching factors that have an error, as explained in the text. With the
error corrected the values would increase by as much as ∼7%.

JLQCD CP-PACS & JLQCD RBC QCDSF RBC/UKQCD This work
(2000) (2004) (2007) (2008) (2008,2014)

Ref. [29] [31] [30] [46] [1,32]

Fermion Wilson Wilson DW Wilson DW DW

Nf 0 0 0 and 2 2 3 3

Volume (fm3) ð2.4Þ2 × 4.1 ð3.3Þ3
Quench

ð1.68Þ3 ð2.65Þ3 ð2.65Þ3ð1.6Þ3
Two-flavor
ð1.9Þ3

a (fm) 0.09 0

Quench

0.07 0.11 0.11
0.1

Two-flavor
0.12

mπ (GeV) 0.45–0.73 0.6–1.2

Quench

0.42–1.18 0.34–0.69 0.34–0.690.39–0.58
Two-flavor
0.48–0.67

Renorm. μ One-loop 1=a, π=a One-loop 2 GeV NPR 2 GeV NPR 2 GeV NPR 2 GeV NPR 2 GeV

α (GeV3) −0.015ð1Þ −0.0090ðþ10
−21Þ

Quench

−0.0091ð4Þ −0.0119�ð26Þ −0.0144ð15Þ−0.0100�ð19Þ
Two-flavor

−0.0118�ð21Þ

β (GeV3) 0.014(1) 0.0096ðþ11
−22Þ

Quench

0.0090(4) 0.0128�ð28Þ 0.0144(15)
0.0108�ð21Þ
Two-flavor
0.0118�ð21Þ

p → π0

WLR
0 (GeV2) −0.134ð16Þ � � �

Quench

� � � −0.103�ð41Þ −0.131ð13Þ−0.060�ð18Þ
Two-flavor

� � �

WLL
0 (GeV2) 0.128(17) � � �

Quench
� � � 0.133�ð40Þ 0.134(16)0.086�ð22Þ

Two-flavor
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and that of the kaon sector is of a similar precision.
Compared to Wα;β

0;μ via the “indirect” method using the
improved lattice calculation of LECs, W0;μ from the
“direct” method is 1.3–1.4 times smaller for the proton
decay amplitude. This means that if our result for W0;μ is

incorporated into a GUT model prediction instead of Wα;β
0;μ,

the proton lifetime prediction may become about 2 times
larger. Finally, we noted that our calculation is also
applicable to the other kinematics corresponding to a dark
matter model, and pointed out that there will be a higher-
order correction than next-to-leading-order BChPT. Our
lattice calculation ofW0;μ can provide a more reliable value
for such a model.
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APPENDIX A: LEADING FORMULA FOR THE
PROTON DECAY MATRIX ELEMENT IN BCHPT

According to BChPT [25,29], the relevant matrix
element, Wα;β

0 , can be represented as

hπ0jðudÞRuLjpi ¼
αffiffiffi
2

p
f
ð1þDþ FÞ; ðA1Þ

hπ0jðudÞLuLjpi ¼
βffiffiffi
2

p
f
ð1þDþ FÞ; ðA2Þ

hK0jðusÞRuLjpi ¼ −
α

f

�
1þ ðD − FÞmN

mB

�
; ðA3Þ

hK0jðusÞLuLjpi ¼
β

f

�
1 − ðD − FÞmN

mB

�
; ðA4Þ

hKþjðusÞRdLjpi ¼
α

f
2D
3

mN

mB
; ðA5Þ

hKþjðusÞLdLjpi ¼
β

f
2D
3

mN

mB
; ðA6Þ

hKþjðudÞRsLjpi ¼
α

f

�
1þ

�
D
3
þ F

�
mN

mB

�
; ðA7Þ

hKþjðudÞLsLjpi ¼
β

f

�
1þ

�
D
3
þ F

�
mN

mB

�
; ðA8Þ

hKþjðdsÞRuLjpi ¼
α

f

�
1þ

�
D
3
− F

�
mN

mB

�
; ðA9Þ

hKþjðdsÞLuLjpi ¼ −
β

f

�
1 −

�
D
3
− F

�
mN

mB

�
; ðA10Þ

hηjðudÞRuLjpi ¼ −
αffiffiffi
6

p
f
ð1þD − 3FÞ; ðA11Þ

hηjðudÞLuLjpi ¼
βffiffiffi
6

p
f
ð3 −Dþ 3FÞ; ðA12Þ

with the low-energy parametersD ¼ 0.80 and F ¼ 0.47. In
this paper, we use f ¼ 0.131 GeV, mN ¼ 0.94 GeV, and
mB ¼ 1.15 GeV [32].

APPENDIX B: TEST OF THE SOFT-PION
THEOREM

In this appendix, we present the analysis of the matrix
element in the soft-pion limit. In this limit, each matrix
element is described in terms of the leading order of
BChPT. In order to test that the lattice calculation has a
value that is consistent with BChPT in the soft-pion limit,
we calculate the matrix element win two ways: one is
BChPT using LECs α and β obtained by “indirect” lattice
calculation, and the second is the matrix element obtained
by “direct” lattice calculation. Using LECs the matrix
element is

hπ0jðudÞRuLjpisp ¼ αffiffiffi
2

p
f0

PLuN;

hπ0jðudÞLuLjpisp ¼ βffiffiffi
2

p
f0

PLuN; ðB1Þ

with the subscript sp denoting the soft-pion limit, which
corresponds to pμ → 0 and the chiral limit. On the other
hand, the left-hand side of the above equation is also
represented as

hπ0jðudÞΓuLjpisp ¼ PLWspuN; ðB2Þ
in which Wsp is obtained from the form factor at p⃗ ¼
ð0; 0; 0Þ for Eq. (2) in the chiral limit. We define such a
form factor as
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Wp⃗¼0 ¼ lim
t1−t;t−t0→∞

RΓ
3ðt; t1; t0; 0; P4Þ; ðB3Þ

and we take the extrapolation to zero quark mass with the
linear ansatz

Wp⃗¼0 ¼ Wsp þ c1 ~m: ðB4Þ
The linear ansatz assumes a negligibly small

ffiffiffiffi
~m

p
∼mπ

term even for ~m≃ 0.
Figure 14 shows the lattice results forWp⃗¼0 andWsp. We

also show the lines of chiral extrapolation and the

extrapolated values with the linear ansatz in the chiral
limit. Here we estimate the systematic uncertainties due to
chiral extrapolation by comparing the “light” and “heavy”
regions, as well as in Table III. We also add the uncer-
tainties of the renormalization factor and lattice artifact, as
in Table IV. One sees that the lattice data is close to a linear
function and the extrapolated value is consistent with
BChPT within 1 sigma error. We notice that there is no
visible curvature of the square root of the quark mass. It
indicates that the coefficient of the square root of the quark
mass may not be significantly large.
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