
Topology in the SUðNf Þ chiral symmetry restored phase
of unquenched QCD and axion cosmology. II.

Vicente Azcoiti
Departamento de Física Teórica, Facultad de Ciencias Universidad de Zaragoza,

Pedro Cerbuna 9, 50009 Zaragoza, Spain
(Received 24 April 2017; published 13 July 2017)

We investigate the physical consequences of the survival of the effects of theUð1ÞA anomaly in the chiral
symmetric phase ofQCD, and show that the free energy density is a singular function of the quark massm,
in the chiral limit, and that the σ and π̄ susceptibilities diverge in this limit at any T ≥ Tc. We also show that
the difference between the π̄ and δ̄ susceptibilities diverges in the chiral limit at any T ≥ Tc, a result which
seems to be excluded by recent results of Tomiya et al. from numerical simulations of two-flavor QCD.
We also discuss on the generalization of these results to the Nf ≥ 3 model.
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I. INTRODUCTION

Quantum field theories with a topological term in the
action [1] have proved to be particularly challenging to
investigate. The strong CP problem in strong interactions,
and the Haldane conjecture and the quantum Hall effect in
condensed matter physics are representative of important
open problems in theoretical physics closely related to the
topological properties of the model.
In what concerns QCD, understanding the role of the θ

parameter and its connectionwith the strongCP problem is a
major challenge. On the other hand the aim to elucidate the
existence of new low-mass, weakly interacting particles from
a theoretical, phenomenological and experimental point of
view, is intimately related to this issue. The light particle that
has mostly gathered attention is the axion, predicted by
Weinberg and Wilczek [2,3] in the Peccei and Quinn
mechanism [4] to explain the absence of parity and temporal
invariance violations induced by the QCD vacuum. The
axion is also one of the more interesting candidates to make
the darkmatter of theuniverse, and the axionpotential plays a
fundamental role in the determination of the dynamics of the
axion field. Moreover, the way in which theUð1ÞA anomaly
manifests itself in the chiral symmetry restored phase of
QCD at high temperature could be tested when probing the
QCD phase transition in relativistic heavy ion collisions.
The topological properties of the QCD-vacuum are

intrinsically nonperturbative, thus requiring a nonpertur-
bative approach. The calculation of the topological sus-
ceptibility by means of simulations in lattice QCD is
already a challenge, but calculating the complete potential
requires a strategy to deal with the so-called sign problem,
that is, the presence of a highly oscillating term in the path
integral, which prevents the applicability of the impor-
tance sampling method [1]. But the QCD axion model
relates the topological susceptibility χT at θ ¼ 0 with the
axion mass ma and decay constant fa through the relation

χT ¼ m2
af2a, and the axion mass is an essential ingredient

in the calculation of the axion abundance in the Universe.
Therefore a precise computation of the temperature
dependence of the topological susceptibility in QCD
becomes of primordial interest in this context. Indeed,
several calculations of this quantity in unquenched QCD
have been recently reported [5–7].
Unfortunately there are strong discrepancies among these

three calculations. Bonati et al. [5] explore Nf ¼ 2þ 1
QCD in a range of temperature going fromTc to around 4Tc,
and their results for the topological susceptibility differ
strongly, both in size and in temperature dependence, from
the dilute instanton gas prediction, giving rise to a shift of the
axion dark matter window of almost one order of magnitude
with respect to the instanton computation. Petreczky et al. [6]
observe however very distinct temperature dependences
of the topological susceptibility in the ranges above and
below 250MeV: while for temperatures above 250MeV, the
dependence is found to be consistentwith the dilute instanton
gas approximation, at lower temperatures the fall-off of
topological susceptibility is milder. Borsanyi et al. [7] find,
on the other hand, a topological susceptibilitymany orders of
magnitude smaller than that of Ref. [5] in the cosmologically
relevant temperature region. These discrepancies among
the three calculations make more interesting, if possible, a
theoretical approach to the issue.
The absence of the typical effects of the Uð1ÞA anomaly

in the chiral symmetry restored phase of QCD at high-
temperature was suggested in [8,9], and investigated later
on [10–24]. Indeed, years ago Cohen [8] showed, using the
continuum formulation of two flavor QCD, and assuming
the absence of the zero mode’s contribution, that all
the disconnected contributions to the two-point corre-
lation functions in the SUð2ÞA symmetric phase at high-
temperature vanish in the chiral limit. The main conclusion
of this work was that the eight scalar and pseudoscalar
mesons should have the same mass in the chiral limit, the
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typical effects of the Uð1ÞA anomaly being absent in this
phase. Furthermore he argued in [9] that the analyticity of
the free energy density in the quark mass m around m ¼ 0,
in the high temperature phase, imposes constraints on the
spectral density of the Dirac operator around the origin
which are enough to guarantee the previous results. Later
on Aoki et al. [16] got constraints on the Dirac spectrum of
overlap fermions, strong enough for all of the Uð1ÞA
breaking effects among correlation functions of scalar
and pseudoscalar operators to vanish, and they concluded
that there is no remnant of the Uð1ÞA anomaly above the
critical temperature of two flavor QCD, at least in these
correlation functions. Their results were obtained under the
assumptions that m-independent observables are analytic
functions of the quarks mass m, at m ¼ 0, and that the
Dirac spectral density can be expanded in Taylor series near
the origin, with a nonvanishing radius of convergence.
More recently we investigated by analytical methods in

Ref. [22] the topological properties of QCD in the high
temperature chiral symmetric phase, and we summarize
here what was the starting hypothesis in [22], its physical
motivation, and the main conclusion which follows from it.
The starting hypothesis was to assume that the perturbative
expansion of the free energy density in powers of the quark
mass,m, has a nonvanishing convergence radius in the high
temperature chiral symmetric phase of QCD. This is just
what we expect on physical grounds if all correlation
lengths remain finite in the chiral limit, and the spectrum
of the model shows therefore a mass gap also in this limit.
The main conclusion which followed from this hypothesis
was that all the topological effects of the axial anomaly
should disappear in this phase, the topological susceptibil-
ity and all θ-derivatives of the free energy density vanish,
and the theory becomes θ independent at any T > Tc in the
infinite-volume limit.
Accordingly, the free energy density should be a singular

function of the quark mass, in the chiral limit, if the
topological effects of the Uð1ÞA anomaly survive in the
chiral symmetry restored phase of QCD at finite temper-
ature, and the main purpose of this article is to investigate
this issue. Our starting hypothesis will be now that the
topological effects of the anomaly survive in the high
temperature phase of QCD, and the model shows therefore
a nontrivial θ-dependence in this phase. Under this
assumption we will show here that indeed the free energy
density is a singular function of the quark mass, m, in the
chiral limit at any T > Tc, and that the correlation length
and the σ and π̄ susceptibilities diverge in this limit, as well
as the difference between the π̄ and δ̄ susceptibilities.
We will show first this result following the line of

argumentation developed in [22], and thereafter exploiting
the qualitative features of the phase diagram of QCD in
the Q ¼ 0 topological sector. Our main conclusion is that
this scenario should be excluded, in the Nf ≥ 3 case, by
universality and renormalization group arguments, and in

the two flavor model, by recent results of numerical
simulations of high temperature two-flavor QCD [23].1

II. σ AND η SUSCEPTIBILITIES

The Euclidean continuum Lagrangian of Nf flavors
QCD with a θ-term is

L ¼
X
f

Lf
F þ 1

4
Fa
μνðxÞFa

μνðxÞ þ iθ
g2

64π2
ϵμνρσFa

μνðxÞFa
ρσðxÞ

ð1Þ
with Lf

F the fermion Lagrangian for the f-flavor, and

Q ¼ g2

64π2

Z
d4xϵμνρσFa

μνðxÞFa
ρσðxÞ ð2Þ

is the topological charge of the gauge configuration.
To avoid ultraviolet divergences wewill assume along this

paper a lattice regularization, the Ginsparg-Wilson (G-W)
fermions [25], from which the overlap fermions [26] are
an explicit realization, which shares with the continuum all
essential ingredients and gives at the same timemathematical
rigor to all developments. Indeed G-W fermions have a
Uð1ÞA anomalous symmetry [27], good chiral properties, a
quantized topological charge, and allow us to establish and
exact index theorem on the lattice [28].
The partition function of the model can be written as a

sum over all topological sectors,Q, of the partition function
in each topological sector times a θ-phase factor, as follows

ZðθÞ ¼
X
Q

ZQeiθQ ð3Þ

where Q, which takes integer values, is bounded at finite
volume by the number of degrees of freedom. At large
spatial lattice volume Vx the partition function should
behave as

ZðθÞ ¼ e−VxLtEðβ;m;θÞ ð4Þ
where Eðβ; m; θÞ is the free energy density, β the inverse
gauge coupling, m the quark mass, and Lt the lattice
temporal extent or inverse physical temperature T.
Moreover the mean value of any intensive operator O,
as for instance the scalar and pseudoscalar condensates, or
any correlation function, in the Q ¼ 0 topological sector,
can be computed as

hOiQ¼0 ¼
R
dθhOiθZðθ; mÞR
dθZðθ; mÞ ð5Þ

with hOiθ the mean value of O computed with the
integration measure (1).

1We should notice however that the results of Ref. [23] for the
two-flavor case do not agree with those of Ref. [18], and any
further clarification on this point would be therefore welcome.
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We are also assuming along this paper that the
topological effects of the Uð1ÞA anomaly survive in
the high temperature phase of QCD, or in other words,
that the free energy density (4) shows a non trivial θ-
dependence also in the high temperature chiral symmetric
phase. Then, since the free energy density, as a function of
θ, has its absolute minimum at θ ¼ 0 for non-vanishing
quark masses, the following relation holds in the infinite
lattice volume limit

hOiQ¼0 ¼ hOiθ¼0: ð6Þ
We want to remark that, as discussed in [22], in spite of
the fact that the Q ¼ 0 topological sector is free from the
Uð1ÞA global anomaly, and spontaneously breaks the
UðNfÞA axial symmetry at T ¼ 0, Eq. (6) is compatible
with a massive flavor-singlet pseudoscalar meson in the
chiral limit. We will also make use of Eq. (6) along
this paper.
Let us consider, for simplicity, the two-flavor model with

degenerate up and down quark masses. In the high temper-
ature phase the SUð2ÞA symmetry is fulfilled in the ground
state for massless quarks, and therefore the mean value of
the flavor singlet scalar condensate hSi, as well as of any
order parameter for this symmetry, vanishes in the chiral
limit. Moreover the infinite lattice volume limit and the
chiral limit should commute, provided the order parameter
remains bounded. In addition Eq. (6) implies that the
SUð2ÞA symmetry is also fulfilled in the Q ¼ 0 topological
sector. However, the Uð1ÞA symmetry should be sponta-
neously broken in this sector, giving account in this way
for the Uð1ÞA anomaly.2 In fact, the σ and η correlation
functions, which take in theQ ¼ 0 sector the same value as
in QCD at θ ¼ 0 (6), should be different in the chiral limit,
and the difference of these correlation functions is an order
parameter for the Uð1ÞA symmetry of the Q ¼ 0 sector.

Therefore we can characterize the ground states of the
Q ¼ 0 sector, in the chiral limit, by an angle α.
Let us assume that the correlation length, and hence the σ

susceptibility, χσðmÞ, are finite in the chiral limit. In such a
case the flavor singlet scalar condensate behaves as

hSiθ¼0m→0
≈ χσð0Þm ð7Þ

but since Eq. (6) tells us that hSiQ¼0 ¼ hSiθ¼0, Eq. (7)
holds also in the Q ¼ 0 sector,

hSiQ¼0m→0
≈ χσð0Þm: ð8Þ

The Q ¼ 0 sector is on the other hand free from the Uð1ÞA
global anomaly, hence the following relation between the
flavor singlet scalar condensate hSiQ¼0, and the η and π̄
susceptibilities, χηðmÞQ¼0, χπ̄ðmÞQ¼0, holds in this sector3

χπ̄ðmÞQ¼0 ¼ χηðmÞQ¼0 ¼
hSiQ¼0

m
: ð9Þ

Equations (8) and (9) tell us that the flavor singlet scalar
and pseudoscalar susceptibilities, in the Q ¼ 0 sector, take
the same value, χσð0Þ, in the chiral limit, and this is a rather
unexpected result because χσð0ÞQ¼0 − χηð0ÞQ¼0 is an order
parameter for the spontaneously broken Uð1ÞA symmetry.
A loophole to this paradoxical result would be a

divergent flavor singlet scalar susceptibility, χσðmÞ, in
the chiral limit. However it could also be that, for some
accidental reason, the quark mass term selects an α -ground
state, in the chiral limit, in which χσð0ÞQ¼0 ¼ χηð0ÞQ¼0. We
will therefore continue exploring the physical conse-
quences of assuming the correlation length, and χσðmÞ,
are finite in the chiral limit.
The flavor singlet scalar hSðxÞSð0ÞiQ¼0 and pseudosca-

lar hPðxÞPð0ÞiQ¼0 correlation functions transform under
Uð1ÞA rotations of angle α as

hSðxÞSð0ÞiαQ¼0 ¼ cos2αhSðxÞSð0Þiα¼0
Q¼0 þ sin2αhPðxÞPð0Þiα¼0

Q¼0 þ sin α cos αðhSðxÞPð0Þiα¼0
Q¼0 þ hPðxÞSð0Þiα¼0

Q¼0Þ
hPðxÞPð0ÞiαQ¼0 ¼ sin2αhSðxÞSð0Þiα¼0

Q¼0 þ cos2αhPðxÞPð0Þiα¼0
Q¼0 − sin α cos αðhSðxÞPð0Þiα¼0

Q¼0 þ hPðxÞSð0Þiα¼0
Q¼0Þ ð10Þ

and therefore the flavor singlet scalar and pseudoscalar susceptibilities, in theQ ¼ 0 sector, in the chiral limit, take the value
χσð0Þ not only in the ground state selected by the quark mass term, but also in all the other α-states, provided that parity is
not spontaneously broken.4

Moreover a simple calculation, based on an anomalous Uð1ÞA transformation in the chiral limit, gives the following
relation for the θ-dependence of the flavor singlet scalar correlation function at vanishing quark mass

4Because SUð2ÞA symmetry is fulfilled in the Q ¼ 0 sector in the chiral limit, the flavor singlet scalar and pseudoscalar condensates
vanish in the α-ground state selected by the quark-mass term, and therefore also in all other α-states. Hence the disconnected
contributions to the connected correlation functions are always canceled.

3Notice that notwithstanding the σ and π̄ susceptibilities in the Q ¼ 0 sector are equal to the corresponding quantities in QCD at
θ ¼ 0 in the thermodynamic limit, this is not true for the η susceptibility, as discussed in Ref. [22].

2The Goldstone theorem however can be fulfilled without a Nambu-Goldstone boson [22].
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hSðxÞSð0Þim¼0
θ ¼ cos2

�
θ

2

�
hSðxÞSð0Þim¼0

θ¼0

þ sin2
�
θ

2

�
hPðxÞPð0Þim¼0

θ¼0 ð11Þ

By performing the integral over the θ-angle in Eq. (11), as
stated by Eq. (5), we get

hSðxÞSð0Þim¼0
Q¼0 ¼

1

2
hSðxÞSð0Þim¼0

θ¼0 þ 1

2
hPðxÞPð0Þim¼0

θ¼0

ð12Þ

and therefore a similar relation for the susceptibilities
holds

χσð0ÞQ¼0 ¼
χσð0Þ þ χηð0Þ

2
: ð13Þ

The flavor singlet scalar susceptibility of the Q ¼ 0
sector in the chiral limit is the average of this quantity
over all α-ground states [29], but we have previously
shown that it takes the same value, χσð0Þ, in all
α-ground states. The compatibility of this result with
Eq. (13) requires therefore the η and σ susceptibilities
to be equal, in contradiction with the assumption that
the topological effects of the Uð1ÞA anomaly survive in the
high temperature phase.
We conclude that the assumption on the finitude of the

correlation length and σ-susceptibility in the chiral limit
is wrong, this susceptibility diverges, and the free energy
density is therefore singular at m ¼ 0.
Under the standard assumption that the critical behavior

of the model is well described by a power law for the flavor
singlet scalar condensate

hSiθ¼0m→0
≈ CðTÞm1

δ ð14Þ

we get that the flavor singlet scalar susceptibility χσ
diverges at any T ≥ Tc in the chiral limit as5

χσðmÞ ≈ CðTÞ 1
δ
m

1−δ
δ ; ð15Þ

and since the SUð2ÞA symmetry is not anomalous, the pion
susceptibility verifies the relation

χπ̄ðmÞ ¼ hSi
m

; ð16Þ

and diverges also in the chiral limit as

χπ̄ðmÞ ≈ CðTÞm1−δ
δ : ð17Þ

Moreover the vector meson δ̄ susceptibility, χδ̄, which is
bounded by the scalar susceptibility, χσ, verifies the
following inequality

χπ̄ðmÞ − χδ̄ðmÞ ≥ χπ̄ðmÞ − χσðmÞ ≈ CðTÞ δ − 1

δ
m

1−δ
δ ð18Þ

which shows explicitly that χπ̄ðmÞ − χδ̄ðmÞ diverges in the
chiral limit.
This result seems to be ruled out by the results of a

numerical simulation of two-flavor QCD by Tomiya et al.
reported in Ref. [23], where they find a value of χπ̄ðmÞ −
χδ̄ðmÞ in the chiral limit, and in a temperature range T ∼
190–220 MeV slightly above the critical temperature Tc,
that not only does not diverge but is compatible with zero.
However, previous results by Dick et al. [18] on larger
lattices, but using overlap fermions only in the valence
sector, seem to predict a divergent χπ̄ðmÞ − χδ̄ðmÞ in the
chiral limit, in agreement with Eq. (18).

III. PHASE DIAGRAM OF QCD IN THE Q= 0
TOPOLOGICAL SECTOR

The nonanalyticity of the free energy density at m ¼ 0
can also be shown by an alternative or complementary way.
The SUð2ÞA symmetry is fulfilled in QCD at any T > Tc,
and therefore the up and down scalar condensates hSui,
hSdi vanish in the chiral limitmu ¼ md ¼ 0. However if we
consider QCD with two nondegenerate quark flavors, and
take the limit mu → 0 keeping md fixed, or vice versa, the
condensate hSui, or hSdi, takes a nonvanishing mean value
due to the fact that the Uð1Þu symmetry at mu ¼ 0, or the
Uð1Þd symmetry at md ¼ 0, which would enforce the
condensate to be zero, is anomalous. But since Eq. (6)
can be applied to these condensates, this result tell us that
the Q ¼ 0 topological sector, which is not anomalous,
spontaneously breaks the Uð1Þu axial symmetry atmu ¼ 0,
md ≠ 0, and the Uð1Þd symmetry at md ¼ 0, mu ≠ 0. The
phase diagram of QCD in the Q ¼ 0 topological sector, in
the ðmu;mdÞ plane, shows therefore two first order phase
transition lines, which coincide with the coordinate axes,
finishing at the end point mu ¼ md ¼ 0, which is a critical
point for any T > Tc.
Equation (6) tell us that the critical equation of state

of QCD at θ ¼ 0 should be the same as the one of the
Q ¼ 0 topological sector, which should show a divergent
correlation length at any T > Tc. We expect therefore a
continuous finite temperature chiral transition, and a
divergent correlation length for any T ≥ Tc, and because
the symmetry breaking pattern is, in the two flavor model,
SUð2ÞL × SUð2ÞR → SUð2ÞV , the critical equation of state
should be that of the three-dimensional Oð4Þ vector

5The critical exponent δ should be that of the three-dimen-
sional Oð4Þ vector universality class, δ ¼ 4.789ð6Þ, at T ¼ Tc.
Universality arguments suggest it would be T-independent, but
we do not exclude a temperature dependence of δ corresponding
to a critical line with continuously varying critical exponents.
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universality class [30], which shows a critical exponent
δ ¼ 4.789ð6Þ [31] (δ ¼ 3 in the mean field or Landau
approach).
For Nf ≥ 3 a similar argument on the phase diagram of

the Q ¼ 0 sector applies, but the scenario that emerges in
this case is also not plausible because no stable fixed points
are expected in the corresponding Landau-Ginzburg-
Wilson Φ4 theory compatible with the given symmetry-
breaking pattern [32].

IV. CONCLUSIONS AND DISCUSSION

The aim to elucidate the existence of new low-mass
weakly interacting particles from a theoretical, phenom-
enological, and experimental point of view, is intimately
related to the role of the θ parameter in QCD. Indeed the
axion is one of the more interesting candidates to make the
dark matter of the universe, and the QCD axion model
relates the topological susceptibility χT at θ ¼ 0 with the
axion mass ma and decay constant fa through the relation
χT ¼ m2

af2a, the axion mass being an essential ingredient in
the calculation of the axion abundance in the Universe.
Moreover, the way in which the Uð1ÞA anomaly manifests
itself in the chiral symmetry restored phase ofQCD at high
temperature could be tested when probing the QCD phase
transition in relativistic heavy ion collisions.
With these motivations we started recently an inves-

tigation of the topological properties of QCD in the
high temperature chiral symmetric phase in Ref. [22].
The starting hypothesis in [22] was to assume that the
perturbative expansion of the free energy density in
powers of the quark mass, m, has a nonvanishing
convergence radius in the high temperature chiral sym-
metric phase of QCD, which is just what we expect if all
correlation lengths remain finite in the chiral limit, and
the spectrum of the model shows therefore a mass gap
also in this limit. The main conclusion in [22] was that
all the topological effects of the axial anomaly should
disappear in this phase, the topological susceptibility
and all θ-derivatives of the free energy density vanish,
and the theory becomes θ independent at any T > Tc in
the infinite-volume limit. Accordingly, the free energy

density should be a singular function of the quark mass,
in the chiral limit, if the topological effects of the Uð1ÞA
anomaly survive in the chiral symmetry restored phase of
QCD at finite temperature.
Ongoing with this research line, the main purpose of this

article has been to further investigate this issue. To this
end our starting hypothesis has been now to assume that
the topological effects of the anomaly survive in the high
temperature phase of QCD, and the model shows therefore
a nontrivial θ-dependence in this phase. Under this
assumption we have shown that indeed, the free energy
density is a singular function of the quark mass, m, in the
chiral limit at any T > Tc, and that the correlation length
and the σ and π̄ susceptibilities diverge in this limit. Under
the same assumption we have also shown that the differ-
ence between the π̄ and δ̄ susceptibilities diverges in the
chiral limit at any T ≥ Tc, a result which seems to be
excluded by recent results of Tomiya et al. [23] from
numerical simulations of two-flavor QCD, thus suggesting
the topological effects of the Uð1ÞA anomaly are absent in
the chiral symmetric phase of two-flavor QCD. However,
previous results by Dick et al. [18] on larger lattices, but
using overlap fermions only in the valence sector, seem to
predict a divergent χπ̄ðmÞ − χδ̄ðmÞ in the chiral limit, in
agreement with Eq. (18), and any further clarification on
this point would be therefore welcome.
We have also discussed that the previous results for the

two-flavor model apply also to Nf ≥ 3. However, univer-
sality and renormalization-group arguments, based on the
most general Landau-Ginzburg-Wilson Φ4 theory compat-
ible with the given symmetry-breaking pattern, make this
scenario not plausible too because no stable fixed points are
expected in the corresponding Landau-Ginzburg-Wilson
Φ4 theory for Nf ≥ 3 [32].

ACKNOWLEDGMENTS

We acknowledge Sayantan Sharma for clarifying us
some details of his work [18]. This work was funded by
Ministerio de Economía y Competitividad under Grant
No. FPA2015-65745-P (MINECO/FEDER).

[1] E. Vicari and H. Panagopoulos, Phys. Rep. 470, 93 (2009).
[2] S. Weinberg and F. Wilczek, Phys. Rev. Lett. 40, 223 (1978).
[3] F. Wilczek, Phys. Rev. Lett. 40, 279 (1978).
[4] R. D. Peccei and H. R. Quinn, Phys. Rev. Lett. 38, 1440

(1977); Phys. Rev. D 16, 1791 (1977).
[5] C. Bonati, M. D’Elia, M. Mariti, G. Martinelli, M. Mesiti, F.

Negro, F. Sanfilippo, and G. Villadoro, J. High Energy Phys.
03 (2016) 155.

[6] P. Petreczky, H-P. Schadler, and S. Sharma, Phys. Lett. B
762, 498 (2016).

[7] S. Borsanyi et al., Nature (London) 539, 69 (2016).
[8] T. D. Cohen, Phys. Rev. D 54, R1867 (1996).
[9] T. D. Cohen, arXiv:nucl-th/9801061.

[10] C. Bernard, T. Blum, C. DeTar, S. Gottlieb, U. M. Heller,
J. E. Hetrick, K. Rummukainen, R. Sugar, D. Toussaint, and
M. Wingate, Phys. Rev. Lett. 78, 598 (1997).

TOPOLOGY IN THE SUðNfÞ CHIRAL SYMMETRY … PHYSICAL REVIEW D 96, 014505 (2017)

014505-5

https://doi.org/10.1016/j.physrep.2008.10.001
https://doi.org/10.1103/PhysRevLett.40.223
https://doi.org/10.1103/PhysRevLett.40.279
https://doi.org/10.1103/PhysRevLett.38.1440
https://doi.org/10.1103/PhysRevLett.38.1440
https://doi.org/10.1103/PhysRevD.16.1791
https://doi.org/10.1007/JHEP03(2016)155
https://doi.org/10.1007/JHEP03(2016)155
https://doi.org/10.1016/j.physletb.2016.09.063
https://doi.org/10.1016/j.physletb.2016.09.063
https://doi.org/10.1038/nature20115
https://doi.org/10.1103/PhysRevD.54.R1867
http://arXiv.org/abs/nucl-th/9801061
https://doi.org/10.1103/PhysRevLett.78.598


[11] S. Chandrasekharan, D. Chen, N. H. Christ, W.-J. Lee, R.
Mawhinney, and P. M. Vranas, Phys. Rev. Lett. 82, 2463
(1999).

[12] H. Ohno, U. M. Heller, F. Karsch, and S. Mukherjee, Proc.
Sci., LATTICE2011 (2011) 210.

[13] A. Bazavov et al. (HotQCD Collaboration), Phys. Rev. D
86, 094503 (2012).

[14] T. G. Kovacs and F. Pittler, Proc. Sci., LATTICE2011
(2011) 213.

[15] G. Cossu, S. Aoki, S. Hashimoto, T. Kaneko, H. Matsufuru,
J.-i. Noaki, and E. Shintani, Proc. Sci., LATTICE2011
(2011) 188.

[16] S. Aoki, H. Fukaya, and Y. Taniguchi, Phys. Rev. D 86,
114512 (2012).

[17] G. Cossu, S. Aoki, H. Fukaya, S. Hashimoto, T. Kaneko,
and H. Matsufuru, Phys. Rev. D 87, 114514 (2013); 88,
019901 (2013).

[18] V. Dick, F. Karsch, E. Laermann, S. Mukherjee, and S.
Sharma, Phys. Rev. D 91, 094504 (2015).

[19] G. Cossu et al., Proc. Sci., LATTICE2015 (2016) 196.
[20] T. Kanazawa and N. Yamamoto, J. High Energy Phys. 01

(2016) 141.

[21] B. B. Brandt, A. Francis, H. B. Meyer, O. Philipsen, D.
Robainad, and H. Wittig, J. High Energy Phys. 12 (2016)
158.

[22] V. Azcoiti, Phys. Rev. D 94, 094505 (2016).
[23] A. Tomiya, G. Cossu, S. Aoki, H. Fukaya, S. Hashimoto,

T. Kaneko, and J. Noaki, arXiv:1612.01908.
[24] H.-T. Ding, Proc. Sci., LATTICE2016 (2017) 022 [arXiv:

1702.00151].
[25] P. H. Ginsparg and K. G. Wilson, Phys. Rev. D 25, 2649

(1982).
[26] H. Neuberger, Phys. Lett. B 417, 141 (1998); 427, 353

(1998).
[27] M. Luscher, Phys. Lett. B 428, 342 (1998).
[28] P. Hasenfratz, V. Laliena, and F. Niedermayer, Phys. Lett. B

427, 125 (1998).
[29] V. Azcoiti, V. Laliena, and X. Q. Luo, Phys. Lett. B 354, 111

(1995).
[30] R. D. Pisarski and F. Wilczek, Phys. Rev. D 29, 338

(1984).
[31] M. Hasenbusch, J. Phys. A 34, 8221 (2001).
[32] E. Vicari, Proc. Sci., LATTICE2007 (2007) 023.

VICENTE AZCOITI PHYSICAL REVIEW D 96, 014505 (2017)

014505-6

https://doi.org/10.1103/PhysRevLett.82.2463
https://doi.org/10.1103/PhysRevLett.82.2463
https://doi.org/10.1103/PhysRevD.86.094503
https://doi.org/10.1103/PhysRevD.86.094503
https://doi.org/10.1103/PhysRevD.86.114512
https://doi.org/10.1103/PhysRevD.86.114512
https://doi.org/10.1103/PhysRevD.87.114514
https://doi.org/10.1103/PhysRevD.88.019901
https://doi.org/10.1103/PhysRevD.88.019901
https://doi.org/10.1103/PhysRevD.91.094504
https://doi.org/10.1007/JHEP01(2016)141
https://doi.org/10.1007/JHEP01(2016)141
https://doi.org/10.1007/JHEP12(2016)158
https://doi.org/10.1007/JHEP12(2016)158
https://doi.org/10.1103/PhysRevD.94.094505
http://arXiv.org/abs/1612.01908
http://arXiv.org/abs/1702.00151
http://arXiv.org/abs/1702.00151
https://doi.org/10.1103/PhysRevD.25.2649
https://doi.org/10.1103/PhysRevD.25.2649
https://doi.org/10.1016/S0370-2693(97)01368-3
https://doi.org/10.1016/S0370-2693(98)00355-4
https://doi.org/10.1016/S0370-2693(98)00355-4
https://doi.org/10.1016/S0370-2693(98)00423-7
https://doi.org/10.1016/S0370-2693(98)00315-3
https://doi.org/10.1016/S0370-2693(98)00315-3
https://doi.org/10.1016/0370-2693(95)00602-H
https://doi.org/10.1016/0370-2693(95)00602-H
https://doi.org/10.1103/PhysRevD.29.338
https://doi.org/10.1103/PhysRevD.29.338
https://doi.org/10.1088/0305-4470/34/40/302

