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We study the confinement-deconfinement transition in SUð2Þ gauge theory in the presence of bosons
with vanishing bare mass using lattice Monte Carlo simulations. The nature of this transition depends on
the temporal extent (Nτ) of the Euclidean lattice. We find that the transition is a crossover for Nτ ¼ 2, 4 and
second order with the three-dimensional Ising universality class for Nτ ¼ 8. Our results show that the
second-order transition is accompanied by the realization of the Z2 symmetry.
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I. INTRODUCTION

Gauge theories such as quantum chromodynamics
(QCD), the standard model, etc. at finite temperatures are
relevant for describing the phase transitions in the early
Universe and in relativistic heavy-ion collisions. The pure
gauge parts of these theories undergo the confinement-
deconfinement (CD) transition [1,2] at high temperatures.
The corresponding pure gauge Euclidean actions are invari-
ant under a class of gauge transformations represented by the
center ZN of the SUðNÞ group. This ZN symmetry [3,4]
plays an important role in the CD transition. In many ways,
the nature of the CD transition is found to be similar to the
transition in spin systems with ZN symmetry. The ZN
symmetry is spontaneously broken in the deconfined phase
by a nonzero thermal expectationvalue of the Polyakov loop.
This leads to N degenerate phases in the deconfined state.
In the fundamental representation, the ZN symmetry is

explicitly broken in the presence of the matter fields. The
ZN group can act only on the gauge fields and its action on
the matter fields spoils their necessary temporal boundary
condition. This explicit breaking affects the nature of the
CD transition and the thermodynamic behavior of the
phases themselves. It weakens the CD transition and, in
the deconfined phase, all but only one of the N phases
become metastable. The explicit breaking vanishes when
the matter fields are infinitely heavy. So it is expected
that the explicit ZN symmetry breaking is small for large
dynamical masses of the matter fields. In the mean-field
approximation of QCD, the explicit symmetry breaking
turns out to be an effective “uniform” external field acting
on the Polyakov loop [5] when the fermion masses are
large. The strength of the external field grows as the masses
decrease. Nonperturbative studies have found that the CD

transition in SUð2Þ gauge theory with dynamical fermions
is a crossover [6–10]. For SUð3Þ gauge theory, the CD
transition becomes a weak first-order transition for large
fermion mass [11–15]. These results are consistent with the
findings of the mean-field approximation. However, an
extrapolation of this effective external field to the chiral
limit fails to explain the nature of the CD transition and the
Polyakov loop behavior. In this case, the nature of the CD
transition turns out to be the same as the chiral transition
[16,17]. This suggests that, in the chiral limit, the effective
external field is a fluctuating and nonuniform dynamical
field instead of a fixed uniform field. The behaviors of the
chiral transition and the chiral condensate are, however, well
described by a uniform/static field in the chiral limit [18].
It is expected that the explicit breaking of ZN due to

bosonic matter fields also depends on mass. Perturbative
calculations show that the explicit symmetry breaking
increases with a decrease in mass in the presence of
fermionic matter fields [19,20]. A straightforward exten-
sion of these one-loop calculations for bosonic fields gives
similar results. For the massless case, the explicit symmetry
breaking for N ¼ 2 is so large that there are no metastable
states in the deconfined phase. These calculations, how-
ever, are not reliable near the CD transition. Strong
coupling studies of lattice non-Abelian gauge theories
coupled to the Higgs field with the fixed radial mode have
found that the CD transition behaves like a pure gauge CD
transition even for some finite nonzero coupling between
the gauge and Higgs fields [21]. For heavy Higgs fields,
nonperturbative calculations find that the temperature
dependence of the Polyakov loop expectation value shows
a critical behavior above the CD transition point, i.e. hLi ∼
ðT − TcÞ13 [22,23]. A recent study of the ZN symmetry [24]
showed, within the numerical errors, that the strength of the
explicit symmetry breaking vanishes even for a large but
finite Higgs mass. These results indicate clear deviations
from those of perturbative calculations in the presence of
matter fields. It is not clear whether the conventional
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expectation that the transition becomes weaker with the
mass of matter fields, which is observed in QCD, also holds
in the case of SUðNÞ þ Higgs. To address this issue, we
study the CD transition in the presence of the Higgs with
vanishing bare mass using nonperturbative Monte Carlo
simulations. We also compare the nonperturbative and
perturbative results away from the CD transition. To
simplify our study, we consider N ¼ 2 and a vanishing
Higgs quartic coupling.
From lattice simulations, it is known that the thermal

average of the Polyakov loop [3,20] has a strong cutoff
dependence. The Polyakov loop expectationvalue decreases
with the number of temporal sites (Nτ) of the Euclidean
lattice. However, the nature of the pure gauge CD transition
does not depend onNτ [25,26]. In the presence of a massless
Higgs, this transition is found to be dependent onNτ. In this
study, we find that this transition is a crossover forNτ ¼ 2, 4
and second order for Nτ ¼ 8. These results suggest that in
the continuum limit the CD transition is second order. We
also look at the distribution of the Polyakov loop values in
the thermal ensemble. The distribution in the case ofNτ ¼ 8
clearly exhibits the Z2 symmetry, which also explains why
the CD transition is second order. This is surprising as one
would expect maximal symmetry breaking as is observed
in perturbative calculations [19,20] as well as in lattice
QCD [15,27]. Coincidentally the realization of the Z2ðZNÞ
symmetry occurs only when the system is in the Higgs
symmetric phase. This suggests that the strength of the
Higgs condensate may be playing the role of the effective
external field for the CD transition. We think that this
restoration of the Z2ðZNÞ symmetry for larger Nτ is not due
to the trivial continuum limit of pure Higgs theories [28]
since the interaction between the gauge and Higgs increases
with Nτ. We discuss the possible reasons for this realization
of Z2 (or ZN) symmetry in the Higgs symmetric phase later
in Sec. IV.
The paper is organized as follows. In Sec. II we describe

the ZN symmetry in SUðNÞ þ Higgs theory. In Sec. III we
describe our simulations and results for N ¼ 2. This is
followed by conclusions in Sec. IV.

II. THE ZN SYMMETRY IN THE PRESENCE
OF FUNDAMENTAL HIGGS FIELDS

The finite-temperature partition function for a SUðNÞ
gauge field, Aμ, in the path-integral formulation is given by

Z ¼
Z

½DA�e−SG; ð1Þ

with the following gauge action:

SG ¼
Z
V
d3x

Z
β

0

dτ
1

2
½TrðFμνFμνÞ�;

Fμν ¼ ∂μAν − ∂νAμ þ g½Aμ; Aν�: ð2Þ

The gauge field for a given Euclidean component μ is a
N × N matrix, Aμ ¼ TaAa

μ, where the Ta’s are the gen-
erators of the SUðNÞ group. Here β is the inverse of
the temperature T. The path integration is over all Aμ’s
which are periodic along the temporal direction τ, i.e.
AμðτÞ ¼ Aμðτ þ βÞ. This periodicity allows the gauge
transformations UðτÞ to be nonperiodic along the temporal
direction, up to a factor z ∈ ZN as

Uðτ ¼ 0Þ ¼ zUðτ ¼ βÞ: ð3Þ

Though the action is invariant under such gauge trans-
formations, the Polyakov loop

Lðx⃗Þ ¼ 1

N
Tr

�
P

�
exp

�
−ig

Z
β

0

A0dτ

���
; ð4Þ

transforms as L → zL. In the deconfined phase L acquires a
nonzero expectation value which gives rise to the sponta-
neous breaking of ZN symmetry. As a consequence, there
are N degenerate states in the deconfined phase charac-
terized by each element of ZN .
The full Euclidean action in the presence of a bosonic

Higgs field Φ is given by

S¼ SGþ
Z
V
d3x

Z
β

0

dτ
�
1

2
jDμΦj2þm2

2
Φ†Φþ λ

4!
ðΦ†ΦÞ2

�
;

with DμΦ¼ ∂μΦþ igAμΦ: ð5Þ

Here m is the mass of the Φ field and λ is the Higgs self-
interaction coupling constant. In the partition function

Z ¼
Z

½DA�½DΦ�e−S; ð6Þ

the path integration of Φ is over all Φ fields which are
periodic in τ, i.e. ΦðτÞ ¼ Φðτ þ βÞ. Under the action of
the above gauge transformations [Eq. (3)], the transformed
field Φ0 ¼ UΦ will not be periodic in τ. So the actions
of these gauge transformations have to be restricted to the
gauge fields. Consequently, the action will increase under
such gauge transformations, i.e. SðA0;ΦÞ > SðA;ΦÞ, when
the Polyakov loop sector for the configuration A corre-
sponds to the identity of ZN . It is obvious that the increase
in the action will change if the Φ field is varied (Φ → Φ0,
but Φ0 ≠ UΦ) as the gauge fields are gauge transformed.
For some Φ configurations, it is possible to find Φ0 such
that SðA0;Φ0Þ ¼ SðA;ΦÞ [24]. If these Φ configurations
dominate the partition function, then the ZN symmetry will
be effectively realized. In the following, we describe the
simulations of the CD transition for N ¼ 2 and m ¼ 0 ¼ λ
using the above partition function.
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III. SIMULATIONS OF THE CONFINEMENT-
DECONFINEMENT TRANSITION

In the Monte Carlo simulations, the Euclidean space is
discretized into Nτ × N3

s discrete points. Nτ ¼ 1=ðaTÞ and
Ns ¼ ðL=aÞ are the number of lattice points along the
temporal and spatial directions, respectively. a is the lattice
spacing and L is the spatial extent of the Euclidean space.
Each point n on the lattice is represented by a set of four
integers, i.e. n ¼ ðn1; n2; n3; n4Þ. The Higgs field Φn lives
on the lattice site n. The gauge link Uμ ¼ expð−iagAμÞ, on
the other hand, lives on the link connecting the point n to its
nearest neighbor along the positive μ direction. The action
with these discretized field variables with appropriate
scaling in terms of a for m ¼ 0 ¼ λ is given by [29],

S ¼ β
X
p

Tr

�
1 −

Up þ U†
p

2

�
−
1

8

X
μ;n

Re½ðΦ†
nþμUn;μΦnÞ�

þ 1

2

X
n

ðΦ†
nΦnÞ: ð7Þ

In Eq. (7), the first term represents the pure gauge action.Up

is the product of the gauge links going counterclockwise
on the pth elementary square/plaquette on the lattice. The
Polyakov loop at any spatial point n is given by the path
order product of links on the shortest temporal loop going
through n. The gauge transformation [Eq. (3)] of the gauge
fields is equivalent to the multiplication of all the temporal
links on a fixed τ slice by z ∈ ZN. The second term
represents the interaction of the gauge and Higgs fields.
This term is not invariant under the gauge transformations
[Eq. (3)] of the gauge fields while the Φ field configuration
is kept fixed. As mentioned above, the Φ fields cannot be
transformed under nonperiodic gauge transformations.
In the Monte Carlo simulations, a sequence of statistically

independent configurations of (Φn,Uμ;n) are generated. This

is achieved by repeatedly updating an arbitrary initial
configuration using numerical methods which follow the
Boltzmann probability factor e−S and the principle of
detailed balance among the configurations in the sequence.
To update the gauge fields, we first use the standard heat bath
algorithm [30,31], and then update the Higgs fields using the
pseudo–heat bath algorithm [32]. We then again update the
gauge fields using four over-relaxation steps [33] after which
the Higgs fields are updated again using the pseudo–heat
bath algorithm. To reduce autocorrelation between succes-
sive configurations along the sequence (Monte Carlo his-
tory) we carry out ten cycles of this updating procedure
between subsequent measurements. For our simulations, we
use the publicly available MILC code [34] and modify it to
accommodate the Higgs fields.
The CD transition is studied for three values ofNτ ¼ 2, 4

and 8. For Nτ ¼ 2, we consider three spatial volumes,
Ns ¼ 8, 10, 12. For Nτ ¼ 4, we consider Ns ¼ 16, 20
and 24. For Nτ ¼ 8, we consider Ns ¼ 32, 40 and 48. For
each volume, we analyze 100 000 configurations. However,
we have lower statistics for β values far away from βc,
particularly for the two biggest volumes 403 × 8 and
483 × 8. The Polyakov loop, susceptibility and Binder
cumulant are computed for various values of β to locate
the transition point. We carry out the error analysis using
the jackknife method with a bin size of 10 000 configu-
rations. We also compute the volume average of Φ†Φ and
the interaction term. It is important to note that even though
the Φ field is massless at the tree level, the fluctuations
are finite. This is because the interaction with the gauge
fields generates a nonzero finite mass for the Φ field. In the
following section, we describe our simulation results.

A. The CD transition for Nτ = 2 and 4

The Polyakov loop hjLji vs β for Nτ ¼ 2 and Nτ ¼ 4 are
shown in Figs. 1(a) and 1(b), respectively. hjLji grows with
β with a sharp increase around the transition. The one-loop
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FIG. 1. The Polyakov loop average vs β for (a) Nτ ¼ 2, and (b) Nτ ¼ 4.
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β-function temperature dependence of hjLji is found to
be consistent with the power law, hjLji ∼ ðT − TcÞ1=3 [23].
However hjLji does not show any volume dependence. The
peak height of the Polyakov loop susceptibility does not
vary with volume.
The Binder cumulant [35]

UL ¼ 1 −
hL4i
3hL2i2 ; ð8Þ

for different β are shown in Figs. 2(a) and 2(b) for Nτ ¼ 2
and Nτ ¼ 4, respectively. In both cases the variation in UL
decreases for larger volumes. For Nτ ¼ 2, UL is almost flat
against β. This behavior of the Binder cumulant is exactly
the opposite of what is expected in a second-order phase
transition. The only explanation for these results is that
the correlation length is finite and does not grow with
volume. The sharp variation of the Polyakov loop around
βc ∼ 1.8ðNτ ¼ 2Þ and βc ∼ 2.29ðNτ ¼ 4Þ only suggests a
crossover for the CD transition.

B. The CD transition for Nτ = 8

The behavior of the Polyakov loop for Nτ ¼ 8 is
completely different from that of Nτ ¼ 2 and 4. The
Polyakov loop hjLji around the transition point βc behaves
almost like the magnetization in the Ising model. The
results for hjLji vs β for different volumes are shown in
Fig. 3(a). In this case, hjLji clearly shows a volume
dependence. The volume dependence of the susceptibility
χc of the Polyakov loop around the transition point is
shown in Fig. 4(a). In Figs. 3(b) and 4(b), we show the
magnetization and susceptibility vs ðL1=νðβ − βcÞ=βcÞ,
respectively. We see that both quantities collapse to single
curves.
We find the value of the exponent, γ=ν, by studying the

finite-size scaling of the location of the maxima of the χc’s
similar to Ref. [36]. However instead of using the reweight-
ing method to determine χcmax, we use the cubic spline
interpolation method to generate a few hundred points
close to βχmax for every jackknife sample since we have a
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FIG. 2. UL vs β for different volumes for (a) Nτ ¼ 2, and (b) Nτ ¼ 4.
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FIG. 3. Nτ ¼ 8. (a) The Polyakov loop vs β for different volumes, and (b) the scaled Polyakov loop vs β for different volumes.
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reasonable amount of data near the peak for each volume.
The scaling behavior of χcmax as a function of spatial
volume, L, is shown in Fig. 6(a). We obtain γ=ν ¼ 1.97ð4Þ.
The Binder cumulant for Nτ ¼ 8 is shown in Fig. 5(a).

While the ULðβÞ for different volumes do not intersect for
Nτ ¼ 2 and 4, they do forNτ ¼ 8 in a narrow region around
the transition point. To determine βc and the corresponding
value of the Binder cumulant, we use the following finite-
size behavior of UL in the vicinity of the critical point:

UL ≈ a0 þ a1ðβ − βcÞ=βcL1=ν þ a2L−ω þ � � � : ð9Þ

By following the same procedure as in Ref. [37], we can
write

βeffc ¼ βcð1 − αϵÞ; where ϵ ¼ L−1=ν−ω 1 − b−ω

b1=ν − 1
;

b ¼ L0

L
; b > 1: ð10Þ

The crossing point of the straight lines of two different
spatial volumes provides βeffc . By using the three-
dimensional (3D) Ising values of ν ¼ 0.6298 and
ω ¼ 0.825, we obtain βc in the limit ϵ → 0 as
βc ¼ 2.5063ð4Þ. Figure 5(b) shows that UL vs ðL1=νðβ −
βcÞ=βcÞ for different volumes collapse to a single curve.
To obtain the infinite-volume Binder cumulant, Uc, we use
the following relation:

Ueff
c ¼Ucð1þα0ϵ0Þ; where ϵ0 ¼L−ω1−b−ω−1=ν

1−b−1=ν
: ð11Þ

In Fig. 6(b), we show Ueff
c vs ϵ0. In the limit ϵ0 → 0,

we obtain Uc ¼ 0.468ð4Þ. To determine the exponent
β=ν, we find the magnetization at βc for each volume
using cubic spline interpolation. Using hjLjijβc ∼ Lβ=ν, we
get β=ν ¼ 0.53ð3Þ.
The above values of β=ν, γ=ν and ULðβcÞ from our

computations are close to the 3D Ising values. These results

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

2.490 2.495 2.500 2.505 2.510 2.515 2.520 2.525

χc

β

323 x 8
403 x 8
483 x 8

(a)

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

0.0007

0.0008

-4 -3 -2 -1  0  1  2  3  4

χc   
L

-γ
/ν

 L1/ν  (β  - βc /  ) βc 

βc = 2.5063 , γ /ν = 1.96, ν = 0.6298 323 x 8
403 x 8
483 x 8

(b)
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seem to show that the CD transition transition for Nτ ¼ 8 is
a second-order phase transition.

C. The Z2 symmetry of the Polyakov loop

The different Nτ studies clearly show that the nature of
the CD transition depends on Nτ. The change in the nature
of the CD transition from Nτ ¼ 8 to Nτ ¼ 2, 4 is similar to
that of the Ising transition when the external field is
increased. So it is possible that the explicit breaking of
the Z2 symmetry decreases with an increase inNτ. To check
this, we compute the histogram of the Polyakov loop near
the transition point for Nτ ¼ 2, 4 and 8. For Nτ ¼ 2 and 4,
no Z2 symmetry is observed in the distribution of the
Polyakov loop. On the deconfinement side and close to
the transition point, the histograms always show one peak
located on the positive real axis. Away from the transition
point and inside the deconfinement phase, locally stable
states are observed for which the Polyakov loop is negative.
In Fig. 7(a) the histogram of the Polyakov loopHðLÞ vs jLj
for β ¼ 2.2 is shown for Nτ ¼ 2. HðLÞ is normalized to 2.
There is no Z2 symmetry between either the locations or the
widths of the peaks. So the behavior of the Polyakov loop
such as the thermal average, fluctuations, correlation
length, etc. are found to be different for these two states.
In contrast, the Polyakov loop exhibits Z2 symmetry for
Nτ ¼ 8. Near the transition point, two peaks symmetrically
located around L ¼ 0 on the real x axis are observed. In
Fig. 7(d), HðLÞ vs jLj is shown for β ¼ 3.20. Though 106

measurements are used to compute all the data points in
Fig. 7(d), each individual point in the figure is the average
over (HðLÞ � 106) configurations for which the Polyakov
loop values belong to a small bin centered at L. For
example, the peaks of the histogram result from about
∼1.5 × 104 configurations. It is interesting to see thatHðLÞ
for þL and −L agree even with such small statistics. All
physical observables which depend on the temporal gauge
field such as the gauge action and interaction term have the
same average when computed for the two Z2 sector. These

results suggest the effective realization of the Z2 symmetry
for Nτ ¼ 8. We find that the ensemble average of the
interaction term, Ka4 ¼ 1

8

P
μ;nReðΦ†

nþμUn;μΦnÞ in Eq. (7),
increases with Nτ. In Fig. 8, we plot the average of Ka4 per
site near βc for Nτ ¼ 4, 6 and 8. From the one-loop beta
function [23], the lattice spacing near the transition point
for Nτ ¼ 8 is smaller compared to those of Nτ ¼ 4 and 6.
This implies that the interaction K in physical units is
larger for Nτ ¼ 8. Our results suggest that K in the
continuum limit will remain finite. The mass in lattice
units, extracted from correlators of gauge-invariant oper-
ators constructed from the Higgs fields and link variables
[38,39], decreases from Nτ ¼ 4 to Nτ ¼ 8. This seems to
support that the restoration of Z2 is due to the enhance-
ment of the Higgs phase space due to an increase in Nτ.

IV. DISCUSSIONS AND CONCLUSIONS

In this work, we studied the CD transition and Z2

symmetry in SUð2Þ þ Higgs theory for a vanishing bare
mass and quartic coupling of the Higgs field. We found
that the cutoff effects are large. For Nτ ¼ 2 and 4, the CD
transition turns out to be a crossover. The temperature
dependence of the Polyakov loop average seems to show
a critical behavior above the crossover point. However, no
volume dependence is observed in any observable related to
the Polyakov loop. ForNτ ¼ 8, the temperature dependence,
susceptibility and the Binder cumulant of the Polyakov
loop show singular behavior suggesting a second-order CD
transition. Our results for the critical exponents are found to
be consistent with the 3D Ising universality class.
The singular behavior of the Polyakov loop forNτ ¼ 8 is

accompanied by the effective realization of the Z2 sym-
metry. Z2 symmetric peaks were observed in the histogram
of the Polyakov loop in the deconfined phase near the
transition point. Thermal averages such as the fluctuations
of the Polyakov loop, the interaction term between the
gauge and the Higgs field, the gauge action, etc. were all
found to be same for the two deconfined states related
by Z2 symmetry. Note that the interaction between the
Higgs and gauge fields are nonzero which implies that the
realization of the Z2 symmetry is not due to the vanishing
or small interaction. We observed that the interaction in a
given physical volume increases with Nτ. From Nτ ¼ 4 to
6, the interaction increases by a factor of ∼5 and, from
Nτ ¼ 6 to 8, it increases by a factor of ∼3. In our
simulations, we found that fluctuations of the Higgs field
play an important role. A Z2 flip of the gauge fields is
always accompanied by a “realignment” (Φ → Φ0) of the
Higgs configuration. As soon as the Higgs fluctuations are
frozen/fixed, the explicit breaking of Z2 reappears. The
reason why the Z2 realization happens for Nτ ¼ 8 and not
for Nτ ¼ 2 and 4 is the increase in the phase space of the Φ
field with Nτ. With the increase in the phase space, it is
more likely that for a given Φ there exists a Φ0 which can
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compensate for the increase in the action due to the Z2

rotation of the gauge fields. We find that the likelihood of
finding such a Φ0 increases with Nτ. It is important to note
that the Z2 symmetry in our simulations only implies that a
Φ0 exists for every statistically significant Φ. It is obvious
that there will be Φ configurations for which there will not
be any Φ0 even in the limit Nτ → ∞. This is expected to
happen when the Higgs field acquires a condensate. In this
sense, the restoration/realization of the Z2 symmetry is not
exact, and the explicit symmetry breaking is not zero but
statistically insignificant.
Our results may have important implications for the

study of ZN symmetry in the presence of matter fields.
Conventionally, it is expected that in the massless limit
there will be maximal breaking of the Z2 symmetry and the
CD transition will be a crossover. One-loop perturbative
calculations [19,20] for fermions suggest that the explicit
breaking for the massless case will be so large that there

will be no metastable states in the entire deconfinement
phase. A straightforward extension for bosonic fields gives
similar results. However, our nonperturbative results sug-
gest that the explicit breaking is so minimal that metastable
states tend to become degenerate with the stable state in
the continuum. It would be interesting to see if a similar
realization of the ZN symmetry happens for different N and
also in the presence of fermion fields. We plan to study
these issues in our future work.
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