
Constraint on the light quark mass mq from QCD sum rules
in the I = 0 scalar channel

Jia-Min Yuan,1 Zhu-Feng Zhang,1,2,* T. G. Steele,2 Hong-Ying Jin,3 and Zhuo-Ran Huang3
1Physics Department, Ningbo University, Zhejiang 315211, People’s Republic of China

2Department of Physics and Engineering Physics, University of Saskatchewan,
Saskatoon, Saskatchewan S7N 5E2, Canada

3Zhejiang Institute of Modern Physics, Zhejiang University, Zhejiang 310027, People’s Republic of China
(Received 4 May 2017; published 31 July 2017)

In this paper, we reanalyze the I ¼ 0 scalar channel with the improved Monte-Carlo-based QCD sum
rules, which combines the rigorous Hölder-inequality-determined sum rule window and a parametrization
with two-Breit-Wigner-type resonances for the phenomenological spectral density that satisfies the low-
energy theorem for the scalar form factor. Considering the uncertainties of the QCD parameters and the
experimental masses and widths of the scalar resonances σ and f0ð980Þ, we obtain a prediction for light
quark mass mqð2 GeVÞ ¼ 1

2
ðmuð2 GeVÞ þmdð2 GeVÞÞ ¼ 4.7þ0.8

−0.7 MeV, which is consistent with the
Particle Data Group value and QCD sum rule determinations in the pseudoscalar channel. This agreement
provides a consistent framework connecting QCD sum rules and low-energy hadronic physics. We also
obtain the decay constants of σ and f0ð980Þ at 2 GeV, which are approximately 0.64–0.83 and
0.40–0.48 GeV, respectively.

DOI: 10.1103/PhysRevD.96.014034

I. INTRODUCTION

The light quark masses are fundamental parameters in
QCD; thus, it is important to determine these parameters
from different methods. Due to color confinement, the light
quark masses cannot be measured from experiments
directly. Therefore, their values are determined by relating
the light quark masses to other physical quantities which
can be obtained from theories or experiments. The main
QCD-based methods for determining the light quark
masses are lattice QCD (see, e.g., Ref. [1] for a review)
and QCD sum rules (QCDSRs) [2–8].
The pion channel is the most common method to

determine the light quark masses from QCDSRs. In
Ref. [4], Bijnens et al. studied the value of the light quark
mass combination mu þmd in QCD using both finite-
energy sum rules (FESRs) and Laplace sum rules (LSRs)
for the divergence of the axial current with the quantum
numbers of the pion, finding muð1 GeVÞ þmdð1 GeVÞ ¼
12� 2.5 MeV, which leads to a light quark mass
mqð2GeVÞ¼ 1

2
ðmuð2GeVÞþmdð2GeVÞÞ¼4.8�1.0MeV

at the Particle Data Group (PDG) standard energy scale
2 GeV. Later, after including five-loop-order and higher-
order quark-mass corrections to the correlation function of
the same current, a more accurate result mqð2 GeVÞ ¼
4.1� 0.2 MeV was found by using FESRs [7].
In addition to the divergence of the axial current, one can

also relate the light quark masses to other currents. It is
clearly important to establish the self-consistency of the

quark mass extracted from different channels. In Ref. [8],
Cherry et al. used the I ¼ 0 scalar current to study this
problem. By linking the phenomenological spectral density
to the ππ scattering amplitude, they obtained the average
light quark mass mqð1 GeVÞ ¼ 5.2� 0.6 MeV. However,
the main uncertainty in this analysis is determining the
normalization between the theoretical and phenomenologi-
cal spectral density. As discussed in Ref. [3], it is difficult to
assess the hadronic uncertainties in Ref. [8], motivating our
alternative approach. In this paper, we will reinvestigate the
I ¼ 0 scalar channel using the improved Monte-Carlo-
based QCD sum rule methodology recently proposed in
Ref. [9]. After introducing a parametrization with two-
Breit-Wigner-type resonances for the phenomenological
spectral density normalized by the low-energy theorem, a
Monte-Carlo-based analysis will be presented for the QCD
sum rule master equation with the I ¼ 0 scalar current in
the rigorous Hölder-inequality-determined sum rule win-
dow. Based on this analysis, we will give robust constraint
on the light quark mass mq and predictions for the decay
constants of σ and f0ð980Þ.

II. QCD SUM RULE FOR I = 0 SCALAR CHANNEL

We consider the correlation function

Πðq2Þ ¼ i
Z

d4xeiqxh0jTjsðxÞj†sð0Þj0i; ð1Þ

where js ¼ mq
1ffiffi
2

p ðūuþ d̄dÞ is the I ¼ 0 renormalization

group invariant scalar current and mq ¼ 1
2
ðmu þmdÞ is the

average mass of u and d quarks. The theoretical*zhangzhufeng@nbu.edu.cn
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representation of this function has been calculated by using
the operator product expansion (OPE) method [10–12];
however, it is believed that other nonperturbative contri-
butions to the correlation function must be included, and
thus we also should include the instanton contribution

ΠðinstÞðq2Þ in the theoretical representation of the correla-
tion function [13–17].
To obtain a QCD sum rule, we first need to Borel-

transform the theoretical representation of the correlation
function, which gives [10–17]

RðtheoÞðτ; m̂qÞ ¼
1

τ
B̂ΠðOPEÞðq2Þ þ 1

τ
B̂ΠðinstÞðq2Þ

¼ m2
qð1=

ffiffiffi
τ

p Þ ·
�

3

8π2

�
1þ 17

3

αsð1=τÞ
π

�
1

τ2
þ 3

8π2
αsð1=τÞ

π

2

τ2
ðγE − 1Þ þ hαsG2i

8π

�
1þ 11

2

αsð1=τÞ
π

�

þ 3hmqq̄qi
�
1þ 13

3

αsð1=τÞ
π

�
−
176

27
πκαshq̄qi2

�
αsð1=τÞ
αsðμ20Þ

�
1=9

τ þ 3

8π2
e
−ρ2
2τ ρ2

τ3

�
K0

�
ρ2

2τ

�
þ K1

�
ρ2

2τ

���
;

ð2Þ

where B̂ is the Borel transformation operator, αsð1=τÞ ¼
4π=ð9 lnð1=ðτΛ2

QCDÞÞÞ is the running coupling constant for
three flavors at scale 1=

ffiffiffi
τ

p
(the QCD scale ΛQCD ¼

0.353 GeV [18]), κ is the vacuum factorization violation
factor which parameterizes the deviation of the four-quark
condensate from a product of two-quark condensates, ρ is
the instanton size in the instanton liquid model, and K0 and
K1 are modified Bessel functions. We have considered the
renormalization group (RG) improvement of the sum rules
[19] and anomalous dimensions for condensates [20,21]
in Eq. (2), where μ0 is the renormalization scale for
condensates, and

mqð1=
ffiffiffi
τ

p Þ ¼ m̂q ·

"
4π

9 lnð 1
τΛ2

QCD
Þ

 
1 −

64

81

lnðlnð 1
τΛ2

QCD
ÞÞ

lnð 1
τΛQCD

Þ

!#4=9

ð3Þ
is the running light quarkmass at scale 1=

ffiffiffi
τ

p
where m̂q is the

RG-invariant light quark mass. In Eq. (2), we also have
included the αs corrections to dimension-4 operators, which
may play an important role in the determination of the QCD
sum rule window from the Hölder inequality as in Ref. [9].
It is also necessary to construct a phenomeno-

logical spectral density model which is related to the
correlation function through the dispersion relation
integral. Considering the resonance nature of scalar mesons,
we insert the lowest two-pion intermediate state,1 as
part of a complete set, into Eq. (1); i.e., by in-

serting
R d3k1

ð2πÞ32Ek1

d3k2
ð2πÞ32Ek2

ðjπþðk1Þπ−ðk2Þihπþðk1Þπ−ðk2Þjþ
1
2!
jπ0ðk1Þπ0ðk2Þihπ0ðk1Þπ0ðk2ÞjÞ þ “other intermediate

states” for the correlation function of current js and using
Cutkosky’s cutting rules [22], the phenomenological expres-
sion for ImΠðsÞ can then be found,

ImΠðphenÞðsÞ

¼ 3

64π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

4m2
π

s

r
jFsðsÞj2

þcontributions from excited states and continuum ðESCÞ;
ð4Þ

where mπ is the mass of the pion, and h0jjsð0Þj×
πþðk1Þπ−ðk2Þi¼ 1ffiffi

2
p Fsððk1þk2Þ2Þ has been used. We have

classified all contributions from intermediate states other
than the two-pion intermediate state, including those from
the four-pion intermediate state, into contributions from
ESC. According to chiral perturbative theory (ChPT), the
scalar form factor FsðsÞwill be normalized by a low-energy
theorem Fsð0Þ ¼ m2

π [23], so we will constrain our phe-
nomenological spectral density with this condition in the
following.
In Ref. [8], the phenomenological spectral density for

the I ¼ 0 scalar channel is related to the ππ scattering
amplitude via the scalar form factor FsðsÞ. However,
because of a lack of experimental data consistent with
ChPT at some energy scale, Cherry et al. introduced
multiple assumptions for their phenomenological spectral
density, which dominated the uncertainties in their analysis.
In this paper, we will perform an independent analysis by
parameterizing the phenomenological spectral density with
the mass spectrum for the I ¼ 0 scalar channel directly and
incorporate the ChPT low-energy theorem.
The 0þð0þþÞmeson spectra are rather crowded; there are

too many particles with quantum numbers 0þð0þþÞ listed
in the Review of Particle Physics [24] for a single nonet.
Many different models have been used to describe the
structures of these scalar mesons in QCDSRs, including

1There exist higher intermediate states which contain more
particles, e.g., the four-pion intermediate state. However, multiple
particle intermediate states would be kinetic suppressed by small
phase-space factors; thus, we will classify these intermediate
states together with other two particle intermediate states into
“other intermediate states” below.
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ordinary q̄q meson, four-quark state, glueball, and hybrid
models [10,11,25–29]. However, the possible mixings
between mesons with the same quantum numbers make
this problem even more complex, and a widely accepted
conclusion of research on the structures of these scalar
mesons has not been achieved.
Among all these I ¼ 0 scalar mesons, we notice that

both σ and f0ð980Þ have the two-pion decay mode as their
dominant decay mode. Thus, we can conjecture that there
are contributions from poles of σ and f0ð980Þ in the two-
pion scalar form factor; i.e., FsðsÞ may have two poles at
s ¼ mσ − imσΓσ and s ¼ mf0 − imf0Γf0 , where mσ and
Γσ (mf0 and Γf0) are the mass and width of σ (f0ð980Þ)
meson, respectively.
Considering the normalization of the form factor

jFsð0Þj2 ¼ m4
π from ChPT, we can construct a model with

two Breit-Wigner-type resonances for the phenomenologi-
cal spectral density which meets the above requirements as
follows2:

1

π
ImΠðresonanceÞðsÞ¼ 3

64π2
· jFsðsÞj2

¼ 3

64π2
·m4

π

�
β ·

m4
σþm2

σΓ2
σ

ðs−m2
σÞ2þm2

σΓ2
σ

þð1−βÞ · m4
f0
þm2

f0
Γ2
f0

ðs−m2
f0
Þ2þm2

f0
Γ2
f0

�
; ð5Þ

where we have omitted the small mass of pion
(mπ ¼ 0.139 GeV [24]) in the square root in Eq. (4).
The parameter β (0 ≤ β ≤ 1) describes the relative con-
tribution of σ and f0ð980Þ to the phenomenological
spectral density in our model.
For the ESC contributions in the phenomenological

spectral density, we still use the traditional ESC model, i.e.,

1

π
ImΠðESCÞðsÞ ¼ m2

qð1=
ffiffiffi
τ

p Þ ·
�

3

8π2

�
1þ 17

3

αs
π

�
s

−
3

4π2
αs
π
s lnðsτÞ

−
3

4π
sJ1ð

ffiffiffi
s

p
ρÞY1ð

ffiffiffi
s

p
ρÞ
�
θðs− s0Þ; ð6Þ

where s0 is the continuum threshold separating the
contributions from excited states and continuum, and J1
and Y1 are Bessel function of the first and second kind,
respectively.

Collecting Eqs. (5) and (6) together, we can obtain our
phenomenological spectral density as follows:

1

π
ImΠðphenÞðsÞ ¼ 1

π
ImΠðresonanceÞðsÞ þ 1

π
ImΠðESCÞðsÞ: ð7Þ

Then, the phenomenological representation for the Borel-
transformed correlation function can be obtained by using
the dispersion relation

RðphenÞðτ; s0; β; m̂qÞ ¼
1

π

Z
∞

0

e−sτImΠðphenÞðsÞds

¼ RðresonanceÞðτ; βÞ þ RðESCÞðτ; s0; m̂qÞ:
ð8Þ

Finally, the master equation for QCD sum rules can be
obtained by demanding the equivalence between Eqs. (2)
and (8),

RðtheoÞðτ; m̂qÞ ¼ RðphenÞðτ; s0; β; m̂qÞ; ð9Þ

which can be used to obtain the predictions for s0, β,
and m̂q providing we take the condensates and instanton
size on the theoretical side as well as the physical
parameters for σ and f0ð980Þ on the phenomenological
side as input parameters.3

Obviously, because of the truncation of OPE and the
simplicity of the phenomenological spectral density, Eq. (9)
cannot be valid for all τ; thus, one requires a sum rule
window in which the validity of the master equation can be
established. Benmerrouche et al. presented a method based
on the Hölder inequality which provides fundamental
constraints on QCD sum rules [30]. By placing the excited
states and continuum contributions on the theoretical side,
we obtain

Rðtheo-ESCÞðτ; s0; m̂qÞ≡ RðtheoÞðτ; m̂qÞ − RðESCÞðτ; s0; m̂qÞ

¼ 1

π

Z
s0

0

e−sτImΠðphenÞðsÞds: ð10Þ

Then, the Hölder inequality for QCD sum rules can be
written as

2Notice that our model does not exclude other 0þð0þþÞ
mesons from having a q̄q-component; however, the contributions
to the two-pion scalar form factor originate from heavier scalar
mesons should be negligible because of the exponential sup-
pression factor in the Borel-transformed dispersion relation
integral, and the form factor will be suppressed by the small
branching ratio of the two-pion decay mode.

3We can use Eq. (9) to obtain predictions for resonance
parameters in our phenomenological spectral density as in
Ref. [9], in principle. However, because the theoretical side of
Eq. (9) is proportional to the square of the light quark mass mq,
the master equation is sensitive with the value ofmq; thus, a stable
match between the two sides of the master equation is difficult to
establish providing different input mq. Conversely, by taking the
resonance parameters as input parameters, we can use Eq. (9) to
constrain the value of mq effectively.
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Rðtheo-ESCÞðωτ1 þ ð1 − ωÞτ2; s0; m̂qÞ
≤ ½Rðtheo-ESCÞðτ1; s0; m̂qÞ�ω½Rðtheo-ESCÞðτ2; s0; m̂qÞ�1−ω;

ð11Þ

where 0 ≤ ω ≤ 1 and for parameters τ1 and τ2 we demand
τ1 < τ2. Notice that the different value of m̂q does not
change the allowed (τ, s0) region from the Hölder inequal-
ity; thus, we can set any value for m̂q in Eq. (11). Following
Ref. [30], we will perform a local analysis on Eq. (11)
with τ2 − τ1 ¼ δτ ¼ 0.01 GeV−2.
The only starting point of the Hölder inequality is that

ImΠðphenÞðsÞ should be positive because of its relation to
physical spectral functions; thus, Eq. (11) must be satisfied
if sum rules are to consistently describe integrated physical
spectral functions. In this paper, we will use the same
iterative procedure to determine the sum rule window from
the Hölder inequality rigorously as in Ref. [9], i.e., by
choosing the maximally allowed region ½τmin; τmax� of the
Hölder inequality which is consistent with fitted s0, where
τmin and τmax are, respectively, the lower bound and upper
bound of the allowed τ region.
In order to match the two sides of the master equation (9)

in the sum rule window, a weighted-least-squares method
[31] will be used in this paper. By randomly generating 200
sets of Gaussian distributed phenomenological input QCD
parameters with given uncertainties (10% in this paper,
which is the typical uncertainty in QCDSRs) at τj ¼
τmin þ ðτmax − τminÞ × ðj − 1Þ=ðnB − 1Þ, where nB ¼ 21,
we can estimate the standard deviation σtheoðτjÞ for
RðtheoÞðτj; m̂qÞ.4 Then, the phenomenological output param-
eters s0, β, and m̂q can be obtained by minimizing

χ2 ¼
XnB
j¼1

ðRðtheoÞðτj; m̂qÞ − RðphenÞðτj; s0; β; m̂qÞÞ2
σ2theoðτjÞ

: ð12Þ

III. NUMERICAL RESULTS

In the numerical analysis, we use the central values of
input QCD parameters (at μ0 ¼ 1 GeV) as follows [32,33]:

hαsG2i ¼ 0.07 GeV4; hmqq̄qi ¼ −ð0.1 GeVÞ4;
καshq̄qi2 ¼ κ × 1.49 × 10−4 GeV6; ρ ¼ 1=0.6 GeV−1:

ð13Þ

The size of κ have been observed in different channels to be
2–4 [18,34,35]. Based on our previous study, κ ¼ 2.8 is the
favored result in the vector channel with a traditional ESC
model [9]. Although the factorization violation effect may

differ between channels, it is still reasonable to assume the
value of κ is in the region of 2–3 in the scalar channel, too.
Thus, we consider κ ¼ 2.0 and κ ¼ 3.0 in our analysis and,
as outlined below, we demonstrate that κ ∼ 2 leads to greater
agreement between our light quark mass predictions and the
PDG value. In this paper, wewill minimize the χ2 with 1000
sets of Gaussian-distributed input QCD parameters listed in
Eq. (13) with 10% uncertainties. Based on these 1000 fitting
samples, we can obtain the median and the asymmetric
standard deviations from the median for all output param-
eters; thus, we obtain the uncertainty originating from
uncertainties of QCD parameters for s0, β, and m̂q.

5

In Fig. 1, we plot the allowed region for (τ, s0) by the
Hölder inequality for κ ¼ 2.0 and κ ¼ 3.0, respectively.
From this figure, we find that the αs corrections to hαsG2i
and hmqq̄qi extend the allowed region to a higher τ region
and lower s0 region as in the ρ channel [9], and the
instanton contribution extends the allowed region further
more. Thus both the αs corrections to dimension-4 oper-
ators and the instanton contribution are important since we
adopt the same iterative procedure as described in Ref. [9]
to rigorously determine the sum rule window from the
Hölder-inequality-allowed region.
Taking the experimental values of mass and width for σ

and f0ð980Þ [24]
mσ ¼ 400–550 MeV; Γσ ¼ 400–700 MeV;

mf0 ¼ 990� 20 MeV; Γf0 ¼ 10–100 MeV ð14Þ
as our input in the phenomenological spectral density
model, we obtain different fitted s0, β, and m̂q by
minimizing the corresponding χ2 function. Detailed results
are listed in Table I where we show the fitted results for
κ ¼ 2.0 and κ ¼ 3.0, respectively. From this table we find
that we can achieve very stable fits with κ ¼ 2.0; all
uncertainties of output parameters are less than 10%
providing 10% uncertainties of input QCD parameters.
When we set κ ¼ 3.0, the uncertainty of m̂q will reach to
about 14%–18%, still in the accepted range of uncertainties
for QCDSRs.
The suggested light quark mass at 2 GeV from PDG

reads [24]

mPDG
q ð2 GeVÞ ¼ 1

2
ðmu þmdÞ ¼ 3.5þ0.7

−0.3MeV: ð15Þ

To compare our fitted results with mPDG
q ð2 GeVÞ, we also

list the corresponding light quark mass at 2 GeV from our
fitting procedure in Table I. Based on these data, we can
obtain

4In practice, we will divide RðtheoÞ by m̂2
q in order to remove the

to-be-fitted parameter from the theoretical side; i.e., we estimate
the standard deviation for RðtheoÞðτj; m̂qÞ=m̂2

q.

5The mass and width of σ and f0ð980Þ will be considered as
fixed input parameters in each fit. However, we will input
different combination of parameters for resonances based on
experiment to estimate the uncertainties for output parameters
which originate from parameters of resonances in the following.
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mqð2 GeVÞ ¼ 4.1� 0.4ðresonanceÞþ0.4
−0.3ðQCDÞ MeV

¼ 4.1þ0.6
−0.5 MeV ð16Þ

for κ ¼ 2.0 and

mqð2 GeVÞ ¼ 5.3� 0.6ðresonanceÞþ0.8
−0.5ðQCDÞ MeV

¼ 5.3þ1.0
−0.8 MeV ð17Þ

for κ ¼ 3.0, where we report the average value of
mqð2 GeVÞ with different resonance parameters, and com-
bine the standard deviation and the asymmetric standard
deviation which originate from different resonance param-
eters and uncertainties of QCD input parameters, respec-
tively. Comparison with the PDG tends to favor the smaller
value of κ. However, since an exact value of κ not known,
we use the average value for κ ¼ 2.0 and κ ¼ 3.0 as a
conservative determination of our final result

TABLE I. Fitted results with different choices of the mass and width for the two resonances. All uncertainties of QCD input parameters
listed in Eq. (13) are set to 10%.

Inputs Outputs

mσ=MeV Γσ=MeV mf0=MeV Γf0=MeV s0=GeV2 β m̂q=MeV mqð2 GeVÞ=MeV

κ ¼ 2.0 400 400 990 100 2.77þ0.14−0.16 0.941þ0.016−0.023 7.02þ0.62−0.44 4.0þ0.4−0.3
400 400 990 10 2.71þ0.13−0.15 0.995þ0.001−0.002 6.87þ0.54−0.40 4.0þ0.3−0.2
400 700 990 100 2.77þ0.14−0.16 0.955þ0.013−0.020 6.40þ0.58−0.41 3.7þ0.3−0.2
400 700 990 10 2.71þ0.13−0.15 0.996þ0.001−0.002 6.25þ0.50−0.37 3.6þ0.3−0.2
550 400 990 100 2.66þ0.16−0.20 0.935þ0.024−0.033 8.41þ0.70−0.51 4.8þ0.4−0.3
550 400 990 10 2.60þ0.15−0.19 0.995þ0.002−0.003 8.35þ0.67−0.49 4.8þ0.4−0.3
550 700 990 100 2.73þ0.14−0.16 0.958þ0.016−0.024 7.16þ0.62−0.44 4.1þ0.4−0.3
550 700 990 10 2.68þ0.14−0.16 0.996þ0.001−0.002 7.06þ0.57−0.42 4.1þ0.3−0.2

κ ¼ 3.0 400 400 990 100 3.03þ0.09−0.09 0.872þ0.030−0.078 9.00þ1.60−0.80 5.2þ0.9−0.5
400 400 990 10 2.94þ0.08−0.09 0.990þ0.002−0.005 8.56þ1.25−0.69 4.9þ0.7−0.4
400 700 990 100 3.03þ0.09−0.09 0.896þ0.026−0.071 8.28þ1.54−0.75 4.8þ0.9−0.4
400 700 990 10 2.95þ0.08−0.08 0.992þ0.002−0.004 7.82þ1.14−0.63 4.5þ0.7−0.4
550 400 990 100 2.99þ0.10−0.10 0.835þ0.041−0.095 10.7þ1.6−0.9 6.2þ0.9−0.5
550 400 990 10 2.90þ0.09−0.10 0.986þ0.003−0.008 10.5þ1.5−0.8 6.0þ0.9−0.5
550 700 990 100 3.03þ0.09−0.09 0.881þ0.032−0.082 9.27þ1.61−0.81 5.3þ0.9−0.5
550 700 990 10 2.95þ0.08−0.08 0.991þ0.002−0.005 8.91þ1.29−0.71 5.1þ0.7−0.4

(a) (b)

FIG. 1. The region allowed by the Hölder inequality for (a) κ ¼ 2.0 and (b) κ ¼ 3.0. The region with (blue) dot or (red) line is allowed
for sum rules with or without the instanton contribution, respectively. The region with (green) asterisk is allowed for sum rules without
both the αs corrections to dimension-4 operators and the instanton contribution.
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mqð2 GeVÞ ¼ 4.7þ0.8
−0.7 MeV: ð18Þ

This central value result is slightly heavier than the PDG
value in Eq. (15), but it is still consistent with it. We expect
further experimental data on the mass and width for σ and
f0ð980Þ would reduce the uncertainty for our prediction.
From Table I, we also can obtain

s0 ¼ 2.70� 0.06ðresonanceÞþ0.14
−0.17ðQCDÞ GeV2

¼ 2.70þ0.15
−0.18 GeV2 ð19Þ

for κ ¼ 2.0 and

s0 ¼ 2.98� 0.05ðresonanceÞþ0.09
−0.09ðQCDÞ GeV2

¼ 2.98þ0.10
−0.10 GeV2 ð20Þ

for κ ¼ 3.0.
We notice that the uncertainties of the fitted continuum

threshold s0 are astonishing small, especially those origi-
nating from different resonance parameters. Krasnikov
et al. pointed out that contributions from below the nth
resonances and from above the (nþ 1)-th resonances in
the spectral density can be separated by using s0 ¼
1
2
ðm2

n þm2
nþ1Þ, where mn and mnþ1 is the mass of the

nth and (nþ 1)-th resonance, respectively [36]; i.e., s0 is
determined only by the mass positions of the two nearest
resonances in the spectral density which are located at the
two sides of s0. If this choice for s0 is also applicable in the
present case, then we can give a simple explanation for why
s0 is not affected a lot by different resonance parameters:
although we input different mass and width for σ and
different width for f0ð980Þ, the mass of f0ð980Þ is fixed,
thus

s0 ¼
1

2
ðm2

2 þm2
3Þ ð21Þ

will not change significantly during our fitting procedure,
where m3 is the next excited state in the present scalar
channel which couples with the scalar current js strongly.
By usingm2 ¼ 990 MeV from experiment and Eq. (21), we
can estimate the mass for the next resonance, which ranges
from 2.10 GeV (κ ¼ 2.0) to 2.23 GeV (κ ¼ 3.0). Based on
the average value ofm3 which is about 2.17 GeV, f0ð1370Þ,
f0ð1500Þ, and f0ð1710Þ are sufficiently weakly coupled to
js to be negligible. On the other hand, our result favors one
resonance in the group of f0ð2020Þ, f0ð2100Þ, f0ð2200Þ,
and f0ð2330Þ [which are all 0þð0þþÞ resonances listed in
the latest Review of Particle Physics [24]] for an appreciable
coupling to js and the exponential suppression in the
Laplace sum rule enables inclusion within the continuum.
The continuum threshold s0 is introduced to separate out

the contributions from excited states and continuum in the
phenomenological spectral density. This expected purpose

is achieved in many works of QCD sum rules under the
narrow resonance approximation. However, we deal with
resonances with nonzero width in the present case. Thus,
there is a second possibility that we actually cannot
separate the ESC contributions from the first several
resonances contributions exactly because of the overlap-
ping contributions from different resonances. If this is the
case, then the traditional one-parameter (i.e., s0) ESC
model is too simple to describe the true physical spectral
density. Although a large s0 is obtained during the fitting
procedure, which leads to

ffiffiffiffiffi
s0

p ¼ 1.64–1.73 GeV, we still
cannot conclude that those scalar mesons between 1 and
2 GeV are excluded from the phenomenological spectral
density. But, luckily, due to the heavier mass and relatively
small two-pion decay branching ratio, the contributions
from f0ð1370Þ and f0ð1500Þ are expected to be very small.
For f0ð1370Þ, as an example, if we assume that there is a
contribution from f0ð1370Þ to the scalar form factor Fs,
which has the same magnitude of contribution as f0ð980Þ
[obviously, the magnitude of f0ð1370Þ is overestimated
because the position of f0ð1370Þ is further away from the
normalization point of Fs, i.e., s ¼ 0, than f0ð980Þ], then
we can estimate a rough relative contribution from
f0ð1370Þ and f0ð980Þ to the Borel-transformed correlation
function in the whole sum rule window, which is about
20%–30%. After considering the relatively small two-pion
decay branching ratio, the contribution from f0ð1370Þ to
the Borel-transformed correlation function will be at most
at the same magnitude of the uncertainty of QCDSRs.
Thus, the fitted light quark mass will not be affected a lot
after including these contributions. However, to solve the s0
problem comprehensively and rigorously, a better descrip-
tion of the ESC is deserved, which needs further study.
By extracting the coefficients for the two standard Breit-

Wigner functions in the phenomenological spectral density
in Eq. (7), we can define two effective coupling constants
which describe the coupling between the scalar current js
and the two resonances [σ and f0ð980Þ] as follows:

λσ ¼ β
3

64π
m4

πðm2
σ þ Γ2

σÞ
mσ

Γσ
; ð22Þ

λf0 ¼ ð1 − βÞ 3

64π
m4

πðm2
f0
þ Γ2

f0
Þmf0

Γf0

: ð23Þ

These two effective coupling constants can be related to
other physical quantities. By inserting one-particle inter-
mediate states [σ and f0ð980Þ states] as part of a complete
set,

R
d4k

ð2πÞ32Ek
ðjσðkÞihσðkÞj þ jf0ð980ÞðkÞihf0ð980ÞðkÞjÞþ

“other intermediate states,” into the correlation function (1),
a traditional phenomenological density can be obtained,6

6We have extended the narrow resonances model with the
Breit-Wigner resonances model for σ and f0ð980Þ.
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1

π
ImΠðphenÞðsÞ ¼ m2

qf2σm2
σ ·

1

π

mσΓσ

ðs −m2
σÞ2 þm2

σΓ2
σ

þm2
qf2f0m

2
f0
·
1

π

mf0Γf0

ðs −m2
f0
Þ2 þm2

f0
Γ2
f0

þ 1

π
ImΠðESCÞðsÞ; ð24Þ

where fσ and ff0 are the decay constants of σ and f0ð980Þ,
respectively, which satisfy h0j 1ffiffi

2
p ðūuþ d̄dÞjσi ¼ fσmσ

and h0j 1ffiffi
2

p ðūuþd̄dÞjf0ð980Þi¼ff0mf0 . Comparing Eq. (7)

with Eq. (24), we can connect our effective coupling
constants with fσ and ff0 as follows:

λσ ¼ m2
qðμÞf2σðμÞm2

σ; ð25Þ

λf0 ¼ m2
qðμÞf2f0ðμÞm2

f0
; ð26Þ

where μ is an energy scale.
In Table II, we list the effective coupling constants and

the decay constants of σ and f0ð980Þ based on our fitted
results listed in Table I. For simplicity, we only use the
central values of the fitted β andmqð2 GeVÞ to estimate the
effective coupling constants and the decay constants, and
we do not estimate the uncertainties for these constants.
Based on our estimation, we obtain the average value
f̄σð2 GeVÞ ¼ 0.83 GeV for κ ¼ 2.0 and f̄σð2 GeVÞ ¼
0.64 GeV for κ ¼ 3.0, we may conclude that the value
of the decay constant of σ at 2 GeV is around
0.64–0.83 GeV. In Ref. [37], Celenza et al. estimated
the value of fσ by using the Nambu–Jona-Lasinio (NJL)
model; their result reads fσð2 GeVÞ ¼ 0.42 GeV,
0.48 GeV, 0.35 GeV, and 0.43 GeV depending on different

model parameters.7 Our result, which favors a larger
coupling between js and the σ state, is more consistent
with the result from the linear sigma model (LσM), which
gives fσð2 GeVÞ ¼ 0.65–0.90 GeV [38].8 We also obtain
f̄f0ð2 GeVÞ ¼ 0.40 GeV for κ ¼ 2.0 and f̄f0ð2 GeVÞ ¼
0.48 GeV for κ ¼ 3.0; thus, the value of the decay
constant of f0ð980Þ at 2 GeV is about 0.40–0.48 GeV. It
is interesting that our f0ð980Þ decay constant agrees
with Ref. [39], where ff0ð1 GeVÞ≃ 0.35 GeV and
ff0ð2.1 GeVÞ≃ 0.41 GeV, considering the differences in
our approaches.
We also tried to use a one-resonance model, i.e., set

β ¼ 0 or 1 in Eq. (5), to finish our fitting procedure.
However, after including the constraint on the phenom-
enological spectral density from low-energy theorem, i.e.,
jFsð0Þj4 ¼ m4

π , none of the combination of resonance mass
and width based on Eq. (14) would lead to reasonable
match between the two sides of the QCDSR master
equation (9) in the QCD sum rule window allowed by
the Hölder inequality. A simple explanation of this aston-
ishing result is that the scalar form factor does receive
contributions both from σ and f0ð980Þ as we conjectured in
the previous section.
Based on the above results, which lead to β ∼ 1, it seems

that the σ peak dominates the resonance contributions
in the phenomenological spectral density; however, this
expectation is not necessarily true, because of the large gap

TABLE II. Effective coupling constants and decay constants of σ and f0ð980Þ.
mσ=MeV Γσ=MeV mf0=MeV Γf0=MeV λσ=10−6 GeV6 fσð2 GeVÞ=GeV λf0=10

−6 GeV6 ff0ð2 GeVÞ=GeV
κ ¼ 2.0 400 400 990 100 1.68 0.81 3.22 0.45

400 400 990 10 1.77 0.83 2.70 0.42
400 700 990 100 1.98 0.95 2.46 0.43
400 700 990 10 2.06 1.00 2.16 0.41
550 400 990 100 3.31 0.69 3.55 0.40
550 400 990 10 3.52 0.71 2.70 0.35
550 700 990 100 3.32 0.81 2.29 0.37
550 700 990 10 3.45 0.82 2.16 0.36

κ ¼ 3.0 400 400 990 100 1.55 0.60 6.99 0.51
400 400 990 10 1.76 0.68 5.41 0.48
400 700 990 100 1.85 0.71 5.68 0.50
400 700 990 10 2.05 0.80 4.32 0.47
550 400 990 100 2.96 0.50 9.01 0.49
550 400 990 10 3.49 0.57 7.57 0.46
550 700 990 100 3.06 0.60 6.50 0.49
550 700 990 10 3.44 0.66 4.86 0.44

7We have converted the value of fσ at the momentum cutoff in
the NJL model into the value of fσ at 2 GeV.

8We use the result h0jmqðūuþ d̄dÞjσi ¼ fπm2
π from the linear

sigma model, where fπ ¼ 93 MeV is the pion decay constant,
mPDG

q ð2 GeVÞ, and the mass of σ from experiment, to estimate
fσð2 GeVÞ.
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between the peaks of σ and f0ð980Þ. Although the
contribution from the σ peak dominates the low s region
in the phenomenological spectral density, there is also a
significant contribution from the f0ð980Þ peak in the whole
sum rule window. In fact, the total contribution from the σ
peak to the Borel-transformed correlation function in the
sum rule window, i.e.,

R
τmax
τmin

RðσpeakÞðτÞdτ, can be about
46%–65% of total contributions from both the σ and
f0ð980Þ peaks with κ ¼ 2.0. The specific percent changes
as we input different mass and width parameters for the two
resonances. For larger vacuum factorization violation
factor, the contribution from σ will reduce. However, the
existence of the enigmatic σ is still essential in our
procedure with κ ¼ 3.0.
Finally, the effects of the αs corrections to dimension-4

operators and the instanton contribution are also studied.
From Fig. 1 we have learned that without these effects, the
allowed τ − s0 region would shrink; thus, it is more difficult
to obtain an acceptable fitted result which is consistent with
the Hölder inequality. In fact, we cannot obtain a stable fit
with κ ¼ 3.0 without these effects, and with κ ¼ 2.0, we
would obtain a fitted m̂q [and mqð2 GeVÞ] which is
significantly larger than the physical value from PDG.
Based on these results, we can conclude that both the αs
corrections to dimension-4 operators and the instanton
contribution are essential contributions in the theoretical
representation of the correlation function (1).

IV. CONCLUSIONS

In this paper, we have constructed a phenomenological
spectral density model with two Breit-Wigner-type reso-
nances [σ and f0ð980Þ] for the I ¼ 0 scalar channel with a
normalization constrained by the ChPT low-energy theo-
rem, and conducted the sum rule analysis of this channel in
the Hölder-inequality-determined sum rule window via the
Monte-Carlo-based fitting procedure. Based on our analy-
sis, we obtain a prediction for the light quark massmq using
the experimental results for the masses and widths of σ and
f0ð980Þ. The agreement between our result mqð2 GeVÞ ¼
4.7þ0.8

−0.7 MeV, the PDG value, and QCDSR determinations
in the pion channel provide a consistent framework

connecting QCD and low-energy hadronic physics (see
also Ref. [40]). Furthermore, this agreement in the quark
mass determinations confirms the validity of our improved
Monte-Carlo-based QCD sum rules, which has previously
been systematically examined in the ρ meson channel in
Ref. [9]. Our results indicate both σ and f0ð980Þ couple to
the scalar current js strongly, i.e., both σ and f0ð980Þ have
a q̄q-component.
The continuum threshold s0 obtained from our fitting

procedure seems to exclude scalar mesons between 1 and
2 GeV from the ESC contributions. There are two pos-
sibilities for understanding this result. One possibility is
that those mesons are weakly coupled enough to be
excluded from the phenomenological spectral density,
and we expect the next excited state is in the group of
scalar mesons which is heavier than 2 GeV and that the
exponential suppression in the Laplace sum rule enables
inclusion within the continuum. The other possibility is that
the traditional ESC model is too simple to describe the true
ESC contributions exactly, and we cannot use one param-
eter to separate ESC contributions from a spectral density
with overlapping resonance contributions; thus, a more
realistic ESC model including parameters other than
s0 is needed to solve this problem comprehensively and
rigorously.
From our analysis, we also obtain the value of the

decay constants of σ and f0ð980Þ at 2 GeV, which are,
respectively, around 0.64–0.83 and around 0.40–0.48 GeV.
These two decay constants can be used in further studies on
the decays of heavier mesons, e.g., B mesons, which can
decay through the s-wave two-pion state.
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