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Particle production from an expanding classical color electromagnetic field is extensively studied,
motivated by the early stage dynamics of ultrarelativistic heavy ion collisions. We develop a formalism
at one-loop order to compute the particle spectra by canonically quantizing quark, gluon, and ghost
fluctuations under the presence of such an expanding classical color background field; the canonical
quantization is done in the 7-7 coordinates in order to take into account manifestly the expanding geometry.
As a demonstration, we model the expanding classical color background field by a boost-invariantly
expanding homogeneous color electric field with lifetime 7', for which we obtain analytically the quark and
gluon production spectra by solving the equations of motion of QCD nonperturbatively with respect to the
color electric field. In this paper we study (i) the finite lifetime effect, which is found to modify significantly
the particle spectra from those expected from the Schwinger formula; (ii) the difference between the quark
and gluon production; and (iii) the quark mass dependence of the production spectra. Implications of these
results to ultrarelativistic heavy ion collisions are also discussed.
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I. INTRODUCTION

Early stage dynamics of ultrarelativistic heavy ion
collisions (HIC) is a big missing piece in our current
understanding of the spacetime evolution of HIC: Before a
collision, two incident nuclei at very high energies are
saturated with a huge number of gluons, which behave like
coherent classical color fields [color glass condensate
(CGC) picture [1-4]] rather than incoherent particles.
A collision of these classical non-Abelian fields results
in a formation of longitudinal color electromagnetic fields
between the two nuclei receding from each other [5—7]. The
strength of the longitudinal fields are very strong as
gA, ~ Qs ~a few GeV, where Qy is the so-called satura-
tion scale of CGC. Subsequently, the color fields would
decay into a huge number of particles (quarks and gluons)
to form a quark-gluon plasma (QGP). However, this stage
of nonequilibrium dynamics is not well understood—the
questions are (a) how the huge number of quark and gluon
particles are produced from the classical gluon fields
(experimentally known is that about 1000 hadrons are
produced per unit rapidity), and (b) how the system
thermalizes to eventually form a QGP, which behaves
almost like a perfect liquid as suggested by the success
of hydrodynamical models (for reviews, see, for example,
[8,9]). In particular, applications of hydrodynamical mod-
els assume that the formation time of QGP is extremely
short 7pm <1 fm/c [10-12]. There is no satisfactory
understanding of such a short formation time starting from
QCD, despite numerous theoretical attempts. Thus, unveil-
ing the early stage dynamics is not only an important piece
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for completing our understanding of the whole spacetime
evolution of HIC but also a challenge to nonequilibrium
QCD physics.

The purpose of this paper is to investigate the quark and
gluon production from expanding classical color electro-
magnetic fields starting from QCD.

Study of the particle production from classical electro-
magnetic fields has a long history in quantum electrody-
namics (QED). Sauter [13] was the first who claimed that
spontaneous particle (electron and positron pair) produc-
tion occurs when a system is exposed to strong classical
electromagnetic fields. Some years later this particle
production mechanism was theoretically formulated by
Heisenberg and Euler [14], and by Schwinger [15] for a
static and homogeneous electric field. They derived the
vacuum persistency probability 7 = |(vac;in|vac;out)|?,
from which one can deduce the average number of particles
produced at transverse and longitudinal momenta p; and
p. with respect to the electric field as [16]

AN BN 14 m? +pl
2 ) = 3OXP | T
dpLdpz dpLdpz (2ﬂ) |€E|

|

where m, is the electron mass, e is the coupling constant
of QED, E is the electric field strength, and V is the system
volume. Equation (1), often called the Schwinger formula,
depends on eE inversely in the exponential, and hence one
can understand that the particle production from a static
electric field is a nonperturbative phenomenon. This is in
contrast to usual perturbative phenomena, whose depend-
ence on eE always appears with positive powers.
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The Schwinger formula was generalized to the QCD case
[17-20], and then applied to the early stage phenomenol-
ogy of HIC, e.g., the color flux tube model [21-26].
However, these preceding studies may be problematic
because the situation in HIC is much more complicated
than the static and homogeneous field that the Schwinger
formula assumes. Thus, the particle production will be
different from the naive estimate of the Schwinger formula,
and therefore one needs to formulate the particle production
in a more dynamic situation starting from the first principle,
i.e., QCD.

In particular, we consider the following effects on
particle production in QCD, which are missing in previous
studies:

(1) Effects of longitudinal expansion: In HIC, two highly
Lorentz-contracted nuclei pass through each other at
almost the speed of light, and color electromagnetic
fields are formed between the two receding nuclei
with approximate boost invariance in the beam
direction (Bjorken expansion [27]). Here, the longi-
tudinal extent of the fields is finite and increases with
time, which is obviously very different from what the
Schwinger formula assumes. Hence, the applicability
of the Schwinger formula must be reconsidered, and
one has to deal with particle production from space-
and time-dependent color electromagnetic fields.
Recently, there is progress in a theoretical treatment
of particle production from such an expanding
electromagnetic field within scalar QED by Tanji
[28]. We will extend this study to the case of quark
and gluon production from expanding color electric
fields in QCD.

(ii) Finite lifetime effects: The color electromagnetic
fields decay in time according to the classical
Yang-Mills equation. The typical scale of their life-
time is very short, where the order would be given by
the inverse of the saturation scale 1/Q, [5]. Such a
short lifetime of the fields should significantly affect
the particle production mechanism. Indeed, for a
nonexpanding electric field, Refs. [29,30] have shown
that there is an interplay between perturbative particle
production at shorter lifetimes and Schwinger’s non-
perturbative particle production at longer lifetimes.
As aresult, the particle spectra will heavily depend on
the lifetime of the fields; in particular, production of
heavy particles, such as charm quarks, from a pulse
field is significantly enhanced compared to the value
of the Schwinger formula [30,31]. It is thus phenom-
enologically important to understand finite lifetime
effects on particle production. No studies have
paid much attention to them so far, though there
are several studies that discussed particle production
from an expanding (color) electromagnetic field in
QED [28,32-34] and in QCD (but quark production
only) [35].
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In order to examine the above-mentioned points, we
study quark and gluon production from a given homo-
geneous classical color electric background field applied
for finite duration (lifetime) from z = 0 to 7 with longi-
tudinally expanding geometry. We solve mode equations
for fluctuations nonperturbatively with respect to the
classical field and compute the Bogoliubov coefficients
among creation/annihilation operators at asymptotic times
(t > £00). We ignore backreaction from produced par-
ticles on the electric field, and we fix the electric field
strength constant during its lifetime. For the sake of clarity,
we ignore here a possible existence of color magnetic
fields, which may bring interesting effects including the
chiral magnetic effect. Effects of the backreaction and of
scatterings between produced particles will be decisive
for thermalization of the system, but we leave it for our
future study.

This paper is organized as follows: In Sec. II, the general
formalism for particle production from classical color
electromagnetic fields employed in this work is explained.
Our formalism is based on a canonical quantization under
the presence of classical color background fields
[17,36,37], where a nonexpanding system was treated.
We extend it to quark and gluon production in an expanding
system by following Ref. [28]. In Sec. III, we model the
classical field by a boost-invariantly expanding homo-
geneous color electric field with lifetime 7" as a demon-
stration of our formalism. In such a field configuration, one
can analytically obtain quark and gluon production spectra
and can investigate physical consequences of the longi-
tudinal expansion and the finite lifetime effects in detail.
We also discuss some implications to the early stage
dynamics of HIC of these results. Section IV is devoted
to a summary and an outlook of this work. In Appendix A,
details of analytical solutions of equations of motion of
QCD are presented.

II. GENERAL FORMALISM

Let us explain the general formalism employed in this
work for particle production from a boost-invariant
classical gauge field in QCD. We consider a classical
background field satisfying the classical Yang-Mills equa-
tion and quantum fluctuations of quark, gluon, and ghost
around the classical field. By assuming that the Abelian
dominance holds for the classical field, we linearize
equations of motion for fluctuations and solve them non-
perturbatively with respect to the classical field. Then,
we adopt a canonical quantization procedure in the z-n
coordinates, instead of in the Cartesian coordinates, in
order to treat the boost-invariant expansion of the system
properly. Thereby, we directly compute expectation values
of number operators of quark, gluon, and ghost.

We work in the Heisenberg picture throughout this
paper. We implicitly take summation over repeated indices
m,n, ... and u,v, ... for spacetime only, and not for other
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repeated indices, for instance, color labels a, b, ..., spin
labels s, s/, ..., and so on.

A. 7-n Coordinates

Let us begin with a brief review on the 7- coordinates. It
is very convenient to work in the 7-n# coordinates
X = (z,x,y,n), instead of the usual Cartesian coordinates
&M = (t,x,y,z), in order to treat the boost-invariant expan-
sion of the system properly. We use Latin (Greek) indices
m,n,... (u,v,...) for the Cartesian (z-7) coordinates
throughout this paper.

The 7-5 coordinates are defined by the following change
of variables:

1.t
c=VE_2, g=-m % 2)

2 t—z2

The line element ds? is then expressed as

ds? = NypudEmdE" = g, dxtds”, (3)

where
N = diag(1,—1,-1,-1), (4)
g = diag(1,—1,-1,-7%) (5)

are the metrics of the Cartesian coordinates and the 7-5
coordinates, respectively.

For later discussions, it is convenient to introduce a
viervein matrix e™, [38], which relates the Cartesian
coordinates £ and the -y coordinates x* as

dé" = e™ dx* (6)
with
coshy 0 O <zsinhy
déem 0 1 0 0
o, =" (7)
dx" 0 0 1 0
sinhy 0 O zcoshy

The inverse matrix of e’”ﬂ, which we write e*,,, is

coshy 0 0 —sinhy
o Eﬂ: 0 1 0 0 —
" dEm 0 0 1 0 m .

(8)

With the viervein matrix introduced above, one can define a
vector X* in the 7- coordinates for any vector X" in the
Cartesian coordinates as
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X, =e",X,, 9)

Xt =et, XM = "X, (10)

From these definitions, Egs. (9) and (10), one readily finds,
for example,

0, = coshnd, + sinh70,, (11)
0, = tsinhnd, + rcoshnd, (12)

for derivatives 0,,

y® = y'coshn — y*sinhp, (13)
sinh cosh
y=—y T"+J/Z T 1 (14)

for gamma matrices y*,
A, = A, coshn + A, sinhy, (15)
A, = Arsinhy + A zcoshy (16)

for vector fields A,. One can also generalize these
definitions, Egs. (9) and (10), to general tensors as X* ... =
el‘m ces eny .o an
We also introduce a covariant derivative V, for
s . . yRE
curvilinear coordinates, V, 7" .. = 0,T"" .. + FZAT e
4. =I4%,T"",.. — - Here, I, is the Christoffel sym-
bol, whose nonzero elements in the 7-7 coordinates are

=T =1/7, I =z (17)

B. Classical background field

We consider a classical background field Aﬂ satisfying
the SU(N,,) classical Yang-Mills equation with an external
classical source J# as

J' =D, (18)

Here, Du is the covariant derivative with respect to the
classical field A, i.e., D, =V, +ig[A,.], and F* is the
classical field strength tensor F* = OFAY — OYAF +
ig[A#, A¥]. Equation (18) does not fix the gauge completely,
and there still remains a residual gauge freedom. In the
following discussion, we fix the residual gauge freedom
by A, = 0 (temporal gauge), which is convenient for the
canonical quantization procedure we adopt in Sec. IIE.
As a boundary condition of Eq. (18), we require that AM
becomes a pure gauge Aﬂ = const at the asymptotic times
(t > £00); i.e., we assume that there is no external source
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J# nor classical color electromagnetic field at the asymp-
totic times.

As we will see in Sec. IID, in order to ease some
difficulties coming from the non-Abelian nature of QCD,
we furthermore assume that the color direction of the
classical source J* and the classical field AM is constant; i.e.,
it is independent of spacetime coordinates x and the
spacetime vector index yu. For this case, there always exists
a constant color vector n* such that

A (x)=A,x) > nre. (19)

Here, Au is a scalar in the color space. The matrix #*
(@=1,...,N2—1) is a generator of SU(N,), and n¢
(normalized as Zgi}l nn“ = 1) characterizes the color
direction of the classical field A,. Under this assumption,
the commutators of A, exactly vanish as [A,,A,] = 0, and
only the Abelian part of the classical field strength F uw
becomes nonvanishing as

N2-1 N2-1

Fo=(0,A,-0,A)> nt"=F, Y nt. (20)
a=1 a=1

Thus, our assumption is essentially the same as the Abelian
dominance assumption: [A,,A,]~0and F,,~9,A,—0,A,.

Notice that we have made no restrictions on the
spacetime x* dependence of Aﬂ as long as it satisfies the
classical Yang-Mills equation (18).

C. Lagrangian
Let us consider the QCD Lagrangian with N, colors
and N; flavors of quarks in the presence of the classical
background field Aﬂ described in Sec. II B. By separating
the (total) gauge field A, into the classical field A_ﬂ and
quantum fluctuations around it A, as A, = A,, + A, we

obtain the QCD Lagrangian for the fluctuation in the z-5
coordinates as'

1 -
L =ylid — gA - My — EtrCFWF”” + 2tr JHA,
| A
- atrC(D”.A")2 — 2itr,(D*¢)(D,c). (21)

Here, y is the fermion field, and ¢ and ¢ are the ghost and
antighost fields to be quantized. X = y*X, is the Feynman
slash notation, and ¥ is a shorthand for = y'y". tr, is the
trace operator in the color space. M represents fermion
masses, which is given by an N; x N; diagonal matrix

1 . . . ..

In general curved spacetime coordinates, there is an additional
term coming from spin connections I', in the fermion covariant
derivative, which is zero in the z-5 coordinates.
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M = diag(m;,m,, ..., my,) in the flavor space. D, is the
covariant derivative with respect to the total gauge field A,
D, =V, +ig[A,.]. The total field strength tensor F,, is
given by F,, =0J,A,-0,A,+iglA, A)]. The term
(1/a)tr.(D,A#)* is a covariant background gauge fixing
term [17]. Hereafter, we shall take @« = 1 for simplicity.
One can show that a choice of the gauge parameter a is
irrelevant to the particle spectra [39].

We further expand the Lagrangian, Eq. (21), up to the
quadratic order in the quantum fluctuations to obtain

L =ylid — gA — My = 2itr.(D,¢)(D c)
—1r; %(DyAu - DUA”)Z + (Du-Aﬂ)z + ZiQFMyAﬂAD s

(22)

where constant and surface terms are omitted. Here, we
treat the interactions with the classical field A, nonpertur-
batively. This treatment is justified when the quantum
fluctuations y, A,, ¢, and ¢ are small enough compared to
the strength of the classical field Aﬂ. The ignored terms
O(gp Ay, gA?, gec A) are responsible for the screening of
the classical field Aﬂ by produced particles and elastic
gg <> gg and inelastic g <> gg, g <> qq, q <> qg scattering
processes of produced particles. It is very interesting to see
how the quark and/or gluon production is modified when
these higher order quantum corrections are included; see
Sec. IV for the discussion. We also note that the classical
source J# does not directly couple to the quantum fluctua-
tions; it couples to them only indirectly through the
classical field A”, which is generated by the classical
Yang-Mills equation sourced by J, [Eq. (18)]. In this
sense, the particle production mechanism is not directly
affected by the presence of the classical source J¥.

D. Abelianization

It is difficult to handle the Lagrangian, Eq. (22), as it is
because of its non-Abelian nature. Indeed, the equation of
motion of the Lagrangian, Eq. (22), are complicated matrix
equations in the color space. With the help of the Abelian
dominance assumption for the classical field Aﬂ made in
Sec. 1B, one can Abelianize, i.e., diagonalize the
Lagrangian, Eq. (22), in the color space and obtain a set
of Abelian equations of motion as below [20].

First, we diagonalize the classical field Aﬂ =

~ 2__ . . 2_ .
A, Zg;ll n“t* in the color space. Since Z;V;ll ntt is a
constant Hermitian matrix in the color space, there always
exists a global unitary transformation U that diagonalizes

n“t® as

N2-1 N2-1 N.—1
Z nt — U-! <Z n“fa> U= Z weH®,  (23)
a=1 a=1

a=1
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where w” is constant normalized as 1 = Y, |w®|?. H is a
diagonal matrix that belongs to the Cartan subalgebra of
SU(N,) such that [H% HP] =0 with a normalization
tr.[H*H?] = 6% /2. In accordance with this transformation
U, let us also redefine the quantum fluctuations y, A, c,
and ¢ as

Uy -y, (24)
UTAU - A, (25)
UT<;>U—><Z). (26)

Second, we expand the color space by the Cartan-Weyl
basis of SU(N.): {H* E**} (a=1,...N.—1; A=
1,....,N.(N. —1)/2), where E* is an off-diagonal matrix
satisfying the following algebra:

EAT = EA, (27)
5AB

tr[EAEBW = T s (28)
|

Nl' Nc ( ) » Nc—l 1

L= ZV_/i,f[ia_QiqA_mf]Wi.f_ Zzwﬂwm
f=1i=1 a=1
Ne(Ne—1)
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[Ha’ EiA} — ﬂ:(va)AEiA, (29)

where (v%)4 is the root vector of SU(N,). By using this
Cartan-Weyl basis, instead of the generator %, we expand
the gluon field A,,, and ghost and antighost fields ¢ and ¢ as
(Cartan decomposition)

Ne(Ne—1)

Ne—1 B
A= D W HO+ Y (W aEH + WL E) (30)
a=1 A=1

(31)

After completing these two steps, one can rewrite the
Lagrangian equation (22) in an Abelianized form as

N1

- quu,a|2 —i Z (Vpéa)(vﬂca)

a=1

2
1 (@7 (@7 2 (@7 2. (95 v
- [2|<vﬂ+zq§f>A,,>Wy,A—(vp+zq£f)Ap>W,,,A| 1V, + ig P AIWAP + i F Wiwy

—i Y (Y, +ig A C) (W + ig AN CH) + (Y, +igEVA,)Ca) (VF + ig VA Cy).

Here, the color indices i, j,... and the flavor indices
f.f',... for the quark field y are explicitly written. The
gluon W, ,, ghost C,, and antighost C, fields, which belong
to the Cartan subalgebra of SU(N,), do not couple to the
classical field AM. Thus, no particle production occurs for
these fluctuations, and hence we do not consider them
hereafter. On the other hand, the quark y; », gluon W, 4,

and ghost C, and antighost C, fields do couple to the

classical field A,,, whose effective color charges, ql(-q), qgg>,

and qggh), respectively, are given by
N-1
0 =gy wH); (33)
a=1
. N—1
a = a =gy (v (34)
a=1

(32)

[

The ghost charge is identical to the gluon charge qégh) =

qﬁf) because both gluon W, , and ghost C,, C, fields

belong to the adjoint representation of SU(N,). Although

the effective color charges, ql(q), qgg), and qggh), depend on

the color direction n* and the gauge choice of the back-
ground field Ay, the traces of the squared charges are
independent of them,

Ne @ e

> lavr =< (35)

i=1
Ne(Ne—1) Ne(Ne—1) 5

2 2

h g°N

Solafr= Y e = 66)
A=l A=1

The trace of the squared charge in the adjoint representation
is N, times as large as that in the fundamental
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representation. These relations are generalizations of the
SU(3) results [39,46-48].

One readily obtains Abelianized equations of motion
from the Lagrangian, Eq. (32). They read

[id — gV A - mgly; s =0, (37)

(V, +ig®A,)2g" + 2ig' ¥ Fr W, , =0, (38)
__/C

(V, + iq! )A)< A):o. (39)
Cy

E. Quantization and particle spectrum

Now, we canonically quantize the fluctuations, v, /,
Wya,Cy, and Cy4, under the classical background field
Aﬂ, and compute particle spectra produced from the
classical field.

To be more concrete, we first define positive/negative
mode functions at the asymptotic times (f — £oo) for the
fluctuations. At the asymptotic times, as the classical field
A becomes merely a pure gauge and no interaction occurs
(see the assumptions made in Sec. II B), one can umquely
define the positive/negative frequency mode functions at
the corresponding asymptotic time by plane wave solu-
tions. With this boundary condition at t - 400, we solve
the equations of motion, Egs. (37)—(39), nonperturbatively
with respect to the classical field, and hereby we obtain the
positive/negative mode functions at the corresponding
asymptotic time. By expanding the fluctuations with the
mode functions and imposing canonical commutation
relations, one obtains creation/annihilation operators for
the positive/negative frequency modes at each asymptotic
time (f » o0). An important point here is that the mode
functions do fully include multiple interactions with the
classical field, and hence the positive (or negative) fre-
quency mode at t - —oo will evolve into a linear combi-
nation of the positive and negative frequency modes at
t — oo. This linear relation is described by a Bogoliubov
transformation, and we will see that the particle spectrum
which will be observed at ¢t — oo evolved from a given
initial state at t - —oo is determined by the Bogoliubov
coefficients. In the following, we shall assume that the
initial state is given by a vacuum for simplicity, although
one can equally formulate more generic initial states as
well.

We remark that our formalism, which takes into account
the interactions with the classical field A , nonperturbatively
by fully solving the equations of motion, does include
perturbative contributions that can be computed by, for

*One can quantize the fluctuations even if there are interactions
in principle; however, the definition of positive/negative mode
functions, i.e., the notion of particle, becomes ambiguous.
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instance, the usual diagrammatic techniques of the S matrix
[49]. For a specific type of electric fields, one can explicitly
check this [30,50].

1. Quark

We canonically quantize the quark field y;, at the
asymptotic times (f — Fo0) in order to compute the quark
spectrum produced from the classical field.

To do this, we first expand the quark fields y; ; with the
mode functions as

as) (as)
W’f Z/dpldpﬂ +l//tflu PysS (x)aifl;'m.pms

(as) (as)t
+ —wi,f.pbp,].s(x)bi,f,—pb—pﬂ.s]' (40)

Here, as = in, out specifies the asymptotic time ¢ — o0,
respectively, at which we define a particle picture by
employing the canonical quantization. The subscripts
=+ specify the positive and the negative frequency modes.
The momentum labels p, and p, are the Fourier conjugate
to the positions x; and 7, respectively; we label the
longitudinal momentum by p,, instead of the p. conjugate
to z, so as to treat the longitudinal expansion of the system
manifestly with the # coordinate. The label s = 1, 2 is for

the spin degree of freedom. We identify the mode functions

iy/f f)m s jEl//l(}“;, » ) with plane wave solutions with
nt

posmve/negatlve frequency at t » —o0 (f > ),

in fr -
Vs T Vit sl At = —0)] (1)
u fi -
I e =W A= )l (42)

(free) b
Lfpipy S[Aﬂ]
the free field equation of motion under a pure gauge

background A, = A,(t — fo0). For details of the plane

(free)
LfpL.py.s’
normalize the positive/negative frequency mode functions

(as) —
+Wifp pps for each as =

where the plane wave solutions satisfy

wave solutions | y; see Appendix A 1a. We also

in, out as

5.95’52(pi —pl)&(p” - p;)’
(43)

(as _
(:tlllzprpn ‘:tl//,fp p Y)F_

(iwff,,l Py I;w,f,, s )E =0, (44)

where the inner product for fermion fields (y|w»)g in the
7-1 coordinates is given by
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Wilyr)p =7 / d’x | dnp r*ys. (45)
T=const

Next, we impose canonical commutation relations to
complete the canonical quantization. Since we are working
in the 7-n coordinates, we impose canonical commutation
relations on an equal 7 surface, instead of on an equal ¢
surface as in the Cartesian coordinates,

{‘//i,f(77xj_v’7)7”i’,f’(77xlj_v’7/)}

6 _ !
= 58,8, —x) T g
T

{”i,f(f’xi’ 1), Ty f (z.x' 1)}
={wis(t.x .n)wrp(nx' )} =0, (47)

where the canonical conjugate 7;  to the quark field y; ¢
is given by ;= 6L/6(0.w;s) = iy;y". The factor
1/ in Eq. (46) comes from the Jacobian /=g =7 of
the 7-5 coordinates. The canonical commutation relations,

Egs. (46) and (47), are equivalent to require that the

(as) (as)
Lf PPy TP LDyS

(out) (out
( aif‘)fl'lyprpn,s )_ ((Jrl//z{}upL DS |Wtf) >
(out) o (out)
bLf,—pL,—p,,,s ( l//zpr PysS |l//l f)

( (out)

operators a anticommute as

(in)
_ 2o’ dp' Vit pys |+wtfp Pl o) (+‘//1pr Pys sl Wlfp Py S)F it s
_Z P apy (out) i
s (- LfPLPyS |+Wlfp P Y)F (- Vifpipys |- l//lfp Plys f)F

In order to obtain the (anti)quark spectrum at t — oo
produced from the background field A let us introduce a

(anti)quark number density operator n(q) ( (@) )

LfpLpys NS PLPyS
by
(9) _ _(out)t (out)
Nifpipys = YifprpysGifpip,s
@) __ 4 (out)¥ (out)
Mifpipys = bi,fam,pq-sbi,fm.ms' (51)

The quark and antiquark spectra are derived as an expect-
ation value of the number density operators by a given
initial state at t — —oo. Hereafter, let us assume that
the initial state is given by a vacuum |vac;in). By noting
that the initial vacuum is a state that is annihilated by

the annihilation t—> -0 as 0=

(in)
LfP1.PysS lfIMP 8
Bogoliubov transformation, Eq. (50), one immediately
obtains

operators at

a |vac;in) = bl |vac;in) and by using the
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(as) (as)t
it pys Qi f o, phs

_ [ @) (as)
= {bis.fﬁml’w"biﬁf’plspi,»S’}

:5ii’5ff’5ss’52(pJ_ —pi)é(pn—p}g)’ (48)

(otherwise) = 0. (49)

From these anticommutation relations, Egs. (48) and (49),

one can understand as usual that the operator a'®

LfPLPyss
(bl f 2.0, ;) acts as an annihilation operator of a quark
(an antiquark) at the corresponding asymptotic time with

the momentums P, Py the spin s, the color charge ql@

(- q ) and the flavor f.

As is stated in the beginning of this section, the creation/
annihilation operators for different asymptotic times do not
coincide with each other because of the interactions with
the classical field. The linear relation is described by the
following Bogoliubov transformation:

(out)

(out)

(in)T
bif v s

) . (50)

[

NG, bacsiln), , aiin
Wiy (s
(out) 2
_Z/d dpn +W’fplprl | W’fplpll )F ’
(52)

d°N @ <Vac 1n|n |vac;in)

dp} a’p,7

LfPLPyS
(vac;in|vac;in)

out 2
-3 [ v aniulsy Lo el

(53)

An important point of these formulas Eqs. (52) and (53)

is that deriving the particle spectrum is thus reduced to
(as)
ivf’plquss
Dirac equation, Eq. (37), nonperturbatively with respect to
the classical field.

finding out the mode functions by solving the

014033-7
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As is expected from the Pauli principle, one can explicitly
show that the phase space density does not exceed unity.
Indeed, the anticommutation relation, Eq. (48), yields that
the Bogoliubov coefficients are normalized as

dle
_ Z Lo’ d (ou) (in) 2
pj_ pn il//1fplp,7 iwzfp p .5 F

(in) 2
:F‘/’i.fpl,plps’>1:’ ] (34

where we have used & (p, =0)8(p, =0)=1/(2x)?
J[d’x, [dy. From Eq. (54), one immediately finds
(2n)3d6quf‘{ /dx? dndp? dp, < 1.

So far, we have characterized the longitudinal momen-
tum of produced quarks by the label p, because it is a
natural quantum number conjugate to the spacetime rap-
idity # and that manifestly respects the boost invariance of
the system. Consequently, what we have obtained for the
quark spectra in Egs. (52) and (53) are the p, spectrum.
However, what we actually observe in experiments is not
the p, spectrum, but the p_ spectrum and/or the momentum
rapidity y, spectrum, where

dn

(out)
+ ’ (iwi.f-m,pms

+pz

—P: 33)

1
yPEEI

with w, being an on-shell energy w, = 1 /m? + pzl + p.
The p, spectrum and/or the momentum rapidity y, spec-
trum can be obtained from the p, spectrum in the following
way [28]: As in the p, spectrum Egs. (52) and (53), the p,
spectrum and/or the momentum rapidity y, spectrum are

obtained as an expectation value of the number operators,

(q) (@)
i.fPL.pz.S L.fPL.p:s’

Py as

n and n which are labeled by p, instead of

3N 3a7(Q)
&N tfs_ ldNi.f,s

dpidp. w_pdpidyp
vac;in|n vac;in
< ‘ lfp Pzs v| > 7 (56)
(vac; in|vac;in)
3a7(@) 3 A7(3)
d’N lf s 1 d Nz S8
dpidp. w,dp ldyp
vac;in|n vac; in
_ < ‘ 1fp P; s| > ’ (57)

(vac; in|vac; in)

where the number operators are defined by the annihilation
(out) (out)

operators a; SPLpS? VL pLpass

as

PHYSICAL REVIEW D 96, 014033 (2017)

( ) _ a(out)‘r (out)

Nifpi.p..s LfPLpes i fPL.p:.s?

(@ (out)t (out)

Mifpip..s _blpr.p sblfmp 8 (58)

(out) (out)
LfPLpes® CifPLps
by expanding the fermion operator y; ; in terms of positive/
(out)
i~f PLsPS
Cartesian coordinates, which is labeled by p, being the

Fourier conjugate to z as

t t
g0 =3 [ arap [ i 0050

ou out)t
+fwi,f;ﬁl,pz,s<x>b5,ff2m,_pz,s}- (59)

The annihilation operators a are defined

negative frequency mode functions Ly in the

Here, we adopt the same boundary condition as what we

have required for iy/E(} p) e ; 1.e., we require iwf(}u;)L pos 1O

coincide with the plane wave solutions at f — o0. As is

shown in Appendix A 1a, the mode functions in the

(out)
ifpi.pes

are related with each other by an

Cartesian coordinates iy
(out)

LfPLopys
integral transformation described by

and those in the -5

coordinates

j:ipnyl,

(out)
Vitpipys /dpz N

o (60)

l-f-I’L’pz"Y

Using this integral transformation, Eq. (60), and comparing
the expansion in the Cartesian coordinates, Eq. (59), with
that in the 7-n coordinates, Eq. (40), one finds

elpnyp

(out) (out)

al"f’PLJ’zf - pﬂ\/T LfPLpys’ (61)
(out e fous
i’(.))ll’l’)rpzvf = b OU) (62)

Pq\/T LfPLspyss”

3Strictly speaking, what we show in Appendix A 1 a is that the
(free)
plane wave solutions in the Cartesian coordinates iy/l FPLp s[ m)

and those in the 7-n coordinates iy/ff;e;i s [Aﬂ]

each other by the integral transformation, Eq. (60). One can safely

say that the same integral relation equally holds for the mode

(out) (out)
LfPLposs LfpLpyss

mode functions, iwl(,f.p)l,p,,s and iy/f‘}u;)i s obey the same

(i7" (O = gV An) = /LTy s =
(out)

lir*(0, — iqf.q);l ) — mf]iy/lfh p.s = 0 and that the linear rela-

tion between them is conserved in the time evolution, it is
sufficient to show that the integral relation at the boundary
t,7 — oo, where both solutions become plane waves. Hence, the
integral relation actually holds. The same argument can be
applied for the integral transformation for gluons [Eq. (93)],
which we will discuss in the next subsection.

are related with

functions, ,y and Ly : Since the two sets of

differential equation
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Inserting these relations, Egs. (61) and (62), back into
Egs. (56) and (57), one obtains

)
d% lf)S o id3N53‘s
dpidp, w,dpidy,
1 eiyp(Py=ry)
L
)t (out)
y (vac; 1n|alfp st ,[vac;in) ()
(vac;in|vac; in) ’
d3 zfs _ id3N1(C}),s
dpidp, ®,dpidy,
1 eiyp(pn_pl/7>
L o
t t
y (vac; 1n|bl(;fh s fj}lh », s|vac in) (64

(vac; in|vac;in)

When the system is perfectly boost invariant, the expect-
ation values in Egs. (63) and (64) for p, # p{i vanish
because p, is a good quantum number and it never mixes
with other values of p, during the time evolution. In this
case, one can further simplify Egs. (63) and (64) as

3a7(a) 3a7(d)
szfr_]szfs
dpidp, w,dpidy,
3a7(Q)
1 1 } ifs
=———x— [ dp 65
27[5(p,,—0)xa)p/ PrapZ ap, (65)

3 3a7(@)
d°N lfS 1 dNi.f,S

dp’dp.  w,dp’dy,
@
1 1 / &Ny
= x— [ dp (66)
276(p, =0) o, P dpidp,’

which are manifestly boost invariant in the sense that the y,
spectrum does not depend on the momentum rapidity y,,.
We note that we have derived the formulas, Egs. (65)
and (66), in a quantum field theoretical manner by
following Ref. [28], but one can also obtain the same
formulas within classical mechanics [32,34], though these
two derivations agree with each other only if the system is
perfectly boost invariant.

2. Gluon

Next, we turn to the canonical quantization of the gluon
field W, 4 and compute the gluon spectrum at  — co. We
do essentially the same procedure as what we have done in

PHYSICAL REVIEW D 96, 014033 (2017)

the quark case although there are slight differences due to
the vector nature of gluons.
First, we expand the gluon field W, 4 as

aﬂ) (as)
Wya = Z / dPldPn WoAp..poCapipgo

as)t
+ W< A)pL py0 d‘(qv_)va_Pr]sg:| : (67)

o =0, 1, 2, 3 labels the polarization, and the other labels

are the same as in the quark case. The mode functions
(as)

+" wAp,.pyo

Eq. (38), with the plane wave boundary condition,

are the solutions of the equations of motion,

in free =<
W e == Wine palAu(t = =), (68)
wiow — wfree) [A,(t = )] (69)
T HAPLPYO o T AP Lo ’

. (free) e .
where the plane wave solutions . W, 4, , ,[A,] satisfy

the free field equation of motion under a pure gauge
background field Aﬂ = AM(I — +o0). For details of the

plane wave solutions jEW<free>

wAp, ppor S€€ Appendix AZa.
ApLpy,

The positive/negative  frequency mode functions
4 ,(3) popyo ATE normalized as
as)
-9 (LW uAmp,, ol =W, VAP .py rﬂ)
= ié(m”é (pi _pJ_)(s(pI] - pr/)9 (70)
ws) _
_gyy( ;4ApJ_p,7 |:F vAp, pa)Bio (71)

for each as = in, out. Here, the inner product for boson
fields (¢,|¢,)g in the 7-n coordinates is given by

(i) = i / Px Aoy (T2)

T=const

where V_ = 6, - 6,. The indefinite metric &, is intro-
duced by

, (73)

- O O O
S O = O
oS = O O
S O O =

which has symmetric off-diagonal elements &p; = &.
Because of this property, the zeroth and the third polari-
zation modes of gluons become unphysical and they do not
appear in the physical spectrum as we will show later.
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For later convenience, we decompose the positive/

. . (as)
negative frequency mode functions , W, ; , D0

and scalar amplitudes

by intro-

ducing a polarization vector &, ,
(as)

+ Asplvpv]'o' as

W o)

WAPL.pyo HOL AP .pyo° (74)

It is convenient to normalize the polarization vector as

_50'6/ ’
_g;wv

9" € ctve =

Z‘}:(m’g o€,

. . . . . 4
and to require that the covariant derivatives vanish as

(75)

Ve,,=0 (77)

(as)
Then, wAPpL.py.0°

Egs. (70) and (71), can be rewritten in terms of the scalar
amplitudes as

Zéw( o 2@ )

the normalization conditions for

=8 (pL —p')(py — P)). (78)
Zgao’ ( APL Py:C |:F Aa;) Dy >B =0. (79)

Next, we impose canonical commutation relations to
complete the canonical quantization,

(out)

(out)

ApL.py.o _ Zf (=g AP .L.p, g”quA>
d(out)'}‘ — o0 g _( W(out |W )
A=pL=py0 o = wApLpyol VA

= Z/dzpidp% Zé(m//(_g”y)
(out) 11'1)
« (+W/4,A,1u,p 6”|+ VAP .py tf)
(out) m)
_(_Wﬂ,A.pl,p a”|+ vAp|.py, )B

4 . . . . . .
One can always construct such a polarization vector by contracting the viervein matrix e™

MR 5* P
;7 ng' llO' -

550’ ’

(+ W(out

Zéao’gfn,o’gn.d = ~Mmun-
0,0

PHYSICAL REVIEW D 96, 014033 (2017)

[Wﬂ,A (z.x1.1), ”u,A’(Tvx/JJ )]

. o(n—1n
= iguonele, —x) 2T (s0)
[Wu.A (T’ X1, 77) s WU,A/ (Tv xl? 77/)]
= [malt.x,n), mp (7, %', 0)] =0,  (81)

where the canonical conjugate field 7, 4 to the gluon field
W, ua = 0L/6(V, W”) -V W;;A The
canonical commutation relations, Egs. (80) and (81), are
(as) (as)

ApL.py6° “ApL.py.0o

A 1s given by z
equivalent to requiring the operators ¢ to
commute as

(as) (as)7
|:CAsPLquU’ ¢

,} _ {d(aS) d®r }

A’pl,pipo' ApL.pyo’ A’,pl,p,],oj
= 5AA’§50’62(I7L —Pl)a(l’q - Pfy)a
(82)
(otherwise) = 0. (83)

From these commutation relations, Egs. (82) and (83), the
(as)

Api.py.o
annihilation operator of a gluon at the corresponding

asymptotic time with the momentums p J_, py» the polari-

zation o, and the color charge q ( q )

As in the quark case, the creation/annihilation operators
at different asymptotic times do not coincide with each
other and the linear relation is described by a Bogoliubov
transformation given by

operator ¢ ) can be understood as an

( Api.pyo

(in)

W c
HAPL, p;d’| vAp Py G)B Ap' .py.o’ (84)
(out) (in)¥
_(—WﬂAIup 6”| WvAp Py a)B dA,—p’r—pi,.,a’

, With a constant vector €,, , normalized as

(76)
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In order to obtain the gluon spectrum at t — oo, let us introduce a gluon number density operator nff)‘ Py by
PLPy

=c c n =d

A ot (ow) (&) _ glowi  low (85)
Api.pyo — TAPL.PyoT AP .py.0° —Ap1.pyo Api.pyoApy.p,o°

As in the quark spectrum [Egs. (52) and (53)], one can derive the gluon spectrum as an expectation value of the number
density operators in the initial state as

d3N(g) <Vac; in|nig/)4pbplra|vac; in>
dp? dpn (vac;in|vac; in)
= Zéﬂ]ﬁz / dzp/ldp%{z€rm’l grm’z (_gﬂl”l)(_gﬂzl’z)
0102 o\
(out) 1n) (in) out)
( W#l ApL.py.c |¢ v, AP py, UI)B (¢W”2sA~PlsP:1ﬁz |i H2 AP ,pys GZ)B}‘ (86)

We note that only gluons from the quantum fluctuation are counted in Eq. (86) and there are no contributions from those
from the classical background field. This treatment is justified only for the gluon spectrum at t — oo, where the classical
background field is vanishing. If one is interested in the gluon spectrum at transient times || < oo, where the classical
background field is still present, then one has to count not only quantum gluons but also classical gluons in some way.

One can perform the polarization sum in this formula, Eq. (86), with the help of the decomposition, Eq. (74). Inserting the
decomposition, Eq. (74), into Eq. (86), one obtains

&’N iAa (out) (in) (in) out)
dpLdp” = 61”70,”7/d2pldp;7§{7102§rm 6{;(7’ falrﬂ é:(fzo' (i APL Py, |:F Ap P Gl)B (:F(I)Asp/l’l’ils” ‘i ApL.pyo, )B (87)

where use is made of the normalization condition for the polarization vector, Eq. (75). By noting that the indefinite metric
¢, has an off-diagonal structure as defined in Eq. (73), one finally finds

oul 2
d%N(i)“,:{fd 2 GO e P fore— 1,2 5

APLPyo P Pyo .
dPLdPn 0 forc =0,3

It is now evident that gluons with the zeroth and the third polarizations vanish. This is consistent with our expectation
that only two out of four polarization modes of gluons are physical. We stress that deriving the particle spectrum is thus

reduced to finding out the mode functions inl A) 2o OF <I>£f;)L pyo» DY solving the equation of motion, Eq. (38),

nonperturbatively with respect to the classical field.
Unlike the quark case, the phase space density can exceed unity because bosons are not subject to the Pauli principle.

Indeed, one can show from the normalization condition for cD/& p) .y that the inner products between <I>£‘ IJ)L pyo A0d
@™ are normalized as
+ ¥ Api.py0
(out) (in) 2 (out) (in) 2
2ﬂ)3/ /dn—/d dp" +Pp. ol ® AP\ .Pyo )B‘ a ‘(iq)’”’i pyol7® AP Pl ”)B‘ } (89)

for the physical polarization modes ¢ = 1, 2. One finds that the inner products |(_ oW (in) B |2 or the phase

Api.py, (Tl:F A p p
space density is not bounded because of the — sign in Eq. (89). Notice that for the quark case, Eq. (54), we have a 4 sign,
which reflects the statistics of particles, i.e., + for fermions and — for bosons.

Finally, let us connect the p, spectrum, Eq. (86), to the p, spectrum and/or the momentum rapidity y, spectrum as was
done in the quark case. The p, spectrum and/or the momentum rapidity y, spectrum are obtained as an expectation value of

()

the number operator n,, ., .

which are labeled by p_ instead of p,, as
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ONE,  LENE,_(acinlnls, , phacin) o
dpidp, w,dpidy, (vac;in|vac;in) ’
where the number operator ngm,pzﬁ is defined by the
ilat (out) (out)
annihilation operators ¢, , .dy, , . as
() — olou)i  (our)
"Ap o= CApLp.cCApLp.o
() (out)f  y(out)
NApip.c= dAPL P: ﬂdAIM Pz0° (1)

(out) d(out)

Apy.pz.o TApLPO

by expanding the gluon operator W,, 4, =¢*,W, 4 in

terms of positive/negative frequency mode functions
(out)

=" mAp,.p..0

labeled by p, being the Fourier conjugate to z as

The annihilation operators ¢ are defined

in the Cartesian coordinates, which are

=3 [ dpiap [ Wi, e

oWl gt } (92)

mAp,.p..c A—p.,—p..0

Here, we again require the plane wave boundary condition
W(out)

+" mAp,.p,0

properly normalized, the mode functions in the Cartesian

(out)

vavapzvg

at t — oo. As is shown in Appendix A 2 a, if

coordinates _ W and those in the 7-5 coordinates

(out)
+ " wApi.pyo
transformation described by

are related with each other by an integral

:tlpﬂ)p

dp, ——— \/_

(out)
+ Wll Api.p,.c

Using this integral transformation, Eq. (93), and comparing
the expansion in the Cartesian coordinates, Eq. (92), with
that in the 7-5 coordinates, Eq. (67), one finds

ut eipny,, ut
c;(fpl),p:,a = /d clow) (94)

p A
1 \/m P L PO’

(out)t o e~"Pp (out)t
dA,pl,pz,a_/dpﬂ \/%;dA,pr' (95)

Inserting these relations, Egs. (94) and (95), back into
Eq. (90), one obtains

PHYSICAL REVIEW D 96, 014033 (2017)

SNE, 1 BN
dpidp, ®,dpidy,
1 eiyp(pq_P;])
—— | apdp "
w, / Ly
<Vac 1n|cA°Il;t o ff;i pyeo | VAC: 1n>
X . (96)
(vac; in|vac; in)
4N Aaiid3N(g)
dpidp, w,dpidy,
1 eiyp(pq_Pll)
—— (| apdpr "
w, / PnéPn—,
<Vac 1n|dA°;t ” gdf;i pyoVAC: 1n>

. 7
% (vac; in|vac;in) 97)

When the system is perfectly boost invariant, the expect-
ation values in Eqs. (96) and (97) for p, # p;, vanish as in
the quark case, and one finally obtains

NS, 1 aN,
dpidp, w, dp’dy,
1 1 d*N
_——/d Py Nk (98)
2726(p, = 0) o, dp’ dp,
3. Ghost

Finally, we consider the canonical quantization of the
ghost and antighost fields, C, and C, and show that ghosts
are never produced from the classical field. We do
essentially the same procedure as what we did in the
previous quark and gluon cases.

We first expand the ghost and antighost fields, C4 and
Cy, as

Cy as €Ap..p,
(C ) /dpldp”] +®1(4P)LP _(as)
e

A

fazp, -
( ) P L pv]
+-055 | , (99)
A-pi.,—p,

where the labels are the same as in the previous two cases.

The mode functions iG(aS) are the solutions of the

Ap.i.p,
equations of motion, Eq. (39), with the plane wave
boundary condition at  — +o0,

(in) ®(free) [—

+YApL.p, t:;:ﬁ: Ap..p, #(t_) _OO)L

(100)
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®(0ut)

—
YAy Lo T

fr It
Oty [A( = )],

(101)

where the plane wave solutions i@ff;i)’ » [A,]

free field equation of motion under a pure gauge back-
ground field Aﬂ = Aﬂ(t — +o00). For details of the plane

. (free)
wave solutions , 0O, P

malization conditions for the positive/negative frequency

satisfy the

see Appendix A 3a. The nor-

. as
mode functions i@g pl p, are
Pipy

(:tgz(:.;)ppq igﬁiji)’L.P’n)B =+5%(p1 —Pﬁ_>5(Pn - P%)’ (102)

) | e ) _
(Lo, 105 ), =0. (103)

Next, we canonically quantize the fluctuations by impos-
ing canonical commutation relations,

(=) (=)
{Calzxn), wa(z.x' )}

sy, - (o)
) CEN
{Culr,x1,n), Cp(z, X', 1)}
(=) (=)
={7s(t,x ), w4(r,x' 7))} =0, (105)

(—)(out)

out
€apip, | (+© ApL P | CA)
(_)(Outﬁ B out
fA,—m.,—p,, -(-© Ap., p,7| CA)B

( ®(out (in)

(in)

:/dpl_dp’? _( ®(out

In order to obtain the ghost and antighost spectra at
t — o0, let us introduce ghost and antighost number density

(gh) (gh) :
operators niy, , and ny,, Dy respectively, by

(gh) _ (out)f (out) (gh) out)t out)

Api.py, — “ApL.p, ApLpy —Api.py, — fAh panm Py
(109)
and
(gh)y _ é(out)’r é(out) n(g_h) _ (oul fout
Api.py — TApL.py, ApPL.py —-Api.py, — JApLpyY ApLpy
(110)

| ®(0Ut | )
ApLpy\+TApLpy ) g +EApLpy =T APy )

| _ ®(0th)
ApJ_ Pv] + APJ_ pr/ B - A~pJ_vp)]

PHYSICAL REVIEW D 96, 014033 (2017)

where the canonical conjugate fields to the ghost and
antighost fields, C, and C,, are given by m, =
8L£/6(9.Cy) = —i0,.Cl, and 7, = 6L£/8(9,C,) = i0.CY,
respectively. As a result of the canonical commutation

relations, one finds the following anticommutation rela—

(as) 5(as)

tions for the operators ey, py €ApL .y f ) h Dy f )y h s

given by

(as) (as)T _
{eApl p’l’eA/pL'p;]} - {prl p'] fA’pl P,}
15AA’5 Py —PL)5(P;7 - Piy)’

(106)
(otherwise) = 0. (107)
Now, one can understand that the operators,

(as) (as) o1 L
€Apy.p, f )y m oy (@, A zu by’ fa p..p,)> actas annihilation oper

ators of a ghost (an antighost) at the corresponding

asymptotic time with the momentums p , , p, and the color

charges qggh) , —q/(fm.

As is seen in the previous two cases, the creation/
annihilation operators at different asymptotic times do
not coincide with each other, and the linear relation is
given by the following Bogoliubov transformation:

(=) (in)

€ Ap P,
(=) (in)t
Y

(108)

(in)
_®A’pj_-pn ) B

|

As in the previous two cases, the ghost and the antighost

spectra can be derived as an expectation value of the

number density operators. By using the Bogoliubov

transformation, Eq. (108), and the fact that the
—)(as) (-)(as)

€ Ap..p, Ah,pv) and

commutation relation between

()@t (EF , :
e ap, p(f 4y, p,) vanishes because of the anticommu-

tation relations, Eqs. (106) and (107), one finds

i1 (gh) 1
SN _ (vaciinlniy, p,vaciin) 0, (111)
Wldp,  (acinpacin)
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. h i
d3N§) B <VaC;1n|”igALu.,pqg|VaC;m> —0 (112)
dpldp,  (vaciin|vaciin)

That is, ghosts and antighosts are never produced from the
classical field AM. This is a reasonable result because ghosts
and antighosts are unphysical particles and they never
appear in the physical spectrum. In general, the right-hand
side (RHS) is always zero for any physical initial state
|phys;in) because any physical state does not contain
ghosts or antighosts.

III. PARTICLE PRODUCTION FROM AN
EXPANDING COLOR ELECTRIC FIELD

In Sec. II, we have shown, at the one-loop level quantum
calculation and within the Abelian dominance assumption
for the classical background field Aﬂ, that the particle
spectra are obtained by solving the equations of motion of
QCD nonperturbatively with respect to the classical field.
In principle, the equations of motion are solvable; i.e., the
|

3a7(a) 3a7(@)
d Ni,f,s o d Ni,f,s

aapj_dyp B szj_dyp

“r [

for quarks and antiquarks,

i.f pL.py—a ET?/2.s

d3N(g) S
S +Ao l%/dpn‘A(g) o ( )
d°p  dy, (27)- ApLpy—dYET? /2.6

for physical gluons (¢ =1, 2). Here, we have used
?(p, =0)=S5,/(2r)*> with S, being the transverse
area. For the explicit expressions for the Bogoliubov
coefficients A(q),B<q> and A(g>, B®), see Appendix A lc
and Appendix A 2c, respectively. Notice that unphys-
ical gluons (¢ = 0, 3) and ghosts are never produced as
shown in Eq. (88), and in Eqs. (111) and (112), and
hence we do not consider them hereafter. In the
following, we numerically carry out the p, integration
and show the momentum-rapidity y, spectra for quarks
and gluons.

A. Features of particle production

In this subsection, we investigate specific features
of quark and gluon production focusing on impacts of
the longitudinal expansion and of finite lifetime effects.
For this purpose, we treat the quark mass my, the
coupling ¢, the field strength E, and the lifetime 7 as
free parameters, and we compute the quark and gluon
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particle spectra are computable for any A_” with arbitrary
spacetime dependence, for instance, by using numerical
methods. However, before going into more realistic calcu-
lations, where A , has a complicated spacetime dependence,
we consider a simple situation, where analytic solutions of
the equations of motion are available. This enables us to get
more insights on the particle production in QCD in an
expanding system. In particular, we consider a spatially
homogeneous and constant classical color electric back-
ground field with finite lifetime 7" in a boost-invariantly
expanding geometry, ie., E =e,E0(7)0(T —7),B =0
given by a gauge potential

o - {E12/2 (0<z<T)

ALALA, =0, A, = (113)
ET?/2 (T <)

n=

As is explained in Appendix A, the analytical formula for
the particle spectra become

(@)* (@) 2
Hoens M =B e A, (D (114)
(2)% (2)* (2) 2
BA-PJ.»P'W” (T) - BA .pJ_,p,]—qE“g) ET2/2,0'<0)AAPJ_-PV/*5 (T) ’ (1 15)

[
spectra without taking the summation of colors, i
and A.

We stress that the particle spectra for a fixed color
discussed here are very useful in understanding the specific
features of the particle production. However, the spectra are
apparently gauge-dependent, and hence one has to take the
color summation in order to get physically meaningful
results, which are discussed in Sec. III B.

1. Transverse distribution d°N /dy,dp?

Figure 1 shows the transverse spectrum of quarks
d3N§32’S/d2pldyp (left) and of gluons d3N5‘g,2,/J2pJ_dyp

(right). We observe that, for long lifetimes 1/ |q§q>E|T,

1/ |q£‘g>E|T 2 1, both spectra approach Gaussian distribu-
tions multiplied by a square of the lifetime 7. This is
consistent with what we naively expect from the Schwinger
formula,
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Schwinger formula, Eqgs. (118) and (119).

3a7(Q)
dNigs - _ M 116
Ty d | g o 110
piap; Schwinger ( ”) |q1' E|
&INE, p
e = ———exp {—ﬂ (5 } (117)
dPLsz Schwinger (2”) |qA E|

Indeed, for large values of 7, the produced particles
are sufficiently accelerated by the electric field as
wp ~ |p.| ~|qA.| (¢ = ql(.q) for quarks and ¢ = qff) for
gluons), and A, ~A, /T = ET/2 and V ~ S, T hold. Thus,
we find

(a)
O ST
szldyp Schwinger <2ﬂ")3 2 |615q)E|
(118)
&SN, S, g E|T? [_ Pl }
dzpidyp Schwinger (2”)3 2 |C]1(4g)E| ’

(119)

which are plotted in the dashed lines as the “Schwinger
estimate” in Fig. 1. On the other hand, for short lifetimes

\/|ql(.q)E\T, \/|q£‘g)E|T <1, the spectra are harder com-
pared to those for larger lifetimes and do not decay
exponentially in [p, | because the typical frequency w ~
1/T of the classical electric field is hard enough to excite
hard particles. In other words, a naive application of the
Schwinger formula is valid only for large values of the
lifetime 7', while one should take care of finite lifetime
effects for small values of 7.

In the low momentum region |p| 5\/|q§q)E|,

v/ |qgg)E |, gluons are more abundant than quarks. This is
because the quark production is subject to the Pauli
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Transverse distribution of quarks (left) and gluons (right) for various lifetimes 7. The dashed lines are expectations from the

principle but the gluon production is not. The gluon
spectrum shows a weak divergence for |p,| — 0 but its
inverse power is smaller than one, and it approaches zero
with increasing the lifetime 7.

2. Number density dN /dy

We numerically integrate the transverse distributions
over p | to compute the total number of produced particles
per unit rapidity for quarks ngf‘f)_S /dy, and for gluons
dAN'®) /dy,.

The left panel of Fig. 2 shows the total number of
massless quarks le(.}),s/dyp and of gluons defL/dyI,.
Here, we artificially set |g| = |q§q)| = qug)| for the quark

and gluon charges. For long lifetimes +/|gE|T = 1, one
finds that the quark and gluon productions are consistent
with the Schwinger formula: By integrating Eqs. (118)
and (119) over p |, the Schwinger formula gives

(q)
M) ST [ ]
dyp Schwinger (2ﬂ)3 2 |qSQ)E|
(120)
WO S laPErT? o
dy P ISchwinger (2” ) } 2

which are plotted in the dashed lines in the left panel of

Fig 2. For short lifetimes /|¢E|T < 1, one observes that
the quark and gluon production are more abundant than
the Schwinger estimates. This is because the typical
frequency w ~ 1/T of the electric field for such small
values of T becomes so hard that a large number of
hard particles are produced as was discussed in Fig. 1, for
which the phase space is larger than those for soft
particles expected from the Schwinger formula. For
classical background fields with such hard frequencies,
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1.8 For fixed charge |g|=lg\? |=1q¥|

massless quarks mr=0

Quark-to-gluon ratio N{F / N,
(2]

0 2 4 6 8 10 12 14

Lifetime 4/ |qE| T

FIG. 2. Left: Total number of massless quarks (red line) and of gluons (blue line) per unit rapidity for |q5q)| = |q§f> |. The dashed line is
an expectation from the Schwinger formula, Eqgs. (120) and (121). Right: A ratio of the total number of produced massless quarks to that

of gluons N fs/N © for \qﬁq)l = ‘q/(&g)|.

perturbative particle production from a single classical
background field gives a better description than
Schwinger’s nonperturbative particle production mecha-
nism [30], and hence this enhancement is purely a
perturbative effect.

For all values of 7', we observe that the massless quark
production is more abundant than the gluon production for

4, = lq¥
right panel of Fig. 2: For long lifetimes

| This aspect is more clearly illustrated in the
|gE|T Z 1, the
ratio of the produced quarks to that of gluons N ch)‘s / NE‘%Z,

approaches unity because both quarks and gluons are
produced via Schwinger’s nonperturbative particle produc-
tion mechanism, in which the statistics of particles are
irrelevant as is seen in Egs. (120) and (121). For short
lifetimes +/|gE|T < 1, however, the ratio deviates from
unity. This is because, for such small values of T,
Schwinger’s nonperturbative particle production mechanism
is not efficient but perturbative particle production occurs,
which depends on the statistics of particles in general. It is
interesting to point out that the ratio is always larger than
unity so that quarks are more abundantly produced than
gluons. This is because quark spectrum is harder than gluon
one for small values of 7 due to the statistics of particles as
we saw in Fig. 1 and the phase space for produced quarks
becomes larger than that of gluons.

In the 7 — 0O limit, the ratio amounts to nearly two. In
order to convince ourselves that this number “two” is
correct and that this enhancement is indeed a perturbative
phenomenon due to the finite lifetime effects, we consider
a nonexpanding, spatially homogeneous but time-
dependent electric field, E = E(t)e_, as an example for
a moment. In this case, one can analytically compute
S-matrix elements, (q; 7, Lposli f ), s> in|S|vac;in) and
(8Ap, .p.c84 p, p.3 10| S|vacsin), in the lowest order per-

turbation theory with respect to the classical background
field E(z). After some manipulations, one obtains

"’/f S l; / d’p_ dp. / &’p' dp:.

x | qtfpj_p sqi Sp Dk 571n|S|VaC 11‘1>|2

4m? Zm
d _ f 1 f (q) 2
=54 /mt o\[1T=—S |1+~ E(w)|

d 122
mf 024” a)lql ( ) ( )
and
/ d°p, dp, / d’p', dp',
+A o'
S KgA.pL,pz,ogA’p’J_,p’z,a’;in|S|VaC;in>|2
Lo (@5
= [T dola Blo)P, (123)

where E(w) is the Fourier transformation of the
electric field E(w) = [ dtE(t)e. Thus, Nl(,f]f)’x/Nig;:

2|ql | /|qA |> holds for massless quarks.
Figure 3 shows quark mass dependences of the quark

production: The total quark number dN f(})s /dy, (left) and

the ratio of the total number of massive quarks to that of
massless quarks (right) for several different values of the
quark mass are plotted. One finds the following:

(i) For short lifetimes 1/ |qfq)E |T < 1, the total quark
production number becomes independent of the

quark mass and the ratio comes close to one
because the typical energy scale of the classical
electric field, which is characterized by its typical
frequency w ~ 1/T, is much larger than the quark
mass scale.

014033-16



QUARK AND GLUON PRODUCTION FROM A BOOST- ...

N

d M?S

|f7ﬂ) E|S. dp
o
)
3

1

. 0.010
3 0.001
5
Z 10
g 2222
& 108} =7 | E| 72 exe[-m? [ | oV E]]
T ~~~ Schwinger estimate s
& 10® @n
0.1 0.5 1 5 10

Lifetime [ |V E| T

FIG. 3.

PHYSICAL REVIEW D 96, 014033 (2017)

1.0 e
=) ---  Schwinger estimate exp[-/m?/|g?E|]
=l on
£| . 0.8f
T
Fla2
;2 0.6 Mass m,/\/|q$‘”E|
§ _____________________________ — 01 —
5 0.4r — 03
4 — 05
5 1
g 02f
=l
7]
0.0~

0 2 4 6 8 10 12 14

Lifetime [ | E| T

Left: Total number of produced quarks per unit rapidity for various quark masses. The dashed lines are expectations from the

Schwinger formula, Eq. (120). Right: The ratio of the total number of produced massive quarks to that of massless quarks

N 532.; [m¢]/ N%Z.s [m; = 0]. The dashed lines are expectations from the Schwinger formula: exp[—zm?/ |q§q)E ]

(i) For long lifetimes \/|¢\VE|T > 1, the total quark
production number approaches the expectation of the
Schwinger formula, Eq. (120), and the ratio starts to
be suppressed exponentially with respect to the quark

mass as exp[—zm?/|q\VE|]. Notice that the quark
production is still always larger than Schwinger’s
value. This is because it needs a long lifetime 7" to
justify Schwinger’s nonperturbative particle produc-
tion mechanism because of the finite lifetime effects.
(iii) The larger lifetime T is required for heavier quark
production to converge to Schwinger’s estimate,
compared to that required for lighter quarks. One
can understand this observation in terms of the

Keldysh parameter ygiqysn = ql(.q)ET/mf [29,30],
which is one of the dimensionless parameters
characterizing the interplay between Schwinger’s
nonperturbative particle production (ygeiaysh > 1)
and perturbative particle production (ygeiaysh << 1):
The Keldysh parameter ygeiaysn becomes smaller
for larger values of my, and thus it requires larger
lifetimes T to realize ygeiaysh > 1.

B. Phenomenology of particle production

For discussions on more phenomenological implica-
tions, let us consider particle production with physical
parameter settings: N, =3, and m,, my =0 GeV,
mg = 0.1 GeV, and m. = 1.2 GeV representing the mass
of up, down, strange and charm quarks, respectively. We
set gE =1 GeV? as a typical value at RHIC energy
scale. Under this setting, we consider the inclusive particle
production by summing up the color degrees of freedom,
i and A. Here, we assume for simplicity that the
Abelianized classical electric field [see Eq. (23)] is always
directing to the #> direction in the color space. The particle
spectra depend on this color direction in general; however,
one can numerically demonstrate that its dependence is
rather small [48,51].

Before showing results, let us make some remarks on
the validity of our results to the early stage dynamics
of HIC:

(1) Our formalism assumes the Abelian dominance (see
Sec. II B). This assumption is nontrivial because one
can naively expect in HIC that the non-Abelian part
for the classical field strength gA A ~Q2/g is about
the same order as the Abelian one, A ~ Q2/g.
Nevertheless, it is known that the full numerical
simulation of the classical Yang-Mills evolution
[Eq. (18)] [5] can be understood well within the
Abelian dominance assumption; i.e., effects of the
non-Abelian part are rather small [45]. Hence, it may
be good to assume the Abelian dominance for the
first approximation.

(2) Our formalism neglects higher order quantum ef-
fects beyond one-loop order. Hence, one cannot treat
scatterings and screening effects of produced par-
ticles, which are essential for the thermalization of
the system. Strictly speaking, this treatment works
fine when the lifetime 7 is not so long, where the
fluctuations are small enough compared to the
strength of the classical field.

(3) The classical field configuration, Eq. (113), is very
simple compared to the one in realistic situations:
(a) The classical field is assumed to be constant in

time for 7 < T and suddenly switched off at
7 = T. A realistic classical field is also finite in
time; however, it should smoothly decay in time
and not experience such a sudden switching off.

(b) We only consider a purely longitudinal electric
field. In realistic situations, however, not only a
longitudinal electric field but also a longitudinal
magnetic field can exist.

(c) The spatial homogeneity is assumed for the
classical field. A realistic classical field, however,
should have spatial structure with a typical length
scale ~1/Q, due to CGC.
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Thus, the quark and gluon spectrum presented below are
just a first-order approximation. To get more reliable results
for the phenomenology, one has to consider the above
points for the field configuration. This is numerically
possible within our formalism, although we leave it for a
future study. Nevertheless, we stress that the simple field
configuration, Eq. (113), does capture some essential
features of the strong color electromagnetic field that exists
just after a collision such as the boost invariance, the finite
lifetime, and the existence of the longitudinal color elec-
tric field.

1. Transverse distribution d°N /dy,dp?

Figures 4 and 5 show the transverse momentum spec-
trum of up and down (top), strange (middle), and charm

quark (bottom) Zid3N,(3>',s /d’pdy,, and that of gluons

D AcPNEfL /d’p dy,, respectively. The dashed line in the
figures represents the expectation from the Schwinger
formula, Eqgs. (118) and (119). We again recognize the
interplay between Schwinger’s nonperturbative particle
production (long lifetimes 7 > 1 GeV~!) and perturbative
particle production (short lifetimes 7' <1 GeV~'). This
implies that finite lifetime effects are very relevant to the
early stage dynamics of HIC, where the typical lifetime of
the strong field is short as T~ 1/Q, <1 GeV~!.

One also finds that the quark mass value largely affects

the transverse spectrum:

(i) For small transverse momentum |p,| < my, the
spectra become constant in |p|. This is because
the p | dependence of the particle production always
appears in the combination of the transverse mass

\/m? +p5 in homogeneous systems (see the
explicit expressions of the mode functions given

in Appendix A 1c). Thus, one can neglect the p |
dependence and that the spectra are determined
solely by the quark mass my for |p, | < my.

(i) For large transverse momentum |p | = mg, the
spectra become independent of the quark mass mi;
because now the transverse mass is determined by
|p.| only, and hence the m; dependence can be
neglected.

(iii) The larger lifetime T is required for the heavier
(charm) quark production spectrum to converge to
the Schwinger estimate, compared to that requir-
edfor lighter quarks (up, down, and strange quarks)
as was discussed in Fig. 3 for the total quark

number dN Sf]j?,s /dyp.

2. Number density dN /dy
Figure 6 shows the total number of quarks and
antiquarks > _; » d(N Ef]f?’_y +N ,(»f]f?’s) /dy,, and that of gluons
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FIG. 4. Transverse distribution of quarks (top for up and down,
middle for strange, and bottom for charm) for various lifetimes 7.
The dashed lines are expectations from the Schwinger formula,
Eq. (118).

. A’(,dNig’B, /dy,. Here, we consider the three flavor case
(N¢ = 3);i.e., up, down, and strange quarks are considered.
(The number-of-flavor N; dependence of the particle
production will be discussed in Fig. 7 below.) As in
Fig. 2, we observe the following points:

(i) For long lifetimes 7 = 1 GeV~!, the total number
of quarks and antiquarks, and that of gluons,
approaches the Schwinger estimates, which are
given by
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T. The dashed line is an expectation from the Schwinger
formula, Eq. (119).
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FIG. 6. Total number of quarks and antiquarks (red line) and
gluons (blue line) per unit rapidity for Ny = 3. The dashed line is
an expectation from the Schwinger formula, Eqgs. (124) and (125).
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(125)

where Ny =2, Nyg = 2, N, = 2 count the number
of the spin, the quark and antiquark degeneracy, and
the physical polarization of gluons. N, represents
the number of “light” quarks satisfying m? < |gE|.
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FIG.7. The number-of-flavor Ny = 2 (u,d), 3 (u,d,s), 4 (u,d,s,c)
dependences: Top: The total quark and antiquark number. The
dashed lines are expectations from the Schwinger formula,
Eq. (124). Middle: A ratio of the total number of massive charm
and strange quarks to that of massless up and down quarks,
SN ,(q/)g [me #0]/> N 532,5 [m; = 0]. The dashed lines are expect-
ations from the Schwinger formula, Eq. (126). Bottom: The ratio
of the total number of quarks and antiquarks to that of gluons
dirs(NV fcys +N fc})s) /> AﬁNl(f’L. The upper horizontal line
indicates the thermal ratio 27/16.

We have used the color charge formulas, Egs. (35)
and (36). As the strange quark mass is much smaller
than the strength of the electric field, m? < |gE|,
we regard the strange quark as a “light” quark and
set Nig =3 (see the middle panel of Fig. 7 for
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justification of this consideration). Then, the
Schwinger estimates for quark and antiquark pro-
duction and for gluon production accidentally
coincide with each other for N, = 3 because the
prefactors in both cases give the same value,
N¢NggNiqg = 2N N, = 12.

(ii) For short lifetimes 7 <1 GeV~!, quarks and anti-
quarks are more abundantly produced than gluons
because of the finite lifetime effects. For details of
the ratio of the total number of quarks and antiquarks
to that of gluons (see the bottom panel of Fig. 7),
which we will discuss later.

(iii) The particle production is very fast, which is
consistent with an earlier work on the quark pro-
duction [35]. For the typical value of the transverse
area in HIC S| ~ (7 fm)?, about 1000 particles per
unit rapidity (650 quarks and antiquarks plus 350
gluons) are produced at about T ~ 0.5 fm/c.

Figure 7 shows dependence of particle production on

the number of flavors, Ny = 2 (u,d), 3 (u,d,s), 4 (u,d,s,c):

; (a)
The total quark and antiquark number, Zi.f,sd(N ifsT

N l(‘})‘) /dy,, for several different values of Ny is plotted in
the top panel. There is a significant change from N; = 2 to
N¢ = 3 for all values of T. This means that the inclusion of
strangeness degree of freedom is inevitable in understand-
ing the early stage dynamics of HIC quantitatively, whereas
the change of the quark multiplicity from Ny =3 to
N; =4, i.e., by inclusion of charm quarks, is negligible
(noticeable) for long (short) lifetimes 7.

In order to see more clearly how this difference
appears, we plot a ratio of the total number of massive
charm and strange quarks to that of massless up and down
quarks, > ;N S})J [mg #0]/> ;N E})J [mg = 0], in the middle
panel. From this panel, one can understand that the
strange quark production is comparable to the production
of up and down quarks (the ratio is almost unity) for all
values of T because the strange quark mass is sufficiently
“light” compared to the strength of the electric field
m? < |gE|. On the other hand, one finds for the charm
quark production that it is comparable to the production
of massless quarks for smaller values of 7 <1 GeV~!
because of the perturbative enhancement of the particle
production discussed in Fig. 2, while it is negligible for
larger values of T > 1 GeV~! because Schwinger’s non-
perturbative particle production is strongly suppressed by
the mass effect,

SN e # 0]
(a) _
ZiNi,f.s[mf - O] Schwinger
(@) ;12 2
Z q; E _
2 'g—E p{ ”quq)EI} o
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We note that the enhancement of the charm quark pro-
duction from a pulsed electric field in a nonexpanding
system was previously discussed in Refs. [30,31].
Finally, in the bottom panel of Fig. 7, we plot a ratio of
the total number of quarks and antiquarks to that of gluons,

szs( zfs+szs>/ZiA6 Aggf’
values of N;. As was discussed in the top and middle
panels of Fig. 7, there is a significant change from Ny = 2
to Ny = 3 for all values of 7', while the change from N; = 3
to Ny =4 is negligible (noticeable) for long (short) life-
times 7 depending on the strange and charm quark masses.
In the short lifetime limit 7 — 0, the ratio approaches
2N;/N.. This is because the quark masses become irrel-
evant to the quark production for such small values of 7" and
that the (lowest order) perturbative particle production,
which becomes efficient for small values of lifetimes 7,
says that twice as many quarks than gluons will be
produced as was discussed in Fig. 3. On the other hand,
in the long lifetime limit 7 — oo, the ratio approaches the
value N,y/N. because particle production is dominated
by Schwinger’s nonperturbative mechanism whose contri-
bution is estimated by Eqgs. (124) and (125). One of the
important points here is that the ratio is always larger
than unity for realistic values, N; >3, Ny =3,
N, =3; ie, quarks and antiquarks in total are more
abundant than gluons. This means that not only gluons
but also quarks are important in understanding the early
stage dynamics of HIC. We note that this result is based on
our one-loop order treatment as was remarked in the
beginning of this section. Thus, the above result does
not take into account effects of scatterings such as g — qq,
which is important in the chemical equilibration of
the system and could substantially change the ratio to

Zlfv( z)‘ s +sz )/ZiAﬂNAo‘|chemeq ~27/16

In the figure, we see bumps at around 7 ~ 0.5 fm/c
while we did not find such bumps in the right panel of
Fig. 2. These bumps appear because gluons typically have a
larger effective charge than quarks have. Indeed, one can
estimate the typical magnitude of the effective charge

of a quark (|¢@|) and a gluon (|¢'®|) from Egs. (35)

for several different

and (36) as
g9y = —gx——,  (127)
2N,
1 Nz'(Nc_])/z ()
@)\ = g)2
1
= () 128
9> =y > (4] (128)
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As was discussed in Sec. III A, quark and gluon production
numbers approach the expectation of the Schwinger for-
mula quicker for larger values of |g|T. Thus, we can say
that the gluon production number approaches the expect-
ation of the Schwinger formula quicker than the quark
production number does because (|g®[) > (|¢@|). In
other words, the interplay between the perturbative and
nonperturbative particle production mechanism for quarks
and gluons does not occur at the same time and the time
needed for gluon’s interplay is smaller than that for quark’s
one. (This is not the case in Fig. 2, where |¢\9| = |¢(®)] is
assumed.) By noting that Schwinger’s nonperturbative
particle production mechanism produces smaller numbers
of particles compared to that the perturbative particle
production mechanism does, we understand that the pro-
duction number of gluons is relatively smaller compared to
that of quarks at transient times 7 ~ 0.5 fm/c, where the
perturbative (nonperturbative) particle production mecha-
nism dominates for quarks (gluons). This is the reason why
the bumps appear.

IV. SUMMARY AND OUTLOOK

We have extensively studied the quark and gluon
production from an expanding classical color electric field,
motivated by the early stage dynamics of HIC. First, we
have formulated the particle production from classical color
electromagnetic fields in an expanding system in the one-
loop level quantum calculation within the Abelian domi-
nance assumption for the classical fields.

Then, we compute the quark and gluon spectra within
this formalism for the simplest case of the classical back-
ground field in an expanding geometry. That is, the
classical field is assumed to be purely electric and
boost-invariantly expanding, homogeneous, and constant
within finite duration (lifetime) 7', E = e, E0(7)0(T — 7). In
this setup, analytical solutions for the equations of motion
of QCD are available; this enables us to develop a clear
understanding of the particle production from the classical
fields in an expanding system in QCD.

In this way, we have explicitly demonstrated for the first
time in an expanding system that there is a significant
interplay between Schwinger’s nonperturbative particle
production (long lifetimes 7°) and perturbative particle
production (short lifetimes 7)), which results in that the
transverse momentum p | spectrum becomes harder (softer)
for smaller (larger) values of 7" and in an enhancement of
the particle production for small values of 7', compared to
the estimate of the Schwinger formula.

In addition to this, we have studied the difference in the
production of quarks and of gluons. We have found that
quarks are more abundantly produced than gluons, and that
the difference of the statistics results in the increase of soft
gluons and in an efficiency of the perturbative enhancement

Nl(fjc),s /Nf)g ~ 2 for small values of 7.
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The quark mass dependence of the quark production
is also studied by examining the ratio Nl(fjc),s[mf #0]/

N Ef]f)’x[mf = 0]: We found that it varies from one for short
lifetimes T to the expected value of the Schwinger formula

exp[—zm?/ |g\YE|] for long lifetimes 7, and that it needs
longer lifetime 7" for heavier quark production to be
described by the Schwinger formula.

As implications to the heavy ion phenomenology, we
have argued that (i) the naive use of the Schwinger formula
may be inappropriate in describing the early stage dynam-
ics of HIC because of the finite lifetime effects; (ii) very fast
particle production occurs, which results in about 1000
particles per unit rapidity (650 quarks and antiquarks plus
350 gluons) produced at about T ~ 0.5 fm/c at the RHIC
energy scale; (iii) since quark production is more abundant
than gluon production from the classical electric fields in
the early times, it is very important to study the dynamics,
not of the pure gluonic system, but of the quark-gluon
system in understanding the early stage dynamics of HIC;
and (iv) the strange quark production is comparable to the
light (up and down) quarks for any value of the lifetime 7,
while the charm quark production rate heavily depends on
the lifetime 7, which is noticeable (negligible) for small
(large) values of T.

There are many possible future directions of this work.

The first direction is to improve our formalism to include
the higher order quantum corrections. These terms are
responsible for scatterings and screening effects, which are
essential in understanding thermalization, i.e., isotropization,
hydrodynamization, and chemical equilibration of the sys-
tem. Besides, it is discussed vigorously that momentum
exchanges due to the scatterings induce spectral cascades
(for arecent review covering this topic, see [40]), which result
in some interesting behaviors such as a formation of gluonic
Bose-Einstein condensates [41-44]. We note for complete-
ness that recently the screening effects from quark currents in
a nonexpanding system were discussed in Refs. [48,52].

Another direction is to improve configurations of the
classical field: In realistic situations, the classical field has a
finite extent in the transverse direction and has random
fluctuations with a typical transverse correlation length
~Q;!. Time dependence of the classical field should also
affect the particle spectra. Besides, it is known that the
classical color field has magnetic components in addition
to electric components in the longitudinal direction [5].
The existence of longitudinal magnetic fields may enhance
the particle production rate [36,37,48,53,54]. In addition to
this, such field configuration is known to invoke the
Nielsen-Olesen type instability [55-57], although its typ-
ical time scale is rather slow. It is interesting to study the
particle production under the presence of such instabilities;
for nonexpanding, static (7' — oo) color electromagnetic
fields, it was discussed that the instability may enhance the
gluon production [58].
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The last direction that we would like to mention is about
the quark dynamics. As was discussed so far, quarks are
abundantly produced at very early times, and hence they
may have important information about and/or an important
role in the early stage dynamics of HIC. Since quarks have
an U(1) electromagnetic charge, which does not suffer from
the strong interactions, one can investigate the quark
dynamics by using U(1) electromagnetic probes such as
photons [59] and dileptons [60,61]. Another interesting topic
involving the quark dynamics is an existence of strong U(1)
electromagnetic fields just after a collision of nuclei [62,63].
Although such strong U(1) electromagnetic fields die away
immediately after a collision within less than 1 fm/c, they
could significantly influence the quark dynamics because
the strong U(1) electromagnetic fields are as strong as the
pion mass scale and the quark production is fast enough.
Thus, one can expect some experimental traces of them,
for instance, in U(1) charge dependences in observables.
In particular, a U(1) charge dependent directed flow v in
asymmetric heavy ion collisions [64,65] has recently been
measured by the STAR Collaboration [66]. This should
provide important insights into the quark production, i.e., the
early stage dynamics of HIC, although a theoretical under-
standing of this observable is still lacking. Another interest-
ing physics that involves the strong U(1) electromagnetic
fields is the chiral magnetic effect [67], whose real time
dynamics from the microscopic point of view is still
incomplete (although there are some earlier works on this
topic [68,69]) and hence is worthwhile to be investigated
further by extending our work.
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APPENDIX: ANALYTIC SOLUTIONS OF THE
ABELIANIZED EQUATION OF MOTION

In this appendix, we analytically obtain mode functions
for the equations of motion, Egs. (37)—(39), under (a) a pure
gauge background field (i.e., E =0, B =0),

A, = const, (A1)

(b) a spatially homogeneous and constant color electric
background field (i.e., E = e E, B =0),

PHYSICAL REVIEW D 96, 014033 (2017)
ALALA =0, A, =1E/2, (A2)
and (c) a spatially homogeneous and constant color

electric background field for a finite duration 7 [i.e.,
E=e,E0(t—10)0(tg+T—-7), B=0],

ALALA =0,
3E/2 (r < 19)
A, =< 22E)2 (tg<t<t9+T). (A3)
(to+T)’E/2 (19+T <7)
1. Quark

We consider the equation of motion for the quark field y
under the Abelianized background gauge field in the 7-7
coordinates [see Eq. (37)],

[id — gA — m)y(x) = 0. (A4)
Here, we have suppressed the indices for color i and flavor
f for simplicity.

To avoid complexities coming from the spinor structure

of Eq. (A4), we consider a solution of the form [36,37]

w = [id — qA + m]¢. (AS5)

One can readily find a differential equation for ¢ as

o d,+igA, i .
0= [(aﬂ +iqA,)* + % + gy”y”Fm, + mﬂ ¢.
(A6)

Since we are interested in the situations where a color
electric field pointing to the z direction exists at most in this
appendix, one can simplify Eq. (A6) as

oy OctigA,
0= [(8/, +iqA,)* + A i igEy'y* + mz] ¢.
(A7)

Next, we expand ¢ in terms of eigenvectors5 of y'y* as

2
b= T, (A8)
s=1

>Strictly speaking, the matrix y'y¢ has four eigenvectors T’
(s =1, 2, 3, 4) in total; I'; , with eigenvalues 4;, = 1 and I'; 4
with eigenvalues 134 = —1. Solutions w3, for the original
equation, Eq. (A4), constructed from ¢;I'5 and ¢, are linearly
dependent on solutions y, constructed from ¢I'; and ¢,I",
[36]. Thus, it is sufficient to consider s = 1, 2 only in order to
obtain all the independent solutions of the differential equation,
Eq. (A4), for y.
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where ¢, are scalar functions and the eigenvectors I’
(s =1, 2) satisfy

},tyzrs = ﬂ'sr‘s’ FIF&’ = 63\?’ (Ag)
with the eigenvalues A, given by 4, = 4, = 1. Physically,
we have defined the spin of quarks by the direction of the
background field F,, because y'y* is proportional to the 7z

component of the background field as F - = Ey'y*. Now, a
differential equation for ¢, reads

. 0, +iqA

(0, + igh,)? + % L igE + m? |y, (A10)
which are free from the cumbersome spinor structure in the
original equation, Eq. (A4), for .

a. Under a pure gauge background field
(plane wave solutions)

Let us construct all the mode functions for the equation
of motion, Eq. (A4), under a pure gauge background field
A, given by Eq. (Al), which we write y™). We first

consider solving the differential equation for ¢ (free)

[Eq. (A10)]. For this, we make an ansatz of the form

¢£free)(x> E/d J_dp”¢pfje;" ( )

_ / Pp, dp, Q)™ ()

-n/2 ipyx &P
x < ¢ . (A1)

Vm? +pt (2n)"?

Here, the momentum labels p | , p, are introduced, and €2 is
a Wilson-line gauge factor denoted by

Q(x) = exp {—iq / ' dxﬂA,,]. (A12)

The factor e™/2/y/m? + p? is inserted so as to properly

normalize (™) in the 7-n coordinates as we shall see.

Now, one can readily find that ;(,Sje;’ s satisfies the Bessel

differential equation,

0= [1263 +10, + {(\/m2 +pir)2

. (free
— (ipy + 1721 } | 1hi) s (A13)
Since the differential equation, Eq. (A13), is a second order

differential equation, there are two independent solutions,

which we write k;(l(,iref, s (k =1, 2). It is convenient for our

purpose to choose
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(free)
1ALy ﬁ (m2 +Pi)]/4eﬂpq/2e—in/4

(free) =

PLpys
2 Jo R
Hip 1o (Vi 4 pT2) (Al4)
1 9
H(_,')],n_uz( V/m* +pit)
where H." ( ) (n = 1, 2) are the Hankel function of the nth

kind, and we have normalized the solutions ky,, s by

| (free)

(free)
IXPL Py» 5|2 + ‘QXPL Py» S|2 - 1/T (AIS)

It is also useful to point out that the solutions k)(l(,tjef,l

satisfy the following simultaneous differential equation:
f
i [ oy it /2] (wﬁfﬁ)n,s)
v+ pl ‘ o s

(free)s
[ 2Aprpys
B (free)x |
- ]XPL-,[)»]»S

We are ready to construct all the mode functions
iy/,(,rf;?rs[ﬁﬂ]. Using the definition of () [Eq. (A5)],

one has

(free) (free)
l// 1L:PpsS A ~ ¢ 1Py
<+ ‘E’ﬂ;’) [j‘]) = [id — qA +m]< "frei )r

~Yp..pys [Au 2¢1u PeS

(A16)

(A17)

Here, we have changed the left subscriptk =1, 2 into = for
a notational simplicity because +1//1(,ff37, SIA]C z//pffef;q [A,)
corresponds to the positive (negative) frequency mode
function in the 7z-n coordinates as we will explain soon.
With the help of Egs. (A9) and (A16), one finds that

Eq. (A17) can be more explicitly written as
f 5 i
pons (A, Wrss
. — Q Vs 1
(free) 7 (free) '
—’//m,pms{ ;4] 2XP1.pys
( ﬂf,flre;)qs ) ] elPL XL aipyn
+ Vio| =535
* 5 /2
s (27)
(A18)

Here, we have introduced four-spinors, V; and V,, by

_ 2P

\/m +PL

Vi Iy, Vo=e T, (A19)
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which are normalized as

Vs,i}/TVS’j = 5 <A20)

ij:

From the normalization conditions for k;(,(,fjef,ﬂ s [Eq. (A15)]

and V; [Eq. (A20)], it is evident that the mode functions

:I:l//l(,fie,e,l A ﬂ] [Eq. (A17)] satisfy the correct normalization

condition for spinor fields in the z- coordinates [see also
Eqgs. (43) and (44) in the main text] as

fre tr ~

(s ALy o) Au))e =608 (0. =p'1)5(py = P},
free free ~

(s A=y ™) 1A, =0, (A21)

where the fermion inner product (y |y )g is the same as is
defined in Eq. (45).

Our mode functions +z//1(,je;q [A,] y/pire;q [A,)) defined
in Eq. (A17) can actually be understood as the positive
(negative) frequency mode function in the z- coordinates
because it can be written as a superposition of the positive
(negative) frequency mode function in the Cartesian coor-
dinates [28,70]. To see this, we use the integral represen-

') n=1,2),

tations for the Hankel functions H

) —-ivr/2 oo )
H, (Z) = / dteizcosh t-vt

171

ivm/2 0 )

H£2)(Z) — _ € . / dte—lzcosh t—zxt7 (Azz)
T J_w
to obtain
Lip,y,
f ~ ePndp f ~

W pslA) = VoLoslAnl  (A23)

dpz\/—i PL.pzS

Here, w), is on-shell energy w, = vm? +p2l + p? and Vp

is the momentum rapidity as was introduced in Eq. (55).
il//,(,ff;)z,s[ﬁm] are the positive/negative frequency mode
functions in the Cartesian coordinates, which satisfy the
free field equation of motion in the Cartesian coordinates,
0 = [iy™(0,, + iqA,,) — m]iwl(,fj?f,l,s[ﬁm], and that are
labeled by p, being the Fourier conjugate to z: They are

given by
fi e fr
<+w;f;1,s[ m1> o (W) |
free e 5,
—U/I(JL,p)Z,S [ m] QZIMJ’:»‘

ﬂlgfjeze)*s elPLXLeip:2
+ . Vs T (r\3/2
—IZPLJ’:’S (27[)

(A24)
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where we have defined the spin label s by the direction
of the background electric field F, = Ey'y* as in

i%(;ff;i,s [A,] by expanding the spinor space in terms of
the eigenvectors of the background field I'y. Q is the same
as the Wilson-line gauge factor introduced in Eq. (A12),

which does not depend on a choice of coordinates

Q(x) = exp {—iq /x dxﬂﬁﬂ} = exp [—iq /X dfmﬁm},

(A25)

where £&" represent the Cartesian coordinates & =
(t,x,y,7z) with m running through 1, x, y, z as in the main
text. The functions ky, ,  (k =1, 2) can be explicitly
written as

){(free)
s =
1AP1.P: \/_

(free) P Pz zm

QXIMP *_\/—

1 + pZ —m)

(A26)

and the four-spinors v, and v,, are given by

Py tmL
N

US,Z = y’Fx = en/2 Vs,2'

Vg1 e_”/zvs,l s

(A27)

iyll(,fff,)z,s [A,,] are properly normalized in the Cartesian

coordinates as

_(f 1t fi A
/ dx, dz gy Ay iwﬁ,‘e,i) o [Anl
t=const

=60 (pL —p')8(p, — Ph). (A28)

/ 1 dz TS LAl ) A, = 0.
t=const

(A29)

b. Under a spatially homogeneous and constant
color electric background field
We consider a spatially homogeneous and constant color

electric background field given by Eq. (A2), and analyti-
cally obtain all the mode functions for the equation of

motion, Eq. (A4), which we write (€™ Let us begin with

the differential equation, Eq. (A10), for 45 (const)
this equation, we make an ansatz of the form

. To solve

014033-24



QUARK AND GLUON PRODUCTION FROM A BOOST- ...

¢§C°“St)(x) = / a{zpj_dpnqﬁlgi(),r;:z“(x)
/2 L
dp L dp s (1) —~ '
/ nApL.py.s \/m (27)3/2
(A30)

As in the pure gauge case (Appendix A 1a), the
momentum labels p,, p, and the normalization factor

e™?/\/m? +p? are introduced. We note that even if
there are pure gauge potentials in addition to the electric
field, the following computations do not change by simply
adding the Wilson-line gauge factor Q [Eq. (A25)] into the
|

(const)
IXPL qu

o]

(const)
PL.PysS

which are normalized as

| COl’l&t

pL.p,. s|2 + |2)(pi0r;;s|2 =1/z. (A34)

It is useful to note that these particular solutions k)(l(,im,’,ms

satisfy a simultaneous differential equation, which is
similar to that for the pure gauge case, Eq. (A16), as

(const)

N ip, + iqA,? + 1/2} <1Zpl,p,,,S>

(const)
P1.PyS

i
— o,
Vm? +pi [ g

(const)x*

o QXIM-,P,;,S
o (const)x |~

—1XpL.pys

Thanks to this property, one finds that the mode functions

kq;l(,ior;t)g constructed from k)(,(,im;ft)f have the same spinor

structure as what we have for the plane wave solutions

i) | [Eq. (A18)] as we will see soon.

Now, one can readily construct the mode functions
k I(,im;;)s (k=1, 2) for the equation of motion,
Eq. (A4), under a spatially homogeneous and constant

color electric background field AM [Eq. (A2)] as®

(A35)

®Unlike the plane wave solutions iwl(,fje,e, s [Eq. (A17)] studied
in Appendix A 1 a, we have not renamed the left subscript k = 1,

2 of Ia//‘f,cf',’ft)s into £ because one cannot identify the positive and
the negative frequency mode functions in principle when there
are interactions, which mix up the positive and the negative
frequency mode functions.

2 2 ~ 2
m 1 .qEr ( 2 2 )—tp,, m? —l—pl 1 . qEt
— U ~ ; k)
"T4qE] 14} VLT TRgE 2T i
—-i1 m*+p* qE?? N
e S I ; ./ ul1-
2 ﬁe"p[ " aqE] 4 ( " ﬂm) ’
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above ansatz [Eq. (A30)]. Now, the differential equation for

(const)
Xpy.p,s Teads

0= [a%+a’+ (p"
T

(conqt)

+m +Pl})(1u s

—i/2 + qE7?/2)?
PRV e

T

(A31)

Two independent solutions of Eq. (A31), which we write

k)(},ior;,s;s (k =1, 2), can be written in terms of the Tricomi

confluent hypergeometric function U(a;b;z). Here, we
consider the following particular solutions:

(A32)

m? —|—p 3 qE7?
[
(const) (const)
Yp..p,s - 1P
(1 1(’:0:81) ) = [id — qA + m)| ( p;:;) >FS, (A36)
2¥pipys 2¢p¢ DS

where we have used the definition of ¢<°°“s‘) [Eq. (AS)].
With the help of Eqgs. (A9) and (A35), one finds that
Eq. (A36) can be more explicitly written as

(const) (const)
Wpipgs \ | [ 1Xpipys v

(const) | (const) 5.1
2Wpi.pys 2Xp1.pys

(const)x o
(const)* » (271,)3/2

—1ApL.pys

(A37)

From the normalization conditions for k;(pim,‘ft s [Eq. (A34)]

and V; [Eq. (A20)], one can confirm that the mode

functions iwf,io?,f; [Eq. (A37)] are correctly normalized as

(W s Wy e = 8,82 (p1 =P )8(Py = P},
(ws sl ,,°°‘,‘,ff) ) = 0. (A38)

c. Under a spatially homogeneous and constant color
electric background field with lifetime T

We consider a spatially homogeneous and constant color
electric background field with lifetime 7' [Eq. (A3)] and

find out all the mode functions ™) for the equation of
motion, Eq. (A4). The problem is equivalent to solving the
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equation of motion, Eq. (A4), under a pure gauge background field for 0 < 7 < 75 and 75 + T < 7, and under a spatially
homogeneous and constant color electric background field for 7, < 7 < 7y + 7. All the mode functions for respective
regions are already derived in Appendix A 1 a and Appendix A 1 b, respectively. Thus, all we have to do is to connect these
solutions smoothly at the boundary 7 = 75 and v = 7, + 7. Namely, we require

(finite) |
T=1y

_,,(finite)
’// —0,79+T—0 — W |T 70+0,79+T+0" (A39)

In making this connection, it is useful to use a linear relation between i1//,(,flre,e,) s and kz//pim;,s,ts (k =1, 2) at fixed time 7 = 7,

described by

~ (const) (free) rx (const) (free) 7 (const)
+z;/l(,fff,?] [A,(7))] Z /d ) (11//,,103: a mre;,, [A,(z)])E (2‘1/,::)[,1,5 1 pje;n [A,(7)])E 1‘//pzo.r;7z,s’
fi - n (const f - st) (free) |7 st
Yol Au ()] G i@ De Gl s e0De | \ 2w
(const)
Wp1.py—qEri/2.s
= Uplp,(e) | T (A40)
2 pL.py,—qErf/Z,s
The matrix elements are given by
A s (01) = (U ey = [(UR sl |
0« (f ( (f
] PR V7 i () RS R V7 S L] (A41)
By ps(e) = (U, s(e1)) | = [~(UR (e
. fi St free)*
= [ e (s (7) = 2 () ()] (A42)
and are normalized as
1= A(Q) 2 B(Q) 2 A43
= |Ap.p,sl” + |Bplp,sl™ (A43)

which means that the transformation U,(ff,pn,s (71) is unitary: 1 = U,(,Ci);,ms (Tl)U’Ei).pms (7). Although the mode functions
diverge at 7 — 0 because of the coordinate singularity at 7 = 0 of the 7-7 coordinates, one can safely take the limit7; — O of
the transformation U9, i.e., the matrix elements A@, B(@), By using

i — (2)" (52 ot ) + (3) (a2 + o), (A4

HY0) — @ (—%ﬁ 0(|z|)) T <§><1;(’f—f(5)”)+ (’)(|z|)>, (A45)

Ulasbiz) — o1 (W O(|z|)> + (%4—0(&)), (Ad6)

one obtains
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. £ ™, m +11 —ip.—
et ime 20 ‘\qs\ T ( |9E]| ) ipy=1/2
b4

AY, () — =

=0 2 Cosh(n‘p,ﬂF(] -1 2;}? )
; _.m -‘rpl
o |1 4 e e (2laE] \irerte T =55 (A47)
m?* + p? r 1 m4p\ |’
1 7= lpn —i 2gE
eI o T o mzw;:\ ( l4E] )_ip"_l/z
2+pi

T
Bfff_pws(r ) v n

2 2
cosh(ﬂpn)l“<1 - im2;gL>

ez T(1-i"80)
p ip, -
x |1+e 5t T <_%|QE|2> : i . (A48)
m- +p7 F(' ip, — 1"23?)

We consider two kinds of boundary conditions for the mode functions: We define mode functions iw},&'“},‘e Y n pflm;: )

by a boundary condition at 7 < 7 (7 > 75 + T) to coincide with the plane wave solutions i1,1/‘5, le;) S[A

relation, Eq. (A40), one can easily construct such mode functions, iy/,(,fjn;,te ") and v ,E‘l“},‘j o as

(free) 7
Wp, pysA
(+ pr][lJ) for0 <7 <1

.- Using the linear

fr ~
—Wl(ufle’?ps [Aﬂ}

(const)

1 Pr—qET:/2,s
<+l//l(,ﬁn1i]te;iyn) ) UI(;?J’”-S (TO) ( Popy=aF/ ) for T0<T<7Ty+ T
LsPps*

(const)

Wy p—aEry/2s : (A49)

l/j(finite;in) -
VpLpys (a) @i
Uppys (TO)Um,pﬂ—qET§/2+qE<ro+T)2/2~s (0 +T)

(free) [ ]
<+WIM Py—qET}/2+qE(to+T)* /2.5 )

(free) [ }
PL.Py—qET/2+qE(10+T)? /2,5

13

forrg+7T <7

t

(@) (@)f
UPL’PW (TO + T) UpL pq+qE70/2 qE(to+T) 2/2, S(TO>

(free) [“’ ]
(+WPJ_sP»,+qET%/z—qE(To+T)2/2»S " )
X

(frec) ] for0 <7 <1

i

PLopy+ET [2—qE (7o +T)? /2.

< N I(’fmge out) )
LoFa — (const) (ASO)
(finite;out) 1Wp . py—gE(rg+T)2/2.s '

—WPLstS USPP,, (T() + T)( P1.Py—qE(7o+ )2/ s) for 0 < 7 < 7y T

(const)
Y. pqE(x 1) /2.5

(free) 7
Wp, . pyslA
<+ hm[”]> forrg+T <71

free 7
RV N

These two sets of mode functions are not independent but related with each other by a Bogoliubov transformation
discussed in the main text [see Eq. (50)]. Now, one can analytically compute the Bogoliubov coefficients as
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(finite;out) (finite; m) o (finite;out) (finite;in
+¥p..pys |+ Yo mps )r = |- Iu Pyss |— Vo' pls'

= 55’3’52 (pJ_ _PL)5<P:7

(@) (@)*
x |:APL,]7,7+qET(2)/2—qE(To+T)2/2,S (TO)APL'pV/ (TO + T) + B,

(finite;out) (finite; m) o (finite;out) ;
—ll/pLJ’;;s |+ pL Pq F - |T +ll/]7L,p,1,S _ll/p/ ph.s
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)il

— (py +qE75/2 — qE(7y + T)*/2))

(@)*

(ﬁnitein)) }*
L '7'/ F

_ 2 !
— Usy - n
S,v0* (P —p")S(p

(9) (q)*
[Am.pﬁqETﬁ/ 2—qE(To+T>2/2,s(TO)BP Loy +T) =

2. Gluon
We consider the Abelianized equation of motion for the
gluon field W, in the 7-n coordinates [see Eq. (38)],
(V, +iqA,)2g" +2igF"™|W,=0.  (AS53)
Here, we omit the color indices A for simplicity.
In solving Eq. (A53), we first expand the gluon field W,

in terms of a polarization vector in the 7-n coordinates ¢, ,
(6 =0, 1, 2, 3) and a scalar amplitude ¢, as

4
Wﬂ = Z; 8ﬂ.a¢a‘

By noting that the choice of the polarization vector is
arbitrary in principle, we assume here that the polarization
vectors g, , are constructed from a constant vector &,, , by
contracting the viervein matrix e*,, as

(AS4)

€uo =€"Emo. (AS5)

Under this assumption, the covariant derivative of the
polarization vector €, , vanishes as V¢, , = 0.

In this appendix, we only consider the cases where a
constant color electric field pointing to the z direction is
present at most. For such cases, it is convenient to choose
€,, (€n,) to be an eigenvector of the background field

strength tensor F " (F ) @S

Fle,o =Moo & Frne = NoEpgy  (AS6)
where four eigenvalues A, are given by
AO — —E, Al — A2 - O, A3 - E (A57)

In other words, we have defined the polarization of gluons
by the direction of the background field. We also normalize
the polarization vector ¢, , (€,,) as

(py + qE75/2 — qE(19 4+ T)?/2))

(a)
AN ¢ Y. S WA CIRY O] N FX3)
B (z0)Ay,, s(zo + T)|.  (AS52)
P, p,,+qErO/2 qE(TO+T) /2,5 PL:PyS\F0 :
|
g/‘”g;,agyﬁ, = _‘frm” 2566/8 e = “Guw» (A58)
and
77'""821 (an,a’ = _faoJ ’ Zﬁ(ra’g‘jn,o'g‘n,(r’ = ~Mmn> (A59)

where £, is the indefinite metric introduced in Eq. (73).
Now, one obtains a differential equation for ¢, as

9. + iqA,
T

= [(aﬁ igA,)? + +2iqA6] ¢, (A60)

a. Under a pure gauge background field
(plane wave solutions)

In order to construct all the mode functions for the
equation of motion, Eq. (A53), under a pure gauge back-
ground field A [Eq. (A1)], which we write W(free) we first

consider solving the differential equation for @o™

[Eq. (A60)]. For this, we make an ansatz of the form

) (x) = / Ppodp, (). (A6D)
fr fr eiPL'xLeipqu
Bp.pr0 = Q) o (7) NS (A62)

Here, the momentum labels p | , p, are introduced. Q is the
Wilson-line gauge factor, which is the same as what we
have defined in Eq. (A12). One readily finds that ;(,(,‘jef,?

satisfies the Bessel differential equation,

2
0= [1282 + 170, + {(\/’"2 +pif> - (ipq)z}]xz(ff;)q-v-

(A63)
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Since Eq. (A63) is a second order differential equation,
there are two independent solutions, which we write

k)(l(,tje; o (k=1, 2). In this appendix, we consider

AXpi.ppo =
lprﬂ 2l

(free) _\/_ b /2H (IIJ | )

(free)

PLpyo = (l)(prp”.o')*’ (A64)
where we have normalized the solutions k)(I(,flref,)q by
= Zfaa [ (1)(111“:167,7 ﬂil)(,(,te;) o )}
=3 e ity )] (465)
0=3 tuw [i(srtrs) )|
= qua [1 (ﬂpflrezer,, Ou1x, ,(,fje;) e )} (A66)

Now, we are ready to construct all the mode functions
(free) 7
WM’L Py0 [Av]'

[Eq. (A54)], one can construct the ,
free = (free)
+W;<t,pr>pﬂ.a[ J B pv
(free) e = fuo (free)
—Wy,pl.p,,,ﬁ[ 1/} 2¢IM Py0

(free)
IXPJ_ ~pv] 0
- 6‘”,69 ( . )
(free)
24P .o

Here, we have changed the left subscript £k =1, 2 into

+ for a notational simplicity because +W,(lf;,ef?pn'(,[ﬁy]

(free)

the definition of qﬁa

Wiyl olA,] as

By using

eiPL'xL eip;,ﬂ
(27)3/2

(A67)

(_W,(f;,ef?,,q,,,[ﬁy]) corresponds to the positive (negative)
frequency mode function in the 7-5 coordinates as we will
explain soon. With the help of the normalization condi-

tions, Eq. (A58) for ¢,, and Egs. (A65) and (A66) for

k;(l(,fie,e,) +» one can easily check that, in the temporal gauge

A, = 0, the mode functions satisfy the correct normaliza-
tion condition for vector fields in the z-1 coordinates [see
also Eqgs. (70) and (71) in the main text],

v free (free 7
— (Wi o AW, JIA)
=+ & (pL —P")5(py — P1),

B
(AGS)
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v free (free 7 o
g (Wi o AN W, JIA)]) =0,
(A69)
The mode function +W,(,f;,ef),,” [A,] W,,fze ppolAL]) can

be written as a superposition of the positive (negative)
frequency mode function in the Cartesian coordinates,
and hence one can understand that +W,(,f;,ef?,,q_(,[ﬁy]
(_ Wf,f;,ef) p,.s[A,]) can be understood as the positive (negative)
frequency mode function in the 7-5 coordinates. In order to
see this, we again use the integral representations for the

Hankel functions H ( ) (n =1, 2) [Eq. (A22)] to find

:tlp,,yp

dpz\/_

(f

~ fr ~
W, JA) = e

mp.p; 0[ n]'
(A70)
Here, . Wis LIA,] (W) J[A,]) is the positive

(negative) frequency mode function in the Cartesian coor-
dinates satisfying the free field equation of motion in the

Cartesian coordinates as 0 = (0, + igA,)? iWﬁ,ﬁf;i),,,nﬁ [A,]
labeled by p, conjugate to z,

eFiwpt oip LX) aip:2
\/E (271)3/2
These mode functions are properly normalized in the

Cartesian coordinates. In the temporal gauge A, = 0, it
reads

iWS;Er;?,pz,a[ Nn} = gm,ng (A71)

— / P dz WS, A0, W)
t=const

= iéo‘o"52(pl _pﬁ_)é(pz - p/z)7 (A72)
mn 2 (free)= 19
—-n / dxldziwmm-pz.a[ 110,
t=const
x Wi IR] = 0. (A73)

nppa

b. Under a spatially homogeneous and constant
color electric background field

We consider a spatially homogeneous and constant color
electric background field [Eq. (A2)] and construct all the
mode functions for the equation of motion, Eq. (A53),
which we write Wcomt) First, we solve Eq. (A60) for

t
$5™ by making an ansatz,

$0 (x) = / Ppdp, (). (AT4)
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eipLx e

Poi () zx,ﬁi‘?‘;?,‘?m)W- (A75)

As in the pure gauge case (Appendix A 2 a), the momentum
labels p, , p, are introduced. We note that even if there are
pure gauge potentials in addition to the electric field, the
following computations do not change by simply adding
the Wilson-line gauge factor Q [Eq. (A25)] into the above
ansatz [Eq. (A75)]. Now, the differential equation for

(const)
Xp..p,c becomes

0= |:312_+@_|_ (M)
T T

(const)

—‘rPJ_ +2l61/\ :|)(P1 Py:0>

(A76)

where the eigenvalues A, are given by Eq. (A57). Two

independent solutions of Eq. (A76), which we write

k;(,(,io?,“a (k = 1, 2), can be written in terms of the Tricomi

confluent hypergeometric function U(a;b;z). Here, we
consider the following particular solutions:

){(const) = E Pi +p qA _i |6]E|12
artiie = 5o |25 (o * 1 1 GE)

qE|7; ip,7/2 1 pi )
U
> + i 2| qE] +ip,
E
A tip, il i > : (A77)
2
COﬂSt const
Apipye = Zf"" Wp, pyo” (A78)
which are normalized as
o (const)x (const)
- Z&m l)(IM Pnﬂ 1'1)(17l PyeC
COHSt const
= _ngd |: (2ZPJ_ pr/ %;l,p”?g')} > (A79)
nst)* pig nst
0=t (s ey ) |
const const
- wa it )] (as0)
Now, one readily obtains the mode functions kWi(f;,’fs;)q

(k=1,2)as
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<1W;(l(.:1(l)is~;7)q,0[~u]> . < ¢1(’<101;78’:) )
(const) bt = o (const)
ZWMstPq»!T[ u] 2¢IM Py0

(const) iDL, iy

1Xpi.pyo \ ePLr¥ie!Pn

=¢ -
H.0 (const) (27[)3/2 ’

P1.Py0

(A81)

where the definition of ¢(<°™V [Eq. (A54)] is used. With the
normalization conditions, Eq. (A58) for ¢, , and Egs. (A79)

and (A80) for k;(,(,io,r;f;,)g, one finds that the mode functions

(const) .
kW ,p. p,o are correctly normalized as

- g””( HCI(;TQ;)I 0‘ Wyc;)ng;) Ned )B
= 4o (W W) ),
=&,,0%(p. —Iu)éi(p;7 - pn), (A82)

v (const) const)
- g# <1W/4PJ_ pr, |2 yp p” B

v const (const o
= —g" (ZW/JIM P;,U| pr p) 0'>B =0. (A83)

c. Under a spatially homogeneous and
constant color electric background field
with lifetime T

We consider a constant color electric background
field with lifetime 7 [Eq. (A3)] and find out all the

mode functions W™ for the equation of motion,

Eq. (A53). The problem is equivalent to solving the
equation of motion, Eq. (A53), under a pure gauge
background field for O <7 <17y and 7o+ 7 <7, and
under a spatially homogeneous and constant color
electric background field for 7g <7 <7y + 7. All the
mode functions for respective regions are already
derived in Appendix A 2 a and Appendix A 2 b, respec-
tively. Thus, all we have to do is to connect these
solutions smoothly at the boundaries 7 =17, and
7 =17+ T. Namely, we require

finit finit
W/(l inite) _ W;(4 inite) . (A84)
t=79—0,79+7T—-0 7=70+0,79+7+0
VTW;(;ﬁnite) _ VTW’(lﬁnite) )
=1(—0,79+7T—-0 t=7(+0,70+7+0
(A85)

In making this connection, it is useful to use a linear
relation between W,(,t;f),,” and kW,(f;Tgma (k=1,2)at
fixed time 7 = 7, described by
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Wiip ol Ay (1)
W(free) A
- ﬂm.pq,a[ p(Tl)}

— _gwlzgjg,gn / /J_dpiv

( W(const/ , |+ free) [A~ (71)]) ( W(const |+ tree) [Ap (Tl)])B W(COnbt)/ p

vp'.pyo APL:Py0 vp'.py.o” ApL.py.o up', .ph.o
const free e (const) (free) e (const)
( vp'.py g”| ApL.p,o A _(ZWup Phe g”| W}Lpl Pyo [Ap(fl)]>B 2W;4,p’J_,p£,,o"
const
W, pLp qET /2.0
=U )| O (A86)
W, Iu Py qET /2.0
The matrix elements are given by
1) S (f
Ao = Wslno(e) = 3 e | (Ul o00) | = 3w [ (27 Ol )| |- (487
1) S (f
B po(r)) = (U o)) =2 e [CACHM = e (e (Ot | ] (488)
and are normalized as
_ (g) (2) * (2) (g) *
1= Zf(m/ |:APL-]74,” |:APJJPWOJ:| - BIM,P,,»O' [Bpl.pn’g’i| i| (A89)

so that det UI(,“’;), p,,,a(Tl) = 1 holds. Although the mode functions diverge at ¢ — 0 because of the coordinate singularity at

7 = 0 of the 7-n7 coordinates, one can safely take the limit 7; — O of the transformation U <g), i.e., the coefficients A©), B(®).
By using the asymptotic formulas for the special functions Eqgs. (A44)—(A46), one finds

2|qE| —1'17»,/26X _z 2 _
7\ p’ P 2|qE] qE
—) E Eood == L e P
pJ_ pl] 6(7 2 . . p q/\/
inh(zp, )T (1 — it — L2
SNz Py )L\ 3 = LagE — 4E

1_ .p_l_ q/\(rr)
- 2“1E‘ iPy o3P, /2 F(2 L34E T 4E (A90)
i r(l_ ;P _ g, A '
2 lagE T WP T gk
(2|qE|> ~ip/2 o [ x ( r .qA”/)_
Y P|=%\3gE — ¢
B 0o 2 Y ey 5 o
P =0 = 2 h( ) l_'p_l-_qA”/
sinh(zp,)U( 3 = i35 = 37
F(l_ PP qAa’)
1 <2|qu> S AT (A91)
1 . p . qAy
41 F(i—zz‘TLEl—zpn— qE)
We consider two kinds of boundary conditions for the mode functions: We define mode functions inf;Ti,T)

G Mf;lite,,(;Ut ) by a boundary condition at 7 < 7, (z > 7o + T) to coincide with the plane wave solutions iW,(f;ff)pv [A,).

With the linear relation, Eq. (A86), one can construct such mode functions iW,(,f};Ti,m,), and Wf,f;lfepf;u;) as
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f ~
+ W/(t,r;f,)m.l’ [Av}
(o)) o« for0 <7 <7
- WM*PLvaU [Az/]
(const)
U upy.py—qEsy /2,
+W(f;1itf;in()7 U,(,‘(’?,pn,a(fo) ( ?CI:):SSW 7/ U) fortg <t <79+ T
”’. L .,7’ = 2Wﬂ.pL,p,7—qE12/2.a s (A92)
Wl(lf;utep;m) o ( -
- P1.Py:0 2)—
UL @)Uy g ypsgsiasrr/ze(T0 + 1)
(free) 7
+W/Lm,pn—qET§/2+qE(ro+T)2/2-,6[ J
forrg+T <7
(free) [’"’ ]
upL.py—9qET/2+qE(to+T)? /2.0
U pyo(to+ T)UE! (7o)
PL.pyo\T0 PL.Py+HaET[2—qE(7g+T)? /2,610
(free) [’“ ]
T wp 1Py taER [ 2—qE(7g+T)? 2,61
i for 0 <7 < 7
(free) [” ]
W(flmte out) ﬂ»PJ_-Pn+qu(2)/2—qE(To+T)2/2-f’ v
+ TP LDy
(M) W (499
inite;out PL.pr—qE(tg+T)" /2,0
~Wiup o U;gl),pma(’[() + T)( /:CZ;S” AT > fortg<t<ty+T
27 up1.py=qE(20+T)* /2,0
f ~
Wi, oAl
(frc) _ fortg+T <7
—WﬂpL.pn,a[ ]

These two sets of mode functions are not independent but related with each other by a Bogoliubov transformation
discussed in the main text [see Eq. (84)]. Now, one can analytically compute the Bogoliubov coefficients as

Z_,: y fmite out) | hmte m)
Z""” —9*) umpv”+ vp' rho ) g

- Z&aa’” |: Z& " //

= 560’5 (pL _pJ_) (pn - (pn + qET(z)/2 - qE(TO + T)Z/z))

finite;out)
yy{nite:
(— HP LDy 6”

W (finite; m) ) :| ¥
B

L/ppo‘

(2) ()= B&* (2)
x 25’”’” [Apl,p,7+qEr(2,/2—qE(Tg+T)2/2,a(TO)APLqu,U” (TO + T) pJ_ pytaEry/2—qE(1o+T)*/2.6" (TO)BPL’PW"(TO + T)] ’ (A94)

_ Zf , gﬂ,, ﬁnite out) | ﬁmte m)
oo - um Py’ 1T up! i ) g

5 f W(ﬁnne ;out) | W (finite; 1n) *
= g I //
Z oo Z oo HP L Pys0” vy .pyd | g

= 8,05 (1 —m)ﬁ(p,7 — (py + qE73/2 — qE(z + T)?/2))
(8)* (g)* ()
x Zéw" [_ PL.py+aET/2—qE(sg+T)? /26( O)BPLJ’ (T +T) +Bp Py +aETy /2=gE(1+T)? /2,0 (70)Ap p,a(0 + T)}
(A95)

3. Ghost

We consider the Abelianized equation of motion for ghost and antighost fields, C and C, in the 7-5 coordinates [see
Eq. (39)]. It is sufficient for this purpose to consider a differential equation of the type
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0=(V,+iqA,)*®
0. + iqgA,

(0, +iqA,)* + .

o. (A96)
This equation is exactly the same as Eq. (A60) for the gluon
fields ¢, for A, = 0, and so one can solve Eq. (A96) in the
same way as we did in Appendix A 2 a. Therefore, we just

write down the results without repeating the derivation and/
or discussions in the following.

a. Under a pure gauge background field
(plane wave solutions)

Under a pure gauge background field Aﬂ given by
Eq. (A1), the positive and the negative frequency mode

functions i@,(,fjef,l [A,] are given by

]

(free) rx 1 (free) ePr¥ieiPi
+®p¢,p,,[ ;4] = Ql)(pi~l7q W’
free) r ¥ free ePLxieipin
—®I<7J_»P?,[ ;4] = QZX;LJ’)W W ’ (A97)
where
free \/_ en
o, = o2 H,p (lp o).
fr fr *
by = [l (A98)

The mode functions satisfy the correct normalization
conditions for scalar fields in the z-77 coordinates [see also
Egs. (102) and (103) in the main text]. For temporal gauge
A, =0, it reads

fr (fr e
(055 4,18, (A = £6(p1 —p1)6(p, = ).
(A99)
fr (fr T
(+05 5 [A,)1=0,") [A,)s = 0. (A100)
To see the mode functions iG)I(,fje;) [A,] defined in

Eq. (A97) are actually the positive/negative frequency
mode functions in the z-y coordinates, we again use the

integral representation for the Hankel functions Hﬁn)(z)
(n=1, 2) [Eq. (A22)] to get the same integral relation as
that for quarks Eq. (A23) and for gluons Eq. (A70) as

j:tpn)’p (free) [,_, ]

dpz \/—:I: PL.p;

All notations are the same as in the previous two cases

except i@,ﬁfj‘*f)[ ) being the positive/negative frequency

mode functions in the Cartesian coordinates,

free
:i:®1(u pl[ Al = (A101)
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e:Fiwpt
V2w, (27)3%

which are properly normalized in the Cartesian coordinates
with the temporal gauge condition A, = 0 as

®(free) - . elpL'xLelp:Z
+-PL.D: [ ]

(A102)

/ dPx,dz, OF) (4,15, 80 A,
t=const
=+8(p, —p\)8(p. — Pl). (A103)
/ d*x, dz. Oy [A ]a @f‘“[ . =0.
t=const
(A104)

b. Under a spatially homogeneous and constant
color electric background field

Under a spatially homogeneous and constant color
electric field [Eq. (A2)], the positive/negative frequency

mode functions i@,(,im,lft) are given by
const const ePLxieiryt
1®;J_qu) = 1Z;L~pn>W’
const const ePL¥ielPam
2 z(u.p,,) = ﬂz(u,pﬁ)W, (A105)
where
o
_ e - P 4B (laEl e
V2 2 \2|qE]| K 4 2
1 . pl qE|7
U 1 , A106
X ( +i 2lq E|+lp,7, +ipysi 5 ( )
o) =) (A107)

The mode functions are correctly normalized as
&pr—p1)d(p, = py)
const const o const const)
( PLPW|® ) __(2®PJ_P,7 |2 P10, )B’

(A108)

o (const) conqt) const (const)
0= (IG)PLPW |2 )B ( PPy | @ )

(A109)
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¢. Under a spatially homogeneous and constant color electric background field with lifetime 7T

For a spatially homogeneous and constant color electric background field with lifetime 7" [Eq. (A3)], the mode functions

i@gf};j;as) (as = in, out) are given by
(free) r
(Jr@pl’p" [A”]> for0 <7 <71
f ~
6y A,
®(c0nst)
1 po—qET2)2
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Here, the matrix U€" is given by
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A B
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where the matrix elements A&V B(eh) are
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The normalization condition for A€ B(eh) jg
h h
1= |43, 1+ 1BS, P (A114)
so that det U;,gffz,v = 1 holds. In the limit of 7 — 0, A" B behaves as
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P
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The Bogoliubov coefficients between the two sets of mode functions [see Eq. (108)] are given by
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