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Particle production from an expanding classical color electromagnetic field is extensively studied,
motivated by the early stage dynamics of ultrarelativistic heavy ion collisions. We develop a formalism
at one-loop order to compute the particle spectra by canonically quantizing quark, gluon, and ghost
fluctuations under the presence of such an expanding classical color background field; the canonical
quantization is done in the τ-η coordinates in order to take into account manifestly the expanding geometry.
As a demonstration, we model the expanding classical color background field by a boost-invariantly
expanding homogeneous color electric field with lifetime T, for which we obtain analytically the quark and
gluon production spectra by solving the equations of motion of QCD nonperturbatively with respect to the
color electric field. In this paper we study (i) the finite lifetime effect, which is found to modify significantly
the particle spectra from those expected from the Schwinger formula; (ii) the difference between the quark
and gluon production; and (iii) the quark mass dependence of the production spectra. Implications of these
results to ultrarelativistic heavy ion collisions are also discussed.
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I. INTRODUCTION

Early stage dynamics of ultrarelativistic heavy ion
collisions (HIC) is a big missing piece in our current
understanding of the spacetime evolution of HIC: Before a
collision, two incident nuclei at very high energies are
saturated with a huge number of gluons, which behave like
coherent classical color fields [color glass condensate
(CGC) picture [1–4]] rather than incoherent particles.
A collision of these classical non-Abelian fields results
in a formation of longitudinal color electromagnetic fields
between the two nuclei receding from each other [5–7]. The
strength of the longitudinal fields are very strong as
gAμ ∼Qs ∼ a fewGeV, where Qs is the so-called satura-
tion scale of CGC. Subsequently, the color fields would
decay into a huge number of particles (quarks and gluons)
to form a quark-gluon plasma (QGP). However, this stage
of nonequilibrium dynamics is not well understood—the
questions are (a) how the huge number of quark and gluon
particles are produced from the classical gluon fields
(experimentally known is that about 1000 hadrons are
produced per unit rapidity), and (b) how the system
thermalizes to eventually form a QGP, which behaves
almost like a perfect liquid as suggested by the success
of hydrodynamical models (for reviews, see, for example,
[8,9]). In particular, applications of hydrodynamical mod-
els assume that the formation time of QGP is extremely
short τform ≲ 1 fm=c [10–12]. There is no satisfactory
understanding of such a short formation time starting from
QCD, despite numerous theoretical attempts. Thus, unveil-
ing the early stage dynamics is not only an important piece

for completing our understanding of the whole spacetime
evolution of HIC but also a challenge to nonequilibrium
QCD physics.
The purpose of this paper is to investigate the quark and

gluon production from expanding classical color electro-
magnetic fields starting from QCD.
Study of the particle production from classical electro-

magnetic fields has a long history in quantum electrody-
namics (QED). Sauter [13] was the first who claimed that
spontaneous particle (electron and positron pair) produc-
tion occurs when a system is exposed to strong classical
electromagnetic fields. Some years later this particle
production mechanism was theoretically formulated by
Heisenberg and Euler [14], and by Schwinger [15] for a
static and homogeneous electric field. They derived the
vacuum persistency probability P ¼ jhvac; injvac; outij2,
from which one can deduce the average number of particles
produced at transverse and longitudinal momenta p⊥ and
pz with respect to the electric field as [16]

d3Nðe−Þ

d2p⊥dpz
¼ d3NðeþÞ

d2p⊥dpz
¼ V

ð2πÞ3 exp
�
−π

m2
e þ p2⊥
jeEj

�
; ð1Þ

where me is the electron mass, e is the coupling constant
of QED, E is the electric field strength, and V is the system
volume. Equation (1), often called the Schwinger formula,
depends on eE inversely in the exponential, and hence one
can understand that the particle production from a static
electric field is a nonperturbative phenomenon. This is in
contrast to usual perturbative phenomena, whose depend-
ence on eE always appears with positive powers.*hidetoshi.taya@riken.jp
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The Schwinger formula was generalized to the QCD case
[17–20], and then applied to the early stage phenomenol-
ogy of HIC, e.g., the color flux tube model [21–26].
However, these preceding studies may be problematic
because the situation in HIC is much more complicated
than the static and homogeneous field that the Schwinger
formula assumes. Thus, the particle production will be
different from the naive estimate of the Schwinger formula,
and therefore one needs to formulate the particle production
in a more dynamic situation starting from the first principle,
i.e., QCD.
In particular, we consider the following effects on

particle production in QCD, which are missing in previous
studies:

(i) Effects of longitudinal expansion: In HIC, two highly
Lorentz-contracted nuclei pass through each other at
almost the speed of light, and color electromagnetic
fields are formed between the two receding nuclei
with approximate boost invariance in the beam
direction (Bjorken expansion [27]). Here, the longi-
tudinal extent of the fields is finite and increases with
time, which is obviously very different from what the
Schwinger formula assumes. Hence, the applicability
of the Schwinger formula must be reconsidered, and
one has to deal with particle production from space-
and time-dependent color electromagnetic fields.
Recently, there is progress in a theoretical treatment
of particle production from such an expanding
electromagnetic field within scalar QED by Tanji
[28]. We will extend this study to the case of quark
and gluon production from expanding color electric
fields in QCD.

(ii) Finite lifetime effects: The color electromagnetic
fields decay in time according to the classical
Yang-Mills equation. The typical scale of their life-
time is very short, where the order would be given by
the inverse of the saturation scale 1=Qs [5]. Such a
short lifetime of the fields should significantly affect
the particle production mechanism. Indeed, for a
nonexpanding electric field, Refs. [29,30] have shown
that there is an interplay between perturbative particle
production at shorter lifetimes and Schwinger’s non-
perturbative particle production at longer lifetimes.
As a result, the particle spectra will heavily depend on
the lifetime of the fields; in particular, production of
heavy particles, such as charm quarks, from a pulse
field is significantly enhanced compared to the value
of the Schwinger formula [30,31]. It is thus phenom-
enologically important to understand finite lifetime
effects on particle production. No studies have
paid much attention to them so far, though there
are several studies that discussed particle production
from an expanding (color) electromagnetic field in
QED [28,32–34] and in QCD (but quark production
only) [35].

In order to examine the above-mentioned points, we
study quark and gluon production from a given homo-
geneous classical color electric background field applied
for finite duration (lifetime) from τ ¼ 0 to T with longi-
tudinally expanding geometry. We solve mode equations
for fluctuations nonperturbatively with respect to the
classical field and compute the Bogoliubov coefficients
among creation/annihilation operators at asymptotic times
(t → �∞). We ignore backreaction from produced par-
ticles on the electric field, and we fix the electric field
strength constant during its lifetime. For the sake of clarity,
we ignore here a possible existence of color magnetic
fields, which may bring interesting effects including the
chiral magnetic effect. Effects of the backreaction and of
scatterings between produced particles will be decisive
for thermalization of the system, but we leave it for our
future study.
This paper is organized as follows: In Sec. II, the general

formalism for particle production from classical color
electromagnetic fields employed in this work is explained.
Our formalism is based on a canonical quantization under
the presence of classical color background fields
[17,36,37], where a nonexpanding system was treated.
We extend it to quark and gluon production in an expanding
system by following Ref. [28]. In Sec. III, we model the
classical field by a boost-invariantly expanding homo-
geneous color electric field with lifetime T as a demon-
stration of our formalism. In such a field configuration, one
can analytically obtain quark and gluon production spectra
and can investigate physical consequences of the longi-
tudinal expansion and the finite lifetime effects in detail.
We also discuss some implications to the early stage
dynamics of HIC of these results. Section IV is devoted
to a summary and an outlook of this work. In Appendix A,
details of analytical solutions of equations of motion of
QCD are presented.

II. GENERAL FORMALISM

Let us explain the general formalism employed in this
work for particle production from a boost-invariant
classical gauge field in QCD. We consider a classical
background field satisfying the classical Yang-Mills equa-
tion and quantum fluctuations of quark, gluon, and ghost
around the classical field. By assuming that the Abelian
dominance holds for the classical field, we linearize
equations of motion for fluctuations and solve them non-
perturbatively with respect to the classical field. Then,
we adopt a canonical quantization procedure in the τ-η
coordinates, instead of in the Cartesian coordinates, in
order to treat the boost-invariant expansion of the system
properly. Thereby, we directly compute expectation values
of number operators of quark, gluon, and ghost.
We work in the Heisenberg picture throughout this

paper. We implicitly take summation over repeated indices
m; n;… and μ; ν;… for spacetime only, and not for other
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repeated indices, for instance, color labels a; b;…, spin
labels s; s0;…, and so on.

A. τ-η Coordinates

Let us begin with a brief review on the τ-η coordinates. It
is very convenient to work in the τ-η coordinates
xμ ¼ ðτ; x; y; ηÞ, instead of the usual Cartesian coordinates
ξm ¼ ðt; x; y; zÞ, in order to treat the boost-invariant expan-
sion of the system properly. We use Latin (Greek) indices
m; n;… (μ; ν;…) for the Cartesian (τ-η) coordinates
throughout this paper.
The τ-η coordinates are defined by the following change

of variables:

τ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 − z2

p
; η ¼ 1

2
ln
tþ z
t − z

: ð2Þ

The line element ds2 is then expressed as

ds2 ¼ ηmndξmdξn ¼ gμνdxμdxν; ð3Þ

where

ηmn ¼ diagð1;−1;−1;−1Þ; ð4Þ

gμν ¼ diagð1;−1;−1;−τ2Þ ð5Þ

are the metrics of the Cartesian coordinates and the τ-η
coordinates, respectively.
For later discussions, it is convenient to introduce a

viervein matrix emμ [38], which relates the Cartesian
coordinates ξm and the τ-η coordinates xμ as

dξm ¼ emμdxμ ð6Þ

with

emμ ≡ dξm

dxμ
¼

0
BBB@

cosh η 0 0 τ sinh η

0 1 0 0

0 0 1 0

sinh η 0 0 τ cosh η

1
CCCA: ð7Þ

The inverse matrix of emμ, which we write eμm, is

eμm ≡ dxμ

dξm
¼

0
BBB@

cosh η 0 0 − sinh η

0 1 0 0

0 0 1 0

− sinh η
τ 0 0 cosh η

τ

1
CCCA ¼ ηmngμνenν:

ð8Þ

With the viervein matrix introduced above, one can define a
vector Xμ in the τ-η coordinates for any vector Xm in the
Cartesian coordinates as

Xμ ≡ emμXm; ð9Þ

Xμ ≡ eμmXm ¼ gμνXν: ð10Þ

From these definitions, Eqs. (9) and (10), one readily finds,
for example,

∂τ ¼ cosh η∂t þ sinh η∂z; ð11Þ

∂η ¼ τ sinh η∂t þ τ cosh η∂z ð12Þ

for derivatives ∂μ,

γτ ¼ γt cosh η − γz sinh η; ð13Þ

γη ¼ −γt
sinh η
τ

þ γz
cosh η

τ
ð14Þ

for gamma matrices γμ,

Aτ ¼ At cosh ηþ Az sinh η; ð15Þ

Aη ¼ Atτ sinh ηþ Azτ cosh η ð16Þ

for vector fields Aμ. One can also generalize these
definitions, Eqs. (9) and (10), to general tensors as Xμ���

ν��� ¼
eμm � � �enν � � �Xm���

n���.
We also introduce a covariant derivative ∇μ for

curvilinear coordinates, ∇μTν���
ρ��� ¼ ∂μTν���

ρ��� þ Γν
μλT

λ���
ρ���

þ � � � − Γλ
μρTν���

λ��� − � � �. Here, Γμ
νρ is the Christoffel sym-

bol, whose nonzero elements in the τ-η coordinates are

Γη
ητ ¼ Γη

τη ¼ 1=τ; Γτ
ηη ¼ τ: ð17Þ

B. Classical background field

We consider a classical background field Āμ satisfying
the SUðNcÞ classical Yang-Mills equation with an external
classical source J̄μ as

J̄ν ¼ D̄μF̄μν: ð18Þ

Here, D̄μ is the covariant derivative with respect to the
classical field Āμ, i.e., D̄μ ¼ ∇μ þ ig½Āμ; �, and F̄μν is the
classical field strength tensor F̄μν ¼ ∂μĀν − ∂νĀμ þ
ig½Āμ; Āν�. Equation (18) does not fix the gauge completely,
and there still remains a residual gauge freedom. In the
following discussion, we fix the residual gauge freedom
by Āτ ¼ 0 (temporal gauge), which is convenient for the
canonical quantization procedure we adopt in Sec. II E.
As a boundary condition of Eq. (18), we require that Āμ

becomes a pure gauge Āμ ¼ const at the asymptotic times
(t → �∞); i.e., we assume that there is no external source
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J̄μ nor classical color electromagnetic field at the asymp-
totic times.
As we will see in Sec. II D, in order to ease some

difficulties coming from the non-Abelian nature of QCD,
we furthermore assume that the color direction of the
classical source J̄μ and the classical field Āμ is constant; i.e.,
it is independent of spacetime coordinates x and the
spacetime vector index μ. For this case, there always exists
a constant color vector na such that

ĀμðxÞ ¼ ÃμðxÞ
XN2
c−1

a¼1

nata: ð19Þ

Here, Ãμ is a scalar in the color space. The matrix ta

(a ¼ 1;…; N2
c − 1) is a generator of SUðNcÞ, and na

(normalized as
PN2

c−1
a¼1 nana ¼ 1) characterizes the color

direction of the classical field Āμ. Under this assumption,
the commutators of Āμ exactly vanish as ½Āμ; Āν� ¼ 0, and
only the Abelian part of the classical field strength F̄μν

becomes nonvanishing as

F̄μν ¼ ð∂μÃν − ∂νÃμÞ
XN2
c−1

a¼1

nata ≡ ~Fμν

XN2
c−1

a¼1

nata: ð20Þ

Thus, our assumption is essentially the same as the Abelian
dominance assumption: ½Āμ;Āν�∼0 and F̄μν∼∂μĀν−∂νĀμ.
Notice that we have made no restrictions on the

spacetime xμ dependence of Ãμ as long as it satisfies the
classical Yang-Mills equation (18).

C. Lagrangian

Let us consider the QCD Lagrangian with Nc colors
and Nf flavors of quarks in the presence of the classical
background field Āμ described in Sec. II B. By separating
the (total) gauge field Aμ into the classical field Āμ and
quantum fluctuations around it Aμ as Aμ ¼ Āμ þAμ, we
obtain the QCD Lagrangian for the fluctuation in the τ-η
coordinates as1

L ¼ ψ̄ ½i∂ − gA −M�ψ −
1

2
trcFμνFμν þ 2trcJ̄μAμ

−
1

α
trcðD̄μAμÞ2 − 2itrcðD̄μc̄ÞðDμcÞ: ð21Þ

Here, ψ is the fermion field, and c and c̄ are the ghost and
antighost fields to be quantized. X ≡ γμXμ is the Feynman
slash notation, and ψ̄ is a shorthand for ψ̄ ≡ ψ†γt. trc is the
trace operator in the color space. M represents fermion
masses, which is given by an Nf × Nf diagonal matrix

M ¼ diagðm1; m2;…; mNf
Þ in the flavor space. Dμ is the

covariant derivative with respect to the total gauge field Aμ:
Dμ ¼ ∇μ þ ig½Aμ; �. The total field strength tensor Fμν is
given by Fμν ¼ ∂μAν − ∂νAμ þ ig½Aμ; Aν�. The term
ð1=αÞtrcðD̄μAμÞ2 is a covariant background gauge fixing
term [17]. Hereafter, we shall take α ¼ 1 for simplicity.
One can show that a choice of the gauge parameter α is
irrelevant to the particle spectra [39].
We further expand the Lagrangian, Eq. (21), up to the

quadratic order in the quantum fluctuations to obtain

L ¼ ψ̄ ½i∂ − ḡA−M�ψ − 2itrcðD̄μc̄ÞðD̄μcÞ

− trc

�
1

2
ðD̄μAν − D̄νAμÞ2 þ ðD̄μAμÞ2 þ 2igF̄μνAμAν

�
;

ð22Þ
where constant and surface terms are omitted. Here, we
treat the interactions with the classical field Āμ nonpertur-
batively. This treatment is justified when the quantum
fluctuations ψ ;Aμ; c, and c̄ are small enough compared to
the strength of the classical field Āμ. The ignored terms
Oðgψ̄Aψ ; gA3; gc̄cAÞ are responsible for the screening of
the classical field Āμ by produced particles and elastic
gg ↔ gg and inelastic g ↔ gg; g ↔ qq̄; q ↔ qg scattering
processes of produced particles. It is very interesting to see
how the quark and/or gluon production is modified when
these higher order quantum corrections are included; see
Sec. IV for the discussion. We also note that the classical
source J̄μ does not directly couple to the quantum fluctua-
tions; it couples to them only indirectly through the
classical field Āμ, which is generated by the classical
Yang-Mills equation sourced by J̄μ [Eq. (18)]. In this
sense, the particle production mechanism is not directly
affected by the presence of the classical source J̄μ.

D. Abelianization

It is difficult to handle the Lagrangian, Eq. (22), as it is
because of its non-Abelian nature. Indeed, the equation of
motion of the Lagrangian, Eq. (22), are complicated matrix
equations in the color space. With the help of the Abelian
dominance assumption for the classical field Āμ made in
Sec. II B, one can Abelianize, i.e., diagonalize the
Lagrangian, Eq. (22), in the color space and obtain a set
of Abelian equations of motion as below [20].

First, we diagonalize the classical field Āμ ¼
Ãμ

PN2
c−1

a¼1 nata in the color space. Since
PN2

c−1
a¼1 nata is a

constant Hermitian matrix in the color space, there always
exists a global unitary transformation U that diagonalizes
nata as

XN2
c−1

a¼1

nata → U−1
�XN2

c−1

a¼1

nata
�
U ¼

XNc−1

α¼1

wαHα; ð23Þ
1In general curved spacetime coordinates, there is an additional

term coming from spin connections Γμ in the fermion covariant
derivative, which is zero in the τ-η coordinates.
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where wα is constant normalized as 1 ¼Pαjwαj2. Hα is a
diagonal matrix that belongs to the Cartan subalgebra of
SUðNcÞ such that ½Hα; Hβ� ¼ 0 with a normalization
trc½HαHβ� ¼ δαβ=2. In accordance with this transformation
U, let us also redefine the quantum fluctuations ψ ;Aμ; c,
and c̄ as

U†ψ → ψ ; ð24Þ

U†AμU → Aμ; ð25Þ

U†
�
c

c̄

�
U →

�
c

c̄

�
: ð26Þ

Second, we expand the color space by the Cartan-Weyl
basis of SUðNcÞ: fHα; E�Ag (α ¼ 1;…; Nc − 1; A ¼
1;…; NcðNc − 1Þ=2), where EA is an off-diagonal matrix
satisfying the following algebra:

EA† ¼ E−A; ð27Þ

tr½EAEB†� ¼ δAB

2
; ð28Þ

½Hα; E�A� ¼ �ðvαÞAE�A; ð29Þ

where ðvαÞA is the root vector of SUðNcÞ. By using this
Cartan-Weyl basis, instead of the generator ta, we expand
the gluon fieldAμ, and ghost and antighost fields c and c̄ as
(Cartan decomposition)

Aμ ≡
XNc−1

α¼1

Wμ;αHα þ
XNcðNc−1Þ

2

A¼1

½Wμ;AEþA þW†
μ;AE

−A�; ð30Þ

�
c

c̄

�
≡XNc−1

α¼1

�
Cα
C̄α

�
Hα þ

XNcðNc−1Þ
2

A¼1

��
CA

C̄A

�
EþA

þ
�
C†
A

C̄†
A

�
E−A

�
: ð31Þ

After completing these two steps, one can rewrite the
Lagrangian equation (22) in an Abelianized form as

L ¼
XNf

f¼1

XNc

i¼1

ψ̄ i;f½i∂ − qðqÞi Ã −mf�ψ i;f −
XNc−1

α¼1

1

4
j∇μWν;α −∇νWμ;αj2 − i

XNc−1

α¼1

ð∇μC̄αÞð∇μCαÞ

−
XNcðNc−1Þ

2

A¼1

�
1

2
jð∇μ þ iqðgÞA ÃμÞWν;A − ð∇ν þ iqðgÞA ÃνÞWμ;Aj2 þ jð∇μ þ iqðgÞA ÃμÞWμ

Aj2 þ iqðgÞA F̃μνW
μ
AW

ν†
A

�

− i
XNcðNc−1Þ

2

A¼1

½ðð∇μ þ iqðghÞA ÃμÞC̄AÞðð∇μ þ iqðghÞA ÃμÞCAÞ† þ ðð∇μ þ iqðghÞA ÃμÞC̄AÞ†ðð∇μ þ iqðghÞA ÃμÞCAÞ�: ð32Þ

Here, the color indices i; j;… and the flavor indices
f; f0;… for the quark field ψ are explicitly written. The
gluonWμ;α, ghost Cα, and antighost C̄α fields, which belong
to the Cartan subalgebra of SUðNcÞ, do not couple to the
classical field Āμ. Thus, no particle production occurs for
these fluctuations, and hence we do not consider them
hereafter. On the other hand, the quark ψ i;f, gluon Wμ;A,
and ghost CA and antighost C̄A fields do couple to the

classical field Āμ, whose effective color charges, q
ðqÞ
i , qðgÞA ,

and qðghÞA , respectively, are given by

qðqÞi ¼ g
XNc−1

α¼1

wαðHαÞii; ð33Þ

qðgÞA ¼ qðghÞA ¼ g
XNc−1

α¼1

wαðvαÞA: ð34Þ

The ghost charge is identical to the gluon charge qðghÞA ¼
qðgÞA because both gluon Wμ;A and ghost CA, C̄A fields
belong to the adjoint representation of SUðNcÞ. Although
the effective color charges, qðqÞi , qðgÞA , and qðghÞA , depend on
the color direction na and the gauge choice of the back-
ground field Āμ, the traces of the squared charges are
independent of them,

XNc

i¼1

jqðqÞi j2 ¼ g2

2
; ð35Þ

XNcðNc−1Þ
2

A¼1

jqðgÞA j2 ¼
XNcðNc−1Þ

2

A¼1

jqðghÞA j2 ¼ g2Nc

2
: ð36Þ

The trace of the squared charge in the adjoint representation
is Nc times as large as that in the fundamental
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representation. These relations are generalizations of the
SU(3) results [39,46–48].
One readily obtains Abelianized equations of motion

from the Lagrangian, Eq. (32). They read

½i∂ − qðqÞi Ã −mf�ψ i;f ¼ 0; ð37Þ

½ð∇ρ þ iqðgÞA ÃρÞ2gμν þ 2iqðgÞA F̃μν�Wν;A ¼ 0; ð38Þ

ð∇ν þ iqðghÞA ÃνÞ2
�
CA

C̄A

�
¼ 0: ð39Þ

E. Quantization and particle spectrum

Now, we canonically quantize the fluctuations, ψ i;f;
Wμ;A; CA, and C̄A, under the classical background field
Āμ, and compute particle spectra produced from the
classical field.
To be more concrete, we first define positive/negative

mode functions at the asymptotic times (t → �∞) for the
fluctuations. At the asymptotic times, as the classical field
Āμ becomes merely a pure gauge and no interaction occurs
(see the assumptions made in Sec. II B), one can uniquely2

define the positive/negative frequency mode functions at
the corresponding asymptotic time by plane wave solu-
tions. With this boundary condition at t → �∞, we solve
the equations of motion, Eqs. (37)–(39), nonperturbatively
with respect to the classical field, and hereby we obtain the
positive/negative mode functions at the corresponding
asymptotic time. By expanding the fluctuations with the
mode functions and imposing canonical commutation
relations, one obtains creation/annihilation operators for
the positive/negative frequency modes at each asymptotic
time (t → �∞). An important point here is that the mode
functions do fully include multiple interactions with the
classical field, and hence the positive (or negative) fre-
quency mode at t → −∞ will evolve into a linear combi-
nation of the positive and negative frequency modes at
t → ∞. This linear relation is described by a Bogoliubov
transformation, and we will see that the particle spectrum
which will be observed at t → ∞ evolved from a given
initial state at t → −∞ is determined by the Bogoliubov
coefficients. In the following, we shall assume that the
initial state is given by a vacuum for simplicity, although
one can equally formulate more generic initial states as
well.
We remark that our formalism, which takes into account

the interactions with the classical field Āμ nonperturbatively
by fully solving the equations of motion, does include
perturbative contributions that can be computed by, for

instance, the usual diagrammatic techniques of the Smatrix
[49]. For a specific type of electric fields, one can explicitly
check this [30,50].

1. Quark

We canonically quantize the quark field ψ i;f at the
asymptotic times (t → �∞) in order to compute the quark
spectrum produced from the classical field.
To do this, we first expand the quark fields ψ i;f with the

mode functions as

ψ i;fðxÞ ¼
X
s

Z
dp2⊥dpη½þψ ðasÞ

i;f;p⊥;pη;s
ðxÞaðasÞi;f;p⊥;pη;s

þ −ψ
ðasÞ
i;f;p⊥;pη;s

ðxÞbðasÞ†i;f;−p⊥;−pη;s
�: ð40Þ

Here, as ¼ in; out specifies the asymptotic time t → �∞,
respectively, at which we define a particle picture by
employing the canonical quantization. The subscripts
� specify the positive and the negative frequency modes.
The momentum labels p⊥ and pη are the Fourier conjugate
to the positions x⊥ and η, respectively; we label the
longitudinal momentum by pη, instead of the pz conjugate
to z, so as to treat the longitudinal expansion of the system
manifestly with the η coordinate. The label s ¼ 1, 2 is for
the spin degree of freedom. We identify the mode functions

�ψ
ðinÞ
i;f;p⊥;pη;s

(�ψ
ðoutÞ
i;f;p⊥;pη;s

) with plane wave solutions with

positive/negative frequency at t → −∞ (t → ∞),

�ψ
ðinÞ
i;f;p⊥;pη;s

⟶
t→−∞ �ψ

ðfreeÞ
i;f;p⊥;pη;s

½Āμðt → −∞Þ�; ð41Þ

�ψ
ðoutÞ
i;f;p⊥;pη;s

⟶
t→∞ �ψ

ðfreeÞ
i;f;p⊥;pη;s

½Āμðt → ∞Þ�; ð42Þ

where the plane wave solutions �ψ
ðfreeÞ
i;f;p⊥;pη;s

½Ăμ� satisfy

the free field equation of motion under a pure gauge
background Ăμ ¼ Āμðt → �∞Þ. For details of the plane

wave solutions �ψ
ðfreeÞ
i;f;p⊥;pη;s

, see Appendix A 1 a. We also

normalize the positive/negative frequency mode functions

�ψ
ðasÞ
i;f;p⊥;pη;s

for each as ¼ in; out as

�
�ψ

ðasÞ
i;f;p⊥;pη;s

j�ψ ðasÞ
i;f;p0⊥;p0

η;s0

�
F
¼ δss0δ

2ðp⊥ − p0⊥Þδðpη − p0
ηÞ;

ð43Þ

ð�ψ ðasÞ
i;f;p⊥;pη;s

j∓ψ ðasÞ
i;f;p0⊥;p0

η;s0
ÞF ¼ 0; ð44Þ

where the inner product for fermion fields ðψ1jψ2ÞF in the
τ-η coordinates is given by

2One can quantize the fluctuations even if there are interactions
in principle; however, the definition of positive/negative mode
functions, i.e., the notion of particle, becomes ambiguous.
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ðψ1jψ2ÞF ¼ τ

Z
τ¼const

d2x⊥dηψ̄1γ
τψ2: ð45Þ

Next, we impose canonical commutation relations to
complete the canonical quantization. Since we are working
in the τ-η coordinates, we impose canonical commutation
relations on an equal τ surface, instead of on an equal t
surface as in the Cartesian coordinates,

fψ i;fðτ; x⊥; ηÞ; πi0;f0 ðτ; x0⊥; η0Þg

¼ iδii0δff0δ2ðx⊥ − x0⊥Þ
δðη − η0Þ

τ
; ð46Þ

fπi;fðτ; x⊥; ηÞ; πi0;f0 ðτ; x0⊥; η0Þg
¼ fψ i;fðτ; x⊥; ηÞ;ψ i0;f0 ðτ; x0⊥; η0Þg ¼ 0; ð47Þ

where the canonical conjugate πi;f to the quark field ψ i;f

is given by πi;f ¼ δL=δð∂τψ i;fÞ ¼ iψ̄ i;fγ
τ. The factor

1=τ in Eq. (46) comes from the Jacobian
ffiffiffiffiffiffi−gp ¼ τ of

the τ-η coordinates. The canonical commutation relations,
Eqs. (46) and (47), are equivalent to require that the

operators aðasÞi;f;p⊥;pη;s
; bðasÞi;f;p⊥;pη;s

anticommute as

n
aðasÞi;f;p⊥;pη;s

;aðasÞ†i0;f0;p0⊥;p0
η;s0

o
¼
n
bðasÞi;f;p⊥;pη;s

;bðasÞ†i0;f0;p0⊥;p0
η;s0

o
¼δii0δff0δss0δ

2ðp⊥−p0⊥Þδðpη−p0
ηÞ; ð48Þ

ðotherwiseÞ ¼ 0: ð49Þ

From these anticommutation relations, Eqs. (48) and (49),

one can understand as usual that the operator aðasÞi;f;p⊥;pη;s

(bðasÞi;f;p⊥;pη;s
) acts as an annihilation operator of a quark

(an antiquark) at the corresponding asymptotic time with

the momentums p⊥; pη, the spin s, the color charge qðqÞi

(−qðqÞi ), and the flavor f.
As is stated in the beginning of this section, the creation/

annihilation operators for different asymptotic times do not
coincide with each other because of the interactions with
the classical field. The linear relation is described by the
following Bogoliubov transformation:

 
aðoutÞi;f;p⊥;pη;s

bðoutÞ†i;f;−p⊥;−pη;s

!
¼
 ðþψ ðoutÞ

i;f;p⊥;pη;s
jψ i;fÞF

ð−ψ ðoutÞ
i;f;p⊥;pη;s

jψ i;fÞF

!

¼
X
s0

Z
d2p0⊥dp0

η

 ðþψ ðoutÞ
i;f;p⊥;pη;s

jþψ ðinÞ
i;f;p0⊥;p0

η;s0
ÞF ðþψ ðoutÞ

i;f;p⊥;pη;s
j−ψ ðinÞ

i;f;p0⊥;p0
η;s0

ÞF
ð−ψ ðoutÞ

i;f;p⊥;pη;s
jþψ ðinÞ

i;f;p0⊥;p0
η;s0

ÞF ð−ψ ðoutÞ
i;f;p⊥;pη;s

j−ψ ðinÞ
i;f;p0⊥;p0

η;s0
ÞF

! 
aðinÞi;f;p0⊥;p0

η;s0

bðinÞ†i;f;−p0⊥;−p0
η;s0

!
: ð50Þ

In order to obtain the (anti)quark spectrum at t → ∞
produced from the background field Āμ, let us introduce a

(anti)quark number density operator nðqÞi;f;p⊥;pη;s
(nðq̄Þi;f;p⊥;pη;s

)

by

nðqÞi;f;p⊥;pη;s
≡ aðoutÞ†i;f;p⊥;pη;s

aðoutÞi;f;p⊥;pη;s
;

nðq̄Þi;f;p⊥;pη;s
≡ bðoutÞ†i;f;p⊥;pη;s

bðoutÞi;f;p⊥;pη;s
: ð51Þ

The quark and antiquark spectra are derived as an expect-
ation value of the number density operators by a given
initial state at t → −∞. Hereafter, let us assume that
the initial state is given by a vacuum jvac; ini. By noting
that the initial vacuum is a state that is annihilated by

the annihilation operators at t → −∞ as 0 ¼
aðinÞi;f;p⊥;pη;s

jvac; ini ¼ bðinÞi;f;p⊥;pη;s
jvac; ini and by using the

Bogoliubov transformation, Eq. (50), one immediately
obtains

d3NðqÞ
i;f;s

dp2⊥dpη
≡ hvac; injnðqÞi;f;p⊥;pη;s

jvac; ini
hvac; injvac; ini

¼
X
s0

Z
d2p0⊥dp0

ηjðþψ ðoutÞ
i;f;p⊥;pη;s

j−ψ ðinÞ
i;f;p0⊥;p0

η;s0
ÞFj2;

ð52Þ

d3Nðq̄Þ
i;f;s

dp2⊥dpη
≡ hvac; injnðq̄Þi;f;p⊥;pη;s

jvac; ini
hvac; injvac; ini

¼
X
s0

Z
d2p0⊥dp0

ηjð−ψ ðoutÞ
i;f;−p⊥;−pη;s

jþψ ðinÞ
i;f;p0⊥;p0

η;s0
ÞFj2:

ð53Þ

An important point of these formulas Eqs. (52) and (53)
is that deriving the particle spectrum is thus reduced to

finding out the mode functions �ψ
ðasÞ
i;f;p⊥;pη;s

by solving the

Dirac equation, Eq. (37), nonperturbatively with respect to
the classical field.
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As is expected from the Pauli principle, one can explicitly
show that the phase space density does not exceed unity.
Indeed, the anticommutation relation, Eq. (48), yields that
the Bogoliubov coefficients are normalized as

1

ð2πÞ3
Z

d2x⊥
Z

dη

¼
X
s0

Z
d2p0⊥dp0

η

h			��ψ ðoutÞ
i;f;p⊥;pη;s

			�ψ ðinÞ
i;f;p0⊥;p0

η;s0

�
F

			2
þ
			��ψ ðoutÞ

i;f;p⊥;pη;s

			∓ψ ðinÞ
i;f;p0⊥;p0

η;s0

�
F

			2i; ð54Þ

where we have used δ2ðp⊥ ¼ 0Þδðpη ¼ 0Þ ¼ 1=ð2πÞ3R
d2x⊥

R
dη. From Eq. (54), one immediately finds

ð2πÞ3d6Nðq;q̄Þ
i;f;s =dx

2⊥dηdp2⊥dpη ≤ 1.
So far, we have characterized the longitudinal momen-

tum of produced quarks by the label pη because it is a
natural quantum number conjugate to the spacetime rap-
idity η and that manifestly respects the boost invariance of
the system. Consequently, what we have obtained for the
quark spectra in Eqs. (52) and (53) are the pη spectrum.
However, what we actually observe in experiments is not
the pη spectrum, but the pz spectrum and/or the momentum
rapidity yp spectrum, where

yp ≡ 1

2
ln
ωp þ pz

ωp − pz
ð55Þ

with ωp being an on-shell energy ωp ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2⊥ þ p2

z

p
.

The pz spectrum and/or the momentum rapidity yp spec-
trum can be obtained from the pη spectrum in the following
way [28]: As in the pη spectrum Eqs. (52) and (53), the pz

spectrum and/or the momentum rapidity yp spectrum are
obtained as an expectation value of the number operators,

nðqÞi;f;p⊥;pz;s
and nðq̄Þi;f;p⊥;pz;s

, which are labeled by pz instead of
pη as

d3NðqÞ
i;f;s

dp2⊥dpz
¼ 1

ωp

d3NðqÞ
i;f;s

dp2⊥dyp

≡ hvac; injnðqÞi;f;p⊥;pz;s
jvac; ini

hvac; injvac; ini ; ð56Þ

d3Nðq̄Þ
i;f;s

dp2⊥dpz
¼ 1

ωp

d3Nðq̄Þ
i;f;s

dp2⊥dyp

≡ hvac; injnðq̄Þi;f;p⊥;pz;s
jvac; ini

hvac; injvac; ini ; ð57Þ

where the number operators are defined by the annihilation

operators aðoutÞi;f;p⊥;pz;s
; bðoutÞi;f;p⊥;pz;s

as

nðqÞi;f;p⊥;pz;s
≡ aðoutÞ†i;f;p⊥;pz;s

aðoutÞi;f;p⊥;pz;s
;

n
¯ðqÞ

i;f;p⊥;pz;s
≡ bðoutÞ†i;f;p⊥;pz;s

bðoutÞi;f;p⊥;pz;s
: ð58Þ

The annihilation operators aðoutÞi;f;p⊥;pz;s
; bðoutÞi;f;p⊥;pz;s

are defined
by expanding the fermion operator ψ i;f in terms of positive/

negative frequency mode functions �ψ
ðoutÞ
i;f;p⊥;pz;s

in the
Cartesian coordinates, which is labeled by pz being the
Fourier conjugate to z as

ψ i;fðxÞ ¼
X
s

Z
dp2⊥dpz

h
þψ

ðoutÞ
i;f;p⊥;pz;s

ðxÞaðoutÞi;f;p⊥;pz;s

þ −ψ
ðoutÞ
i;f;p⊥;pz;s

ðxÞbðoutÞ†i;f;−p⊥;−pz;s

i
: ð59Þ

Here, we adopt the same boundary condition as what we

have required for �ψ
ðoutÞ
i;f;p⊥;pη;s

; i.e., we require �ψ
ðoutÞ
i;f;p⊥;pz;s

to

coincide with the plane wave solutions at t → ∞. As is
shown in Appendix A 1 a, the mode functions in the

Cartesian coordinates �ψ
ðoutÞ
i;f;p⊥;pz;s

and those in the τ-η

coordinates �ψ
ðoutÞ
i;f;p⊥;pη;s

are related with each other by an

integral transformation described by3

�ψ
ðoutÞ
i;f;p⊥;pη;s

¼
Z

dpz
e�ipηypffiffiffiffiffiffiffiffiffiffiffi
2πωp

p �ψ
ðoutÞ
i;f;p⊥;pz;s

: ð60Þ

Using this integral transformation, Eq. (60), and comparing
the expansion in the Cartesian coordinates, Eq. (59), with
that in the τ-η coordinates, Eq. (40), one finds

aðoutÞi;f;p⊥;pz;s
¼
Z

dpη
eipηypffiffiffiffiffiffiffiffiffiffiffi
2πωp

p aðoutÞi;f;p⊥;pη;s
; ð61Þ

bðoutÞ†i;f;p⊥;pz;s
¼
Z

dpη
e−ipηypffiffiffiffiffiffiffiffiffiffiffi
2πωp

p bðoutÞ†i;f;p⊥;pη;s
: ð62Þ

3Strictly speaking, what we show in Appendix A 1 a is that the
plane wave solutions in the Cartesian coordinates �ψ

ðfreeÞ
i;f;p⊥;pz;s

½ ~Am�
and those in the τ-η coordinates �ψ

ðfreeÞ
i;f;p⊥;pη;s

½ ~Aμ� are related with
each other by the integral transformation, Eq. (60). One can safely
say that the same integral relation equally holds for the mode
functions, �ψ

ðoutÞ
i;f;p⊥;pz;s

and �ψ
ðoutÞ
i;f;p⊥;pη;s

: Since the two sets of

mode functions, �ψ
ðoutÞ
i;f;p⊥;pz;s

and �ψ
ðoutÞ
i;f;p⊥;pη ;s

, obey the same

differential equation ½iγmð∂m − iqðqÞi
~AmÞ −mf��ψ ðoutÞ

i;f;p⊥;pz;s
¼

½iγμð∂μ − iqðqÞi
~AμÞ −mf��ψ ðoutÞ

i;f;p⊥;pη;s
¼ 0 and that the linear rela-

tion between them is conserved in the time evolution, it is
sufficient to show that the integral relation at the boundary
t; τ → ∞, where both solutions become plane waves. Hence, the
integral relation actually holds. The same argument can be
applied for the integral transformation for gluons [Eq. (93)],
which we will discuss in the next subsection.
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Inserting these relations, Eqs. (61) and (62), back into
Eqs. (56) and (57), one obtains

d3NðqÞ
i;f;s

dp2⊥dpz
¼ 1

ωp

d3NðqÞ
i;f;s

dp2⊥dyp

¼ 1

ωp

Z
dpηdp0

η
eiypðpη−p0

ηÞ

2π

×
hvac; injaðoutÞ†i;f;p⊥;p0

η;s
aðoutÞi;f;p⊥;pη;s

jvac; ini
hvac; injvac; ini ; ð63Þ

d3Nðq̄Þ
i;f;s

dp2⊥dpz
¼ 1

ωp

d3Nðq̄Þ
i;f;s

dp2⊥dyp

¼ 1

ωp

Z
dpηdp0

η
eiypðpη−p0

ηÞ

2π

×
hvac; injbðoutÞ†i;f;p⊥;p0

η;s
bðoutÞi;f;p⊥;pη;s

jvac; ini
hvac; injvac; ini : ð64Þ

When the system is perfectly boost invariant, the expect-
ation values in Eqs. (63) and (64) for pη ≠ p0

η vanish
because pη is a good quantum number and it never mixes
with other values of pη during the time evolution. In this
case, one can further simplify Eqs. (63) and (64) as

d3NðqÞ
i;f;s

dp2⊥dpz
¼ 1

ωp

d3NðqÞ
i;f;s

dp2⊥dyp

¼ 1

2πδðpη ¼ 0Þ ×
1

ωp

Z
dpη

d3NðqÞ
i;f;s

dp2⊥dpη
; ð65Þ

d3Nðq̄Þ
i;f;s

dp2⊥dpz
¼ 1

ωp

d3Nðq̄Þ
i;f;s

dp2⊥dyp

¼ 1

2πδðpη ¼ 0Þ ×
1

ωp

Z
dpη

d3Nðq̄Þ
i;f;s

dp2⊥dpη
; ð66Þ

which are manifestly boost invariant in the sense that the yp
spectrum does not depend on the momentum rapidity yp.
We note that we have derived the formulas, Eqs. (65)
and (66), in a quantum field theoretical manner by
following Ref. [28], but one can also obtain the same
formulas within classical mechanics [32,34], though these
two derivations agree with each other only if the system is
perfectly boost invariant.

2. Gluon

Next, we turn to the canonical quantization of the gluon
field Wμ;A and compute the gluon spectrum at t → ∞. We
do essentially the same procedure as what we have done in

the quark case although there are slight differences due to
the vector nature of gluons.
First, we expand the gluon field Wμ;A as

Wμ;A ¼
X
σ

Z
dp2⊥dpη

h
þW

ðasÞ
μ;A;p⊥;pη;σ

cðasÞA;p⊥;pη;σ

þ −W
ðasÞ
μ;A;p⊥;pη;σ

dðasÞ†A;−p⊥;−pη;σ

i
: ð67Þ

σ ¼ 0, 1, 2, 3 labels the polarization, and the other labels
are the same as in the quark case. The mode functions

�W
ðasÞ
μ;A;p⊥;pη;σ

are the solutions of the equations of motion,

Eq. (38), with the plane wave boundary condition,

�W
ðinÞ
μ;A;p⊥;pη;σ

⟶
t→−∞ �W

ðfreeÞ
μ;A;p⊥;pη;σ

½Āμðt → −∞Þ�; ð68Þ

�W
ðoutÞ
μ;A;p⊥;pη;σ

⟶
t→∞ �W

ðfreeÞ
μ;A;p⊥;pη;σ

½Āμðt → ∞Þ�; ð69Þ

where the plane wave solutions �W
ðfreeÞ
μ;A;p⊥;pη;σ

½Ăμ� satisfy
the free field equation of motion under a pure gauge
background field Ăμ ¼ Āμðt → �∞Þ. For details of the

plane wave solutions �W
ðfreeÞ
μ;A;p⊥;pη;σ

, see Appendix A 2 a.

The positive/negative frequency mode functions

�W
ðasÞ
μ;A;p⊥;pη;σ

are normalized as

−gμνð�WðasÞ
μ;A;p⊥;pη;σ

j�WðasÞ
ν;A;p0⊥;p0

η;σ0
ÞB

¼ �ξσσ0δ
2ðp⊥ − p0⊥Þδðpη − p0

ηÞ; ð70Þ

−gμνð�WðasÞ
μ;A;p⊥;pη;σ

j∓WðasÞ
ν;A;p0⊥;p0

η;σ0
ÞB ¼ 0 ð71Þ

for each as ¼ in; out. Here, the inner product for boson
fields ðϕ1jϕ2ÞB in the τ-η coordinates is given by

ðϕ1jϕ2ÞB ¼ iτ
Z
τ¼const

d2x⊥dηϕ�
1∇
↔

τϕ2; ð72Þ

where ∇↔τ ≡ ∇⃗τ − ∇⃖τ. The indefinite metric ξσσ0 is intro-
duced by

ξσσ0 ≡

0
BBB@

0 0 0 1

0 1 0 0

0 0 1 0

1 0 0 0

1
CCCA; ð73Þ

which has symmetric off-diagonal elements ξ03 ¼ ξ30.
Because of this property, the zeroth and the third polari-
zation modes of gluons become unphysical and they do not
appear in the physical spectrum as we will show later.

QUARK AND GLUON PRODUCTION FROM A BOOST- … PHYSICAL REVIEW D 96, 014033 (2017)

014033-9



For later convenience, we decompose the positive/

negative frequency mode functions �W
ðasÞ
μ;A;p⊥;pη;σ

by intro-

ducing a polarization vector εμ;σ and scalar amplitudes

�Φ
ðasÞ
A;p⊥;pη;σ

as

�W
ðasÞ
μ;A;p⊥;pη;σ

≡ εμ;σ�Φ
ðasÞ
A;p⊥;pη;σ

: ð74Þ

It is convenient to normalize the polarization vector as

gμνε�μ;σεν;σ0 ¼ −ξσσ0 ;X
σ;σ0

ξσσ0ε
�
μ;σεν;σ0 ¼ −gμν; ð75Þ

and to require that the covariant derivatives vanish as4

∇μεν;σ ¼ 0: ð77Þ

Then, the normalization conditions for �W
ðasÞ
μ;A;p⊥;pη;σ

,

Eqs. (70) and (71), can be rewritten in terms of the scalar
amplitudes as

X
σ0
ξσσ0
�
�Φ

ðasÞ
A;p⊥;pη;σ

j�ΦðasÞ
A;p0⊥;p0

η;σ0

�
B

¼ �δ2ðp⊥ − p0⊥Þδðpη − p0
ηÞ; ð78Þ

X
σ0
ξσσ0
�
�Φ

ðasÞ
A;p⊥;pη;σ

j∓ΦðasÞ
A;p0⊥;p0

η;σ0

�
B
¼ 0: ð79Þ

Next, we impose canonical commutation relations to
complete the canonical quantization,

½Wμ;Aðτ; x⊥; ηÞ; πν;A0 ðτ; x0⊥; η0Þ�

¼ igμνδAA0δ2ðx⊥ − x0⊥Þ
δðη − η0Þ

τ
; ð80Þ

½Wμ;Aðτ; x⊥; ηÞ;Wν;A0 ðτ; x0⊥; η0Þ�
¼ ½πμ;Aðτ; x⊥; ηÞ; πν;A0 ðτ; x0⊥; η0Þ� ¼ 0; ð81Þ

where the canonical conjugate field πμ;A to the gluon field
Wμ;A is given by πμ;A ¼ δL=δð∇τW

μ
AÞ ¼ −∇τW

†
μ;A. The

canonical commutation relations, Eqs. (80) and (81), are

equivalent to requiring the operators cðasÞA;p⊥;pη;σ
; dðasÞA;p⊥;pη;σ

to

commute as

h
cðasÞA;p⊥;pη;σ

; cðasÞ†A0;p0⊥;p0
η;σ0

i
¼
h
dðasÞA;p⊥;pη;σ

; dðasÞ†A0;p0⊥;p0
η;σ0

i
¼ δAA0ξσσ0δ

2ðp⊥ − p0⊥Þδðpη − p0
ηÞ;
ð82Þ

ðotherwiseÞ ¼ 0: ð83Þ

From these commutation relations, Eqs. (82) and (83), the

operator cðasÞA;p⊥;pη;σ
(dðasÞA;p⊥;pη;σ

) can be understood as an

annihilation operator of a gluon at the corresponding
asymptotic time with the momentums p⊥; pη, the polari-

zation σ, and the color charge qðgÞA (−qðgÞA ).
As in the quark case, the creation/annihilation operators

at different asymptotic times do not coincide with each
other and the linear relation is described by a Bogoliubov
transformation given by

0
B@ cðoutÞA;p⊥;pη;σ

dðoutÞ†A;−p⊥;−pη;σ

1
CA ¼

X
σ00

ξσσ00 ð−gμνÞ

0
B@ ðþWðoutÞ

μ;A;p⊥;pη;σ00
jWν;AÞB

−ð−WðoutÞ
μ;A;p⊥;pη;σ00

jWν;AÞB

1
CA

¼
X
σ0

Z
d2p0⊥dp0

η

8<
:
X
σ00

ξσσ00 ð−gμνÞ

×

0
B@ ðþWðoutÞ

μ;A;p⊥;pη;σ00
jþWðinÞ

ν;A;p0⊥;p0
η;σ0

ÞB ðþWðoutÞ
μ;A;p⊥;pη;σ00

j−WðinÞ
ν;A;p0⊥;p0

η;σ0
ÞB

−ð−WðoutÞ
μ;A;p⊥;pη;σ00

jþWðinÞ
ν;A;p0⊥;p0

η;σ0
ÞB −ð−WðoutÞ

μ;A;p⊥;pη;σ00
j−WðinÞ

ν;A;p0⊥;p0
η;σ0

ÞB

1
CA
0
B@ cðinÞA;p0⊥;p0

η;σ0

dðinÞ†A;−p0⊥;−p0
η;σ0

1
CA
9=
;: ð84Þ

4One can always construct such a polarization vector by contracting the viervein matrix emμ with a constant vector ~εm;σ normalized as

ηmn ~ε�m;σ ~εn;σ0 ¼ −ξσσ0 ;
X
σ;σ0

ξσσ0 ~ε
�
m;σ ~εn;σ0 ¼ −ηmn: ð76Þ
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In order to obtain the gluon spectrum at t → ∞, let us introduce a gluon number density operator nðgÞ�A;p⊥;pη;σ
by

nðgÞA;p⊥;pη;σ
≡ cðoutÞ†A;p⊥;pη;σ

cðoutÞA;p⊥;pη;σ
; nðgÞ−A;p⊥;pη;σ

≡ dðoutÞ†A;p⊥;pη;σ
dðoutÞA;p⊥;pη;σ

: ð85Þ

As in the quark spectrum [Eqs. (52) and (53)], one can derive the gluon spectrum as an expectation value of the number
density operators in the initial state as

d3NðgÞ
�A;σ

dp2⊥dpη
≡
D
vac; injnðgÞ�A;p⊥;pη;σ

jvac; in
E

hvac; injvac; ini

¼
X
σ1σ2

ξσ1σ2

Z
d2p0⊥dp0

η


X
σ0
1
σ0
2

ξσσ0
1
ξσσ0

2
ð−gμ1ν1Þð−gμ2ν2Þ

×
�
�W

ðoutÞ
μ1;A;p⊥;pη;σ01

j∓WðinÞ
ν1;A;p0⊥;p0

η;σ1

�
B

�
∓W

ðinÞ
ν2;A;p0⊥;p0

η;σ2
j�WðoutÞ

μ2;A;p⊥;pη;σ02

�
B

�
: ð86Þ

We note that only gluons from the quantum fluctuation are counted in Eq. (86) and there are no contributions from those
from the classical background field. This treatment is justified only for the gluon spectrum at t → ∞, where the classical
background field is vanishing. If one is interested in the gluon spectrum at transient times jtj < ∞, where the classical
background field is still present, then one has to count not only quantum gluons but also classical gluons in some way.
One can perform the polarization sum in this formula, Eq. (86), with the help of the decomposition, Eq. (74). Inserting the

decomposition, Eq. (74), into Eq. (86), one obtains

d3NðgÞ
�A;σ

dp2⊥dpη
¼

X
σ1σ2σ

0
1
σ0
2

Z
d2p0⊥dp0

ηξσ1σ2ξσσ01ξσσ02ξσ1σ01ξσ2σ02

�
�Φ

ðoutÞ
A;p⊥;pη;σ01

j∓ΦðinÞ
A;p0⊥;p0

η;σ1

�
B

�
∓Φ

ðinÞ
A;p0⊥;p0

η;σ2
j�ΦðoutÞ

A;p⊥;pη;σ02

�
B
; ð87Þ

where use is made of the normalization condition for the polarization vector, Eq. (75). By noting that the indefinite metric
ξσσ0 has an off-diagonal structure as defined in Eq. (73), one finally finds

d3NðgÞ
�A;σ

dp2⊥dpη
¼

R

d2p0⊥dp0
ηjð�ΦðoutÞ

A;p⊥;pη;σ
j∓ΦðinÞ

A;p0⊥;p0
η;σ
ÞBj2 for σ ¼ 1; 2

0 for σ ¼ 0; 3
: ð88Þ

It is now evident that gluons with the zeroth and the third polarizations vanish. This is consistent with our expectation
that only two out of four polarization modes of gluons are physical. We stress that deriving the particle spectrum is thus

reduced to finding out the mode functions �W
ðasÞ
μ;A;p⊥;pη;σ

, or �Φ
ðasÞ
A;p⊥;pη;σ

, by solving the equation of motion, Eq. (38),

nonperturbatively with respect to the classical field.
Unlike the quark case, the phase space density can exceed unity because bosons are not subject to the Pauli principle.

Indeed, one can show from the normalization condition for �Φ
ðasÞ
A;p⊥;pη;σ

that the inner products between �Φ
ðinÞ
A;p⊥;pη;σ

and

�Φ
ðoutÞ
A;p⊥;pη;σ

are normalized as

1

ð2πÞ3
Z

d2x⊥
Z

dη ¼
Z

d2p0⊥dp0
η

h			��ΦðoutÞ
A;p⊥;pη;σ

j�ΦðinÞ
A;p0⊥;p0

η;σ

�
B

			2 − 			��ΦðoutÞ
A;p⊥;pη;σ

j∓ΦðinÞ
A;p0⊥;p0

η;σ

�
B

			2i ð89Þ

for the physical polarization modes σ ¼ 1, 2. One finds that the inner products jð�ΦðoutÞ
A;p⊥;pη;σ

j∓ΦðinÞ
A;p0⊥;p0

η;σ0
ÞBj2 or the phase

space density is not bounded because of the − sign in Eq. (89). Notice that for the quark case, Eq. (54), we have a þ sign,
which reflects the statistics of particles, i.e., þ for fermions and − for bosons.
Finally, let us connect the pη spectrum, Eq. (86), to the pz spectrum and/or the momentum rapidity yp spectrum as was

done in the quark case. The pz spectrum and/or the momentum rapidity yp spectrum are obtained as an expectation value of

the number operator nðgÞ�A;p⊥;pz;σ
, which are labeled by pz instead of pη, as
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d3NðgÞ
�A;σ

dp2⊥dpz
¼ 1

ωp

d3NðgÞ
�A;σ

dp2⊥dyp
≡hvac;injnðgÞ�A;p⊥;pz;σ

jvac;ini
hvac;injvac;ini ; ð90Þ

where the number operator nðgÞ�A;p⊥;pz;σ
is defined by the

annihilation operators cðoutÞA;p⊥;pz;σ
; dðoutÞA;p⊥;pz;σ

as

nðgÞA;p⊥;pz;σ
≡ cðoutÞ†A;p⊥;pz;σ

cðoutÞA;p⊥;pz;σ
;

nðgÞ−A;p⊥;pz;σ
≡ dðoutÞ†A;p⊥;pz;σ

dðoutÞA;p⊥;pz;σ
: ð91Þ

The annihilation operators cðoutÞA;p⊥;pz;σ
; dðoutÞA;p⊥;pz;σ

are defined
by expanding the gluon operator Wm;A ¼ eμmWμ;A in
terms of positive/negative frequency mode functions

�W
ðoutÞ
m;A;p⊥;pz;σ

in the Cartesian coordinates, which are
labeled by pz being the Fourier conjugate to z as

Wm;AðxÞ ¼
X
σ

Z
dp2⊥dpz

h
þW

ðoutÞ
m;A;p⊥;pz;σ

ðxÞcðoutÞA;p⊥;pz;σ

þ −W
ðoutÞ
m;A;p⊥;pz;σ

ðxÞdðoutÞ†A;−p⊥;−pz;σ

i
: ð92Þ

Here, we again require the plane wave boundary condition

�W
ðoutÞ
m;A;p⊥;pz;σ

at t → ∞. As is shown in Appendix A 2 a, if
properly normalized, the mode functions in the Cartesian

coordinates �W
ðoutÞ
m;A;p⊥;pz;σ

and those in the τ-η coordinates

�W
ðoutÞ
μ;A;p⊥;pη;σ

are related with each other by an integral

transformation described by

�W
ðoutÞ
μ;A;p⊥;pη;σ

¼ emμ

Z
dpz

e�ipηypffiffiffiffiffiffiffiffiffiffiffi
2πωp

p �W
ðoutÞ
m;A;p⊥;pz;σ

: ð93Þ

Using this integral transformation, Eq. (93), and comparing
the expansion in the Cartesian coordinates, Eq. (92), with
that in the τ-η coordinates, Eq. (67), one finds

cðoutÞA;p⊥;pz;σ
¼
Z

dpη
eipηypffiffiffiffiffiffiffiffiffiffiffi
2πωp

p cðoutÞA;p⊥;pη;σ
; ð94Þ

dðoutÞ†A;p⊥;pz;σ
¼
Z

dpη
e−ipηypffiffiffiffiffiffiffiffiffiffiffi
2πωp

p dðoutÞ†A;p⊥;pη;σ
: ð95Þ

Inserting these relations, Eqs. (94) and (95), back into
Eq. (90), one obtains

d3NðgÞ
A;σ

dp2⊥dpz
¼ 1

ωp

d3NðgÞ
A;σ

dp2⊥dyp

¼ 1

ωp

Z
dpηdp0

η
eiypðpη−p0

ηÞ

2π

×

D
vac; injcðoutÞ†A;p⊥;p0

η;σ
cðoutÞA;p⊥;pη;σ

jvac; in
E

hvac; injvac; ini ; ð96Þ

d3NðgÞ
−A;σ

dp2⊥dpz
¼ 1

ωp

d3NðgÞ
−A;σ

dp2⊥dyp

¼ 1

ωp

Z
dpηdp0

η
eiypðpη−p0

ηÞ

2π

×

D
vac; injdðoutÞ†A;p⊥;p0

η;σ
dðoutÞA;p⊥;pη;σ

jvac; in
E

hvac; injvac; ini : ð97Þ

When the system is perfectly boost invariant, the expect-
ation values in Eqs. (96) and (97) for pη ≠ p0

η vanish as in
the quark case, and one finally obtains

d3NðgÞ
�A;σ

dp2⊥dpz
¼ 1

ωp

d3NðgÞ
�A;σ

dp2⊥dyp

¼ 1

2πδðpη ¼ 0Þ
1

ωp

Z
dpη

d3NðgÞ
�A;σ

dp2⊥dpη
: ð98Þ

3. Ghost

Finally, we consider the canonical quantization of the
ghost and antighost fields, CA and C̄A, and show that ghosts
are never produced from the classical field. We do
essentially the same procedure as what we did in the
previous quark and gluon cases.
We first expand the ghost and antighost fields, CA and

C̄A, as

�
CA

C̄A

�
¼
Z

dp2⊥dpη

2
64þΘ

ðasÞ
A;p⊥;pη

0
B@ eðasÞA;p⊥;pη

ēðasÞA;p⊥;pη

1
CA

þ −Θ
ðasÞ
A;p⊥;pη

0
B@ fðasÞ†A;−p⊥;−pη

f̄ðasÞ†A;−p⊥;−pη

1
CA
3
75; ð99Þ

where the labels are the same as in the previous two cases.

The mode functions �Θ
ðasÞ
A;p⊥;pη

are the solutions of the

equations of motion, Eq. (39), with the plane wave
boundary condition at t → �∞,

�Θ
ðinÞ
A;p⊥;pη

⟶
t→−∞ �Θ

ðfreeÞ
A;p⊥;pη

½Āμðt → −∞Þ�; ð100Þ
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�Θ
ðoutÞ
A;p⊥;pη

⟶
t→∞ �Θ

ðfreeÞ
A;p⊥;pη

½Āμðt → ∞Þ�; ð101Þ

where the plane wave solutions �Θ
ðfreeÞ
A;p⊥;pη

½Ăμ� satisfy the

free field equation of motion under a pure gauge back-
ground field Ăμ ¼ Āμðt → �∞Þ. For details of the plane

wave solutions �Θ
ðfreeÞ
A;p⊥;pη

, see Appendix A 3 a. The nor-

malization conditions for the positive/negative frequency

mode functions �Θ
ðasÞ
A;p⊥;pη

are�
�Θ

ðasÞ
A;p⊥;pη

j�ΘðasÞ
A;p0⊥;p0

η

�
B
¼�δ2ðp⊥−p0⊥Þδðpη−p0

ηÞ; ð102Þ

�
�Θ

ðasÞ
A;p⊥;pη

j∓ΘðasÞ
A;p0⊥;p0

η

�
B
¼ 0: ð103Þ

Next, we canonically quantize the fluctuations by impos-
ing canonical commutation relations,

fC
ð−Þ

Aðτ; x⊥; ηÞ; π
ð−Þ

A0 ðτ; x0⊥; η0Þg

¼ iδAA0δ2ðx⊥ − x0⊥Þ
δðη − η0Þ

τ
; ð104Þ

fC
ð−Þ

Aðτ; x⊥; ηÞ; C
ð−Þ

A0 ðτ; x0⊥; η0Þg

¼ f πð−ÞAðτ; x⊥; ηÞ; π
ð−Þ

A0 ðτ; x0⊥; η0Þg ¼ 0; ð105Þ

where the canonical conjugate fields to the ghost and
antighost fields, CA and C̄A, are given by πA ¼
δL=δð∂τCAÞ ¼ −i∂τC̄

†
A and π̄A ¼ δL=δð∂τC̄AÞ ¼ i∂τC

†
A,

respectively. As a result of the canonical commutation
relations, one finds the following anticommutation rela-

tions for the operators eðasÞA;p⊥;pη
; ēðasÞA;p⊥;pη

; fðasÞA;p⊥;pη
; f̄ðasÞA;p⊥;pη

given by

n
eðasÞA;p⊥;pη

; ēðasÞ†A0;p0⊥;p0
η

o
¼
n
fðasÞA;p⊥;pη

; f̄ðasÞ†A0;p0⊥;p0
η

o
¼ iδAA0δ2ðp⊥ − p0⊥Þδðpη − p0

ηÞ;
ð106Þ

ðotherwiseÞ ¼ 0: ð107Þ

Now, one can understand that the operators,

eðasÞA;p⊥;pη
; fðasÞA;p⊥;pη

(ēðasÞA;p⊥;pη
; f̄ðasÞA;p⊥;pη

), act as annihilation oper-

ators of a ghost (an antighost) at the corresponding
asymptotic time with the momentums p⊥; pη and the color

charges qðghÞA ;−qðghÞA .
As is seen in the previous two cases, the creation/

annihilation operators at different asymptotic times do
not coincide with each other, and the linear relation is
given by the following Bogoliubov transformation:

0
B@ e

ð−ÞðoutÞ
A;p⊥;pη

f
ð−ÞðoutÞ†

A;−p⊥;−pη

1
CA ¼

0
B@ ðþΘðoutÞ

A;p⊥;pη
jC
ð−Þ

AÞB

−ð−ΘðoutÞ
A;p⊥;pη

jC
ð−Þ

AÞB

1
CA

¼
Z

d2p0⊥dp0
η

0
B@
�
þΘ

ðoutÞ
A;p⊥;pη

jþΘðinÞ
A;p⊥;pη

�
B

�
þΘ

ðoutÞ
A;p⊥;pη

j−ΘðinÞ
A;p⊥;pη

�
B

−
�
−Θ

ðoutÞ
A;p⊥;pη

jþΘðinÞ
A;p⊥;pη

�
B

−
�
−Θ

ðoutÞ
A;p⊥;pη

j−ΘðinÞ
A;p⊥;pη

�
B

1
CA
0
B@ e

ð−ÞðinÞ
A;p0⊥;p0

η

f
ð−ÞðinÞ†

A;−p0⊥;−p0
η

1
CA: ð108Þ

In order to obtain the ghost and antighost spectra at
t → ∞, let us introduce ghost and antighost number density

operators nðghÞ�A;p⊥;pη
and nðḡhÞ�A;p⊥;pη

, respectively, by

nðghÞA;p⊥;pη
≡ eðoutÞ†A;p⊥;pη

eðoutÞA;p⊥;pη
; nðghÞ−A;p⊥;pη

≡ fðoutÞ†A;p⊥;pη
fðoutÞA;p⊥;pη

ð109Þ

and

nðḡhÞA;p⊥;pη
≡ ēðoutÞ†A;p⊥;pη

ēðoutÞA;p⊥;pη
; nðḡhÞ−A;p⊥;pη

≡ f̄ðoutÞ†A;p⊥;pη
f̄ðoutÞA;p⊥;pη

:

ð110Þ

As in the previous two cases, the ghost and the antighost
spectra can be derived as an expectation value of the
number density operators. By using the Bogoliubov
transformation, Eq. (108), and the fact that the

commutation relation between e
ð−ÞðasÞ

A;p⊥;pη
ð f
ð−ÞðasÞ

A;p⊥;pη
Þ and

e
ð−ÞðasÞ†

A0;p0⊥;p0
η
ð f
ð−ÞðasÞ†

A0;p0⊥;p0
η
Þ vanishes because of the anticommu-

tation relations, Eqs. (106) and (107), one finds

d3NðghÞ
�A

dp2⊥dpη
¼

hvac; injnðghÞ�A;p⊥;pη
jvac; ini

hvac; injvac; ini ¼ 0; ð111Þ
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d3NðḡhÞ
�A

dp2⊥dpη
¼

hvac; injnðḡhÞ�A;p⊥;pηg
jvac; ini

hvac; injvac; ini ¼ 0: ð112Þ

That is, ghosts and antighosts are never produced from the
classical field Āμ. This is a reasonable result because ghosts
and antighosts are unphysical particles and they never
appear in the physical spectrum. In general, the right-hand
side (RHS) is always zero for any physical initial state
jphys; ini because any physical state does not contain
ghosts or antighosts.

III. PARTICLE PRODUCTION FROM AN
EXPANDING COLOR ELECTRIC FIELD

In Sec. II, we have shown, at the one-loop level quantum
calculation and within the Abelian dominance assumption
for the classical background field Āμ, that the particle
spectra are obtained by solving the equations of motion of
QCD nonperturbatively with respect to the classical field.
In principle, the equations of motion are solvable; i.e., the

particle spectra are computable for any Āμ with arbitrary
spacetime dependence, for instance, by using numerical
methods. However, before going into more realistic calcu-
lations, where Āμ has a complicated spacetime dependence,
we consider a simple situation, where analytic solutions of
the equations of motion are available. This enables us to get
more insights on the particle production in QCD in an
expanding system. In particular, we consider a spatially
homogeneous and constant classical color electric back-
ground field with finite lifetime T in a boost-invariantly
expanding geometry, i.e., E ¼ ezEθðτÞθðT − τÞ;B ¼ 0
given by a gauge potential

Ãτ;Ãx;Ãy¼0; Ãη¼


Eτ2=2 ð0< τ<TÞ
ET2=2 ðT < τÞ : ð113Þ

As is explained in Appendix A, the analytical formula for
the particle spectra become

d3NðqÞ
i;f;s

d2p⊥dyp
¼ d3Nðq̄Þ

i;f;s

d2p⊥dyp

¼ S⊥
ð2πÞ3

Z
dpη

			AðqÞ
i;f;p⊥;pη−q

ðqÞ
i ET2=2;s

ð0ÞBðqÞ�
i;f;p⊥;pη;s

ðTÞ − BðqÞ�
i;f;p⊥;pη−q

ðqÞ
i ET2=2;s

ð0ÞAðqÞ
i;f;p⊥;pη;s

ðTÞ
			2 ð114Þ

for quarks and antiquarks,

d3NðgÞ
�A;σ

d2p⊥dyp
¼ S⊥

ð2πÞ3
Z

dpη

			AðgÞ
A;p⊥;pη−q

ðgÞ
A ET2=2;σ

ð0ÞBðgÞ�
A;p⊥;pη;σ

ðTÞ − BðgÞ�
A;p⊥;pη−q

ðgÞ
A ET2=2;σ

ð0ÞAðgÞ
A;p⊥;pη;σ

ðTÞ
			2 ð115Þ

for physical gluons (σ ¼ 1, 2). Here, we have used
δ2ðp⊥ ¼ 0Þ ¼ S⊥=ð2πÞ2 with S⊥ being the transverse
area. For the explicit expressions for the Bogoliubov
coefficients AðqÞ; BðqÞ and AðgÞ; BðgÞ, see Appendix A 1 c
and Appendix A 2 c, respectively. Notice that unphys-
ical gluons (σ ¼ 0, 3) and ghosts are never produced as
shown in Eq. (88), and in Eqs. (111) and (112), and
hence we do not consider them hereafter. In the
following, we numerically carry out the pη integration
and show the momentum-rapidity yp spectra for quarks
and gluons.

A. Features of particle production

In this subsection, we investigate specific features
of quark and gluon production focusing on impacts of
the longitudinal expansion and of finite lifetime effects.
For this purpose, we treat the quark mass mf , the
coupling g, the field strength E, and the lifetime T as
free parameters, and we compute the quark and gluon

spectra without taking the summation of colors, i
and A.
We stress that the particle spectra for a fixed color

discussed here are very useful in understanding the specific
features of the particle production. However, the spectra are
apparently gauge-dependent, and hence one has to take the
color summation in order to get physically meaningful
results, which are discussed in Sec. III B.

1. Transverse distribution d3N=dypdp2⊥
Figure 1 shows the transverse spectrum of quarks

d3NðqÞ
i;f;s=d

2p⊥dyp (left) and of gluons d3NðgÞ
A;σ=d

2p⊥dyp
(right). We observe that, for long lifetimes

ffiffiffiffiffiffiffiffiffiffiffiffiffi
jqðqÞi Ej

q
T;ffiffiffiffiffiffiffiffiffiffiffiffiffi

jqðgÞA Ej
q

T ≳ 1, both spectra approach Gaussian distribu-
tions multiplied by a square of the lifetime T. This is
consistent with what we naively expect from the Schwinger
formula,
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d3NðqÞ
i;f;s

d2p⊥dpz

				
Schwinger

¼ V
ð2πÞ3 exp

�
−π

m2
f þ p2⊥
jqðqÞi Ej

�
; ð116Þ

d3NðgÞ
A;σ

d2p⊥dpz

				
Schwinger

¼ V
ð2πÞ3 exp

�
−π

p2⊥
jqðgÞA Ej

�
: ð117Þ

Indeed, for large values of T, the produced particles
are sufficiently accelerated by the electric field as

ωp ∼ jpzj ∼ jqAzj (q ¼ qðqÞi for quarks and q ¼ qðgÞA for
gluons), and Az ∼ Aη=T ¼ ET=2 and V ∼ S⊥T hold. Thus,
we find

d3NðqÞ
i;f;s

d2p⊥dyp

				
Schwinger

∼
S⊥

ð2πÞ3
jqðqÞi EjT2

2
exp

�
−π

m2
f þ p2⊥
jqðqÞi Ej

�
;

ð118Þ

d3NðgÞ
A;σ

d2p⊥dyp

				
Schwinger

∼
S⊥

ð2πÞ3
jqðgÞA EjT2

2
exp

�
−π

p2⊥
jqðgÞA Ej

�
;

ð119Þ

which are plotted in the dashed lines as the “Schwinger
estimate” in Fig. 1. On the other hand, for short lifetimesffiffiffiffiffiffiffiffiffiffiffiffiffi
jqðqÞi Ej

q
T;

ffiffiffiffiffiffiffiffiffiffiffiffiffi
jqðgÞA Ej

q
T ≲ 1, the spectra are harder com-

pared to those for larger lifetimes and do not decay
exponentially in jp⊥j because the typical frequency ω ∼
1=T of the classical electric field is hard enough to excite
hard particles. In other words, a naive application of the
Schwinger formula is valid only for large values of the
lifetime T, while one should take care of finite lifetime
effects for small values of T.

In the low momentum region jp⊥j≲
ffiffiffiffiffiffiffiffiffiffiffiffiffi
jqðqÞi Ej

q
;ffiffiffiffiffiffiffiffiffiffiffiffiffi

jqðgÞA Ej
q

, gluons are more abundant than quarks. This is
because the quark production is subject to the Pauli

principle but the gluon production is not. The gluon
spectrum shows a weak divergence for jp⊥j → 0 but its
inverse power is smaller than one, and it approaches zero
with increasing the lifetime T.

2. Number density dN=dy

We numerically integrate the transverse distributions
over p⊥ to compute the total number of produced particles

per unit rapidity for quarks dNðqÞ
i;f;s=dyp and for gluons

dNðgÞ
A;σ=dyp.
The left panel of Fig. 2 shows the total number of

massless quarks dNðqÞ
i;f;s=dyp and of gluons dNðgÞ

A;σ=dyp.

Here, we artificially set jqj ¼ jqðqÞi j ¼ jqðgÞA j for the quark
and gluon charges. For long lifetimes

ffiffiffiffiffiffiffiffiffijqEjp
T ≳ 1, one

finds that the quark and gluon productions are consistent
with the Schwinger formula: By integrating Eqs. (118)
and (119) over p⊥, the Schwinger formula gives

dNðqÞ
i;f;s

dyp

				
Schwinger

∼
S⊥

ð2πÞ3
jqðqÞi Ej2T2

2
exp

�
−π

m2
f

jqðqÞi Ej

�
;

ð120Þ

dNðgÞ
�A;σ

dyp

				
Schwinger

∼
S⊥

ð2πÞ3
jqðgÞA Ej2T2

2
; ð121Þ

which are plotted in the dashed lines in the left panel of
Fig 2. For short lifetimes

ffiffiffiffiffiffiffiffiffijqEjp
T ≲ 1, one observes that

the quark and gluon production are more abundant than
the Schwinger estimates. This is because the typical
frequency ω ∼ 1=T of the electric field for such small
values of T becomes so hard that a large number of
hard particles are produced as was discussed in Fig. 1, for
which the phase space is larger than those for soft
particles expected from the Schwinger formula. For
classical background fields with such hard frequencies,

FIG. 1. Transverse distribution of quarks (left) and gluons (right) for various lifetimes T. The dashed lines are expectations from the
Schwinger formula, Eqs. (118) and (119).
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perturbative particle production from a single classical
background field gives a better description than
Schwinger’s nonperturbative particle production mecha-
nism [30], and hence this enhancement is purely a
perturbative effect.
For all values of T, we observe that the massless quark

production is more abundant than the gluon production for

jqðqÞi j ¼ jqðgÞA j. This aspect is more clearly illustrated in the
right panel of Fig. 2: For long lifetimes

ffiffiffiffiffiffiffiffiffijqEjp
T ≳ 1, the

ratio of the produced quarks to that of gluons NðqÞ
i;f;s=N

ðgÞ
A;σ

approaches unity because both quarks and gluons are
produced via Schwinger’s nonperturbative particle produc-
tion mechanism, in which the statistics of particles are
irrelevant as is seen in Eqs. (120) and (121). For short
lifetimes

ffiffiffiffiffiffiffiffiffijqEjp
T ≲ 1, however, the ratio deviates from

unity. This is because, for such small values of T,
Schwinger’s nonperturbative particle production mechanism
is not efficient but perturbative particle production occurs,
which depends on the statistics of particles in general. It is
interesting to point out that the ratio is always larger than
unity so that quarks are more abundantly produced than
gluons. This is because quark spectrum is harder than gluon
one for small values of T due to the statistics of particles as
we saw in Fig. 1 and the phase space for produced quarks
becomes larger than that of gluons.
In the T → 0 limit, the ratio amounts to nearly two. In

order to convince ourselves that this number “two” is
correct and that this enhancement is indeed a perturbative
phenomenon due to the finite lifetime effects, we consider
a nonexpanding, spatially homogeneous but time-
dependent electric field, E ¼ EðtÞez, as an example for
a moment. In this case, one can analytically compute
S-matrix elements, hqi;f;p⊥;pz;sq̄i0;f0;p0⊥;p0

z;s0 ; injSjvac; ini and
hgA;p⊥;pz;σgA0;p0⊥;p0

z;σ0 ; injSjvac; ini, in the lowest order per-
turbation theory with respect to the classical background
field EðtÞ. After some manipulations, one obtains

NðqÞ
i;f;s

V
¼
X
i0;f0;s0

Z
d3p⊥dpz

Z
d2p0⊥dp0

z

× jhqi;f;p⊥;pz;sq̄i0;f0;p0⊥;p0
z;s0 ; injSjvac; inij2

¼ 1

24π2

Z
∞

2mf

dω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2
f

ω2

s �
1þ 2m2

f

ω2

�
jqðqÞi

~EðωÞj2

⟶
mf¼0

1

24π2

Z
∞

0

dωjqðqÞi
~EðωÞj2 ð122Þ

and

NðgÞ
A;σ

V
¼
X
�A0;σ0

Z
d3p⊥dpz

Z
d2p0⊥dp0

z

× jhgA;p⊥;pz;σgA0;p0⊥;p0
z;σ0 ; injSjvac; inij2

¼ 1

48π2

Z
∞

0

dωjqðgÞA
~EðωÞj2; ð123Þ

where ~EðωÞ is the Fourier transformation of the

electric field ~EðωÞ≡ R dtEðtÞeiωt. Thus, NðqÞ
i;f;s=N

ðgÞ
A;σ ¼

2jqðqÞi j2=jqðgÞA j2 holds for massless quarks.
Figure 3 shows quark mass dependences of the quark

production: The total quark number dNðqÞ
i;f;s=dyp (left) and

the ratio of the total number of massive quarks to that of
massless quarks (right) for several different values of the
quark mass are plotted. One finds the following:

(i) For short lifetimes
ffiffiffiffiffiffiffiffiffiffiffiffiffi
jqðqÞi Ej

q
T ≲ 1, the total quark

production number becomes independent of the
quark mass and the ratio comes close to one
because the typical energy scale of the classical
electric field, which is characterized by its typical
frequency ω ∼ 1=T, is much larger than the quark
mass scale.

FIG. 2. Left: Total number of massless quarks (red line) and of gluons (blue line) per unit rapidity for jqðqÞi j ¼ jqðgÞA j. The dashed line is
an expectation from the Schwinger formula, Eqs. (120) and (121). Right: A ratio of the total number of produced massless quarks to that

of gluons NðqÞ
i;f;s=N

ðgÞ
A;σ for jqðqÞi j ¼ jqðgÞA j.
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(ii) For long lifetimes
ffiffiffiffiffiffiffiffiffiffiffiffiffi
jqðqÞi Ej

q
T ≳ 1, the total quark

production number approaches the expectation of the
Schwinger formula, Eq. (120), and the ratio starts to
be suppressed exponentially with respect to the quark

mass as exp½−πm2
f =jqðqÞi Ej�. Notice that the quark

production is still always larger than Schwinger’s
value. This is because it needs a long lifetime T to
justify Schwinger’s nonperturbative particle produc-
tion mechanism because of the finite lifetime effects.

(iii) The larger lifetime T is required for heavier quark
production to converge to Schwinger’s estimate,
compared to that required for lighter quarks. One
can understand this observation in terms of the

Keldysh parameter γKeldysh ¼ qðqÞi ET=mf [29,30],
which is one of the dimensionless parameters
characterizing the interplay between Schwinger’s
nonperturbative particle production (γKeldysh ≫ 1)
and perturbative particle production (γKeldysh ≪ 1):
The Keldysh parameter γKeldysh becomes smaller
for larger values of mf , and thus it requires larger
lifetimes T to realize γKeldysh ≫ 1.

B. Phenomenology of particle production

For discussions on more phenomenological implica-
tions, let us consider particle production with physical
parameter settings: Nc ¼ 3, and mu; md ¼ 0 GeV,
ms ¼ 0.1 GeV, and mc ¼ 1.2 GeV representing the mass
of up, down, strange and charm quarks, respectively. We
set gE ¼ 1 GeV2 as a typical value at RHIC energy
scale. Under this setting, we consider the inclusive particle
production by summing up the color degrees of freedom,
i and A. Here, we assume for simplicity that the
Abelianized classical electric field [see Eq. (23)] is always
directing to the t3 direction in the color space. The particle
spectra depend on this color direction in general; however,
one can numerically demonstrate that its dependence is
rather small [48,51].

Before showing results, let us make some remarks on
the validity of our results to the early stage dynamics
of HIC:
(1) Our formalism assumes the Abelian dominance (see

Sec. II B). This assumption is nontrivial because one
can naively expect in HIC that the non-Abelian part
for the classical field strength gĀ Ā∼Q2

s=g is about
the same order as the Abelian one, ∂Ā ∼Q2

s=g.
Nevertheless, it is known that the full numerical
simulation of the classical Yang-Mills evolution
[Eq. (18)] [5] can be understood well within the
Abelian dominance assumption; i.e., effects of the
non-Abelian part are rather small [45]. Hence, it may
be good to assume the Abelian dominance for the
first approximation.

(2) Our formalism neglects higher order quantum ef-
fects beyond one-loop order. Hence, one cannot treat
scatterings and screening effects of produced par-
ticles, which are essential for the thermalization of
the system. Strictly speaking, this treatment works
fine when the lifetime T is not so long, where the
fluctuations are small enough compared to the
strength of the classical field.

(3) The classical field configuration, Eq. (113), is very
simple compared to the one in realistic situations:
(a) The classical field is assumed to be constant in

time for τ < T and suddenly switched off at
τ ¼ T. A realistic classical field is also finite in
time; however, it should smoothly decay in time
and not experience such a sudden switching off.

(b) We only consider a purely longitudinal electric
field. In realistic situations, however, not only a
longitudinal electric field but also a longitudinal
magnetic field can exist.

(c) The spatial homogeneity is assumed for the
classical field. A realistic classical field, however,
should have spatial structure with a typical length
scale ∼1=Qs due to CGC.

FIG. 3. Left: Total number of produced quarks per unit rapidity for various quark masses. The dashed lines are expectations from the
Schwinger formula, Eq. (120). Right: The ratio of the total number of produced massive quarks to that of massless quarks

NðqÞ
i;f;s½mf �=NðqÞ

i;f;s½mf ¼ 0�. The dashed lines are expectations from the Schwinger formula: exp½−πm2
f =jqðqÞi Ej�.
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Thus, the quark and gluon spectrum presented below are
just a first-order approximation. To get more reliable results
for the phenomenology, one has to consider the above
points for the field configuration. This is numerically
possible within our formalism, although we leave it for a
future study. Nevertheless, we stress that the simple field
configuration, Eq. (113), does capture some essential
features of the strong color electromagnetic field that exists
just after a collision such as the boost invariance, the finite
lifetime, and the existence of the longitudinal color elec-
tric field.

1. Transverse distribution d3N=dypdp2⊥
Figures 4 and 5 show the transverse momentum spec-

trum of up and down (top), strange (middle), and charm

quark (bottom)
P

id
3NðqÞ

i;f;s=d
2p⊥dyp, and that of gluonsP

Ad
3NðgÞ

A;σ=d
2p⊥dyp, respectively. The dashed line in the

figures represents the expectation from the Schwinger
formula, Eqs. (118) and (119). We again recognize the
interplay between Schwinger’s nonperturbative particle
production (long lifetimes T ≳ 1 GeV−1) and perturbative
particle production (short lifetimes T ≲ 1 GeV−1). This
implies that finite lifetime effects are very relevant to the
early stage dynamics of HIC, where the typical lifetime of
the strong field is short as T ∼ 1=Qs ≲ 1 GeV−1.
One also finds that the quark mass value largely affects

the transverse spectrum:
(i) For small transverse momentum jp⊥j≲mf , the

spectra become constant in jp⊥j. This is because
the p⊥ dependence of the particle production always
appears in the combination of the transverse massffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

f þ p2⊥
p

in homogeneous systems (see the
explicit expressions of the mode functions given
in Appendix A 1 c). Thus, one can neglect the p⊥
dependence and that the spectra are determined
solely by the quark mass mf for jp⊥j≲mf.

(ii) For large transverse momentum jp⊥j≳mf , the
spectra become independent of the quark mass mf
because now the transverse mass is determined by
jp⊥j only, and hence the mf dependence can be
neglected.

(iii) The larger lifetime T is required for the heavier
(charm) quark production spectrum to converge to
the Schwinger estimate, compared to that requir-
edfor lighter quarks (up, down, and strange quarks)
as was discussed in Fig. 3 for the total quark

number dNðqÞ
i;f;s=dyp.

2. Number density dN=dy

Figure 6 shows the total number of quarks and

antiquarks
P

i;f;sdðNðqÞ
i;f;s þ Nðq̄Þ

i;f;sÞ=dyp, and that of gluons

P
�A;σdN

ðgÞ
A;σ=dyp. Here, we consider the three flavor case

(Nf ¼ 3); i.e., up, down, and strange quarks are considered.
(The number-of-flavor Nf dependence of the particle
production will be discussed in Fig. 7 below.) As in
Fig. 2, we observe the following points:

(i) For long lifetimes T ≳ 1 GeV−1, the total number
of quarks and antiquarks, and that of gluons,
approaches the Schwinger estimates, which are
given by

FIG. 4. Transverse distribution of quarks (top for up and down,
middle for strange, and bottom for charm) for various lifetimes T.
The dashed lines are expectations from the Schwinger formula,
Eq. (118).
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X
i;f;s;qq̄

dNðqÞ
i;f;s

dyp

				
Schwinger

∼ NsNqq̄ ×
X
i;f

S⊥
ð2πÞ3

jqðqÞi Ej2T2

2

× exp

�
−π

m2
f

jqðqÞi Ej

�

∼ NsNqq̄Nlq ×
S⊥

ð2πÞ3
jgEj2T2

4
; ð124Þ

X
�A;σ

dNðgÞ
�A;σ

dyp

				
Schwinger

∼ 2NcNσ ×
S⊥

ð2πÞ3
jgEj2T2

4
;

ð125Þ

where Ns ¼ 2, Nqq̄ ¼ 2, Nσ ¼ 2 count the number
of the spin, the quark and antiquark degeneracy, and
the physical polarization of gluons. Nlq represents
the number of “light” quarks satisfying m2

f ≪ jgEj.

We have used the color charge formulas, Eqs. (35)
and (36). As the strange quark mass is much smaller
than the strength of the electric field, m2

s ≪ jgEj,
we regard the strange quark as a “light” quark and
set Nlq ¼ 3 (see the middle panel of Fig. 7 for

FIG. 6. Total number of quarks and antiquarks (red line) and
gluons (blue line) per unit rapidity for Nf ¼ 3. The dashed line is
an expectation from the Schwinger formula, Eqs. (124) and (125).

FIG. 5. Transverse distribution of gluons for various lifetimes
T. The dashed line is an expectation from the Schwinger
formula, Eq. (119).

FIG. 7. The number-of-flavorNf ¼ 2 (u,d), 3 (u,d,s), 4 (u,d,s,c)
dependences: Top: The total quark and antiquark number. The
dashed lines are expectations from the Schwinger formula,
Eq. (124). Middle: A ratio of the total number of massive charm
and strange quarks to that of massless up and down quarks,P

iN
ðqÞ
i;f;s½mf ≠ 0�=PiN

ðqÞ
i;f;s½mf ¼ 0�. The dashed lines are expect-

ations from the Schwinger formula, Eq. (126). Bottom: The ratio
of the total number of quarks and antiquarks to that of gluonsP

i;f;sðNðqÞ
i;f;s þ Nðq̄Þ

i;f;sÞ=
P

�A;σN
ðgÞ
A;σ . The upper horizontal line

indicates the thermal ratio 27=16.
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justification of this consideration). Then, the
Schwinger estimates for quark and antiquark pro-
duction and for gluon production accidentally
coincide with each other for Nc ¼ 3 because the
prefactors in both cases give the same value,
NsNqq̄Nlq ¼ 2NcNσ ¼ 12.

(ii) For short lifetimes T ≲ 1 GeV−1, quarks and anti-
quarks are more abundantly produced than gluons
because of the finite lifetime effects. For details of
the ratio of the total number of quarks and antiquarks
to that of gluons (see the bottom panel of Fig. 7),
which we will discuss later.

(iii) The particle production is very fast, which is
consistent with an earlier work on the quark pro-
duction [35]. For the typical value of the transverse
area in HIC S⊥ ∼ πð7 fmÞ2, about 1000 particles per
unit rapidity (650 quarks and antiquarks plus 350
gluons) are produced at about T ∼ 0.5 fm=c.

Figure 7 shows dependence of particle production on
the number of flavors, Nf ¼ 2 (u,d), 3 (u,d,s), 4 (u,d,s,c):

The total quark and antiquark number,
P

i;f;sdðNðqÞ
i;f;sþ

Nðq̄Þ
i;f;sÞ=dyp, for several different values of Nf is plotted in

the top panel. There is a significant change from Nf ¼ 2 to
Nf ¼ 3 for all values of T. This means that the inclusion of
strangeness degree of freedom is inevitable in understand-
ing the early stage dynamics of HIC quantitatively, whereas
the change of the quark multiplicity from Nf ¼ 3 to
Nf ¼ 4, i.e., by inclusion of charm quarks, is negligible
(noticeable) for long (short) lifetimes T.
In order to see more clearly how this difference

appears, we plot a ratio of the total number of massive
charm and strange quarks to that of massless up and down

quarks,
P

iN
ðqÞ
i;f;s½mf ≠ 0�=PiN

ðqÞ
i;f;s½mf ¼ 0�, in the middle

panel. From this panel, one can understand that the
strange quark production is comparable to the production
of up and down quarks (the ratio is almost unity) for all
values of T because the strange quark mass is sufficiently
“light” compared to the strength of the electric field
m2

s ≪ jgEj. On the other hand, one finds for the charm
quark production that it is comparable to the production
of massless quarks for smaller values of T ≲ 1 GeV−1

because of the perturbative enhancement of the particle
production discussed in Fig. 2, while it is negligible for
larger values of T ≳ 1 GeV−1 because Schwinger’s non-
perturbative particle production is strongly suppressed by
the mass effect,

P
iN

ðqÞ
i;f;s½mf ≠ 0�P

iN
ðqÞ
i;f;s½mf ¼ 0�

					
Schwinger

∼ 2
X
i

				 q
ðqÞ
i E
gE

				
2

exp

�
−π

m2
f

jqðqÞi Ej

�
: ð126Þ

We note that the enhancement of the charm quark pro-
duction from a pulsed electric field in a nonexpanding
system was previously discussed in Refs. [30,31].
Finally, in the bottom panel of Fig. 7, we plot a ratio of

the total number of quarks and antiquarks to that of gluons,P
i;f;sðNðqÞ

i;f;s þ Nðq̄Þ
i;f;sÞ=

P
�A;σN

ðgÞ
A;σ , for several different

values of Nf . As was discussed in the top and middle
panels of Fig. 7, there is a significant change from Nf ¼ 2
toNf ¼ 3 for all values of T, while the change fromNf ¼ 3
to Nf ¼ 4 is negligible (noticeable) for long (short) life-
times T depending on the strange and charm quark masses.
In the short lifetime limit T → 0, the ratio approaches
2Nf=Nc. This is because the quark masses become irrel-
evant to the quark production for such small values of T and
that the (lowest order) perturbative particle production,
which becomes efficient for small values of lifetimes T,
says that twice as many quarks than gluons will be
produced as was discussed in Fig. 3. On the other hand,
in the long lifetime limit T → ∞, the ratio approaches the
value Nlq=Nc because particle production is dominated
by Schwinger’s nonperturbative mechanism whose contri-
bution is estimated by Eqs. (124) and (125). One of the
important points here is that the ratio is always larger
than unity for realistic values, Nf ≥ 3, Nlq ¼ 3,
Nc ¼ 3; i.e., quarks and antiquarks in total are more
abundant than gluons. This means that not only gluons
but also quarks are important in understanding the early
stage dynamics of HIC. We note that this result is based on
our one-loop order treatment as was remarked in the
beginning of this section. Thus, the above result does
not take into account effects of scatterings such as g → qq̄,
which is important in the chemical equilibration of
the system and could substantially change the ratio toP

i;f;sðNðqÞ
i;f;s þ Nðq̄Þ

i;f;sÞ=
P

�A;σN
ðgÞ
A;σjchem eq ∼ 27=16.

In the figure, we see bumps at around T ∼ 0.5 fm=c
while we did not find such bumps in the right panel of
Fig. 2. These bumps appear because gluons typically have a
larger effective charge than quarks have. Indeed, one can
estimate the typical magnitude of the effective charge
of a quark hjqðqÞji and a gluon hjqðgÞji from Eqs. (35)
and (36) as

hjqðqÞji≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Nc

XNc

i¼1

jqðqÞi j2
vuut ¼ g ×

1ffiffiffiffiffiffiffiffi
2Nc

p ; ð127Þ

hjqðgÞji≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

NcðNc − 1Þ=2
XNcðNc−1Þ=2

i¼1

jqðgÞA j2
vuut

¼ g ×
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Nc − 1
p > hjqðqÞji: ð128Þ
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As was discussed in Sec. III A, quark and gluon production
numbers approach the expectation of the Schwinger for-
mula quicker for larger values of jqjT. Thus, we can say
that the gluon production number approaches the expect-
ation of the Schwinger formula quicker than the quark
production number does because hjqðgÞji > hjqðqÞji. In
other words, the interplay between the perturbative and
nonperturbative particle production mechanism for quarks
and gluons does not occur at the same time and the time
needed for gluon’s interplay is smaller than that for quark’s
one. (This is not the case in Fig. 2, where jqðqÞj ¼ jqðgÞj is
assumed.) By noting that Schwinger’s nonperturbative
particle production mechanism produces smaller numbers
of particles compared to that the perturbative particle
production mechanism does, we understand that the pro-
duction number of gluons is relatively smaller compared to
that of quarks at transient times T ∼ 0.5 fm=c, where the
perturbative (nonperturbative) particle production mecha-
nism dominates for quarks (gluons). This is the reason why
the bumps appear.

IV. SUMMARY AND OUTLOOK

We have extensively studied the quark and gluon
production from an expanding classical color electric field,
motivated by the early stage dynamics of HIC. First, we
have formulated the particle production from classical color
electromagnetic fields in an expanding system in the one-
loop level quantum calculation within the Abelian domi-
nance assumption for the classical fields.
Then, we compute the quark and gluon spectra within

this formalism for the simplest case of the classical back-
ground field in an expanding geometry. That is, the
classical field is assumed to be purely electric and
boost-invariantly expanding, homogeneous, and constant
within finite duration (lifetime) T, E ¼ ezEθðτÞθðT − τÞ. In
this setup, analytical solutions for the equations of motion
of QCD are available; this enables us to develop a clear
understanding of the particle production from the classical
fields in an expanding system in QCD.
In this way, we have explicitly demonstrated for the first

time in an expanding system that there is a significant
interplay between Schwinger’s nonperturbative particle
production (long lifetimes T) and perturbative particle
production (short lifetimes T), which results in that the
transverse momentum p⊥ spectrum becomes harder (softer)
for smaller (larger) values of T and in an enhancement of
the particle production for small values of T, compared to
the estimate of the Schwinger formula.
In addition to this, we have studied the difference in the

production of quarks and of gluons. We have found that
quarks are more abundantly produced than gluons, and that
the difference of the statistics results in the increase of soft
gluons and in an efficiency of the perturbative enhancement

NðqÞ
i;f;s=N

ðgÞ
A;σ ∼ 2 for small values of T.

The quark mass dependence of the quark production

is also studied by examining the ratio NðqÞ
i;f;s½mf ≠ 0�=

NðqÞ
i;f;s½mf ¼ 0�: We found that it varies from one for short

lifetimes T to the expected value of the Schwinger formula

exp½−πm2
f =jqðqÞi Ej� for long lifetimes T, and that it needs

longer lifetime T for heavier quark production to be
described by the Schwinger formula.
As implications to the heavy ion phenomenology, we

have argued that (i) the naive use of the Schwinger formula
may be inappropriate in describing the early stage dynam-
ics of HIC because of the finite lifetime effects; (ii) very fast
particle production occurs, which results in about 1000
particles per unit rapidity (650 quarks and antiquarks plus
350 gluons) produced at about T ∼ 0.5 fm=c at the RHIC
energy scale; (iii) since quark production is more abundant
than gluon production from the classical electric fields in
the early times, it is very important to study the dynamics,
not of the pure gluonic system, but of the quark-gluon
system in understanding the early stage dynamics of HIC;
and (iv) the strange quark production is comparable to the
light (up and down) quarks for any value of the lifetime T,
while the charm quark production rate heavily depends on
the lifetime T, which is noticeable (negligible) for small
(large) values of T.
There are many possible future directions of this work.
The first direction is to improve our formalism to include

the higher order quantum corrections. These terms are
responsible for scatterings and screening effects, which are
essential in understanding thermalization, i.e., isotropization,
hydrodynamization, and chemical equilibration of the sys-
tem. Besides, it is discussed vigorously that momentum
exchanges due to the scatterings induce spectral cascades
(for a recent review covering this topic, see [40]), which result
in some interesting behaviors such as a formation of gluonic
Bose-Einstein condensates [41–44]. We note for complete-
ness that recently the screening effects from quark currents in
a nonexpanding system were discussed in Refs. [48,52].
Another direction is to improve configurations of the

classical field: In realistic situations, the classical field has a
finite extent in the transverse direction and has random
fluctuations with a typical transverse correlation length
∼Q−1

s . Time dependence of the classical field should also
affect the particle spectra. Besides, it is known that the
classical color field has magnetic components in addition
to electric components in the longitudinal direction [5].
The existence of longitudinal magnetic fields may enhance
the particle production rate [36,37,48,53,54]. In addition to
this, such field configuration is known to invoke the
Nielsen-Olesen type instability [55–57], although its typ-
ical time scale is rather slow. It is interesting to study the
particle production under the presence of such instabilities;
for nonexpanding, static (T → ∞) color electromagnetic
fields, it was discussed that the instability may enhance the
gluon production [58].
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The last direction that we would like to mention is about
the quark dynamics. As was discussed so far, quarks are
abundantly produced at very early times, and hence they
may have important information about and/or an important
role in the early stage dynamics of HIC. Since quarks have
an U(1) electromagnetic charge, which does not suffer from
the strong interactions, one can investigate the quark
dynamics by using U(1) electromagnetic probes such as
photons [59] and dileptons [60,61]. Another interesting topic
involving the quark dynamics is an existence of strong U(1)
electromagnetic fields just after a collision of nuclei [62,63].
Although such strong U(1) electromagnetic fields die away
immediately after a collision within less than 1 fm=c, they
could significantly influence the quark dynamics because
the strong U(1) electromagnetic fields are as strong as the
pion mass scale and the quark production is fast enough.
Thus, one can expect some experimental traces of them,
for instance, in U(1) charge dependences in observables.
In particular, a U(1) charge dependent directed flow v�1 in
asymmetric heavy ion collisions [64,65] has recently been
measured by the STAR Collaboration [66]. This should
provide important insights into the quark production, i.e., the
early stage dynamics of HIC, although a theoretical under-
standing of this observable is still lacking. Another interest-
ing physics that involves the strong U(1) electromagnetic
fields is the chiral magnetic effect [67], whose real time
dynamics from the microscopic point of view is still
incomplete (although there are some earlier works on this
topic [68,69]) and hence is worthwhile to be investigated
further by extending our work.
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APPENDIX: ANALYTIC SOLUTIONS OF THE
ABELIANIZED EQUATION OF MOTION

In this appendix, we analytically obtain mode functions
for the equations of motion, Eqs. (37)–(39), under (a) a pure
gauge background field (i.e., E ¼ 0, B ¼ 0),

Ãμ ¼ const; ðA1Þ

(b) a spatially homogeneous and constant color electric
background field (i.e., E ¼ ezE, B ¼ 0),

Ãτ; Ãx; Ãy ¼ 0; Ãη ¼ τ2E=2; ðA2Þ

and (c) a spatially homogeneous and constant color
electric background field for a finite duration T [i.e.,
E ¼ ezEθðτ − τ0Þθðτ0 þ T − τÞ, B ¼ 0],

Ãτ; Ãx; Ãy ¼ 0;

Ãη ¼

8>><
>>:

τ20E=2 ðτ < τ0Þ
τ2E=2 ðτ0 < τ < τ0 þ TÞ
ðτ0 þ TÞ2E=2 ðτ0 þ T < τÞ

: ðA3Þ

1. Quark

We consider the equation of motion for the quark field ψ
under the Abelianized background gauge field in the τ-η
coordinates [see Eq. (37)],

½i∂ − qÃ −m�ψðxÞ ¼ 0: ðA4Þ
Here, we have suppressed the indices for color i and flavor
f for simplicity.
To avoid complexities coming from the spinor structure

of Eq. (A4), we consider a solution of the form [36,37]

ψ ≡ ½i∂ − qÃþm�ϕ: ðA5Þ
One can readily find a differential equation for ϕ as

0 ¼
�
ð∂μ þ iqÃμÞ2 þ

∂τ þ iqÃτ

τ
þ iq

2
γμγνF̃μν þm2

�
ϕ:

ðA6Þ
Since we are interested in the situations where a color
electric field pointing to the z direction exists at most in this
appendix, one can simplify Eq. (A6) as

0 ¼
�
ð∂μ þ iqÃμÞ2 þ

∂τ þ iqÃτ

τ
þ iqEγtγz þm2

�
ϕ:

ðA7Þ
Next, we expand ϕ in terms of eigenvectors5 of γtγz as

ϕ≡X2
s¼1

ϕsΓs; ðA8Þ

5Strictly speaking, the matrix γtγz has four eigenvectors Γs
(s ¼ 1, 2, 3, 4) in total; Γ1;2 with eigenvalues λ1;2 ¼ 1 and Γ3;4
with eigenvalues λ3;4 ¼ −1. Solutions ψ3;4 for the original
equation, Eq. (A4), constructed from ϕ3Γ3 and ϕ4Γ4 are linearly
dependent on solutions ψ1;2 constructed from ϕ1Γ1 and ϕ2Γ2

[36]. Thus, it is sufficient to consider s ¼ 1, 2 only in order to
obtain all the independent solutions of the differential equation,
Eq. (A4), for ψ.
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where ϕs are scalar functions and the eigenvectors Γs
(s ¼ 1, 2) satisfy

γtγzΓs ¼ λsΓs; Γ†
sΓs0 ¼ δss0 ðA9Þ

with the eigenvalues λs given by λ1 ¼ λ2 ¼ 1. Physically,
we have defined the spin of quarks by the direction of the
background field ~Fμν because γtγz is proportional to the tz
component of the background field as ~Ftz ¼ Eγtγz. Now, a
differential equation for ϕs reads

0 ¼
�
ð∂μ þ iqÃμÞ2 þ

∂τ þ iqÃτ

τ
þ iqEþm2

�
ϕs; ðA10Þ

which are free from the cumbersome spinor structure in the
original equation, Eq. (A4), for ψ.

a. Under a pure gauge background field
(plane wave solutions)

Let us construct all the mode functions for the equation
of motion, Eq. (A4), under a pure gauge background field
Ãμ given by Eq. (A1), which we write ψ ðfreeÞ. We first

consider solving the differential equation for ϕðfreeÞ
s

[Eq. (A10)]. For this, we make an ansatz of the form

ϕðfreeÞ
s ðxÞ≡

Z
d2p⊥dpηϕ

ðfreeÞ
p⊥;pη;sðxÞ

≡
Z

d2p⊥dpηΩðxÞχðfreeÞp⊥;pη;sðτÞ

×
e−η=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2⊥

p eip⊥·x⊥e
ipηη

ð2πÞ3=2 : ðA11Þ

Here, the momentum labels p⊥; pη are introduced, and Ω is
a Wilson-line gauge factor denoted by

ΩðxÞ≡ exp

�
−iq

Z
x
dxμÃμ

�
: ðA12Þ

The factor e−η=2=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2⊥

p
is inserted so as to properly

normalize ψ ðfreeÞ in the τ-η coordinates as we shall see.

Now, one can readily find that χðfreeÞp⊥;pη;s satisfies the Bessel
differential equation,

0 ¼
h
τ2∂2

τ þ τ∂τ þ
n� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2 þ p2⊥
q

τ
�2

− ðipη þ 1=2Þ2
oi

χðfreeÞp⊥;pη;s: ðA13Þ

Since the differential equation, Eq. (A13), is a second order
differential equation, there are two independent solutions,

which we write kχðfreeÞp⊥;pη;s (k ¼ 1, 2). It is convenient for our
purpose to choose

0
B@ 1χ

ðfreeÞ
p⊥;pη;s

2χ
ðfreeÞ
p⊥;pη;s

1
CA≡

ffiffiffi
π

p
2

ðm2 þ p2⊥Þ1=4eπpη=2e−iπ=4

×

0
B@ Hð2Þ

ipηþ1=2ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2⊥

p
τÞ

Hð1Þ
−ipη−1=2ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2⊥

p
τÞ

1
CA; ðA14Þ

whereHðnÞ
ν ðzÞ (n ¼ 1, 2) are the Hankel function of the nth

kind, and we have normalized the solutions kχp⊥;pη;s by

j1χðfreeÞp⊥;pη;sj2 þ j2χðfreeÞp⊥;pη;sj2 ¼ 1=τ: ðA15Þ

It is also useful to point out that the solutions kχðfreeÞp⊥;pη;s

satisfy the following simultaneous differential equation:

iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2⊥

p �
∂τ þ

ipη þ 1=2

τ

� 
1χ

ðfreeÞ
p⊥;pη;s

2χ
ðfreeÞ
p⊥;pη;s

!

¼
 

2χ
ðfreeÞ�
p⊥;pη;s

−1χ
ðfreeÞ�
p⊥;pη;s

!
: ðA16Þ

We are ready to construct all the mode functions

�ψ
ðfreeÞ
p⊥;pη;s½Ãμ�. Using the definition of ϕðfreeÞ [Eq. (A5)],

one has

 
þψ

ðfreeÞ
p⊥;pη;s½Ãμ�

−ψ
ðfreeÞ
p⊥;pη;s½Ãμ�

!
≡ ½i∂ − q~Aþm�

 
1ϕ

ðfreeÞ
p⊥;pη;s

2ϕ
ðfreeÞ
p⊥;pη;s

!
Γs:

ðA17Þ

Here, we have changed the left subscript k ¼ 1, 2 into� for

a notational simplicity because þψ
ðfreeÞ
p⊥;pη;s½Ãμ� (−ψ ðfreeÞ

p⊥;pη;s½Ãμ�)
corresponds to the positive (negative) frequency mode
function in the τ-η coordinates as we will explain soon.
With the help of Eqs. (A9) and (A16), one finds that
Eq. (A17) can be more explicitly written as

 
þψ

ðfreeÞ
p⊥;pη;s½Ãμ�

−ψ
ðfreeÞ
p⊥;pη;s½Ãμ�

!
¼ Ω

" 
1χ

ðfreeÞ
p⊥;pη;s

2χ
ðfreeÞ
p⊥;pη;s

!
Vs;1

þ
 

2χ
ðfreeÞ�
p⊥;pη;s

−1χ
ðfreeÞ�
p⊥;pη;s

!
Vs;2

#
eip⊥·x⊥eipηη

ð2πÞ3=2 :

ðA18Þ

Here, we have introduced four-spinors, Vs;1 and Vs;2, by

Vs;1≡eη=2
−p⊥ ·γ⊥þmffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2þp2⊥
p Γs; Vs;2≡e−η=2γtΓs; ðA19Þ
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which are normalized as

V̄s;iγ
τVs;j ¼ δij: ðA20Þ

From the normalization conditions for kχðfreeÞp⊥;pη;s [Eq. (A15)]
and Vs;i [Eq. (A20)], it is evident that the mode functions

�ψ ðfreeÞ
p⊥;pη;s½Ãμ� [Eq. (A17)] satisfy the correct normalization

condition for spinor fields in the τ-η coordinates [see also
Eqs. (43) and (44) in the main text] as

ð�ψ ðfreeÞ
p⊥;pη;s½Ãμ�j�ψ ðfreeÞ

p0⊥;p0
η;s0

½Ãμ�ÞF¼δss0δ
2ðp⊥−p0⊥Þδðpη−p0

ηÞ;
ð�ψ ðfreeÞ

p⊥;pη;s½Ãμ�j∓ψ ðfreeÞ
p0⊥;p0

η;s0
½Ãμ�ÞF¼0; ðA21Þ

where the fermion inner product ðψ1jψ2ÞF is the same as is
defined in Eq. (45).

Our mode functions þψ
ðfreeÞ
p⊥;pη;s½Ãμ� (−ψ ðfreeÞ

p⊥;pη;s½Ãμ�) defined
in Eq. (A17) can actually be understood as the positive
(negative) frequency mode function in the τ-η coordinates
because it can be written as a superposition of the positive
(negative) frequency mode function in the Cartesian coor-
dinates [28,70]. To see this, we use the integral represen-

tations for the Hankel functions HðnÞ
ν ðzÞ (n ¼ 1, 2),

Hð1Þ
ν ðzÞ ¼ e−iνπ=2

iπ

Z
∞

−∞
dteiz cosh t−νt;

Hð2Þ
ν ðzÞ ¼ −

eiνπ=2

iπ

Z
∞

−∞
dte−iz cosh t−νt; ðA22Þ

to obtain

�ψ
ðfreeÞ
p⊥;pη;s½Ãμ� ¼

Z
dpz

e�ipηypffiffiffiffiffiffiffiffiffiffiffi
2πωp

p �ψ
ðfreeÞ
p⊥;pz;s½Ãm�: ðA23Þ

Here, ωp is on-shell energy ωp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2⊥ þ p2

z

p
and yp

is the momentum rapidity as was introduced in Eq. (55).

�ψ
ðfreeÞ
p⊥;pz;s½Ãm� are the positive/negative frequency mode

functions in the Cartesian coordinates, which satisfy the
free field equation of motion in the Cartesian coordinates,

0 ¼ ½iγmð∂m þ iqÃmÞ −m��ψ ðfreeÞ
p⊥;pz;s½Ãm�, and that are

labeled by pz being the Fourier conjugate to z: They are
given by

 
þψ

ðfreeÞ
p⊥;pz;s½Ãm�

−ψ
ðfreeÞ
p⊥;pz;s½Ãm�

!
¼ Ω

" 
1χ

ðfreeÞ
p⊥;pz;s

2χp⊥;pz;s

!
vs;1

þ
 

2χ
ðfreeÞ�
p⊥;pz;s

−1χ
�
p⊥;pz;s

!
vs;2

#
eip⊥·x⊥eipzz

ð2πÞ3=2 ;

ðA24Þ

where we have defined the spin label s by the direction
of the background electric field ~Ftz ¼ Eγtγz as in

�ψ
ðfreeÞ
p⊥;pη;s½Ãμ� by expanding the spinor space in terms of

the eigenvectors of the background field Γs. Ω is the same
as the Wilson-line gauge factor introduced in Eq. (A12),
which does not depend on a choice of coordinates

ΩðxÞ ¼ exp

�
−iq

Z
x
dxμÃμ

�
¼ exp

�
−iq

Z
x
dξmÃm

�
;

ðA25Þ

where ξm represent the Cartesian coordinates ξm ¼
ðt; x; y; zÞ with m running through t, x, y, z as in the main
text. The functions kχp⊥;pz;s (k ¼ 1, 2) can be explicitly
written as

1χ
ðfreeÞ
p⊥;pz;s ≡ iffiffiffi

2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ pz

ωp

r
e−iωpt;

2χ
ðfreeÞ
p⊥;pz;s ≡ −iffiffiffi

2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

pz

ωp

r
eiωpt; ðA26Þ

and the four-spinors vs;1 and vs;2 are given by

vs;1 ≡ −p⊥ · γ⊥ þmffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2⊥

p Γs ¼ e−η=2Vs;1;

vs;2 ≡ γtΓs ¼ eη=2Vs;2: ðA27Þ

�ψ
ðfreeÞ
p⊥;pz;s½Ãm� are properly normalized in the Cartesian

coordinates as

Z
t¼const

d2x⊥dz�ψ̄
ðfreeÞ
p⊥;pz;s½Ãm�γt�ψ ðfreeÞ

p0⊥;p0
z;s0
½Ãm�

¼ δss0δ
2ðp⊥ − p0⊥Þδðpz − p0

zÞ; ðA28Þ

Z
t¼const

d2x⊥dz�ψ̄
ðfreeÞ
p⊥;pz;s½Ãm�γt∓ψ ðfreeÞ

p0⊥;p0
z;s0
½Ãm� ¼ 0:

ðA29Þ

b. Under a spatially homogeneous and constant
color electric background field

We consider a spatially homogeneous and constant color
electric background field given by Eq. (A2), and analyti-
cally obtain all the mode functions for the equation of
motion, Eq. (A4), which we write ψ ðconstÞ. Let us begin with
the differential equation, Eq. (A10), for ϕðconstÞ

s . To solve
this equation, we make an ansatz of the form
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ϕðconstÞ
s ðxÞ≡

Z
d2p⊥dpηϕ

ðconstÞ
p⊥;pη;sðxÞ

≡
Z

d2p⊥dpηχ
ðconstÞ
p⊥;pη;sðτÞ

e−η=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2⊥

p eip⊥·x⊥e
ipηη

ð2πÞ3=2 :

ðA30Þ

As in the pure gauge case (Appendix A 1 a), the
momentum labels p⊥; pη and the normalization factor

e−η=2=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2⊥

p
are introduced. We note that even if

there are pure gauge potentials in addition to the electric
field, the following computations do not change by simply
adding the Wilson-line gauge factor Ω [Eq. (A25)] into the

above ansatz [Eq. (A30)]. Now, the differential equation for

χðconstÞp⊥;pη;s reads

0 ¼
�
∂2
τ þ

∂τ

τ
þ
�
pη − i=2þ qEτ2=2

τ

�
2

þ iqE

þm2 þ p2⊥
�
χðconstÞp⊥;pη;s: ðA31Þ

Two independent solutions of Eq. (A31), which we write

kχðconstÞp⊥;pη;s (k ¼ 1, 2), can be written in terms of the Tricomi
confluent hypergeometric function Uða; b; zÞ. Here, we
consider the following particular solutions:

1χ
ðconstÞ
p⊥;pη;s ≡ 1ffiffiffi

τ
p exp

�
−π

m2 þ p2⊥
4jqEj − i

qEτ2

4

�� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2⊥

q
τ
�−ipη

U

�
i
m2 þ p2⊥
2qE

;
1

2
− ipη; i

qEτ2

2

�
; ðA32Þ

2χ
ðconstÞ
p⊥;pη;s ≡ −i

2

1ffiffiffi
τ

p exp

�
−π

m2 þ p2⊥
4jqEj þ i

qEτ2

4

�� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2⊥

q
τ
�1þipη

U

�
1 − i

m2 þ p2⊥
2qE

;
3

2
þ ipη;−i

qEτ2

2

�
; ðA33Þ

which are normalized as

j1χðconstÞp⊥;pη;sj2 þ j2χðconstÞp⊥;pη;sj2 ¼ 1=τ: ðA34Þ

It is useful to note that these particular solutions kχðconstÞp⊥;pη;s

satisfy a simultaneous differential equation, which is
similar to that for the pure gauge case, Eq. (A16), as

iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2⊥

p �
∂τ þ

ipη þ iqÃη þ 1=2

τ

� 
1χ

ðconstÞ
p⊥;pη;s

2χ
ðconstÞ
p⊥;pη;s

!

¼
 

2χ
ðconstÞ�
p⊥;pη;s

−1χ
ðconstÞ�
p⊥;pη;s

!
: ðA35Þ

Thanks to this property, one finds that the mode functions

kψ ðconstÞ
p⊥;pη;s constructed from kχðconstÞp⊥;pη;s have the same spinor

structure as what we have for the plane wave solutions

�ψ
ðfreeÞ
p⊥;pη;s [Eq. (A18)] as we will see soon.
Now, one can readily construct the mode functions

kψ ðconstÞ
p⊥;pη;s (k ¼ 1, 2) for the equation of motion,

Eq. (A4), under a spatially homogeneous and constant
color electric background field Ãμ [Eq. (A2)] as6

 
1ψ

ðconstÞ
p⊥;pη;s

2ψ
ðconstÞ
p⊥;pη;s

!
≡ ½i∂ − qÃþm�

 
1ϕ

ðconstÞ
p⊥;pη;s

2ϕ
ðconstÞ
p⊥;pη;s

!
Γs; ðA36Þ

where we have used the definition of ϕðconstÞ [Eq. (A5)].
With the help of Eqs. (A9) and (A35), one finds that
Eq. (A36) can be more explicitly written as

 
1ψ

ðconstÞ
p⊥;pη;s

2ψ
ðconstÞ
p⊥;pη;s

!
¼
" 

1χ
ðconstÞ
p⊥;pη;s

2χ
ðconstÞ
p⊥;pη;s

!
Vs;1

þ
 

2χ
ðconstÞ�
p⊥;pη;s

−1χ
ðconstÞ�
p⊥;pη;s

!
Vs;2

#
eip⊥·x⊥eipηη

ð2πÞ3=2 : ðA37Þ

From the normalization conditions for kχðconstÞp⊥;pη;s [Eq. (A34)]
and Vs;i [Eq. (A20)], one can confirm that the mode

functions �ψ
ðconstÞ
p⊥;pη;s [Eq. (A37)] are correctly normalized as

ð�ψ ðconstÞ
p⊥;pη;sj�ψ ðconstÞ

p0⊥;p0
η;s0

ÞF ¼ δss0δ
2ðp⊥ − p0⊥Þδðpη − p0

ηÞ;
ð�ψ ðconstÞ

p⊥;pη;sj∓ψ ðconstÞ
p0⊥;p0

η;s0
ÞF ¼ 0: ðA38Þ

c. Under a spatially homogeneous and constant color
electric background field with lifetime T

We consider a spatially homogeneous and constant color
electric background field with lifetime T [Eq. (A3)] and
find out all the mode functions ψ ðfiniteÞ for the equation of
motion, Eq. (A4). The problem is equivalent to solving the

6Unlike the plane wave solutions �ψ
ðfreeÞ
p⊥;pη;s [Eq. (A17)] studied

in Appendix A 1 a, we have not renamed the left subscript k ¼ 1,
2 of kψ ðconstÞ

p⊥;pη;s into � because one cannot identify the positive and
the negative frequency mode functions in principle when there
are interactions, which mix up the positive and the negative
frequency mode functions.
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equation of motion, Eq. (A4), under a pure gauge background field for 0 < τ < τ0 and τ0 þ T < τ, and under a spatially
homogeneous and constant color electric background field for τ0 < τ < τ0 þ T. All the mode functions for respective
regions are already derived in Appendix A 1 a and Appendix A 1 b, respectively. Thus, all we have to do is to connect these
solutions smoothly at the boundary τ ¼ τ0 and τ ¼ τ0 þ T. Namely, we require

ψ ðfiniteÞjτ¼τ0−0;τ0þT−0 ¼ ψ ðfiniteÞjτ¼τ0þ0;τ0þTþ0: ðA39Þ

In making this connection, it is useful to use a linear relation between �ψ
ðfreeÞ
p⊥;pη;s and kψ

ðconstÞ
p⊥;pη;s (k ¼ 1, 2) at fixed time τ ¼ τ1

described by

0
B@þψ

ðfreeÞ
p⊥;pη;s½Ãμðτ1Þ�

−ψ
ðfreeÞ
p⊥;pη;s½Ãμðτ1Þ�

1
CA ¼

X
s0

Z
d2p0⊥dp0

η

0
B@ ð1ψ ðconstÞ

p0⊥;p0
η;s0

jþψ ðfreeÞ
p⊥;pη;s½Ãμðτ1Þ�ÞF ð2ψ ðconstÞ

p0⊥;p0
η;s0

jþψ ðfreeÞ
p⊥;pη;s½Ãμðτ1Þ�ÞF

ð1ψ ðconstÞ
p0⊥;p0

η;s
j−ψ ðfreeÞ

p⊥;pη;s½Ãμðτ1Þ�ÞF ð2ψ ðconstÞ
p0⊥;p0

η;s0
j−ψ ðfreeÞ

p⊥;pη;s½Ãμðτ1Þ�ÞF

1
CA
0
B@ 1ψ

ðconstÞ
p0⊥;p0

η;s0

2ψ
ðconstÞ
p0⊥;p0

η;s0

1
CA

≡ UðqÞ
p⊥;pη;sðτ1Þ

0
B@ 1ψ

ðconstÞ
p⊥;pη−qEτ21=2;s

2ψ
ðconstÞ
p⊥;pη−qEτ21=2;s

1
CA: ðA40Þ

The matrix elements are given by

AðqÞ
p⊥;pη;sðτ1Þ≡ ðUðqÞ

p⊥;pη;sðτ1ÞÞ11 ¼
h�

UðqÞ
p⊥;pη;sðτ1Þ

�
22

i�
¼ τ1

h
1χ

ðconstÞ�
p⊥;pη−qEτ21=2;s

ðτ1Þ1χðfreeÞp⊥;pη;sðτ1Þ þ 2χ
ðconstÞ
p⊥;pη−qEτ21=2;s

ðτ1Þ2χðfreeÞ�p⊥;pη;sðτ1Þ
i
; ðA41Þ

BðqÞ
p⊥;pη;sðτ1Þ≡

�
UðqÞ

p⊥;pη;sðτ1Þ
�
21

¼
h
−ðUðqÞ

p⊥;pη;sðτ1ÞÞ12
i�

¼ τ1
h
1χ

ðconstÞ�
p⊥;pη−qEτ21=2;s

ðτ1Þ2χðfreeÞp⊥;pη;sðτ1Þ − 2χ
ðconstÞ
p⊥;pη−qEτ21=2;s

ðτ1Þ1χðfreeÞ�p⊥;pη;sðτ1Þ
i
; ðA42Þ

and are normalized as

1 ¼ jAðqÞ
p⊥;pη;sj2 þ jBðqÞ

p⊥;pη;sj2; ðA43Þ

which means that the transformation UðqÞ
p⊥;pη;sðτ1Þ is unitary: 1 ¼ UðqÞ†

p⊥;pη;sðτ1ÞUðqÞ
p⊥;pη;sðτ1Þ. Although the mode functions

diverge at τ → 0 because of the coordinate singularity at τ ¼ 0 of the τ-η coordinates, one can safely take the limit τ1 → 0 of
the transformation UðqÞ, i.e., the matrix elements AðqÞ; BðqÞ. By using

Hð1Þ
ν ðzÞ ⟶

jzj→0

�
z
2

�
−ν
�
ΓðνÞ
iπ

þOðjzjÞ
�
þ
�
z
2

�
ν
�
1þ i cotðνπÞ
Γð1þ νÞ þOðjzjÞ

�
; ðA44Þ

Hð2Þ
ν ðzÞ ⟶

jzj→0

�
z
2

�
−ν
�
−
ΓðνÞ
iπ

þOðjzjÞ
�
þ
�
z
2

�
ν
�
1 − i cotðνπÞ
Γð1þ νÞ þOðjzjÞ

�
; ðA45Þ

Uða; b; zÞ ⟶
jzj→0

z1−b
�
Γð−1þ bÞ

ΓðaÞ þOðjzjÞ
�
þ
�

Γð1 − bÞ
Γð1þ a − bÞ þOðjzjÞ

�
; ðA46Þ

one obtains
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AðqÞ
p⊥;pη;sðτÞ⟶τ→0

ffiffiffi
π

p
2

e−
iπ
4
ð1− qE

jqEjÞe−
πpη
2
ð1þ qE

jqEjÞe−π
m2þp2⊥
4jqEj
�

jqEj
m2þp2⊥

�
−ipη−1=2

coshðπpηÞΓ
�
1 − i m

2þp2⊥
2qE

�

×

2
641þ e−

iπ
4
ð qE
jqEj−2Þe

πpη
2
ð qE
jqEjþ2Þ

�
2jqEj

m2 þ p2⊥

�
ipηþ1=2 Γð1 − i m

2þp2⊥
2qE Þ

Γ
�
1
2
− ipη − i m

2þp2⊥
2qE

�
3
75; ðA47Þ

BðqÞ
p⊥;pη;sðτÞ⟶τ→0

ffiffiffi
π

p
2

e
iπ
4
ð1þ qE

jqEjÞe
πpη
2
ð1− qE

jqEjÞe−π
m2þp2⊥
4jqEj
�

jqEj
m2þp2⊥

�
−ipη−1=2

coshðπpηÞΓ
�
1 − i m

2þp2⊥
2qE

�

×

2
641þ e−

iπ
4
ð qE
jqEjþ2Þe

πpη
2
ð qE
jqEj−2Þ

�
2jqEj

m2 þ p2⊥

�
ipηþ1=2 Γ

�
1 − i m

2þp2⊥
2qE

�
Γ
�
1
2
− ipη − i m

2þp2⊥
2qE

�
3
75: ðA48Þ

We consider two kinds of boundary conditions for the mode functions: We define mode functions �ψ
ðfinite;inÞ
p⊥;pη;s (�ψ

ðfinite;outÞ
p⊥;pη;s )

by a boundary condition at τ < τ0 (τ > τ0 þ T) to coincide with the plane wave solutions �ψ
ðfreeÞ
p⊥;pη;s½Ãμ�. Using the linear

relation, Eq. (A40), one can easily construct such mode functions, �ψ
ðfinite;inÞ
p⊥;pη;s and �ψ

ðfinite;outÞ
p⊥;pη;s , as

 
þψ

ðfinite;inÞ
p⊥;pη;s

−ψ
ðfinite;inÞ
p⊥;pη;s

!
¼

8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

 
þψ

ðfreeÞ
p⊥;pη;s½Ãμ�

−ψ
ðfreeÞ
p⊥;pη;s½Ãμ�

!
for 0 < τ < τ0

UðqÞ
p⊥;pη;sðτ0Þ

 
1ψ

ðconstÞ
p⊥;pη−qEτ20=2;s

2ψ
ðconstÞ
p⊥;pη−qEτ20=2;s

!
for τ0 < τ < τ0 þ T

UðqÞ
p⊥;pη;sðτ0ÞUðqÞ†

p⊥;pη−qEτ20=2þqEðτ0þTÞ2=2;sðτ0 þ TÞ

×

 
þψ

ðfreeÞ
p⊥;pη−qEτ20=2þqEðτ0þTÞ2=2;s½Ãμ�

−ψ
ðfreeÞ
p⊥;pη−qEτ20=2þqEðτ0þTÞ2=2;s½Ãμ�

!
for τ0 þ T < τ

; ðA49Þ

 
þψ

ðfinite;outÞ
p⊥;pη;s

−ψ
ðfinite;outÞ
p⊥;pη;s

!
¼

8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

UðqÞ
p⊥;pη;sðτ0 þ TÞUðqÞ†

p⊥;pηþqEτ2
0
=2−qEðτ0þTÞ2=2;sðτ0Þ

×

 
þψ

ðfreeÞ
p⊥;pηþqEτ2

0
=2−qEðτ0þTÞ2=2;s½Ãμ�

−ψ
ðfreeÞ
p⊥;pηþqEτ2

0
=2−qEðτ0þTÞ2=2;s½Ãμ�

!
for 0 < τ < τ0

UðqÞ
p⊥;pη;sðτ0 þ TÞ

 
1ψ

ðconstÞ
p⊥;pη−qEðτ0þTÞ2=2;s

2ψ
ðconstÞ
p⊥;pη−qEðτ0þTÞ2=2;s

!
for τ0 < τ < τ0 þ T

 
þψ

ðfreeÞ
p⊥;pη;s½Ãμ�

−ψ
ðfreeÞ
p⊥;pη;s½Ãμ�

!
for τ0 þ T < τ

: ðA50Þ

These two sets of mode functions are not independent but related with each other by a Bogoliubov transformation
discussed in the main text [see Eq. (50)]. Now, one can analytically compute the Bogoliubov coefficients as
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�
þψ

ðfinite;outÞ
p⊥;pη;s jþψ ðfinite;inÞ

p0⊥;p0
η;s0

�
F
¼
h�

−ψ
ðfinite;outÞ
p⊥;pη;s j−ψ ðfinite;inÞ

p0⊥;p0
η;s0

�
F

i�
¼ δss0δ

2ðp⊥ − p0⊥Þδðp0
η − ðpη þ qEτ20=2 − qEðτ0 þ TÞ2=2ÞÞ

×
h
AðqÞ
p⊥;pηþqEτ2

0
=2−qEðτ0þTÞ2=2;sðτ0ÞA

ðqÞ�
p⊥;pη;sðτ0 þ TÞ þ BðqÞ�

p⊥;pηþqEτ2
0
=2−qEðτ0þTÞ2=2;sðτ0ÞB

ðqÞ
p⊥;pη;sðτ0 þ TÞ

i
; ðA51Þ

�
−ψ

ðfinite;outÞ
p⊥;pη;s jþψ ðfinite;inÞ

p0⊥;p0
η;s0

�
F
¼
h
−
�
þψ

ðfinite;outÞ
p⊥;pη;s j−ψ ðfinite;inÞ

p0⊥;p0
η;s0

�
F

i�
¼ δss0δ

2ðp⊥ − p0⊥Þδðp0
η − ðpη þ qEτ20=2 − qEðτ0 þ TÞ2=2ÞÞ

×
h
AðqÞ
p⊥;pηþqEτ2

0
=2−qEðτ0þTÞ2=2;sðτ0ÞB

ðqÞ�
p⊥;pη;sðτ0 þ TÞ − BðqÞ�

p⊥;pηþqEτ2
0
=2−qEðτ0þTÞ2=2;sðτ0ÞA

ðqÞ
p⊥;pη;sðτ0 þ TÞ

i
: ðA52Þ

2. Gluon

We consider the Abelianized equation of motion for the
gluon field Wμ in the τ-η coordinates [see Eq. (38)],

½ð∇ρ þ iqÃρÞ2gμν þ 2iq ~Fμν�Wν ¼ 0: ðA53Þ

Here, we omit the color indices A for simplicity.
In solving Eq. (A53), we first expand the gluon field Wμ

in terms of a polarization vector in the τ-η coordinates εμ;σ
(σ ¼ 0, 1, 2, 3) and a scalar amplitude ϕσ as

Wμ ≡
X4
σ¼1

εμ;σϕσ: ðA54Þ

By noting that the choice of the polarization vector is
arbitrary in principle, we assume here that the polarization
vectors εμ;σ are constructed from a constant vector ~εm;σ by
contracting the viervein matrix eμm as

εμ;σ ¼ emμ ~εm;σ: ðA55Þ

Under this assumption, the covariant derivative of the
polarization vector εν;σ vanishes as ∇μεν;σ ¼ 0.
In this appendix, we only consider the cases where a

constant color electric field pointing to the z direction is
present at most. For such cases, it is convenient to choose
εμ;σ (~εm;σ) to be an eigenvector of the background field
strength tensor ~Fμν ( ~Fmn) as

~Fν
μεν;σ ¼ Λσεμ;σ;⇔ ~Fn

m ~εn;σ ¼ Λσ ~εm;σ; ðA56Þ

where four eigenvalues Λσ are given by

Λ0 ¼ −E; Λ1 ¼ Λ2 ¼ 0; Λ3 ¼ E: ðA57Þ

In other words, we have defined the polarization of gluons
by the direction of the background field. We also normalize
the polarization vector εμ;σ (~εμ;σ) as

gμνε�μ;σεν;σ0 ¼ −ξσσ0 ;
X
σ;σ0

ξσσ0ε
�
μ;σεν;σ0 ¼ −gμν; ðA58Þ

and

ηmn ~ε�m;σ ~εn;σ0 ¼−ξσσ0 ;
X
σ;σ0

ξσσ0 ~ε
�
m;σ ~εn;σ0 ¼−ηmn; ðA59Þ

where ξσσ0 is the indefinite metric introduced in Eq. (73).
Now, one obtains a differential equation for ϕσ as

0 ¼
�
ð∂μ þ iqÃμÞ2 þ

∂τ þ iqÃτ

τ
þ 2iqΛσ

�
ϕσ: ðA60Þ

a. Under a pure gauge background field
(plane wave solutions)

In order to construct all the mode functions for the
equation of motion, Eq. (A53), under a pure gauge back-

ground field Ãμ [Eq. (A1)], which we write W
ðfreeÞ
μ , we first

consider solving the differential equation for ϕðfreeÞ
σ

[Eq. (A60)]. For this, we make an ansatz of the form

ϕðfreeÞ
σ ðxÞ≡

Z
d2p⊥dpηϕ

ðfreeÞ
p⊥;pη;σðxÞ; ðA61Þ

ϕðfreeÞ
p⊥;pη;σ ≡ΩðxÞχðfreeÞp⊥;pη;σðτÞ

eip⊥·x⊥eipηη

ð2πÞ3=2 : ðA62Þ

Here, the momentum labels p⊥; pη are introduced. Ω is the
Wilson-line gauge factor, which is the same as what we

have defined in Eq. (A12). One readily finds that χðfreeÞp⊥;pη;σ

satisfies the Bessel differential equation,

0 ¼
�
τ2∂2

τ þ τ∂τ þ
n� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2 þ p2⊥
q

τ
�2

− ðipηÞ2
o�

χðfreeÞp⊥;pη;σ:

ðA63Þ
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Since Eq. (A63) is a second order differential equation,
there are two independent solutions, which we write

kχðfreeÞp⊥;pη;σ (k ¼ 1, 2). In this appendix, we consider

1χ
ðfreeÞ
p⊥;pη;σ ≡

ffiffiffi
π

p
2i

eπpη=2Hð2Þ
ipη
ðjp⊥jτÞ;

2χ
ðfreeÞ
p⊥;pη;σ ≡ ð1χp⊥;pη;σ

Þ�; ðA64Þ

where we have normalized the solutions kχðfreeÞp⊥;pη;σ by

1

τ
¼
X
σ0
ξσσ0
h
i
�
1χ

ðfreeÞ�
p⊥;pη;σ∂τ

↔

1χ
ðfreeÞ
p⊥;pη;σ0

�i

¼ −
X
σ0
ξσσ0
h
i
�
2χ

ðfreeÞ�
p⊥;pη;σ∂τ

↔

2χ
ðfreeÞ
p⊥;pη;σ0

�i
; ðA65Þ

0 ¼
X
σ0
ξσσ0
h
i
�
1χ

ðfreeÞ�
p⊥;pη;σ∂τ

↔

2χ
ðfreeÞ
p⊥;pη;σ0

�i

¼
X
σ0
ξσσ0
h
i
�
2χ

ðfreeÞ�
p⊥;pη;σ∂τ

↔

1χ
ðfreeÞ
p⊥;pη;σ0

�i
: ðA66Þ

Now, we are ready to construct all the mode functions

�W
ðfreeÞ
μ;p⊥;pη;σ½Ãν�. By using the definition of ϕðfreeÞ

σ

[Eq. (A54)], one can construct the �W
ðfreeÞ
μ;p⊥;pη;σ½Ãν� as

 
þW

ðfreeÞ
μ;p⊥;pη;σ½Ãν�

−W
ðfreeÞ
μ;p⊥;pη;σ½Ãν�

!
≡ εμ;σ

 
1ϕ

ðfreeÞ
p⊥;pη;σ

2ϕ
ðfreeÞ
p⊥;pη;σ

!

¼ εμ;σΩ

 
1χ

ðfreeÞ
p⊥;pη;σ

2χ
ðfreeÞ
p⊥;pη;σ

!
eip⊥·x⊥eipηη

ð2πÞ3=2 :

ðA67Þ

Here, we have changed the left subscript k ¼ 1, 2 into

� for a notational simplicity because þW
ðfreeÞ
μ;p⊥;pη;σ½Ãν�

(−W
ðfreeÞ
μ;p⊥;pη;σ½Ãν�) corresponds to the positive (negative)

frequency mode function in the τ-η coordinates as we will
explain soon. With the help of the normalization condi-
tions, Eq. (A58) for εμ;σ and Eqs. (A65) and (A66) for

kχðfreeÞp⊥;pη;σ , one can easily check that, in the temporal gauge
Ãτ ¼ 0, the mode functions satisfy the correct normaliza-
tion condition for vector fields in the τ-η coordinates [see
also Eqs. (70) and (71) in the main text],

− gμν
�
�W

ðfreeÞ
μ;p⊥;pη;σ½Ãρ�j�WðfreeÞ

ν;p0⊥;p0
η;σ0

½Ãρ�
�
B

¼ �ξσσ0δ
2ðp⊥ − p0⊥Þδðpη − p0

ηÞ; ðA68Þ

−gμν
�
�W

ðfreeÞ
μ;p⊥;pη;σ½Ãρ�j∓WðfreeÞ

ν;p0⊥;p0
η;σ0

½Ãρ�
�
B
¼ 0:

ðA69Þ

The mode function þW
ðfreeÞ
μ;p⊥;pη;σ½Ãν� (−WðfreeÞ

μ;p⊥;pη;σ½Ãν�) can
be written as a superposition of the positive (negative)
frequency mode function in the Cartesian coordinates,

and hence one can understand that þW
ðfreeÞ
μ;p⊥;pη;σ½Ãν�

(−W
ðfreeÞ
μ;p⊥;pη;σ½Ãν�) can be understood as the positive (negative)

frequency mode function in the τ-η coordinates. In order to
see this, we again use the integral representations for the

Hankel functions HðnÞ
ν ðzÞ (n ¼ 1, 2) [Eq. (A22)] to find

�W
ðfreeÞ
μ;p⊥;pη;σ½Ãν� ¼ emμ

Z
dpz

e�ipηypffiffiffiffiffiffiffiffiffiffiffi
2πωp

p �W
ðfreeÞ
m;p⊥;pz;σ½Ãn�:

ðA70Þ

Here, þW
ðfreeÞ
m;p⊥;pz;σ½Ãn� (−W

ðfreeÞ
m;p⊥;pz;σ½Ãn�) is the positive

(negative) frequency mode function in the Cartesian coor-
dinates satisfying the free field equation of motion in the

Cartesian coordinates as 0 ¼ ð∂l þ iqÃlÞ2�WðfreeÞ
m;p⊥;pη;σ½Ãn�

labeled by pz conjugate to z,

�W
ðfreeÞ
m;p⊥;pz;σ½Ãn� ¼ ~εm;σΩ

e∓iωptffiffiffiffiffiffiffiffi
2ωp

p eip⊥·x⊥eipzz

ð2πÞ3=2 : ðA71Þ

These mode functions are properly normalized in the
Cartesian coordinates. In the temporal gauge Ãt ¼ 0, it
reads

− ηmn

Z
t¼const

d2x⊥dz�W
ðfreeÞ�
m;p⊥;pz;σ½Ãl�∂

↔

t�W
ðfreeÞ
n;p0⊥;p0

z;σ0
½Ãl�

¼ �ξσσ0δ
2ðp⊥ − p0⊥Þδðpz − p0

zÞ; ðA72Þ

− ηmn

Z
t¼const

d2x⊥dz�W
ðfreeÞ�
m;p⊥;pz;σ½Ãl�∂

↔

t

× ∓W
ðfreeÞ
n;p0⊥;p0

z;σ0
½Ãl� ¼ 0: ðA73Þ

b. Under a spatially homogeneous and constant
color electric background field

We consider a spatially homogeneous and constant color
electric background field [Eq. (A2)] and construct all the
mode functions for the equation of motion, Eq. (A53),

which we write WðconstÞ
μ . First, we solve Eq. (A60) for

ϕðconstÞ
σ by making an ansatz,

ϕðconstÞ
σ ðxÞ≡

Z
d2p⊥dpηϕ

ðconstÞ
p⊥;pη;σðxÞ; ðA74Þ
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ϕðconstÞ
p⊥;pη;σðxÞ≡ χðconstÞp⊥;pη;sðτÞ

eip⊥·x⊥e
ipηη

ð2πÞ3=2 : ðA75Þ

As in the pure gauge case (Appendix A 2 a), the momentum
labels p⊥; pη are introduced. We note that even if there are
pure gauge potentials in addition to the electric field, the
following computations do not change by simply adding
the Wilson-line gauge factor Ω [Eq. (A25)] into the above
ansatz [Eq. (A75)]. Now, the differential equation for

χðconstÞp⊥;pη;σ becomes

0 ¼
�
∂2
τ þ

∂τ

τ
þ
�
pη þ qEτ2=2

τ

�
2

þ p2⊥ þ 2iqΛσ

�
χðconstÞp⊥;pη;σ;

ðA76Þ

where the eigenvalues Λσ are given by Eq. (A57). Two
independent solutions of Eq. (A76), which we write

kχðconstÞp⊥;pη;σ (k ¼ 1, 2), can be written in terms of the Tricomi
confluent hypergeometric function Uða; b; zÞ. Here, we
consider the following particular solutions:

1χ
ðconstÞ
p⊥;pη;σ ≡ 1ffiffiffi

2
p exp

�
−
π

2

�
p2⊥

2jqEj þ pη þ i
qΛσ

qE

�
− i

jqEjτ2
4

�

×

�jqEjτ2
2

�
ipη=2

U

�
1

2
þ i

p2⊥
2jqEj þ ipη

−
qΛσ

qE
; 1þ ipη; i

jqEjτ2
2

�
; ðA77Þ

2χ
ðconstÞ
p⊥;pη;σ ≡

X
σ0
ξσσ01χ

ðconstÞ�
p⊥;pη;σ0

; ðA78Þ

which are normalized as

1

τ
¼
X
σ0
ξσσ0
h
i
�
1χ

ðconstÞ�
p⊥;pη;σ ∂τ

↔

1χ
ðconstÞ
p⊥;pη;σ0

�i

¼ −
X
σ0
ξσσ0
h
i
�
2χ

ðconstÞ�
p⊥;pη;σ ∂τ

↔

2χ
ðconstÞ
p⊥;pη;σ0

�i
; ðA79Þ

0 ¼
X
σ0
ξσσ0
h
i
�
1χ

ðconstÞ�
p⊥;pη;σ ∂τ

↔

2χ
ðconstÞ
p⊥;pη;σ0

�i

¼
X
σ0
ξσσ0
h
i
�
2χ

ðconstÞ�
p⊥;pη;σ ∂τ

↔

1χ
ðconstÞ
p⊥;pη;σ0

�i
: ðA80Þ

Now, one readily obtains the mode functions kWðconstÞ
μ;p⊥;pη;σ

(k ¼ 1, 2) as

 
1W

ðconstÞ
μ;p⊥;pη;σ½Ãν�

2W
ðconstÞ
μ;p⊥;pη;σ½Ãν�

!
≡εμ;σ

 
1ϕ

ðconstÞ
p⊥;pη;σ

2ϕ
ðconstÞ
p⊥;pη;σ

!

¼ εμ;σ

 
1χ

ðconstÞ
p⊥;pη;σ

2χ
ðconstÞ
p⊥;pη;σ

!
eip⊥·x⊥eipηη

ð2πÞ3=2 ; ðA81Þ

where the definition of ϕðconstÞ [Eq. (A54)] is used. With the
normalization conditions, Eq. (A58) for εμ;σ and Eqs. (A79)

and (A80) for kχðconstÞp⊥;pη;σ, one finds that the mode functions

kWðconstÞ
μ;p⊥;pη;σ are correctly normalized as

− gμν
�
1W

ðconstÞ
μ;p⊥;pη;σj1WðconstÞ

ν;p0⊥;p0
η;σ0

�
B

¼ þgμν
�
2W

ðconstÞ
μ;p⊥;pη;σj2WðconstÞ

ν;p0⊥;p0
η;σ0

�
B

¼ ξσσ0δ
2ðp⊥ − p0⊥Þδðpη − p0

ηÞ; ðA82Þ

− gμν
�
1W

ðconstÞ
μ;p⊥;pη;σj2WðconstÞ

ν;p0⊥;p0
η;σ0

�
B

¼ −gμν
�
2W

ðconstÞ
μ;p⊥;pη;σj1WðconstÞ

ν;p0⊥;p0
η;σ0

�
B
¼ 0: ðA83Þ

c. Under a spatially homogeneous and
constant color electric background field

with lifetime T

We consider a constant color electric background
field with lifetime T [Eq. (A3)] and find out all the

mode functions WðfiniteÞ
μ for the equation of motion,

Eq. (A53). The problem is equivalent to solving the
equation of motion, Eq. (A53), under a pure gauge
background field for 0 < τ < τ0 and τ0 þ T < τ, and
under a spatially homogeneous and constant color
electric background field for τ0 < τ < τ0 þ T. All the
mode functions for respective regions are already
derived in Appendix A 2 a and Appendix A 2 b, respec-
tively. Thus, all we have to do is to connect these
solutions smoothly at the boundaries τ ¼ τ0 and
τ ¼ τ0 þ T. Namely, we require

WðfiniteÞ
μ

			
τ¼τ0−0;τ0þT−0

¼ WðfiniteÞ
μ

			
τ¼τ0þ0;τ0þTþ0

; ðA84Þ

∇τW
ðfiniteÞ
μ

			
τ¼τ0−0;τ0þT−0

¼ ∇τW
ðfiniteÞ
μ

			
τ¼τ0þ0;τ0þTþ0

:

ðA85Þ

In making this connection, it is useful to use a linear

relation between �W
ðfreeÞ
μ;p⊥;pη;σ and kWðconstÞ

μ;p⊥;pη;σ (k ¼ 1, 2) at
fixed time τ ¼ τ1 described by
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þW

ðfreeÞ
μ;p⊥;pη;σ½Ãρðτ1Þ�

−W
ðfreeÞ
μ;p⊥;pη;σ½Ãρðτ1Þ�

!

¼ −gνλ
X
σ0σ00

ξσ0σ00
Z

d2p0⊥dp0
η

×

0
B@
�
1W

ðconstÞ
ν;p0⊥;p0

η;σ00
jþWðfreeÞ

λ;p⊥;pη;σ
½Ãρðτ1Þ�

�
B

−
�
2W

ðconstÞ
ν;p0⊥;p0

η;σ00
jþWðfreeÞ

λ;p⊥;pη;σ
½Ãρðτ1Þ�

�
B�

1W
ðconstÞ
ν;p0⊥;p0

η;σ00
j−WðfreeÞ

λ;p⊥;pη;σ
½Ãρðτ1Þ�

�
B

−
�
2W

ðconstÞ
ν;p0⊥;p0

η;σ00
j−WðfreeÞ

λ;p⊥;pη;σ
½Ãρðτ1Þ�

�
B

1
CA
0
B@ 1W

ðconstÞ
μ;p0⊥;p0

η;σ0

2W
ðconstÞ
μ;p0⊥;p0

η;σ0

1
CA

≡UðgÞ
p⊥;pη;σðτ1Þ

0
B@ 1W

ðconstÞ
p⊥;pη−qEτ21=2;σ

2W
ðconstÞ
p⊥;pη−qEτ21=2;σ

1
CA: ðA86Þ

The matrix elements are given by

AðgÞ
p⊥;pη;σðτ1Þ≡ ðUðgÞ

p⊥;pη;σðτ1ÞÞ11 ¼
X
σ0
ξσσ0
h�

UðgÞ
p⊥;pη;σ0

ðτ1Þ
�
22

i� ¼X
σ0
ξσσ0
h
iτ1
�
1χ

ðconstÞ�
p⊥;pη−qEτ21=2;σ

0∂τ

↔

1χ
ðfreeÞ
p⊥;pη;σ

�			
τ¼τ1

i
; ðA87Þ

BðgÞ
p⊥;pη;σðτ1Þ≡

�
UðgÞ

p⊥;pη;σðτ1Þ
�
21

¼
X
σ0
ξσσ0
h
ðUðgÞ

p⊥;pη;σ0
ðτ1ÞÞ12

i� ¼X
σ0
ξσσ0
h
iτ1
�
1χ

ðconstÞ�
p⊥;pη−qEτ21=2;σ

0∂τ

↔

2χ
ðfreeÞ
p⊥;pη;σ

�			
τ¼τ1

i
ðA88Þ

and are normalized as

1 ¼
X
σ0
ξσσ0
h
AðgÞ
p⊥;pη;σ

h
AðgÞ
p⊥;pη;σ0

i�
− BðgÞ

p⊥;pη;σ

h
BðgÞ
p⊥;pη;σ0

i�i ðA89Þ

so that detUðgÞ
p⊥;pη;σðτ1Þ ¼ 1 holds. Although the mode functions diverge at τ → 0 because of the coordinate singularity at

τ ¼ 0 of the τ-η coordinates, one can safely take the limit τ1 → 0 of the transformation UðgÞ, i.e., the coefficients AðgÞ; BðgÞ.
By using the asymptotic formulas for the special functions Eqs. (A44)–(A46), one finds

AðgÞ
p⊥;pη;σðτÞ⟶τ→0

X
σ0
ξσσ0

8><
>:−

ffiffiffi
π

2

r �
2jqEj
p2⊥

�
−ipη=2 exp

h
− π

2

�
p2⊥

2jqEj − i qΛσ0
qE

�i
sinhðπpηÞΓ

�
1
2
− i p2⊥

2jqEj −
qΛσ0
qE

� e−πpη

×

2
641 − �2jqEj

p2⊥

�
ipη

e3πpη=2
Γ
�
1
2
− i p2⊥

2jqEj −
qΛσ0
qE

�
Γ
�
1
2
− i p2⊥

2jqEj − ipη −
qΛσ0
qE

�
3
75
9>=
>;; ðA90Þ

BðgÞ
p⊥;pη;σðτÞ⟶τ→0

X
σ0
ξσσ0

8><
>:−

ffiffiffi
π

2

r �
2jqEj
p2⊥

�
−ipη=2 exp

h
− π

2

�
p2⊥

2jqEj − i qΛσ0
qE

�i
sinhðπpηÞΓ

�
1
2
− i p2⊥

2jqEj −
qΛσ0
qE

�

×

2
641 − �2jqEj

p2⊥

�
ipη

e−πpη=2
Γ
�
1
2
− i p2⊥

2jqEj −
qΛσ0
qE

�
Γ
�
1
2
− i p2⊥

2jqEj − ipη −
qΛσ0
qE

�
3
75
9>=
>;: ðA91Þ

We consider two kinds of boundary conditions for the mode functions: We define mode functions �W
ðfinite;inÞ
μ;p⊥;pη;σ

(�W
ðfinite;outÞ
μ;p⊥;pη;σ ) by a boundary condition at τ < τ0 (τ > τ0 þ T) to coincide with the plane wave solutions �W

ðfreeÞ
μ;p⊥;pη;σ½Ãν�.

With the linear relation, Eq. (A86), one can construct such mode functions �W
ðfinite;inÞ
μ;p⊥;pη;σ and �W

ðfinite;outÞ
μ;p⊥;pη;σ as
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þW

ðfinite;inÞ
μ;p⊥;pη;σ

−W
ðfinite;inÞ
μ;p⊥;pη;σ

!
¼

8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

 
þW

ðfreeÞ
μ;p⊥;pη;σ½Ãν�

−W
ðfreeÞ
μ;p⊥;pη;σ½Ãν�

!
for 0 < τ < τ0

UðgÞ
p⊥;pη;σðτ0Þ

 
1W

ðconstÞ
μ;p⊥;pη−qEτ20=2;σ

2W
ðconstÞ
μ;p⊥;pη−qEτ20=2;σ

!
for τ0 < τ < τ0 þ T

UðgÞ
p⊥;pη;σðτ0ÞUðgÞ−1

p⊥;pη−qEτ20=2þqEðτ0þTÞ2=2;σðτ0 þ TÞ

×

 
þW

ðfreeÞ
μ;p⊥;pη−qEτ20=2þqEðτ0þTÞ2=2;σ½Ãν�

−W
ðfreeÞ
μ;p⊥;pη−qEτ20=2þqEðτ0þTÞ2=2;σ½Ãν�

!
for τ0 þ T < τ

; ðA92Þ

 
þW

ðfinite;outÞ
μ;p⊥;pη;σ

−W
ðfinite;outÞ
μ;p⊥;pη;σ

!
¼

8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

UðgÞ
p⊥;pη;σðτ0 þ TÞUðgÞ−1

p⊥;pηþqEτ2
0
=2−qEðτ0þTÞ2=2;σðτ0Þ

×

 
þW

ðfreeÞ
μ;p⊥;pηþqEτ2

0
=2−qEðτ0þTÞ2=2;σ½Ãν�

−W
ðfreeÞ
μ;p⊥;pηþqEτ2

0
=2−qEðτ0þTÞ2=2;σ½Ãν�

!
for 0 < τ < τ0

UðgÞ
p⊥;pη;σðτ0 þ TÞ

 
1W

ðconstÞ
μ;p⊥;pη−qEðτ0þTÞ2=2;σ

2W
ðconstÞ
μ;p⊥;pη−qEðτ0þTÞ2=2;σ

!
for τ0 < τ < τ0 þ T

 
þW

ðfreeÞ
μ;p⊥;pη;σ½Ãν�

−W
ðfreeÞ
μ;p⊥;pη;σ½Ãν�

!
for τ0 þ T < τ

: ðA93Þ

These two sets of mode functions are not independent but related with each other by a Bogoliubov transformation
discussed in the main text [see Eq. (84)]. Now, one can analytically compute the Bogoliubov coefficients as

X
σ00

ξσσ00 ð−gμνÞ
�
þW

ðfinite;outÞ
μ;p⊥;pη;σ00

jþWðfinite;inÞ
ν;p0⊥;p0

η;σ0

�
B

¼
X
σ000

ξσσ000

�
−
X
σ00

ξ−1σ000σ00 ð−gμνÞ
�
−W

ðfinite;outÞ
μ;p⊥;pη;σ00

j−Wðfinite;inÞ
ν;p0⊥;p0

η;σ0

�
B

��
¼ δσσ0δ

2ðp⊥ − p0⊥Þδðp0
η − ðpη þ qEτ20=2− qEðτ0 þ TÞ2=2ÞÞ

×
X
σ00

ξσσ00
h
AðgÞ
p⊥;pηþqEτ2

0
=2−qEðτ0þTÞ2=2;σðτ0ÞA

ðgÞ�
p⊥;pη;σ00

ðτ0 þ TÞ−BðgÞ�
p⊥;pηþqEτ2

0
=2−qEðτ0þTÞ2=2;σ00 ðτ0ÞB

ðgÞ
p⊥;pη;σðτ0 þ TÞ

i
; ðA94Þ

−
X
σ00

ξσσ00 ð−gμνÞ
�
−W

ðfinite;outÞ
μ;p⊥;pη;σ00

jþWðfinite;inÞ
ν;p0⊥;p0

η;σ0

�
B

¼
X
σ000

ξσσ000

�X
σ00

ξσ000σ00 ð−gμνÞ
�
þW

ðfinite;outÞ
μ;p⊥;pη;σ00

j−Wðfinite;inÞ
ν;p0⊥;p0

η;σ0

�
B

��
¼ δσσ0δ

2ðp⊥ − p0⊥Þδðp0
η − ðpη þ qEτ20=2 − qEðτ0 þ TÞ2=2ÞÞ

×
X
σ00

ξσσ00
h
−AðgÞ

p⊥;pηþqEτ2
0
=2−qEðτ0þTÞ2=2;σðτ0ÞB

ðgÞ�
p⊥;pη;σ00

ðτ0 þ TÞ þ BðgÞ�
p⊥;pηþqEτ2

0
=2−qEðτ0þTÞ2=2;σ00 ðτ0ÞA

ðgÞ
p⊥;pη;σðτ0 þ TÞ

i
:

ðA95Þ

3. Ghost

We consider the Abelianized equation of motion for ghost and antighost fields, C and C̄, in the τ-η coordinates [see
Eq. (39)]. It is sufficient for this purpose to consider a differential equation of the type
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0 ¼ ð∇μ þ iqÃμÞ2Θ

¼
�
ð∂μ þ iqÃμÞ2 þ

∂τ þ iqÃτ

τ

�
Θ: ðA96Þ

This equation is exactly the same as Eq. (A60) for the gluon
fields ϕσ for Λσ ¼ 0, and so one can solve Eq. (A96) in the
same way as we did in Appendix A 2 a. Therefore, we just
write down the results without repeating the derivation and/
or discussions in the following.

a. Under a pure gauge background field
(plane wave solutions)

Under a pure gauge background field Ãμ given by
Eq. (A1), the positive and the negative frequency mode

functions �Θ
ðfreeÞ
p⊥;pη

½Ãμ� are given by

þΘ
ðfreeÞ
p⊥;pη

½Ãμ� ¼ Ω1χ
ðfreeÞ
p⊥;pη

eip⊥·x⊥eipηη

ð2πÞ3=2 ;

−Θ
ðfreeÞ
p⊥;pη

½Ãμ� ¼ Ω2χ
ðfreeÞ
p⊥;pη

eip⊥·x⊥eipηη

ð2πÞ3=2 ; ðA97Þ

where

1χ
ðfreeÞ
p⊥;pη

¼
ffiffiffi
π

p
2i

eπpη=2Hð2Þ
ipη
ðjp⊥jτÞ;

2χ
ðfreeÞ
p⊥;pη

¼ ½−χðfreeÞp⊥;pη
��: ðA98Þ

The mode functions satisfy the correct normalization
conditions for scalar fields in the τ-η coordinates [see also
Eqs. (102) and (103) in the main text]. For temporal gauge
Ãτ ¼ 0, it reads

ð�ΘðfreeÞ
p⊥;pη

½Ãμ�j�ΘðfreeÞ
p0⊥;p0

η
½Ãμ�ÞB ¼ �δ2ðp⊥ − p0⊥Þδðpη − p0

ηÞ;
ðA99Þ

ð�ΘðfreeÞ
p⊥;pη

½Ãμ�j∓ΘðfreeÞ
p0⊥;p0

η
½Ãμ�ÞB ¼ 0: ðA100Þ

To see the mode functions �Θ
ðfreeÞ
p⊥;pη

½Ãμ� defined in
Eq. (A97) are actually the positive/negative frequency
mode functions in the τ-η coordinates, we again use the

integral representation for the Hankel functions HðnÞ
ν ðzÞ

(n ¼ 1, 2) [Eq. (A22)] to get the same integral relation as
that for quarks Eq. (A23) and for gluons Eq. (A70) as

�Θ
ðfreeÞ
p⊥;pη

½Ãμ� ¼
Z

dpz
e�ipηypffiffiffiffiffiffiffiffiffiffiffi
2πωp

p �Θ
ðfreeÞ
p⊥;pz ½Ãm�: ðA101Þ

All notations are the same as in the previous two cases

except �Θ
ðfreeÞ
p⊥;pz ½Ãm� being the positive/negative frequency

mode functions in the Cartesian coordinates,

�Θ
ðfreeÞ
p⊥;pz ½Ãm� ¼

e∓iωptffiffiffiffiffiffiffiffi
2ωp

p eip⊥·x⊥eipzz

ð2πÞ3=2 ; ðA102Þ

which are properly normalized in the Cartesian coordinates
with the temporal gauge condition Ãt ¼ 0 as

Z
t¼const

d2x⊥dz�Θ
ðfreeÞ�
p⊥;pz ½Ãm�∂

↔

t�Θ
ðfreeÞ
p0⊥;p0

z
½Ãm�

¼ �δ2ðp⊥ − p0⊥Þδðpz − p0
zÞ; ðA103Þ

Z
t¼const

d2x⊥dz�Θ
ðfreeÞ�
p⊥;pz ½Ãm�∂

↔

t∓Θ
ðfreeÞ
p0⊥;p0

z
½Ãm� ¼ 0:

ðA104Þ

b. Under a spatially homogeneous and constant
color electric background field

Under a spatially homogeneous and constant color
electric field [Eq. (A2)], the positive/negative frequency

mode functions �Θ
ðconstÞ
p⊥;pη

are given by

1Θ
ðconstÞ
p⊥;pη

¼ 1χ
ðconstÞ
p⊥;pη

eip⊥·x⊥eipηη

ð2πÞ3=2 ;

2Θ
ðconstÞ
p⊥;pη

¼ 2χ
ðconstÞ
p⊥;pη

eip⊥·x⊥eipηη

ð2πÞ3=2 ; ðA105Þ

where

1χ
ðconstÞ
p⊥;pη

¼ 1ffiffiffi
2

p exp

�
−
π

2

�
p2⊥

2jqEj þpη

�
− i

jqEjτ2
4

��jqEjτ2
2

�
ipη=2

×U

�
1

2
þ i

p2⊥
2jqEj þ ipη; 1þ ipη; i

jqEjτ2
2

�
; ðA106Þ

2χ
ðconstÞ
p⊥;pη

¼ ½−χðconstÞp⊥;pη
��: ðA107Þ

The mode functions are correctly normalized as

δ2ðp⊥ − p0⊥Þδðpη − p0
ηÞ

¼
�
1Θ

ðconstÞ
p⊥;pη

j1ΘðconstÞ
p0⊥;p0

η

�
B
¼ −

�
2Θ

ðconstÞ
p⊥;pη

j2ΘðconstÞ
p0⊥;p0

η

�
B
;

ðA108Þ

0 ¼
�
1Θ

ðconstÞ
p⊥;pη

j2ΘðconstÞ
p0⊥;p0

η

�
B
¼
�
2Θ

ðconstÞ
p⊥;pη

j1ΘðconstÞ
p0⊥;p0

η

�
B
:

ðA109Þ
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c. Under a spatially homogeneous and constant color electric background field with lifetime T

For a spatially homogeneous and constant color electric background field with lifetime T [Eq. (A3)], the mode functions

�Θ
ðfinite;asÞ
p⊥;pη

(as ¼ in; out) are given by

 
þΘ

ðfinite;inÞ
p⊥;pη

−Θ
ðfinite;inÞ
p⊥;pη

!
¼

8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

 
þΘ

ðfreeÞ
p⊥;pη

½Ãμ�
−Θ

ðfreeÞ
p⊥;pη

½Ãμ�

!
for 0 < τ < τ0

UðghÞ
p⊥;pη

ðτ0Þ
 

1Θ
ðconstÞ
p⊥;pη−qEτ20=2

2Θ
ðconstÞ
p⊥;pη−qEτ20=2

!
for τ0 < τ < τ0 þ T

UðghÞ
p⊥;pη

ðτ0ÞUðghÞ−1
p⊥;pη−qEτ20=2þqEðτ0þTÞ2=2ðτ0 þ TÞ

×

 
þΘ

ðfreeÞ
p⊥;pη−qEτ20=2þqEðτ0þTÞ2=2½Ãμ�

−Θ
ðfreeÞ
p⊥;pη−qEτ20=2þqEðτ0þTÞ2=2½Ãμ�

!
for τ0 þ T < τ

; ðA110Þ

 
þΘ

ðfinite;outÞ
p⊥;pη

−Θ
ðfinite;outÞ
p⊥;pη

!
¼

8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

UðghÞ
p⊥;pη

ðτ0 þ TÞUðghÞ−1
p⊥;pηþqEτ2

0
=2−qEðτ0þTÞ2=2ðτ0Þ

×

 
þΘ

ðfreeÞ
p⊥;pηþqEτ2

0
=2−qEðτ0þTÞ2=2½Ãμ�

−Θ
ðfreeÞ
p⊥;pηþqEτ2

0
=2−qEðτ0þTÞ2=2½Ãμ�

!
for 0 < τ < τ0

UðghÞ
p⊥;pη

ðτ0 þ TÞ
 

1Θ
ðconstÞ
p⊥;pη−qEðτ0þTÞ2=2

2Θ
ðconstÞ
p⊥;pη−qEðτ0þTÞ2=2

!
for τ0 < τ < τ0 þ T

 
þΘ

ðfreeÞ
p⊥;pη

½Ãμ�
−Θ

ðfreeÞ
p⊥;pη

½Ãμ�

!
for τ0 þ T < τ

: ðA111Þ

Here, the matrix UðghÞ is given by

UðghÞ
p⊥;pη

¼
 
AðghÞ
p⊥;pη

BðghÞ�
p⊥;pη

BðghÞ
p⊥;pη

AðghÞ�
p⊥;pη

!
; ðA112Þ

where the matrix elements AðghÞ; BðghÞ are

AðghÞ
p⊥;pη

ðτ1Þ ¼ iτ1
�
1χ

ðconstÞ�
p⊥;pη−qEτ21=2

∂τ

↔

1χ
ðfreeÞ
p⊥;pη

�			
τ¼τ1

; BðghÞ
p⊥;pη

ðτ1Þ ¼ iτ1
�
1χ

ðconstÞ�
p⊥;pη−qEτ21=2

∂τ

↔

2χ
ðfreeÞ
p⊥;pη

�			
τ¼τ1

: ðA113Þ

The normalization condition for AðghÞ; BðghÞ is

1 ¼ jAðghÞ
p⊥;pη

j2 þ jBðghÞ
p⊥;pη

j2 ðA114Þ

so that detUðghÞ
p⊥;pη

¼ 1 holds. In the limit of τ → 0, AðghÞ; BðghÞ behaves as

AðghÞ
p⊥;pη

ðτÞ⟶
τ→0

−
ffiffiffi
π

2

r �
2jqEj
p2⊥

�
−ipη=2 exp

h
− π

2

�
p2⊥

2jqEj
�i

sinhðπpηÞΓ
�
1
2
− i p2⊥

2jqEj
� e−πpη

2
641 − �2jqEj

p2⊥

�
ipη

e3πpη=2
Γ
�
1
2
− i p2⊥

2jqEj
�

Γ
�
1
2
− i p2⊥

2jqEj − ipη

�
3
75; ðA115Þ
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BðghÞ
p⊥;pη

ðτÞ⟶
τ→0

−
ffiffiffi
π

2

r �
2jqEj
p2⊥

�
−ipη=2 exp

h
− π

2

�
p2⊥

2jqEj
�i

sinhðπpηÞΓ
�
1
2
− i p2⊥

2jqEj
�

2
641 − �2jqEj

p2⊥

�
ipη

e−πpη=2
Γð1

2
− i p2⊥

2jqEjÞ
Γ
�
1
2
− i p2⊥

2jqEj − ipη −
qΛσ0
qE

�
3
75: ðA116Þ

The Bogoliubov coefficients between the two sets of mode functions [see Eq. (108)] are given by�
þΘ

ðfinite;outÞ
p⊥;pη

jþΘðfinite;inÞ
p0⊥;p0

η

�
B
¼
h
−
�
−Θ

ðfinite;outÞ
p⊥;pη

j−Θðfinite;inÞ
p0⊥;p0

η
ÞB
i�

¼ δ2ðp⊥ − p0⊥Þδðp0
η − ðpη þ qEτ20=2 − qEðτ0 þ TÞ2=2ÞÞ

×
h
AðghÞ
p⊥;pηþqEτ2

0
=2−qEðτ0þTÞ2=2ðτ0ÞA

ðghÞ�
p⊥;pη

ðτ0 þ TÞ − BðghÞ�
p⊥;pηþqEτ2

0
=2−qEðτ0þTÞ2=2ðτ0ÞB

ðghÞ
p⊥;pη

ðτ0 þ TÞ
i
;

ðA117Þ

−
�
−Θ

ðfinite;outÞ
p⊥;pη

jþΘðfinite;inÞ
p0⊥;p0

η

�
B
¼
h�

þΘ
ðfinite;outÞ
p⊥;pη

j−Θðfinite;inÞ
p0⊥;p0

η

�
B

i�
¼δ2ðp⊥−p0⊥Þδðp0

η−ðpηþqEτ20=2−qEðτ0þTÞ2=2ÞÞ
×
h
−AðghÞ

p⊥;pηþqEτ2
0
=2−qEðτ0þTÞ2=2ðτ0ÞB

ðghÞ�
p⊥;pη

ðτ0þTÞþBðghÞ�
p⊥;pηþqEτ2

0
=2−qEðτ0þTÞ2=2ðτ0ÞA

ðghÞ
p⊥;pη

ðτ0þTÞ�:
ðA118Þ
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