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Exploiting certain robust topological inputs from the skyrmion description of compressed baryonic
matter with a scale-chiral symmetric Lagrangian, we predict the equation of state that is consistent with the
properties of nuclear matter at the equilibrium density, supports the maximum mass of massive compact
star ∼2 M⊙ and surprisingly gives the sound velocity close to the “conformal velocity” 1=

ffiffiffi
3

p
at densities

≳3n0. At the core of this result is the observation that parity-doubling occurs in the nucleon structure as
density goes above ∼2n0 with a chiral-singlet mass m0 ∼ ð0.6–0.9ÞmN , hinting at a possible up-to-date
unsuspected source of proton mass and an emergence at high density of scale symmetry and flavor local
symmetry, both hidden in the QCD vacuum.

DOI: 10.1103/PhysRevD.96.014031

I. OBJECTIVE

As to whether certain fundamental symmetries of QCD,
invisible or hidden in matter-free space, can emerge at
high baryonic density such as in massive compact stars is
an extremely interesting but difficult question to address.
A variety of emergent symmetries are being discovered in
condensed matter systems, and are being discussed in
particle physics, including the possibility of emergent
gravity and dark matter. In previous papers by the authors
[1,2], it was proposed that both hidden local symmetry
(HLS) and hidden scale symmetry could emerge at den-
sities relevant to ∼2 solar-mass neutron stars. In this paper,
we further sharpen the analysis made in [1] and explore
possible consequences on the phase structure, up to densities
hitherto unexplored.
We improve on what was treated in [1] and arrive at a

fairly clear resolution of the problem on how the emergent
symmetries could manifest in massive compact stars. We
should stress that our aim here is basically different from
what is being pursued in the astro-nuclear community,
which is to obtain with a battery of unknown parameters an
equation of state (EoS) that accommodates the astrophysi-
cal observations. Our objective, instead, is to exploit the
information provided by astrophysics to zero in on the
totally unknown quantity, namely what may be presumed to
be highly correlated interactions that enter in dense matter
that go beyond what is understood from conventional

nuclear systems. What we find is that at the core of the
problem is the origin of the proton mass, more than 90% of
which arise out of “nothing,” and the emergence of both the
scale and flavor local symmetries that are not visible in the
vacuum and baryonic matter at low densities. We admit that
our point of view is highly unorthodox in that it deviates,
even drastically at least in appearance, from the currently
accepted paradigm in nuclear physics, namely that anch-
ored on chiral effective field theories involving nucleons
and pseudo-Nambu-Goldstone (pNG) bosons.
What we find in a refined analysis of what is in [1] is that

in the same renormalization group (RG) treatmentwithV lowk
adopted in [1], referred to in what follows as “V lowk-RG,”
the compact star of mass Mmax ≃ 2.05 M⊙ and radius R≃
12.19 km with the maximum central density nmax ≃ 5.1n0
supports the sound velocity close to the conformal limit

v2s=c2 ≃ 1=3: ð1Þ

We suggest this to be a precursor signal for an emergent scale
symmetry in densemedium. This result seems to be in strong
contrast with what is found in conventional hadronic models
belonging to the class of “energy density functional (EDF),”
v2c=c2 > 1=3.

II. THE EFFECTIVE LAGRANGIAN

As in [3], we consider ρ and ω mesons as the gauge
bosons of ½SUð2ÞV ×Uð1ÞV �local HLS with the gauge
couplings gρ;ω and π meson as the pNG boson of
½SUð2ÞL × SUð2ÞR�global chiral symmetry with the nucleon
N. There is a strong indication in both mean-field [3] and
renormalization-group [1] analyses that global Uð2Þ
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symmetry for the vector mesons is badly broken at high
density. We introduce the Lorentz scalar and isoscalar field
σ—referred to as “dilaton”—as the Nambu Goldstone
boson of the scale symmetry. The fields we are concerned
with transform as

ξL;R → uhξL;Rg
†
L;R; ð2Þ

gρρ⃗μ ·
τ⃗

2
→ λhgρρ⃗μ ·

τ⃗

2
h† − i∂μh · h†; ð3Þ

gω
ωμ

2
→ λugω

ωμ

2
u† − i∂μu · u†; ð4Þ

χ → λχ; ð5Þ

N → λ
3
2uhN ð6Þ

under the scale transformation, x → λ−1x, where gL;R ∈
½SUð2ÞL;R�global, h ∈ ½SUð2ÞV �local and u ∈ ½Uð1ÞV �local.
We can parametrize the conformal compensator field χ
and the chiral field U ¼ ξ†LξR as

χ

fσ
¼ exp

�
−

σ

fσ

�
; ð7Þ

ξL;R ¼ exp

�
iσω
2fσω

�
exp

�
iσ⃗ρ · τ⃗

2fσρ

�
exp

�
∓ iπ⃗ · τ⃗

2fπ

�
; ð8Þ

where σω and σρ are would-be Nambu Goldstone bosons of
HLS that will be Higgsed away and fσ, fπ , fσω, and fσρ are
the decay constants of the associated fields.
Then, the effective Lagrangian we shall use, which is the

same as in [1], referred to as bsHLS Lagrangian, consists of
the scale-invariant hidden local symmetric term Linv plus
symmetry breaking term LSB.

1

L ¼ Linv þ LSB ð9Þ

where

Linv ¼ LN þ LM; ð10Þ

LN ¼ N̄i

�
∂μ − igρρ⃗μ ·

τ⃗

2
− igω

ωμ

2

�
N −mN

χ

fσ
N̄N

þ gAN̄γμα⊥μγ5N þ gVρN̄γμ
�
α∥μ − gρρ⃗μ ·

τ⃗

2

�
N

þ gVωN̄γμ
�∂μσω
2fσω

− gω
ωμ

2

�
N; ð11Þ

LM ¼ 1

2
∂μχ · ∂μχ þ f2π

�
χ

fσ

�
2

tr½α⊥μα
μ
⊥�

þ f2σρ

�
χ

fσ

�
2

tr

��
α∥μ − gρρ⃗μ ·

τ⃗

2

�
2
�

þ f2σω
2

�
χ

fσ

�
2
�∂μσω

fσω
− gωωμ

�
2

−
1

2
tr½ρμνρμν� −

1

2
tr½ωμνω

μν�; ð12Þ

LSB ¼ −VðχÞ þ f2π
4
TrðMU† þ H:c:Þ

�
χ

fσ

�
3

; ð13Þ

where VðχÞ is the scale symmetry breaking potential to be
specified below and M is the mass matrix which to be
consistent with the symmetry we are concerned with, i.e.,
chiral-scale symmetry, should be of 3 flavors but we will
focus on the SUð2Þ sector.

ρμν ¼ ∂μρ⃗ν ·
τ⃗

2
− ∂νρ⃗μ ·

τ⃗

2
− igρ

�
ρ⃗μ ·

τ⃗

2
; ρ⃗ν ·

τ⃗

2

�
; ð14Þ

ωμν ¼ ∂μ ω
ν

2
− ∂ν ω

μ

2
ð15Þ

and

αμ⊥ ¼ 1

2i
½∂μξR · ξ†R − ∂μξL · ξ†L�; ð16Þ

αμ∥ ¼
1

2i
½∂μξR · ξ†R þ ∂μξL · ξ†L� −

∂μσω
2fσω

: ð17Þ

The potential VðχÞ is to encode the trace anomaly of QCD,2

θμμ ¼ βðαsÞ
4αs

Ga
μνGaμν þ

X
q¼u;d;s

mqq̄q ð18Þ

with the gluon G and the quark q, and the trace of the
energy-momentum tensor (TEMT) is given by3

1There are a large number of papers published in the past
where either vector mesons alone or vector mesons together with
a dilaton were taken into account in the skyrmion structure of
both elementary baryon and multibaryons systems. To quote one
example, one such paper [4] addresses the properties of hadrons
at nuclear matter density. Now HLS Lagrangian is gauge-
equivalent to non-linear sigma model at low energy(and also
low density), hence what is treated in [4] is essentially the same as
standard chiral perturbation approach. We should emphasize that
our interest is in high density for which a totally new aspect of
scale-invariant hidden local symmetry enters with the possibility
of the VM(involving local gauge symmetry) and DL(involving
conformal symmetry) fixed points, none of which has been
addressed by any authors up to now.

2We ignore the anomalous dimension of the quark mass
operator.

3We are being cavalier here. In order to get this result, onewould
have to first make Linv scale invariant using the conformal
compensator field and accounting for explicit symmetry breaking.
This procedure will be explained below with pertinent references.
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θμμ ¼ 4VðχÞ − χ
∂VðχÞ
∂χ þ f2π

4
TrðMU† þ H:c:Þ

�
χ

fσ

�
3

:

ð19Þ

How this simplified Lagrangian is arrived at from a scale-
invariant baryonic hidden local symmetric Lagrangian [5]
goes as follows. For illustration it suffices to consider
(mesonic) nonlinear sigma model as done by Crewther
and Tunstall [6].4 Including baryon fields is straightforward.
Expanded from below, near an IR fixed point βðαIRÞ, scale-
symmetric sigma model Lagrangian to the leading chira-
scale order Oðp2Þ takes the form

L ¼ Linv þ Lanom þ VðχÞ; ð20Þ

Linv ¼ c1
f2π
4

�
χ

fσ

�
2

Trð∂μU∂μU†Þ þ c2
1

2
f2σ∂μχ∂μχ;

ð21Þ

Lanom ¼
�
ð1 − c1Þ

f2π
4

�
χ

fσ

�
2

Trð∂μU∂μU†Þ

þ ð1 − c2Þ
1

2
f2σ∂μχ∂μχ

��
χ

fσ

�
β0

; ð22Þ

VðχÞ ¼
�
χ

fσ

�
4
�
c3 þ c4

�
χ

fσ

�
β0
�
: ð23Þ

Following [6], we set, in the chiral limit, c1 ¼ c2 ¼
1þOðp2Þ which can be arrived at by setting the dilaton
field equal to zero for processes that do not involve scalar
excitations. The best way to understand this relation is that
there is hidden scale symmetry in standard Higgs-type
Lagrangian that yields both the scale-symmetric form and
the nonlinear sigma model form that can be reached when
one dials a constant, respectively, to weak coupling limit
and to strong-coupling limit [9]. Keeping to Oðp2Þ in the
leading-order Lagrangian, we have

Linv ¼
f2π
4

�
χ

fσ

�
2

Trð∂μU∂μU†Þ þ 1

2
f2σ∂μχ∂μχ þOðp4Þ:

ð24Þ

Hidden-local-symmetrizing this, we have sHLS Lagrangian
[8],

LsHLS ¼ f2π

�
χ

fσ

�
2

Tr½â⊥μâ
μ
⊥� þ af2π

�
χ

fσ

�
2

Tr½â∥μâμ∥�

−
1

2g2
Tr½VμνVμν� þ 1

2
∂μχ∂μχ þOðp4Þ: ð25Þ

We have written this Lagrangian in Uð2Þ symmetric way
for notational simplicity. It will be broken to SUð2Þ ×Uð1Þ
at high density.
In the presence of the vector mesons, there is an

anomalous-parity term called homogeneous Wess-
Zumino term (hWZ) which is left out in the above. It does
not figure when baryons are present but it needs to be
treated in the skyrmion approach and will be commented on
at the conclusion section. The dilaton potential can be
written to the leading order in scale-chiral symmetry as [5]

VðχÞ ≈m2
σf2σ
4

�
χ

fσ

�
4
�
ln

�
χ

fσ

�
−
1

4

�
; ð26Þ

which is the dilaton potential familiar in the literature
valid in the limit β0 ≪ 1.5 In the derivation of (26), the
mass formula valid in the chiral limit, i.e., m2

σf2σ ¼
4β0ð4þ β0Þc≃ 16β0c—which is the dilaton analog to the
Gell-Mann-Oakes-Renner relation for the pion—is used.
Now decomposing Uð2Þ → SUð2Þ ×Uð1Þ and coupling
baryons in HLS way to the Lagrangian (25) leads to the
bsHLS Lagrangian (9).

III. FROM SKYRMIONS TO EFFECTIVE
FIELD THEORY

Our principal thesis is that one can map certain robust
properties dependent on topological structure encoded
in the skyrmion approach—with sHLS—to the effective
field theory approach—with bsHLS—in accessing dense
baryonic matter. Let us denote the former approach as
SkyrmionsHLS and the latter as EFTbsHLS. Our strategy is to
establish a connection between the two, and exploit the
power of both approaches to explore the EoS of compact-
star matter.
Since the essential ideas are developed in detail else-

where, we merely summarize them here in a concise way
and then focus on sharpening the arguments made pre-
viously ([1]) on what and how they will be correlated.

A. Effective field theory with bsHLS Laragian

We assume that the Lagrangian (9) is defined at a scale
ΛM, matched to QCD via current correlators [10,11]. The
matching endows the “bare” parameters of the effective
Lagrangian with nontrivial dependence on both perturba-
tive and nonperturbative properties of QCD. In particular,
it allows the EFT Lagrangian to track the vacuum change in
terms of various condensates, i.e., quark condensate
Σ≡ hq̄qi, gluon condensate G≡ hG2i etc. Suppose the
Lagrangian is embedded in dense medium. The vacuum
change caused by density will then reflect on the change in

4A similar procedure with the possible existence of an IR fixed
point was proposed by Golterman and Shamir [7]. The relation
between the two at the leading scale-chiral order is discussed in [8].

5There is an intriguing indication that β0 ∼ 2 in dense nuclear
matter [8]. This would imply that this approximation may be
untenable.
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the condensates involved and hence on the parameters of
the EFT Lagrangian. The resulting density dependence,
intrinsic of QCD from the QCD-EFT matching, will be
referred to as “intrinsic density dependence” (IDD for
short). The definition of IDD—and how it enters in nuclear
dynamics—will depend on how the theory is formulated.
This inevitably brings in certain nonuniqueness in the
procedure. In this paper, it will be defined with the
bsHLS Lagrangian for EFTbsHLS along the line fully
described in [1]. If the massive degrees of freedom are
integrated out, as in the standard ChPT (sChPT for short)
the IDDs that figure can effectively contain certain density-
dependent higher-order interactions that are integrated out
such as short-range n-body forces with n > 2. Thus the
IDDs entering into the sChPT could differ from the IDDs of
bare bsHLS. This point should be kept in mind in following
the reasoning developed in this paper.

B. Skyrmions on crystal lattice with
sHLS Lagrangian

Given the framework of EFTbsHLS, IDDs can be more or
less determined up to nuclear matter density n0 ≃ 0.16 fm−3

either from experiments or theoretically in sChPT or in the
future, perhaps by lattice calculations. It will however be
extremely difficult to track them at higher densities going
beyond n0. Here we rely on certain topological structure
present in the skyrmion approach, recently reviewed with
extensive references in [12]. Given the daunting mathemati-
cal difficulty in fully quantizing skyrmion matter, one can
extract only limited information from the skyrmion
approach. Fortunately there are certain robust topological
properties that can be exploited. In particular, an extremely
important observation in the skyrmion approach is the
changeover from skyrmions to half-skyrmions at a density
n > n0. Involving topology, it is robust even though the
effect is present in skyrmions put on crystal lattice, which can
be justified only at largeNc. In fact a hint for the existence of
a half-skyrmion structure is already present, although invis-
ible, in light nuclei such as theα particle. It is found to provide
the most important tool to enable one to access compact-star
density. The strategy we shall rely on is the skyrmion crystal
structure obtained with sHLS, i.e., “SkyrmionsHLS”.
When the topology change is translated into the bare

parameters of EFTbsHLS, it makes a drastic—and novel—
change in the IDDs across the transition density denoted
n1=2. Specifically it gives the prediction that going into the
half-skyrmion phase, the in-medium pion (dilaton) decay
constant f�π (f�σ) and the in-medium nucleon mass m�

N go
over to a constant

f�π=fπ ≈ f�σ=fσ ≈m�
N=mN → κ ð27Þ

where κ is a (nearly) density-independent constant
κ ∼ ð0.6–0.9Þ. We will see that this result is the key
ingredient in making the sound velocity of massive

compact stars approach the “conformality” ðvs=cÞ2 ¼
1=3. This differs from the predictions given by phenom-
enological nuclear models, typically 0.6–0.8 [13].
The skyrmion crystal prediction (27) that the effective

nucleon mass goes to a constant of order OðmNÞ is
reminiscent of the parity-doublet nucleon model [14] in
which the nucleon mass contains a chiral-invariant massm0

m�
N ¼ m0 þ ΔðΣÞ ð28Þ

where ΔðΣÞ → 0 as Σ → 0. Unlike in the parity-doublet
model where m0 is injected ab initio, however, here it
emerges for n > n1=2. In the half-skyrmion phase, the quark
condensate Σ vanishes when space-averaged, i.e., Σ̄ → 0,
but it is nonvanishing locally and hence supporting chiral
density waves with a nonvanishing pion decay constant.
Therefore chiral symmetry is not really restored as in the
case of the parity-doublet structure. The changeover from
skyrmions to half-skyrmions, strictly speaking, is not a
bona-fide phase transition with a local order parameter
although it behaves very much like one as one also sees in
heavy-light hadrons [15]. Since the pion is present, chiral
symmetry is still spontaneously broken.

C. Mapping SkyrmionsHLS to EFTbsHLS

One of the characteristics of the SkyrmionsHLS approach to
dense matter, i.e., on crystal lattice, is that the solitonic
background impacts on—or “warps”—the properties of the
degrees of freedom that are involved in the strong inter-
actions. This then makes the parameters involved—such as
the pion decay constant, the axial-vector coupling constant
etc.—background-dependent. Now the background depends
on density, so those parameters will inevitably slide with
density. One may be able to formulate this phenomenon in
terms of what is known as “Klein-Kaluza metric (warping)
effect” due to the background as suggested in [16]. At very
low density and energy, the background effect will be small
and hence the Skyrme model—with pions only—(consider
it simplified from sHLS) should be equivalent to chiral
perturbation theory, say, sChPT—with nucleons and pions
only (which can be considered as simplified from bsHLS).
However as density goes up high, the metric warping,
particularly with the massive degrees of freedom, could
become highly nonlinear, andhence could not be captured by
higher order calculations in sChPT. We are proposing that
this warping is mostly, if not wholly, captured in the IDDs
in bsHLS.
Making a realistic connection between the two—which

we claim must exist—would require working out quan-
tum theories. Accessing the skyrmion matter quantum
mechanically is still, however, far from feasible whereas
given the IDDs across n1=2, accessing the latter is feasible.
We will therefore extract from the skyrmion approach
the properties based on topology discussed above that we
deem robust and incorporate them in the EFTbsHLS

PAENG, KUO, LEE, MA, and RHO PHYSICAL REVIEW D 96, 014031 (2017)

014031-4



approach. More specifically the relations (27) and (28)
will be imported into doing the first decimation of the
V lowk RG.

IV. ANALYSIS IN THE MEAN-FIELD
APPROXIMATION

We first apply the bsHLS Lagrangian (9) to dense matter
in the mean-field approximation. Relativistic mean-field
(RMF) approach has been extensively used in nuclear
physics for both finite and infinite systems. Its overall
success for finite and infinite systems up to nuclear matter
density can be understood as an indication that doing RMF

calculation is equivalent to doing Landau Ferrmi-liquid
fixed point theory [17]. Stated in terms of effective field
theory with Fermi surface, the approximation would
become more accurate as density increases. This is because
in Wilsonian RG approach, the Fermi-liquid fixed point
is approached as ~Λ=kF → 0 where ~Λ ¼ Λ − kF (Λ being
the cutoff scale on top of the Fermi surface from which the
decimation is done), provided of course, as we assume, the
Fermi-liquid structure continues to hold.
The thermodynamic potential Ω ¼ E − TS − μN di-

vided by the volume V at zero temperature in mean-field
with (9) for symmetric nuclear matter is

ΩðT ¼ 0Þ
V

				
ω0¼hω0i;χ¼hχi

¼ 1

4π2

�
2E3

FkF −m�2
N EFkF −m�4

N ln

�
EF þ kF

m�
N

��
þ VðhχiÞ

þ ½gωðgVω − 1Þhω0i − μ� 2

3π2
k3F −

1

2
f2σωg2ω

hχi2
f2σ

hω0i2 ð29Þ

where hω0i and hχi are the vacuum expectation value
(VEV) of ωμ¼0 and χ, m�

N ¼ hχi
fσ
mN and EF ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2F þm�2

N

p
.

The nucleon number density is

n≡ N=V ¼ −
∂ðΩ=VÞ

∂μ ¼ 2

3π2
k3F ð30Þ

and the chemical potential μ given by the condition
∂ðΩ=VÞ

∂n ¼ 0 is

μ ¼ EF þ gωðgVω − 1Þhω0i: ð31Þ
The energy density ϵ and the pressure P at T ¼ 0 are
given by

ϵ ¼ 1

4π2

�
2E3

FkF −m�2
N EFkF −m�4

N ln

�
EF þ kF

m�
N

��

þ gωðgVω − 1Þhω0in −
1

2
f2σωg2ω

hχi2
f2σ

hω0i2 þ VðhχiÞ

ð32Þ

and

P ¼ −
Ω
V

				
ω0¼hω0i;χ¼hχi

ð33Þ

¼ 1

4π2

�
2

3
EFk3F −m�2

N EFkF þm�4
N ln

�
EF þ kF

m�
N

��

þ 1

2
f2σωg2ω

hχi2
f2σ

hω0i2 − VðhχiÞ: ð34Þ

Before proceeding, a side remark is in order here
regarding the thermodynamic consistency and IDDs.

Given the IDD in (9) embedded in medium, the
parameters gVω, gω, fσω and the hadron masses are density
dependent. In obtaining the above thermodynamics rela-
tions, we have cavalierly ignored dependence on density in
those parameters in taking partial derivatives with respect
to density. For thermodynamic consistency, however, it is
necessary to take into account the density dependence in
terms of local baryon field operators as was discussed
in [18]. A naive manipulation of density as a c-number in
writing down the equations of motion would bring incon-
sistency to thermodynamics relations. This has to do with
what is known in nuclear theory as “rearrangement terms.”
They are associated in nuclear theory with many-body
correlations. What this implies is that there is an ambiguity
in defining IDDs. How the IDDs are defined depends on at
what scale the “matching” between EFT and QCD is done
and what the relevant degrees of freedom in EFT are at that
matching scale and how higher-order (e.g., loop) correc-
tions are incorporated. An example is the effect of n–body
forces for n > 2 in EFT.
Suppose that the RG decimation is done from the scale Λ

picked below theωmass, say∼400–500 MeV as in standard
chiral perturbation (sChPT) approaches (see, e.g., [19]).
Then the IDDs figuring in sChPT Lagrangian defined at
ΛEFT with the n-body potentials for n > 2 “integrated out”
will contain not only the effects inherited from QCD at the
matching scaleΛM > Λ but also those effects decimated out
fromΛM toΛ. The latter will involve effects ofn-body forces
that involve mass scales of vector mesons. For instance,
short-range three-body-force effects could enter into the
effective IDDs of sChPT Lagrangians. This is one way to
understand how the famous C14 dating process can be
explainedmore or less equallywell (i) with IDDs butwithout
three-body forces and (ii) with three-body forces andwithout
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IDDs [20]. In [18], this problem was resolved by treating
the density as the VEVof the bilinear nucleon field operator
N†N, and the field operator explicitly taken into account
in writing down equations of motion. This reflects on that
what is involved is higher-dimension effective field oper-
ators in the Lagrangian that in the mean field are given in
terms of the VEV of density operator. The upshot of this
somewhat intricate and fuzzy relation is, however, that
when done correctly, it should turn out that at the Fermi-
liquid fixed point, the parameters should depend on the
Fermi-momentum.
Returning to the main flow of the discussion, we look

at the stationarity conditions that give the gap equations
for χ and ω

∂Ω
∂χ
				
ω0¼hω0i;χ¼hχi

¼ 0;
∂Ω
∂ω0

				
ω0¼hω0i;χ¼hχi

¼ 0: ð35Þ

They lead to

m2
Nhχi
π2f2σ

�
kFEF −m�2

N ln

�
kF þ EF

m�
N

��

−
f2σω
f2σ

g2ωhω0i2hχi þ
∂VðχÞ
∂χ

				
χ¼hχi

¼ 0; ð36Þ

gωðgVω − 1Þn − f2σωg2ω
hχi2
f2σ

hω0i ¼ 0: ð37Þ

One obtains6 from (36) and (37) the VEV of the trace of
energy-momentum tensor θμμ

hθμμi ¼ hθ00i −
X
i

hθiii ¼ ϵ − 3P

¼ 4VðhχiÞ − hχi∂VðχÞ∂χ
				
χ¼hχi

: ð38Þ

This is just what one gets by taking the mean-field value of
(19). This shows that the Fermi surface does not spoil scale
symmetry. In fact we will arrive at the conclusion that
strongly-correlated hadronic interactions do not modify the
dilaton potential. This feature will account for the emergent
scale symmetry in compact-star matter.

V. RENORMALIZATION GROUP
TREATMENT WITH Vlowk

The treatment given in the mean field in Sec. IV
corresponds, albeit approximately but surprisingly effi-
ciently, to Landau-Fermi liquid fixed point theory. It would
be more reliable—provided there is no phase change—as
density increases beyond n0. To go beyond the Fermi-liquid
approximation, the renormalization-group approach with

V lowk (V lowk-RG) proves to be most powerful with the
scheme developed as in [1,21]. Arriving at the Fermi-liquid
fixed point corresponds to doing what is identified as the
“first decimation” in [22] in terms of the V lowk-RG [23].
Going beyond the fixed point structure, i.e., the “second
decimation,” involves sophisticated high order correlation
calculations. In what follows, we will simply follow the
procedure used in [1,21] to do the two-decimation calcu-
lation. There will be nothing new in formalism here. What
is new is in the way the IDDs are implemented in the
effective (bsHLS) Lagrangian (9).
Our basic premise is that when embedded in the medium

characterized by density n, formally interpreted in terms of
baryon field operators as described above, the Lagrangian
preserves the same symmetry structure—apart from the
non-Lorentz covariance—as in the medium-free vacuum
and as stated in Sec. III C, the effect of changes in the
vacuum structure caused by density, including the topology
change, is entirely encoded in the way the parameters of the
Lagrangian behave as density changes. Needless to say,
should there be phase transitions along the way, this scheme
will break down. We will assume that this does not happen
in the density domain relevant in compact stars.
How the IDDs are defined in terms of the properties of

scale symmetry involving the dilaton χ and chiral sym-
metry involving π and V is spelled out in detail in [1].
We will follow what is done there. The first thing to do is
then to incorporate the IDD structure of the “bare param-
eters” of the Lagrangian.7 The Lagrangian that gives both
nucleon and meson masses in (9) is

Lmass ¼ −
mN

fσ
χN̄N þ f2σρ

2f2σ
χ2ðgρρaμÞ2 þ

f2σω
2f2σ

χ2ðgωωμÞ2

þ LSB ð39Þ

with the isospin index a. When embedded in medium, after
shifting σ → hσi þ σ with hχi≡ fσ exp ð− hσi

fσ
Þ, the masses

are given—with the � denoting density dependence—as

Lmass ¼ −m�
NN̄N þm�2

ρ

2
ðρaμÞ2 þ

m�2
ω

2
ðωμÞ2

−
m�2

σ

2
σ2 −

m�2
π

2
πa2; ð40Þ

where σ and π are redefined as σ ≡ hχi�
fσ

σ and πa ≡ hχi�
fσ

πa to
get the kinetic term in the form as

Lscalar ¼
1

2
∂μσ∂μσ þ 1

2
∂μπ

a∂μπa: ð41Þ

6Unless otherwise stated, we will work in the chiral limit.

7We recall that since the RG (first) decimation is done from
Λ < ΛM, certain many-body induced effects will go into the
“effective” IDDs. This will make the effective IDDs most likely
different from the IDDs given by the matching at ΛM.
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Then, the masses are related to hχi, gρ and gω—all of which
are carrying IDDs—as

m�
N

mN
≈
gV
g�V

m�
V

mV
≈
m�

σ

mσ
≈
�
m�

π

mπ

�
2

≈
f�π
fπ

≈
hχi�
fσ

≡Φ�; ð42Þ

where

m�2
σ ≡ −

∂2VðσÞ
∂σ2

				
σ¼0

: ð43Þ

This result, first obtained in [1], is the principal element in
our approach with the crucial input on how the various
parameters related in the specific way given in (42) flow as
density increases in compact-star matter. In (42), we used
“≈” to indicate (inevitable) small differences between
various different degrees of freedom depending on the
choice of the cutoff from which the decimations for V lowk
are made. Specifically, the cutoff values for the nucleon and
mesons are taken differently to account for differences that
come from higher-order correlations as mentioned above
for, e.g., three-body forces.

A. The intrinsic density dependence (IDD)

The only element of the present treatment that differs
from what is done in [1] is the refinement of the behavior of
the IDD in the V lowk RG treatment. Based on the skyrmion
matter treatment as discussed above, we have an important
change in the density dependence in IDD at a density near
n1=2 ∼ 2n0 at which the skyrmion-half-skyrmion change-
over takes place. It is this changeover that will be fine-tuned
in this analysis. For convenience, we recall the properties
of IDDs from [1]:
(1) For n ≤ n1=2, the only scaling parameter is Φ�. Its

precise density dependence is unknown. However
there is information available from sChPT calcula-
tions backed by date from deeply bound pionic

nuclear systems available up to ∼n0. In the absence
of precise analytical form, we adhere to simplicity
and parametrize it as

Φ� ¼ 1

1þ cIðn=n0Þ
for n ≤ n1=2 ð44Þ

and extrapolate it from n0 up to n1=2 with a cI
determined at n0. The coupling constants gϕNN

for ϕ ¼ σ, ρ, ω do not scale as argued in [1]. The
constant cI will be fine-tuned between 0.13 and 0.20
as explained in [1] so as to give the ground-state
properties of nuclear matter.8 It turns out that the
results of the V lowk calculation for n≲ n1=2 can be
extremely well fit for both the symmetric nuclear
matter and neutron matter by the fitting functions

E0=A ¼ AI

�
n
n0

�
þ BI

�
n
n0

�
DI

: ð45Þ

They are shown in Fig. 1.9 For completeness, we
give the predictions for the symmetric nuclear matter
at n0: Equilibrium density n0 ¼ 0.154 fm−3, binding
energy BE ¼ 15.5 MeV, compression modulus
K ¼ 215.2 MeV.
The symmetry energy, an extremely important

quantity for compact stars, defined by

FIG. 1. E0=A for α ¼ 0 (left) and α ¼ 1 (right) matter, where α ¼ ðNn − NpÞ=A and A ¼ Nn þ Np with the proton/neutron number
Np=n. The dots are from the V lowk RG and the solid lines are fit by Eq. (45). The saturation density is estimated as nsat ¼ 0.154 fm−3.

8cI ≃ 0.20 at n0 reproduces the empirical value for the pion
decay constant f�π=fπ ≃ 0.8 extracted from deeply bound pionic
nuclei. We should stress that within the highly limited number of
the free parameters, one can obtain a remarkable description of
nuclear matter in this formalism. This is of course not the objective
of this paper.

9These are obtained—with high precision—with the con-
stants ðAI; BI; DIÞ ¼ ð−45.5 MeV; 30.1 MeV; 1.54Þ for α ¼ 0
(symmetric nuclear matter) and ðAI; BI; DIÞ ¼ ð9.11 MeV;
2.14 MeV; 4.08Þ for α ¼ 1 (pure neutron matter).
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Esym ¼ E0ðn; α ¼ 1Þ=A − E0ðn; α ¼ 0Þ=A; ð46Þ

can also be fairly accurately calculated. The result
is given in Fig. 2. Often cited in the literature
as “constraints” for the EoS for compact stars
are Esymjn¼n0 , L ¼ 3n dEsym

dn jn¼n0 , and Ksym ¼
9n2 d2Esym

dn2 jn¼n0 : Esym=MeV¼ 32�2 and L=MeV ¼
50� 15.10 The predicted values are Esym ≈ 26 MeV
and L ≈ 49 MeV. The former is a bit smaller than,
while the latter is consistent with, what is quoted
in the literature. The Ksym cannot be calculated
reliably because being a double derivative it is
extremely sensitive to the fitting function. In fact
in the literature, various different models give Ksym

between −136 MeV and þ73 MeV [13]. We con-
sider it futile to attempt to pin it down with our
scheme that focuses on high-density matter.

(2) In the density regime n > n1=2, there is a topology
change in SkyrmionsHLS that drastically affects the
IDDs at n ¼ n1=2. The existence of such a topology
change is one of the most robust inputs from
skyrmion matter. From (27), we have

Φ� ≈ κ ≈
1

1þ cIðn1=2=n0Þ
for n > n1=2: ð47Þ

It is a density-independent constant related to the
chiral invariant mass m0 of the nucleon and more
significantly to the dilaton condensate hχi�.
Among other IDDs, the most crucial in our ap-

proach is the hidden gauge coupling gρ that governs

the IDD of the ρ mass by the low-energy theorem
mρ ∝ fπgρ with fπ ≈ fσ in medium. The skyrmion
descriptionof the cusp formof the symmetry energy at
n ¼ n1=2, which is reproduced by the change in the
nuclear tensor forces [24], combined with the vector
manifestation(VM) fixed-point structure of HLS
leads to that for n > n1=2 the coupling gρ should drop
to zero toward the putative VM fixed point nVM. In
[1,21], this feature was approximately represented by
the linear form g�ρ=gρ ≈ 1 − n=nVM. Below we will
modify this scaling in such a way to reproduce the
behavior of the trace of the energy-momentum tensor
(TEMT) tending toward a density-independent con-
stant for n > n1=2.
As for other parameters,we take them tobe as given

in [1] for n > n1=2,

m�
i

mi

				
i¼N;σ;ρ;ω

¼
 
0.71; 0.75;

g�ρNN

gρNN
; 0.73

ffiffiffiffiffiffi
a�ω
aω

s
g�ωNN

gωNN

!
;

ð48Þ
where

a�ω
aω

¼ 1

2

�
1þ 1

1þ 0.011ðn − n1=2Þ=n0

�
;

g�ωNN

gωNN
¼ 1

1þ 0.075ðn − n1=2Þ=n0
ð49Þ

which are slightly different from the scalings of a�ω
aω

and g�ωNN
gωNN

in [1] and compared with those in [1] in
Fig. 3.
Notable in the analysis there as well as in this paper

was that theUð2Þ symmetry for ρ and ω which holds
fairly well in the vacuum—and most likely in low-
density regime below n1=2—must break down at
higher density. This breakdown requires some small
minormodifications fromwhat is taken in [1].Wewill
explain how this Uð2Þ breakdown can be understood
with an emerging scale symmetry in dense medium.

B. Going from R-I (n≲ n1=2) to R-II (n > n1=2Þ
Of the parameters that undergo changes as density goes

across the topology change density, the most striking
quantity is the effective hidden gauge coupling g�ρ. What
the effective HLS coupling means in the calculation of EoS
depends upon how the Lagrangian bsHLS is treated.
In the mean-field approach adopted in [3], it represents

gðgVρ − 1Þ where g is the hidden gauge coupling defined by
thematching toQCDat thematching scale and ðgVρ − 1Þ is an
induced factor that is meant to take into account the effect
involved in the scale change from the matching scale to the
scale from which the mean field is taken. In the spirit of
Walecka-type relativistic mean field (RMF) approach

FIG. 2. The symmetry energy vs the density.

10What is given here is a rough set of data. In our view, these
“constraints” given at n ¼ n0 are not the necessity for getting the
EoS at densities relevant to massive compact stars. This point is
made in the text.
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implemented with scaling parameters [25], corrections to the
mean field should be suppressed in the sense that ~Λ≡ Λ −
kF → 0 as in Landau-Fermi liquid fixed point theory. In other
words, it corresponds to the single-decimationRGprocedure.
As for the V lowkRG that involves the double-decimation

strategy, we start with the assumption that the nuclear
matter at equilibrium can be described in terms of
Wilsonian RG [26]. There the quasiparticle interactions
are to have vanishing β functions in the limit N ≡ kF=ðΛ −
kFÞ → ∞ (where Λ is the cutoff for decimation). With the
vector mesons and the dilaton of bsHLS Lagrangian,
considered heavy compared with the Fermi sea scale,
integrated out to give the marginal four-point quasiparticle
interactions, nuclear matter can be considered to be at its
Fermi-liquid fixed point [25]. In going beyond the equi-
librium density, we continue to assume the Fermi-liquid
structure applies. In the Appendix, we will present an
admittedly simplistic argument based on skyrmion-crystal
matter how amean-field structure arises in the half-skyrmion
phase, which leads—in the premise that we have adopted—
to a Fermi-liquid structure. Now consider the parameter
space of bsHLS on top of the Fermi-liquid fixed point.
Approaching the IR fixed point with the scale parameter
~Λ≡ Λ − kF → 0, the parameters of the EFT Lagrangian
should scale such that the β function for the quasiparticle
interactions tends toward zero at a given Fermi-momentum
kF. Suppose the density is changed from kF1 to kF2, then
certain parameters should change, say the quasiparticle mass
as an example, from m�ðkF1; ~Λ ¼ 0Þ to m�ðkF2; ~Λ ¼ 0Þ to
preserve βðkF1; ~Λ ¼ 0Þ ¼ βðkF2; ~Λ ¼ 0Þ ¼ 0. This means
that the Fermi-liquid fixed point quantities are closely related
to each other at a given density so that g�VðkF; ~Λ ¼ 0Þ as
well asm�ðkF; ~Λ ¼ 0Þ shouldbedependent on hχi� andkF to
have βðkF; ~Λ ¼ 0Þ ¼ 0. Thus in the density regime n ≲ n1=2
(R-I), the condensate hχi� given in the mean field [3], locked

to the quark condensate hq̄qi, decreases as observed in
experiments [27]. The hidden gauge coupling remains
unscaling in this density regime.
Now going to n > n1=2, the dilaton condensate hχi�

should stay constant as predicted by the theory, i.e., (47).
This requires that g�ρ;ωðkF; ~Λ ¼ 0Þ scale to preserve

βðkF; ~Λ ¼ 0Þ ¼ 0 as density increases. Then the flow to
the VM fixed point for the vector mesons and the dilaton-
limit fixed point for the scalar, involving an intricate
interplay between their couplings to baryons to preserve
the Fermi-liquid fixed point structure, leads to the change
in density dependence of g�ρ from g�ρ ≈ gρ near n ¼ n0 to
g�ρ → 0 near the VM fixed point. This changeover is
summarized in Fig. 3. We admit that although consistent
with what we find in the applications reported below, it is
nonrigorous and requires a more transparent analytic
demonstration.

C. Toward hθμμi ∝ κ4 for n > n1=2
Following the argument given in Sec. III C, we take the

results of the skyrmion crystal using sHLS Lagrangian, i.e.,
SkyrmionsHLS, to be equivalent to the mean-field results
of bsHLS with the IDDs properly taken into account.
Now from (27) of SkyrmionsHLS, we have for n > n1=2

hχi� ∝ κ ð50Þ
which is independent of density. Then, it follows from (38)
that

hθμμi ∝ κ4 ð51Þ
also independent of density. As will be explained explicitly,
the constant TEMT implies that the sound velocity of the
dense medium is v2s=c2 ¼ 1=3. This sound velocity is
usually associated with the conformal limit, which is

FIG. 3. The density dependence of the masses (left) and couplings (right) of vector mesons are compared with each other in PKLR [1]
and PKLMR (the present work).
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arrived at when the TEMT is equal to zero. Here the same
velocity is given by a system where TEMT is not equal to
zero. Note that κ → 0 corresponds to the dilaton-limit fixed
point (DLFP). We will discuss how this limit can be arrived
at in the framework of EFTbsHLS.
The question is: Can the V lowk RG treatment give the

same sound velocity 1=
ffiffiffi
3

p
?

To address this question, we recall that the bsHLS at the
mean field corresponds to Landau Fermi-liquid fixed point
with the vanishing β functions for the Landau quasiparticle
interactions and effective quasiparticle massm� for fixed kF.
In our terminology, this is precisely the firstRGdecimation in
the V lowk RG. Now with our main assumption that the β
functions remain 0 as ðΛ − kFÞ=kF → 0, we should expect
that the second decimation going beyond the Fermi-liquid
fixed point—with loop corrections, e.g., ring diagrams—
should leave the TEMT unmodified. This means, following
from the skyrmion-crystal result, that the TEMT should be a
constant independent of density in the leading order in chiral-
scale symmetry [5]. The caveat is that in Nature, both
symmetries, intricately locked to each other, are explicitly
broken. Therefore we cannot expect that the TEMT will be
exactly density-independent.
What we aim then is to adjust the only IDD property in

the region n > n1=2 that is unconstrained in SkyrmionsHLS,
namely the approach to the VM fixed point of the hidden
gauge coupling g�ρ. It turns out that what is needed is to have
the effective g�ρ drop less rapidly than in [1] slightly after
n1=2 and have the VM fixed point reach at a higher density,
say, n > 25n0 than ∼7n0, which was taken in [1]. This
postponement to higher density for a phase transition, be
that chiral restoration coinciding with the VM fixed point or
deconfinement, the precise value of which is unknown in
the given theoretical framework and also in QCD proper—
so it is totally arbitrary—simply implies that there will be
no phase transitions in the range of densities relevant to
compact stars.
The required adjustment for the IDD for the g�ρ to get a

constant density-independent TEMT for n > n1=2 is

summarized in Fig. 3. The density dependence of
g�ρNN

gρNN
is

given by11

g�ρNN

gρNN
¼
(
1–0.15 n

n0
for n1=2 < n < 2.88n0

0.568–0.025 ðn−2.88n0Þ
n0

for 2.88n0 < n < nc

ð52Þ
which gives m�

ρ

mρ
¼ g�ρNN

gρNN
¼ 0 at n ¼ 25.6n0. The resulting

TEMT is plotted in Fig. 4. It turns out, quite surprisingly,
that this result can be captured very well by the simple
formula for n ≥ n1=2

E0=A ¼ −mN þ B

�
n
n0

�
1=3

þD

�
n
n0

�
−1

ð53Þ

which is an analytic solution of dPdn ¼ 1
3
dϵ
dnwhich assumes the

density independent TEMT in n > n1=2. To confirm that it
is a good parametrization, it is checked with the energy per
particle E0=A and the pressure P of both the symmetric
nuclear matter and pure neutron matter as well as the
symmetry energy Esym computed in our V lowk RG. The fit is
plotted in Fig. 5. The fit parameters are

Bα¼ð0;1Þ ¼ ð570 MeV; 686 MeVÞ; ð54Þ

Dα¼ð0;1Þ ¼ ð440 MeV; 253 MeVÞ: ð55Þ

It is seen that the results of the V lowk-RG with bsHLS are
well reproduced for both the neutron matter (α ¼ 1) and the
symmetric nuclear matter (α ¼ 0) by the formula (53).
There are small deviations at high density, for instance in
Esym in Fig. 6, but these could be ameliorated by a refined
form for the IDD in the bare parameters. What transpires is
that the simple form is good enough to confirm that our
scenario is well captured in V lowkRG with bsHLS and to
correctly give the scaling property of the bsHLS parameters
essential for the TEMT in the high-density regime
n > n1=2. As we see in Fig. 5, the EoS’s for both the
α ¼ 1 and α ¼ 0matter are stiff in n > n1=2. This feature is
consistent with the available heavy ion data. The dotted
and dashed lines in Fig. 5 and 6 depicting the pressure and
the symmetry energy represent the empirical constraints for

FIG. 4. −ϵðnÞ þ 3PðnÞ vs density for α ¼ 0 and α ¼ 1.

11The precise form of the scaling has no significance.
What matters is the two changes in slope seen in Fig. 3, one at
n1=2 ∼ 2n0 and another at ∼3n0. They could be smoothed and
modified with refinement in the renormalization group treatment,
which would alleviate the flattening in the scaling. In fact it has
been shown that in a simple chiral model of interacting mesons
and nucleons, a functional renormalization group (FRG)method—
which is nonperturbative improvement over standard chiral
perturbation theory and mean-field approximations—flattens ap-
preciably the dropping in density of the chiral order parameter at
densities exceeding n0 [28]. It is not unlikely that this method
contains more than what is included in our Fermi-liquid approach
via V lowk RG and could modify the effective IDDs for the hidden
gauge couplings.
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the EoS coming from heavy-ion data given by Danielewicz
[29] for the pressure, Li et al. [30] and Tsang et al. [31] for
the symmetry energy respectively. Note that the cusp seen
in the skyrmion crystal simulation is smoothed in the V lowk
RG into a soft-to-hard EoS at n1=2 as observed, e.g.,in [1].

D. Predictions for massive compact stars

Given the EoS described above, it is a standard pro-
cedure to use the Tolman-Oppenheimer-Volkoff (TOV)

equation to calculate the properties of compact stars.
The leptons that participate in beta stability need to be
taken into account as they determine the proton fraction
x≡ np=n ¼ Np=ðNn þ NpÞ. Beta equilibrium involving
leptons, i.e., electrons and muons, n ↔ pþ e− þ ν̄e and
n ↔ pþ μ− þ ν̄μ and charge neutrality imply

np ¼ ne þ nμ; μn ¼ μp þ μe; μe ¼ μμ ð56Þ
where

μn;p ¼
� ∂ϵ
∂nn;p

�
V
: ð57Þ

It is a good approximation to assume μl to be the chemical
potentials of those of free Fermi gas of electrons and
muons. The proton fraction x≡ np=n for matter in beta
equilibrium is then determined by minimizing, for a given
nucleon density n, the total energy per particle E0=A (in
Fig. 5) plus the contributions from leptons and from the rest
mass of the nucleons. Here, we take μn − μp ≈ 4EsymðnÞα.
The resulting proton fraction is given in Fig. 7. It is
appropriate to mention at this point that the predicted
proton fraction is such that at n ∼ 2.5n0, it exceeds the
threshold density for the direct URCA process for star
cooling, xdURCA ≈ 0.14. It also affects significantly the
maximum star mass, say, about 10% in comparison with
the EoS of pure neutron matter. We will comment on this
matter in Sec. VI.
The same EoS that gives the constant TEMT, Fig. 4, with

the beta equilibration suitably included, gives the star mass
vs radius and the star mass vs central density, as shown in
Fig. 8. The result is consistent with the well-measured value
M ¼ 2.01� 0.04 M⊙ [32]. The radius for this mass object

FIG. 6. The symmetry energy Esym vs the density is shown. The
empirical values (named “Exp”) for the symmetry energy are
taken from Li et al. [30] and Tsang et al. [31].

FIG. 5. E0=A (left) and P (pressure) (right) for α ¼ 1 and α ¼ 0matter. The empirical values(named “Exp”) for the pressure are taken
from Danielewicz [29].
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is not yet pinned down but what we get is in the ranges
discussed in the literature. It is reasonable to conclude that
we have here an evidently respectable EoS for massive
compact stars. Up to the predicted central density ∼5.1n0,
there are no other degrees of freedom than the pNG bosons
(π and σ) and vector mesons (with or without explicit
baryons). There are neither hyperons nor quarks. There is
no deconfinement intervening in the structure.
Now what about the sound velocity for the ∼2 solar mass

neutron star? Here is a surprising result.
The trace of energy-momentum tensor and the sound

velocity are related by

∂
∂n hθ

μ
μi ¼ ∂ϵðnÞ

∂n
�
1 − 3

v2s
c2

�
ð58Þ

with v2s=c2 ¼ ∂PðnÞ
∂n = ∂ϵðnÞ

∂n . Since from Fig. 4, we have the
TEMT (nearly) independent of density, the left-hand side
of (58) is (nearly) zero. Assuming that there is no extremum

in the energy density in compact star matter, then ∂ϵðnÞ
∂n ≠ 0.

It therefore follows that

v2s=c2 ≈ 1=3: ð59Þ

The prediction of our approach is given in Fig. 9. Our EoS,
while it gives quite different sound velocities at densities
below n ∼ 3n0 for the α ¼ 0 and α ¼ 1matters, makes both
of their velocities approach rapidly

ffiffiffiffiffiffiffiffi
1=3

p
for n≳ 3n0.

Note that in the range of densities considered here,
hθμμi ≠ 0, so scale symmetry is not restored. We identify
this phenomenon as a precursor to the emergence of scale
symmetry in dense medium.
This is one of our principal findings, which could be

considered as a unique prediction of the theory. What this
implies vis-à-vis with the EoS is discussed in the discussion
section.

E. Gravity wave and tidal deformability

Our V lowk-RG approach makes certain predictions that
differ from the phenomenological approaches found in the
literature, in some cases, rather strikingly such as the sound
velocity, the density-independent trace of energy momen-
tum tensor and emerging symmetries invisible in QCD in
the vacuum. One asks whether these predictions can be
distinguishable from other models and can be seen in
measurable quantities. Phenomenological models with a
large number of parameters can be adjusted to fit most, if
not all, of what is available from astrophysical observables,
so what is needed is a pristine signal for the unorthodox
predictions made in the present approach. For this purpose,
we look at what could be seen in gravity waves emitted
in the coalescing of neutron stars. We discuss as a specific
case the tidal deformability predicted by the EoS given by

FIG. 7. The proton fraction x≡ np=n in neutron star matter
with beta equilibrium. “npe matter” and “npeμ matter” are
composed of neutron, proton, electron and neutron, proton,
electron, muon respectively.

FIG. 8. Mass M vs radius R and M vs central density ncent.
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V lowk-RG and compare it with what is available in the
literature.
With the EoS given by bsHLS above, we could calculate

the tidal deformability λD as shown in the left panel of
Fig. 10 and also the dimensionless quantity ΛD ¼
λDGð c2

GM⊙Þ
5ðM⊙

M Þ5 with the gravitational constant G.

The most interesting mass range is 1.3–1.5 M⊙, for
which most of neutron star masses so far discovered are
populated. One may expect more abundant gravitational
wave emissions from binary collapses with this mass range
than from the binaries with different masses. The defor-
mation parameters λD and dimensionless parametersΛD for
mass ranges 1.1–1.5 M⊙ are calculated in Table I with the
corresponding radii and central densities. The deformabil-
ity parameter for ∼1.4 M⊙ is found to be 4.44 in unit of
1036 g cm2 s2, which can be compared with those of
different EoS’s: For example, the EoS’s of SLy [33],
AP3 [34] and MPA1 [35] for the same mass give λD ¼
1.70, 2.22 and 2.79 respectively [36].
On the other hand, in the higher mass range near to

∼2 M⊙, the deformability parameter in this work is found
to be not much different from those EoS above mentioned.
For the measurability analysis of deformability from

gravitational waves, it is better to use the dimensionless

form of deformability parameter, since the deviation due to
the neutron star deformation from point particle approxi-
mation turns out to be expressed by ΛD rather than λD
itself. From Table I, one can see that the dimensionless
parameter ΛD ¼ 815 for M ¼ 1.4 M⊙ predicted in our
approach is much larger than ΛD ¼ 312, 408, 512 for those
EoS of SLy [33], AP3 [34], and MPA1 [35], respectively.
The differences between those and this work are
δΛD ¼ 503, 407, 303. It is interesting to note that recent
numerical analysis [37,38] demonstrated the measurability
of tidal deformations determined by the change of late
inspiral wave forms for δΛD > 100. This implies that the
differences between this work and those above mentioned,
which are larger than the distinguishability criteria [38], are
expected to be measurable in the forthcoming observations
at aLIGO and aVirgo. It should be mentioned that the
central densities of these neutron stars, 1.1–1.5 M⊙, are
not high enough to probe the half-skyrmion phase,
nc ≲ n1=2ð¼ 2n0Þ. Most of these neutron star interiors up
to the central core is governed by the EoS for n < 2n0:
E=AðMeVÞ ¼ 9.11uþ 2.14u4.08 for a neutron matter and
E=AðMeVÞ ¼ −45.5uþ 30.1u1.54 for a symmetric nuclear
matter with u ¼ n=n0. The major characteristics of this
work is the V lowk-RG approach, which is quite different
from others in this density region, such as giving much
bigger deformation parameters than others.
For large mass neutron stars, the central density is higher

than the threshold for the half skyrmion phase, in which
TEMT becomes independent of density with sound veloc-
ity v2s=c2 ¼ 1=3: E=AðMeVÞ ¼ −940þ 253=uþ 686u0.33

and E=AðMeVÞ ¼ −940þ 440=uþ 570u0.33 for a neutron
matter and symmetric nuclear matter respectively. In this
mass range, as the mass is increasing the deformation
parameter decreases and near 2 M⊙ the deformation
parameter becomes not much different from others as seen
in [39]. The distinguishability of EoS by the tidal defor-
mation using gravitational waves does not seem to be
effective for these high mass binaries. Hence there may be
scant possibility for the tidal deformability to determine
whether our scenario with the sound velocity 1=3 is

FIG. 9. Sound velocity vs density.

FIG. 10. The deformability λD (ΛD) vs the neutron star masses are shown.
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distinguishable from other garden-variety models in the
gravitational wave forms from the higher mass neutron star
binaries. However our scenario is quite different from that
of others of phenomenological approaches where the sound
velocity is typically > 0.5 which would make them in
tension with the conformality bound of Bedaque and
Steiner [40].
Another possibility of probing EoS at higher density is

the gravitational waves emitted just after merger. When
they start merging after inspiral and the density of the
merger remnant of the colliding matter becomes much
higher than the core of the original stars. That is, at the
intermediate stage before becoming a black hole, 1.5 solar
mass binaries(even though the core density is not higher
than 2n0) can make a merger remnant of higher density up
to ∼5.5n0 [41]. The gravitational wave forms during
merger of course are then expected to carry the information
of EoS at the higher density. From the numerical simu-
lations, it is known that the relevant frequency range of GW
during merger is much higher than inspiral period, more
than kilo Herz. Recent analysis [41] demonstrates that the
EoS softening at higher density encoded in gravitational
wave amplitudes can be detectable up to distances of
∼20 Mpc with advanced detectors(aLIGO and aVirgo)
and ∼150 Mpc with third generation detectors (for exam-
ple, Einstein Telescope). This shows an additional interest-
ing window in gravitational wave observations where the
high density hadronic matter can be probed to be able to
distinguish our scenario from others.

F. Going to the DLFP

As emphasized, there is no reason to adhere to the
possibility that the sound velocity of compact stars is
exactly 1=

ffiffiffi
3

p
. This is because the TEMT cannot be exactly

constant of density in the density range of compact stars in
nature, not exceeding much beyond the central density
∼5n0. Among others, there is explicit symmetry breaking,
chiral as well as scale, that needs to be accounted for.
However at some higher density, say, ≳7n0, the dilaton-
limit fixed point with hχi� → 0 may be approached if not
reached exactly on top. In this case then the sound velocity
will approach nearly exactly 1=

ffiffiffi
3

p
. This would correspond

to the emergence of scale symmetry in dense medium even
though β0 is not equal to zero.
We have no rigorous argument for the existence of such a

phenomenon. However we can entertain a conjecture that

could be validated with better understanding of the struc-
ture of the theory.
Given the “walking” dilaton condensate for n > n1=2, the

question is how one can induce hχi� → 0 to reach the DLFP
in dense matter. This may appear difficult to answer in an
affirmative way. However if one accepts the density
dependence of g�ω as prescribed in our theory, with a
change after n ¼ n1=2, the following is a possible scenario
for the transition to the DLFP.
When g�ω decreases, albeit slowly, as density increases in

the density regime n≳ n1=2, the ω-repulsion will get
reduced but if it still counterbalances the σ-attraction
enough as density goes above n1=2, then the matter will
remain stable. But, if the g�ω becomes further suppressed
so that theω-repulsion becomes comparable with or weaker
than the σ-attraction, then the matter will become unstable
at increasing density unless the parameters in bsHLS
are modified. Approaching the dilaton-limit fixed-point
density nDLFP, the matter could be stabilized by intricate
parameter changes such that hχi� → 0 with the quasipar-
ticles decoupled from the ρ and ω and the dilaton becoming
massless m�

σ ∝ hχi� → 0.
We can offer a heuristicmean-field argument that supports

the scenario discussed above, namely that thewalking hχi� ∼
constant induces the system to go to DLFP. In themean-field
approximation with bsHLS, the ω-NN interaction could be
reinterpreted to include the ω-exchange force between the
nucleons given by loop contributions to the ω-NN vertex,
such as Fock terms. If g�ω drops at increasing density, then
theω-repulsionwill get reduced. This density dependence of
theωNN-repulsion should be taken into account in doing the
mean-field calculation. For simplicity, we include the effects
from theω exchange and higher order terms ofbsHLSfor the
ωNN repulsion into the density dependence of g�Vω following
[3,25]. Then the thermodynamic potential with a density-
dependent g�Vω and g�ω for bsHLS can be written as

Ωðχ; nÞ ¼ 1

4π2

�
2E3

FkF −m�2
N EFkF −m�4

N ln
�
EF þ kF

m�
N

��

þ ðg�Vω − 1Þ2
2f2σωhχi�2=f2σ

n2 þ Vðhχi�Þ − μðnÞn; ð60Þ

whereEF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2F þm�2

N

p
and the chemical potential is given

as a function of density n by

μðnÞ ¼ EFðnÞ þ
ðg�Vω − 1Þ2
f2σωhχi�2=f2σ

n

þ ðg�Vω − 1Þ
f2σωhχi�2=f2σ

n2
∂ðg�Vω − 1Þ

∂n ð61Þ

including the rearrangement term ðg�Vω−1Þ
f2σωhχi�2=f2σ n

2 ∂ðg�Vω−1Þ∂n .

As shown in [3], if g�ωNN ∼ n−
1
2 so that hχi� ∼ constant,

the thermodynamic potential (60) becomes

TABLE I. Tidal deformabilities.

M=M⊙ nc=n0 λD=ð1036 g cm2 s2Þ ΛD=100 R=km

1.10 1.8 4.59 26.5 12.7
1.25 1.9 4.56 14.1 12.9
1.39 2.0 4.44 8.15 13.0
1.45 2.1 4.35 6.44 13.0
1.51 2.2 4.22 5.06 13.1
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ΩðnÞwalkinghχi ≈ −
1

4π2
½2
3
EFk3F −m�2

N EFkF

þm�4
N ln

�
EF þ kF

m�
N

�
� þ Vðhχi�Þ ð62Þ

which gives hθμμi ≈ constant. This can be well fitted by
ΩðnÞwalkinghχi≈−A×k4F−B<ΩðnÞDLFP¼− 1

6π2
k4F at low

density, where 0 < A < 1
6π2

, 0 < B.12 Thus we find that
ΩðnÞwalkinghχi becomes greater than ΩðnÞDLFP as density
increases above some density. This means that the baryonic
matter with g�ωNN ¼ hχi� ¼ 0 at DLFP becomes more
favorable energetically than the matter with a walking
hχi�. This will trigger a (first-order) transition to DLFP.
We recall that gωNN ¼ 0 is required in RG analyses of the
bsHLS parameters to arrive at the DLFP as an IR fixed point
[3] and also for the skyrmion matter simulated on lattice
[42,43] to arrive at hχi� → 0which makes the energy density
beE=B=V ∝ 1

L4 ∝ n4=3 so that hθμμi ¼ 0 and hχi� ¼ 0. These
results support that the density dependence of g�ωNN related
to the behavior of hχi� is important for going to the DLFP.
How the ω-nucleon interaction is related to the emergence
of the scale symmetry could be studied in the scale-chiral
Lagrangian approach formulated in [8].
Furthermore if nDLFP ∼ nVM, the vector manifestation

could set in with f�σρ → f�π and m�
ρð∼g�ρÞ → m�

π → 0

approaching the VM fixed point, together with the GL
satisfied by f�σ → f�π and m�

σ → m�
π → 0 approaching the

DLFP. Note that in this scenario the sound velocity vs=c≃
1=3 will have no discontinuity as hχi� changes from
“walking” to “running” toward zero. It may be that the
DLFP and the VM fixed point coincide, in which case π, σ, ρ
and a1 could come together into Weinberg’s “mended
symmetry” [44]. Whether this state of matter can be reached
in Nature will require a treatment in the half-skyrmion phase
which in sHLS sets in for n > n1=2 which we believe must
overlap with the quarkyonic phase in which quark degrees of
freedom are to figure [45].
We admit that the scenario described in this section is

highly speculative.

VI. REMARKS

It is shown in this paper that an EoS constructed with an
EFT Lagrangian whose intrinsic density dependence is
inherited from QCD combined with what one can extract
from a skyrmion structure of dense matter, that give a
satisfactory description of currently measured massive com-
pact-star properties, predicts the sound velocity approaching
the conformal limit 1=

ffiffiffi
3

p
. The essential ingredient was that

the trace of the energy-momentum tensor in the chiral limit of
QCD approaches, at density n≳ 2n0, a density independent
constant κ4 where κ is given by the dilaton condensate hχi�.

This result comes essentially from the fact that as pointed out
by Yamawaki [9], there is hidden scale symmetry in the
strong interactions that also involve hidden local symmetry.
How this comes out in the present paper hangs crucially on
what comes out of skyrmion descriptions of dense baryonic
matter with the vector mesons and the dilaton present as
relevant degrees of freedom.
The behavior of the sound velocity v2s=c2 for pure neutron

matter predicted by our approach in Fig. 9 has a peculiar
feature in the vicinity of n ∼ 2n0 where the topology change
takes place. It startswithv2s=c2< 1=3 at lowdensityn < 2n0,
goes up to v2s=c2> 1=3 at n ∼ 2n0, drops below 1=3 and then
climbs to and asymptotes at 1=3 at higher density n≳ 3n0.
This feature closely resembles the scenario arrived at by
Bedaque and Steiner [40] in the study of the sound velocity
based on their analysis of neutron starswithmass around two
solar masses with various phenomenological equations of
state. In our theory, there is a rather abrupt changeover of the
bsHLS Lagrangian parameters due to a topology change
(such as the cusp in the skyrmion crystal description), so one
might imagine that such a behavior could be an artifact of the
sharp transition. One of the characteristic features arising
from the topology change is the stiffening of the symmetry
energy at higher density n > 2n0. It is responsible for the
relatively high proton fraction of nuclear matter in beta
equilibrium. Itmight render thedirectURCAprocess to set in
precociously and trigger too rapid a star coolingwhichmight
be at odds with observation. If it turns out to be serious, then
that would indicate within our formalism that we need to
improve on how the vector manifestation property of the ρ
meson sets in at high density. This matter may be related to
what is mentioned in footnote 10 regarding the effective IDD
of the gauge coupling constant. On the other hand, the fact
that the dense baryonic matter in our description is in the
precursor state to an emerging scale invariance and hence
manifesting a conformal-type sound velocity as we are
proposing is highly suggestive of the intricate mechanism
of the Bedaque-Steiner scenario. What is surprising in our
description is, however, that the “conformal” sound velocity
v2s=c2 ¼ 1=3 sets in so “precociously” in density and for
θμμ ≠ 0. In [40], in contrast, the matter with v2s=c2 > 1=3
should prevail up to density n ∼ 5n0, the maximum central
density of ∼2-solar mass objects because of the strong
hadronic interactions intervening in the phenomenological
models they relied on. The conformal velocity should of
course appear at very high density.
In the presence of vector mesons, the Lagrangian from

which skyrmions arise contains an anomalous term which is
present in the Lagrangian even for two flavors and that is the
homogeneous Wess-Zumino (hWZ) term [10]. This term
does not figure directly in the structure of baryonic matter
when the baryon fields are explicitly present: The V lowk RG
treatment made above is not affected by this term. However
when baryons are generated as skyrmions for dense matter,
the hWZ term plays a crucial role because it is through this

12By doing the mean-field calculation with bsHLS, it is shown
that hχi� ¼ 0 if gVω ¼ 1 so that ΩðnÞDLFP ¼ − 1

6π2
k4F.
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term that theωmeson enters in nuclear dynamics.Without it
the ω does not figure in the nuclear interactions. That would
be disastrous for the stability of nuclear matter and for the
EoS of dense matter.
The hWZ term consists of three terms with three

independent parameters [10]. All three terms need to be
included for reliable calculations. For simplicity in nota-
tion, let us just take one combination of them in the form
LhWZ ∝ ωμBμ where Bμ is the topological baryon current.
This term is of scale dimension 4, so classically it is scale
invariant. However the quantum anomaly introduces β0 for
the anomalous dimension of the gluon G in the form
LhWZ → ðhhWZ þ ð1 − hhWZÞðχ=fσÞβ0 ÞLhWZ where h is an
unknown parameter [8]. If there were no explicit symmetry
breaking of scale symmetry, that is β0 ¼ 0, then there would
be no dilaton coupling to the matter fields in the
Lagrangian. However it turns out that if β0 ¼ 0, the sky-
rmion matter would diverge [43], so the skyrmion matter
would make no sense. In order to make the skyrmion
structure sensible, it was found to be required that 1≲
β0 ≲ 3 [8,46]. This means that in order for the ω meson to
figure in the skyrmion matter and assure that κ be density-
independent, the explicit scale symmetry must intervene in
the hWZ term with a given β0. This poses a puzzle as to how
this hWZ-term effect is encoded in the IDDs of EFTbsHLS.
It is possible that the β0 is buried in the parameters of the
bsHLS Lagrangian, without making explicit breaking of
scale symmetry in the Lagrangian. This may be related to
that if one sets σ ¼ 0 in scale-chiral perturbation theory
(χPTσ), one would effectively get the results of three-flavor
chiral perturbation theory, χPT3, which work very well for
processes that do not involve scalar channels, with the
effects of the trace anomaly hidden in the parameters.
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Note added.—In this paper, we rely on the IDD scaling
obtained in Ref. [1], apart from the vector manifestation
scaling in the hidden gauge coupling in R-II from that listed
in Ref. [1] that we adjusted so as to have the sound velocity
reach the conformal sound velocity 1=

ffiffiffi
3

p
. We point out an

error in the scaling of gA and gπNN listed in Table 1 of

Ref. [1]. Contrary to what is given there, those constants do
not IDD-scale in both R-I and R-II. There is of course the
effect of the Landau parameter g00 in the ΔN channel
contributing to gA mentioned in the footnote. It should of
course be included. But this effect is not of IDD. It is a
correlation effect involving the Δð33Þ resonance that arises
when the baryon configuration space is extended to Δ-hole
exciations. How significant such an effect is in nuclear
processes has been studied in nuclear giant Gamow-Teller
resonances and the indication is that the Landau g00 effect is
small if not absent. Furthermore that channel does not
affect the EoS we are concerned with. Hence our results
given in this paper are unaffected by the error.

APPENDIX: THE MEAN-FIELD STRUCTURE
OF THE HALF-SKYRMION PHASE

In this Appendix, we show that the half-skyrmion phase
in the skyrmion-crystal simulation of dense baryonic matter
is in a state that can be described entirely by mean fields,
largely undistorted by strong interactions. This resembles
Landau-Fermi liquid fixed point theory where the β
function for the quasiparticle interactions is suppressed.
This striking feature was first found in the Skyrme model
with the Atiyah-Manton ansatz in [47]. Here we will show
the phenomenon using the HLS Lagrangian [48].13

We write the chiral field U as Uðx⃗Þ ¼ ϕ0ðx; y; zÞ þ
iϕj

πðx; y; zÞτj with the Pauli matrix τj and j ¼ 1, 2, 3.
Including ρ and ω, we write the fields placed in the lattice
size L as ϕη;Lðx⃗Þ with η ¼ 0; π; ρ;ω and normalize them
with respect to their maximum values denoted ϕη;L;max for
given L. It can be shown, as in [47], with HLS that in the
half-skyrmion phase14 with L≲ L1=2 where L1=2 ≃ 2.9 fm,
the field configurations are invariant under scaling in
density as the lattice is scaled from L1 to L2

ϕη;L1
ðL1t⃗Þ

ϕη;L1;max
¼ ϕη;L2

ðL2t⃗Þ
ϕη;L2;max

: ðA1Þ

Since other fields are quite similar, we only show in Fig. 11
the case of ϕ0;π for ϕ0;πðt; 0; 0Þ vs t with t≡ x=L. What is
seen there is that density-scale invariance sets in for
L≲ L1=2. One can see that the field is independent of
density in the half-skyrmion phase with L≲ L1=2 whereas
for the skyrmion phase with lower density with L > L1=2, it
is appreciably dependent on density.
What does this imply for the energy density?
The energy density for the skyrmion matter put on the

lattice of lattice size L can be written as

13Sincewhat matters as in the structure of the tensor forces is the
topology and symmetry involved, largely independent of strong
interactionsmediated by non-topological fields, the same argument
should apply to the dialton in the half-skrymion phase in sHLS.

14The precise value of the half-skyrmion density which
depends on the parameters is not important for our discussions.
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ϵ ¼ E=A=Vð¼ L3Þ ¼ 1

L3

Z
L

0

d3x
X
n;m

cn;mfn;mð∇⃗x;ϕη;Lðx⃗ÞÞ;

ðA2Þ
where cn;m is the coefficient of fn;m which is the function of

∇⃗x and ϕη;Lðx⃗Þ having nth power of ∇⃗x and mth power
ϕη;Lðx⃗Þ with ∇x;j ¼ ∂

∂xj. One can reduce it to

ϵ ¼
X
n;m

�
1

L

�
n
ðϕη;L;maxÞm

Z
L

0

d3x
L3

cn;mfn;m

�
L∇⃗x;

ϕη;Lðx⃗Þ
ϕη;L;max

�

ðA3Þ

¼
X
n;m

�
1

L

�
n
ðϕη;L;maxÞm

Z
1

0

d3tcn;mfn;m

�
∇⃗t;

ϕη;LðLt⃗Þ
ϕη;L;max

�

ðA4Þ

¼
X
n;m

�
1

L

�
n
ðϕη;L;maxÞmAn;m; ðA5Þ

where An;m is a constant independent of the latticesize L.
Calculating the energy density (A5) in skyrmion-crystal

simulations involves field configurations satisfying their
equations of motion. Hence (A5) is a mean field expression.
It captures all essential dynamics in terms of the mean fields
of each degrees of freedom involved, with residual inter-
actions suppressed. The density dependence lies, apart from
the ð1=LÞn factor, in the maximum field configuration
ðϕη;L;maxÞm. This implies that in the half-skyrmion phase,
considered to set in at high density, the mean-field structure
dominates. This agrees with the lore that at high density—
and in the large Nc limit, the skyrmion crystal picture
becomes valid in QCD. In clear contrast, however, as one
can see in Fig. 11, the mean-filed structure breaks down in
the lower-density phase with L > L1=2. Taking the RMF
approximation to be more or less equivalent to Fermi-liquid
fixed point theory at high density, one can take the break-
down of the mean-field structure as a signal for non-Fermi
liquid structure. This also agrees with the understanding that
the property of low-density baryonic matter—including
nuclear matter—may be poorly captured in crystal.

FIG. 11. The field configurations ϕ0 and ϕ1
π as a function of t ¼ x=L along the y ¼ z ¼ 0 line. The maximum values for η ¼ 0; π are

ϕ0;L;max ¼ ϕπ;L;max ¼ 1. The half-skyrmion phase sets in when L ¼ L1=2 ≲ 2.9 fm.
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