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We study properties of 2þ 1-flavor QCD in the imaginary chemical potential region by using two
approaches. One is a theoretical approach based on the QCD partition function, and the other is a qualitative
one based on the Polyakov-loop extended Nambu–Jona-Lasinio (PNJL) model. In the theoretical approach,
we clarify conditions imposed on the imaginary chemical potentials μf ¼ iθfT to realize the Roberge-
Weiss (RW) periodicity. Here, T is the temperature, the index f denotes the flavor, and θf are dimensionless
chemical potentials. We also show that the RW periodicity is broken if any one of θf is fixed to a constant
value. In order to visualize the condition, we use the PNJL model as a model possessing the RW periodicity
and draw the phase diagram as a function of θu ¼ θd ≡ θl for two conditions of θs ¼ θl and θs ¼ 0.
We also consider two cases, ðμu; μd; μsÞ ¼ ðiθuT; iC1T; 0Þ and ðμu; μd; μsÞ ¼ ðiC2T; iC2T; iθsTÞ; here, C1

and C2 are dimensionless constants, whereas θu and θs are treated as variables. For some choice of C1 (C2),
the number density of the up (strange) quark becomes smooth in the entire region of θu (θs) even in the high
T region. This property may be important for lattice QCD simulations in the imaginary chemical potential
region, since it makes the analytic continuation more feasible.
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I. INTRODUCTION

One of the most important issues in hadron physics is to
clarify the properties of quark matter in finite temperature
and/or quark chemical potential. The knowledge of thermo-
dynamics on quark matter is essential to understand the
structure of the QCD phase diagram. As the review of the
QCD phase diagram, see Refs. [1–4] and references therein.
Lattice QCD (LQCD) simulations may be the most

promising and powerful theoretical tool of investigating the
QCD phase diagram. As for isospin-symmetric two-flavor
QCD, the fermion matrix is written as

MðμlÞ ¼ γμDμ þml − γ4μl ð1Þ

and satisfies γ5 Hermiticity, ðMðμlÞÞ† ¼ γ5Mð−μlÞγ5.
Here, μl and ml are the light-quark chemical potential and
its mass, respectively. LQCD simulations are feasible for
μl ¼ 0 since detMð0Þ is real and positive definite. However,
the fermion determinant becomes complex in finite μl
because ðdetMðμlÞÞ� ¼ detMð−μlÞ ≠ detMðμlÞ from
the γ5 Hermiticity. This is the well-known sign problem
and makes the importance-sampling method unfeasible.
One of the ideas to circumvent the sign problem is the

imaginary chemical potential μl ¼ iθlT, where T is the
temperature and θl is a dimensionless chemical potential.
Indeed, the relation

ðMðiθlTÞÞ† ¼ γ5MðiθlTÞγ5 ð2Þ

can be obtained, and, hence, there is no sign problem, and
positivity of the fermion determinant is also ensured. From
the imaginary μl region, one can extract information of the
real μl region by the analytic continuation. In fact, this
approach was successful for the two-flavor QCD [5–14].
In the imaginary μl region, the QCD thermodynamic

potential has the Roberge-Weiss (RW) periodicity [15],
which can be regarded as a remnant of Z3 symmetry in the
pure gauge limit. Also, in Ref. [15], it was shown that the
first-order RW phase transition occurs at θl ¼ ð2kþ 1Þπ=3
above some temperature TRW, where k is any integer; see
Fig. 1. Because of the RW phase transition, information of
the real μl region is limited up to μl=T ∼ 1, particularly
at T > TRW.
As an alternative method of LQCD simulations, one can

consider effective models. Among the effective models, the
Polyakov-loop extended Nambu–Jona-Lasinio (PNJL)
model is one of the most useful models and yields a good
description of phenomena on quark matter, such as chiral
and deconfinement transitions [16–28]. It was proven in
Refs. [24–27] that the thermodynamic potential of the
PNJL model possesses the RW periodicity for the two-
flavor case, and the PNJL model reasonably reproduces
LQCD data on the imaginary μl region [27,28].
In the case of 2þ 1-flavor QCD, the strange-quark

chemical potential μs is introduced as an additional external
parameter, and the fermion determinant consists of the
product detMðμlÞ · detMðμsÞ. When both μl and μs are
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pure imaginary, that is, when μl ¼ iθlT and μs ¼ iθsT, the
fermion determinant becomes real, and positivity of its
determinant is guaranteed just as in the two-flavor case.
Here, θs is a dimensionless chemical potential for the
strange quark. It is, thus, suitable to consider the imaginary
chemical potential region even in the 2þ 1-flavor case, and
some works were carried out [29–33]. In Ref. [30], the one-
loop effective potential for the untraced Polyakov loop in
the high T limit was calculated as a function of θl for two
conditions, (I) θs ¼ θl and (II) θs ¼ 0, and they showed
that the RW periodicity exists only in condition (I). In
addition to this result, the calculation in the nonperturbative
region is also necessary to acquire a better understanding
of the RW phase transition.
Also, in Ref. [30], it was pointed out that the θl region

available for analytic continuation becomes broader in
condition (II) than in (I). This fact indicates that the
analytic region can be expanded by breaking the RW
periodicity deliberately. It is, therefore, interesting to
consider how largely the analytic region is expanded by
breaking the RW periodicity.
In this paper, we study the properties of the 2þ 1-flavor

QCD in the imaginary chemical potential region by using
two approaches. One is a theoretical approach based on the
QCD partition function, and the other is a qualitative one
based on the PNJL model. In the theoretical approach, we
first prove that the thermodynamic potential of nondegen-
erate three-flavor QCD has the RW periodicity in general,
but the periodicity is lost when any one of the chemical
potentials is fixed to a constant value. Next, as for the
2þ 1-flavor case, we prove that the thermodynamic poten-
tial of the PNJL model has the same properties of QCD on
the RW periodicity. For this reason, the PNJL model is used
for qualitative analysis. We calculate some thermodynamic
quantities and draw the phase diagram by using the PNJL
model under conditions (I) and (II) in order to visualize

the roles of the conditions. Finally, we evaluate the up- and
strange-quark number densities for some choices of θl and
θs. We numerically confirm that discontinuity of number
densities due to the first-order phase transition disappears
in the high T region, and the number densities become
smooth. This property may be important for LQCD
simulations in the imaginary chemical potential region,
since it makes the analytic continuation more feasible even
in high T region.
This paper is organized as follows: In Sec. II, we discuss

the relation between the QCD thermodynamic potential
and the RW periodicity. In Sec. III, the formalism of the
PNJL model is explained, and the properties of the model
in the imaginary chemical potential region are discussed.
Section IV is devoted to the present numerical results
calculated by the PNJL model. The summary is given in
Sec. V.

II. QCD PARTITION FUNCTION AND RW
PERIODICITY

Before going to the 2þ 1-flavor case, we consider
nondegenerate three-flavor QCD with imaginary μf
(f ¼ u, d, s). For later convenience, we introduce the
dimensionless chemical potentials θf as μf ¼ iθfT.
In Euclidean spacetime with the time interval
τ ∈ ½0; β ¼ 1=T�, the QCD partition function ZQCD is
defined by

ZQCDðθfÞ ¼
Z

DADq̄Dq exp ½−SQCD� ð3Þ

having the action

SQCD ¼
Z

d4x

�
q̄

�
γμDμ þ m̂ − i

θ̂

β
γ4

�
qþ 1

4g2
ðFa

μνÞ2
�
;

ð4Þ

where q ¼ ðqu; qd; qsÞT is the quark field, m̂ ¼ diagðmu;
md;msÞ is the current-quark mass matrix, and Dμ ¼ ∂μ þ
iAμ is the covariant derivative including the gluon field
Aμ ¼ gAa

μλ
a=2 with the gauge coupling g and the Gell-

Mann matrices λa. For the quark fields, the antiperiodic
boundary conditions qfðβ;xÞ ¼ −qfð0;xÞ are imposed.

The dimensionless chemical potential matrix θ̂ is defined
by θ̂ ¼ diagðθu; θd; θsÞ.
We first redefine all the quark fields as

qf → exp

�
i
θf
β
τ

�
qf: ð5Þ

The integral measure is unchanged under Eq. (5), and ZQCD
is transformed into

FIG. 1. Sketch of the phase diagram for the two-flavor QCD in
the θl-T plane. The solid line is the crossover deconfinement
transition line, and the vertical dashed line is the first-order RW
phase transition line. The deconfinement transition temperature is
represented by Tc. The label TRW means the RW phase transition
temperature.
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ZQCDðθfÞ ¼
Z

DADq̄Dq exp ½−SQCD�;

SQCD ¼
Z

d4x

�
q̄ðγμDμ þ m̂Þqþ 1

4g2
ðFa

μνÞ2
�

ð6Þ

with the boundary conditions

qfðβ;xÞ ¼ −eiθfqfð0;xÞ: ð7Þ

Now, we consider Z3 transformation defined by

qf → Ukqf; ð8Þ

Aμ → UkAμU−1
k þ ið∂μUkÞU−1

k ; ð9Þ

Uk ¼ exp

�
i
2πk
3

τ

β

�
; k ∈ Z: ð10Þ

The functional form of ZQCD keeps the form of Eq. (6)
under the Z3 transformation, but the boundary conditions
are changed into

qfðβ;xÞ ¼ − exp

�
i

�
θf −

2πk
3

��
qfð0;xÞ: ð11Þ

Equations (6), (7), and (11) give the equality

ZQCDðθf − 2πk=3Þ ¼ ZQCDðθfÞ: ð12Þ

The QCD partition function, thus, has the periodicity of
2π=3 in θf, which is nothing but the RW periodicity.
The RW periodicity of ZQCD can be interpreted as the

invariance under the extended Z3 transformation [24–27]
composed of the shift θf → θf þ 2πk=3 and Eqs. (8)–(10).
The QCD thermodynamic potentialΩQCD (per unit volume)
is related with ZQCD as ΩQCD ¼ −T lnZQCD. Therefore,
ΩQCD also has the RW periodicity when ZQCD is invariant
under the extended Z3 transformation.
The discussions mentioned above can be applied to the

2þ 1-flavor case by setting θu ¼ θd ≡ θl. Hence, one can
find that ΩQCD with condition (I) has the RW periodicity
because of its invariance under the extended Z3 trans-
formation. Meanwhile, when any one of θf is fixed to a
constant value, for example, θs ¼ 0 in condition (II), the
RW periodicity disappears since one cannot make the shift
θf → θf þ 2πk=3 for fixed θf. This is the reason why the
RW periodicity does not exist for condition (II).
In the next section, we formulate the 2þ 1-flavor PNJL
model and show that the PNJL model also possesses the
same properties discussed in this section.

III. PNJL MODEL

The Lagrangian of the PNJL model in Euclidean
spacetime is formulated by

LPNJL ¼ q̄

�
γμDμ þ m̂ − i

θ̂

β
γ4

�
qþ U

− Gs

X8
a¼0

½ðq̄λaqÞ2 þ ðq̄iγ5λaqÞ2�

þ K½detf q̄ð1þ γ5Þqþ detf q̄ð1 − γ5Þq�; ð13Þ

where the definitions of q, m̂; and θ̂ are the same as in
Eq. (4), but the covariant derivative has the form Dμ ¼
∂μ þ igδμ4Aa

μλ
a=2 in the present PNJL model. The

Polyakov-loop potential U is a function of the Polyakov
loop Φ and its conjugate Φ�. The definitions of these
quantities are

Φ ¼ 1

3
TrcðLÞ; Φ� ¼ 1

3
TrcðL†Þ; ð14Þ

where L ¼ exp½iβA4� ¼ exp½iβdiagðA11
4 ; A22

4 ; A33
4 Þ� for the

classical gauge fields Aii
4 satisfying A11

4 þ A22
4 þ A33

4 ¼ 0,
and the trace is taken in color space. We use the logarithm
type of

U ¼ T4

�
−
aðTÞ
2

ΦΦ� þ bðTÞ lnH
�
; ð15Þ

aðTÞ ¼ a0 þ a1

�
T0

T

�
þ a2

�
T0

T

�
2

; bðTÞ ¼ b3

�
T0

T

�
3

;

ð16Þ

H ¼ 1 − 6ΦΦ� þ 4ðΦ3 þΦ�3Þ − 3ðΦΦ�Þ2 ð17Þ

in Ref. [22]. Note that Eq. (15) preserves the Z3 symmetry.
The original value of T0 is fitted to 270 MeV so as to

reproduce the deconfinement transition temperature in the
pure gauge limit [34,35]. When the dynamical quarks are
taken into account, the value of T0 ¼ 270 MeV predicts a
higher deconfinement transition temperature than LQCD
prediction, Tc ∼ 160 MeV at θf ¼ 0 [36–40]. The calcu-
lation in Ref. [41] provides lower Tc at θf ¼ 0 by refitting
T0 to a lower value, but we keep the original value to
concentrate on qualitative discussions.
In the quark-quark interaction terms,Gs is the strength of

the scalar-type four-point interaction, and K is the strength
of the Kobayashi-Maskawa–’t Hooft (KMT) interaction
[42–44]. The determinant in the KMT interaction term is
taken in flavor space. The KMT interaction explicitly
breaks UAð1Þ symmetry and is necessary to reproduce
the measured mass of η0 meson at vacuum.
The mean-field approximation yields the thermodynamic

potential ΩPNJL (per unit volume) as
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ΩPNJL ¼ 2Gs

X
f¼u;d;s

σ2f − 4Kσuσdσs þ U

−
2

β

X
f¼u;d;s

Z
d3p
ð2πÞ3 ½3βEf þ lnð1þ 3Φe−βðEf−μfÞ þ 3Φ�e−2βðEf−μfÞ þ e−3βðEf−μfÞÞ

þ lnð1þ 3Φ�e−βðEfþμfÞ þ 3Φe−2βðEfþμfÞ þ e−3βðEfþμfÞÞ�; ð18Þ

where μf ¼ iθfT, σf ¼ hq̄fqfi, and Ef ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þM2

f

q
with

the constituent-quark masses

Mf ¼ mf − 4Gsσf þ 2Kσf0σf00 ;

ðf ≠ f0; f0 ≠ f00; f ≠ f00Þ: ð19Þ

Note that θu ¼ θd ≡ θl, σu ¼ σd, and Eu ¼ Ed in the
2þ 1-flavor case. We introduce the three-dimensional
cutoff Λ to regularize the vacuum term in Eq. (18). The
variables X ¼ fσl; σs;Φ;Φ�g are determined by the sta-
tionary conditions,

∂ΩPNJL

∂X ¼ 0; X ¼ fσl; σs;Φ;Φ�g: ð20Þ

The parameters used in the present PNJL model are
summarized in Table I.
Under the extended Z3 transformation, the Polyakov

loop behaves as Φ → Φe−2πik=3 and is not invariant. It is
more convenient to define the flavor-dependent modified
Polyakov loop and its conjugate [28] as

Ψf ¼ eiθfΦ; Ψ�
f ¼ e−iθfΦ�: ð21Þ

The extended Z3 transformation leaves these quantities
invariant. After rewriting Eq. (18) by Ψf and Ψ�

f, we can
reach the expression

ΩPNJL ¼ 2Gs

X
f¼u;d;s

σ2f − 4Kσuσdσs þ U

−
2

β

X
f¼u;d;s

Z
d3p
ð2πÞ3 ½3βEf þ lnð1þ 3Ψfe−βEf þ 3Ψ�

fe
−2βEfe3iθf þ e−3βEfe3iθfÞ

þ lnð1þ 3Ψ�
fe

−βEf þ 3Ψfe−2βEfe−3iθf þ e−3βEfe−3iθfÞ�: ð22Þ

The θf dependence of Eq. (22) is embedded in the extended
Z3 symmetric quantities fe�3iθf ;Ψf;Ψ�

fg. Obviously,
ΩPNJL is invariant under the extended Z3 transformation,
and, hence, ΩPNJL has the RW periodicity in general. Once
any one of θf is fixed to some constant value, however, the
extended Z3 transformation changes Ψf into Ψfe−2πik=3,
and thereby ΩPNJL does not become invariant. It is, thus,
concluded that ΩPNJL has the same properties as ΩQCD on
the RW periodicity.

IV. NUMERICAL RESULTS

We show the numerical results calculated by the PNJL
model. In the calculations of thermodynamic quantities
and the QCD phase diagram, both conditions (I) and (II)
are considered. We pick up ΩPNJL and the quark number
density nq as the thermodynamic quantities and calculate
θl dependence for T ¼ 200, 250 MeV. In the results of
condition (I), the RW periodicity can be seen. On the
contrary, there is no RW periodicity for condition (II), as
expected in Sec. III. In the QCD phase diagram, we find
for condition (II) that the crossover chiral transition line is
discontinuous at some value of θl. In addition, the first-
order phase transition line appears as is the RW phase
transition line and can be fitted by a polynomial function
of θl. Finally, the up- and strange-quark number densities
are calculated under the situation that no RW periodicity
exists. We show that the nonanalyticity in the number
densities disappears below some constant value of θl
or θs.

TABLE I. Summary of the parameter set used in the present
PNJL model. The panels (a) and (b) are the parameter set in U
[22] and the NJL part [45,46], respectively.

(a) a0 a1 a2 b3 T0 (MeV)
3.51 −2.47 15.2 −1.75 270

(b) ml (MeV) ms (MeV) Λ (MeV) GsΛ2 KΛ5

5.5 140.7 602.3 1.835 12.36
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A. Behavior of thermodynamic quantities

The quark number density nq is obtained by the relation

nq ¼
X

f¼u;d;s

nf ¼ iβ
X

f¼u;d;s

∂
∂θf ΩPNJL; ð23Þ

where nf is the number density of the quark with flavor f.
Using Eq. (23), we can see that nq also has the RW
periodicity when ΩPNJL possesses the periodicity. Since
ΩPNJL is charge even, nf is charge odd, namely,
ΩPNJLðθfÞ ¼ ΩPNJLð−θfÞ and nqð−θfÞ ¼ −nqðθfÞ.
Figure 2 presents ΩPNJL and the imaginary part of nq,

ImðnqÞ, for condition (I), as a function of θl. The dotted line
denotes the results for T ¼ 200 MeV and the solid line
does for T ¼ 250 MeV. Both ΩPNJL and nq have the RW
periodicity and are smooth for any θl when T ¼ 200 MeV.
Meanwhile,ΩPNJL has cusps at θl ¼ π=3mod 2π=3, and nq
becomes discontinuous there for T ¼ 250 MeV. These
singularities mean the first-order RW phase transition
and indicate that the RW end point is located in 200 <
T < 250 MeV (see Fig. 4).

Now, we concentrate on the region of 0 ≤ θl ≤ 2π=3.
For charge-even quantities Oeven with the RW periodicity,
such as ΩPNJL, the relation

Oevenðθl − ϵÞ ¼ Oevenð−θl þ ϵÞ
¼ Oevenð−θl þ 2π=3þ ϵÞ ð24Þ

is obtained, where ϵ is a positive infinitesimal quantity.
If the gradient

lim
θl→π=3�0

dOeven

dθl
ð25Þ

is neither zero nor infinity, charge-even quantities have a
cusp at π=3. On the other hand, charge-odd quantities Oodd
possessing the RW periodicity, such as ImðnqÞ, satisfy

Ooddðθl − ϵÞ ¼ −Ooddð−θl þ ϵÞ
¼ −Ooddð−θl þ 2π=3þ ϵÞ: ð26Þ

Hence, discontinuity is seen at θl ¼ π=3 for charge-odd
quantities in the high T region [24–26,47], where

lim
θl→π=3�0

OoddðθlÞ ≠ 0: ð27Þ

Because of these singularities, the analytic continuation
from the imaginary μl to the real one is limited up to
θl ¼ π=3, particularly for the high T region.
Figure 3 is the same as Fig. 2 but for condition (II). It is

clearly seen that the RW periodicity is lost, but θl
dependence is similar between Figs. 2 and 3. In particular,
the first-order phase transition still takes place for
T ¼ 250 MeV, and it is expected that its end point is
located in 200 < T < 250 MeV (see Fig. 5). We refer to
this transition as the first-order “RW-like phase transition.”
It should be noted that the RW-like phase transition occurs
at θl ¼ 0.42π for T ¼ 250 MeV. This result indicates that
the region needed for the analytic continuation becomes
broader for condition (II) than for (I), as already pointed out
in Ref. [30].

B. Phase diagram

To determine the crossover chiral and deconfinement
transition lines, we calculate the pseudocritical temperature
of each transition by the peak position of susceptibilities
for given θl. According to Ref. [48], the susceptibilities χij
of fσl; σs;Φ;Φ�g can be calculated by the inverse of
dimensionless curvature matrix, χij ¼ ðC−1Þij, where
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FIG. 2. The θl dependence of ΩPNJL and the imaginary part of
the quark number density ImðnqÞ calculated by the PNJL model
for condition (I). The solid line is the results for T ¼ 250 MeV
and the dotted line for T ¼ 200 MeV.
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C ¼

0
BBB@

T2cσlσl T2cσlσs T−1cσlΦ T−1cσlΦ�

T2cσsσl T2cσsσs T−1cσsΦ T−1cσsΦ�

T−1cΦσl T−1cΦσs T−4cΦΦ T−4cΦΦ�

T−1cΦ�σl T−1cΦ�σs T−4cΦ�Φ T−4cΦ�Φ�

1
CCCA ð28Þ

with the abbreviation of

cxy ¼
∂2ΩPNJL

∂x∂y ; x; y ¼ fσl; σs;Φ;Φ�g: ð29Þ

At the RWor RW-like phase transition points, nq becomes
discontinuous, as already shown in Figs. 2 and 3. This
singular behavior is a good indicator to determine the
location of the RW or RW-like phase transition points
[47], and we use this property to determine the RW or
RW-like phase transition lines. The usefulness ofnq to search
the RW phase transition point is also discussed from the
viewpoint of topological order [49].
Figure 4 presents theQCDphase diagram in the θl-T plane

for condition (I). We only consider the region θl ∈ ½0; 2π=3�

because of the RW periodicity. The dot-dashed line is the
crossover chiral transition line, and the dotted line is the
deconfinement one. The solid line denotes the first-order
deconfinement transition line connected to the end point
of the RW transition line represented by the dashed line. The
RWend point is located at ðTRW;θRWl Þ¼ ð0.233GeV;π=3Þ.
The chiral transition is crossover in the entire region, while
the deconfinement transition becomes first order near theRW
endpoint,whichmeans that theRWendpoint is a triple point.
We comment on the order of the RWend point. The order

of deconfinement transition depends on the Polyakov-loop
potential U taken [28,47] and the entanglement coupling
GsðΦ; Φ̄Þ [41,50,51]. For example, the deconfinement
transition becomes second order [28,47] if we choose
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FIG. 4. The phase diagram in the θl-T plane for condition (I).
The dashed line means the RW phase transition line. The
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to the crossover chiral transition line.
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FIG. 3. The θl dependence of ΩPNJL and the imaginary part of
the quark number density ImðnqÞ calculated by the PNJL model
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Fig. 2.
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FIG. 5. The phase diagram in the θl-T plane for condition (II).
The meanings of the lines are the same as in Fig. 4, except that the
dashed line denotes the RW-like phase transition line. Each point
of E1, E2, E3 stands for the triple point of the RW-like phase
transition line.
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U ¼ −bT½54e−aTΦΦ� þ logH� ð30Þ

as a form of U [18], whereH is defined in Eq. (17) and a, b
are parameters. In this case, the RW end point becomes a
tricritical point. Also, in the PNJL model with the entan-
glement coupling

GsðΦ;Φ�Þ ¼ Gsð1 − α1ΦΦ� − α2ðΦ3 þΦ�3ÞÞ ð31Þ

and ðα1; α2Þ ¼ ð0.25; 0.1Þ, the RW end point becomes a
tricritical point [41]. This situation requires more robust
studies to determine the order of the RW end point.
Figure 5 is the phase diagram for condition (II). The

meaning of the lines is the same as in Fig. 4, except that
the dashed line denotes the RW-like phase transition line.
The location of points E1, E2, and E3 is listed in Table II.
The LQCD calculation of Ref. [30] predicts that the
RW-like phase transition occurs at θl ≅ 0.45π for T ¼
208 MeV. The PNJL model result θl ¼ 0.42π for E1 is
consistent with the LQCD value θl ≅ 0.45π.
It is found that the RW periodicity is lost, but the phase

diagram is line symmetrical with respect to θl ¼ π because
of the charge conjugation (C) symmetry of the PNJL
model. The symmetry ensures that the chiral transition
line has a cusp at point E2. Meanwhile, the chiral transition
line becomes discontinuous when it hits the RW-like
line starting from points E1 and E3. As for the first-order
deconfinement line, it becomes symmetric due to C
symmetry around point E2 but asymmetric around points
E1 and E3.
In the region θl ∈ ½0; 2π=3�, the RW-like phase transition

starts at E1, i.e., ðTRW0
; θRW

0
l Þ ¼ ð0.236 GeV; 0.42πÞ. We

fit the transition line by the polynomial function

θlðnmaxÞ ¼ 0.42π þ
Xnmax

n¼1

anξn; ξ ¼ T − TRW0

TRW0 : ð32Þ

The transition line is well approximated by θlðnmax ¼ 3Þ
with a1 ¼ −0.023, a2 ¼ 0.93, and a3 ¼ −1.05. The small-
ness of a1 means that the line is nearly vertical in the
vicinity of E1 just as the RW phase transition line, but the
transition line deviates from the vertical line as T increases.
The RW-like phase transition line also appears when we

consider the imaginary isospin chemical potentialμI ¼ iθIT,
where θI is a dimensionless isospin chemical potential.
In the θI-T plane, the RW-like phase transition line is almost
vertical and described by θI ¼ π=2 − δðTÞ with [29]

δðTÞ ¼ 0.00016 × ðT − 250Þ: ð33Þ

For the details, see Refs. [28,29].
In Figs. 4 and 5, the deconfinement transition line joins

the RWor RW-like end points, and the chiral transition line
is higher than the deconfinement one. In the LQCD
calculation of Ref. [32], however, the chiral transition line
is connected to the end points. At the present stage, our
model cannot explain the LQCD result. What happens at
the end points? This is an interesting future work from the
theoretical point of view.
Finally, we compare the chiral transition line T ¼

TchiralðθlÞ calculated by the PNJL model with that by
LQCD simulations of Ref. [31]; note that θl varies with θs
fixed at either 0 or θl. The ratio R ¼ TchiralðθlÞ=Tchiralð0Þ is
charge even and can be parametrized by [30,31]

R ¼ 1þ 9κθ2l þ bθ4l ð34Þ

with the curvature κ of the transition line and some constant
b, when θl is not large.
Figure 6 represents θ2l dependence of R calculated from

the PNJL model and LQCD simulations. The PNJL model
well reproduces LQCD data for θs ¼ θl and is almost
consistent with LQCD data for θs ¼ 0. Thus, the present
PNJL model may be good enough for qualitative analyses.

C. Analyticity of number density

We calculate the imaginary part of the up- and strange-
quark number densities ImðnuÞ and ImðnsÞ by using the
PNJL model. We consider the situation that the RW
periodicity does not exist; that is, some chemical potentials
are fixed to constant values. Only in the calculations of
ImðnuÞ are θd and θs treated as constants. As for the
calculations in the θs dependence of ImðnsÞ, we again

 1

 1.05

 1.1

 1.15

 1.2

 0  0.02  0.04  0.06  0.08  0.1

R

(θl/π)2

θl=θs model

θs=0 model

θl=θs Lattice

θs=0 Lattice

FIG. 6. θ2l dependence of ratio R ¼ TchiralðθlÞ=Tchiralð0Þ. The
horizontal axis is normalized by π2. The model calculations are
represented by solid lines, and the data with error bars mean
LQCD results [31].

TABLE II. The location of points E1, E2, and E3 in Fig. 5.

Point E1 E2 E3

ðT; θlÞ (0.236 GeV, 0.42π) (0.246 GeV, π) (0.236 GeV, 1.58π)
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consider θu ¼ θd ¼ θl, and these are fixed to constant
values.
Figure 7 shows the θu and T dependence of ImðnuÞ.

The upper panel is the result for ðθd; θsÞ ¼ ðπ=4; 0Þ and the
lower one is for ðθd; θsÞ ¼ ðπ=8; 0Þ. In the upper panel,
ImðnuÞ becomes discontinuous because of the RW-like
phase transition but smooth at any T in the lower panel.
We numerically checked that ImðnuÞ becomes smooth at
any T when θs ¼ 0 and θl ≤ π=8.
Figure 8 is the result of ImðnsÞ as a function of θs and T.

The upper panel corresponds to the result for θl ¼ π=4, and
the lower panel is the result for θl ¼ π=5. It is found that the
discontinuity of ImðnsÞ disappears for any T when
θl ¼ π=5, while ImðnsÞ becomes discontinuous when θl ¼
π=4 due to the RW-like phase transition. We also numeri-
cally confirmed that ImðnsÞ has no discontinuity for any T
when θl ≤ π=5. The results in Fig. 7 (Fig. 8) indicate that
nu (ns) in the real μu (μs) region can be easily obtained by
the analytic continuation from the entire imaginary region.
The present case is, thus, more informative compared to
the case where the RW periodicity exists.
The ns in the high T region plays a key role in

determining the strength of the repulsive interaction,

Lv;s ¼ −Gv;sðs̄γμsÞ2; ð35Þ

where s is the strange-quark field and Gv;s is its strength.
The behavior of ns is sensitive to the value of Gv;s because
ns is a function of

~μs ¼ μs − 2Gv;sns ð36Þ

after the mean-field approximation.
In our previous works [52], it was shown that the

strength Gv of the vector-type four-quark interaction

Lv ¼ −Gvðq̄γμqÞ2 ð37Þ

can be determined from LQCD data on the quark number
density nq in the high T region [14,53]. We then pinned
down the value of Gv from LQCD data on nq. However,
this analysis did not consider the strange quark. Figure 8
indicates that the analytic continuation from imaginary μs
to real μs works well even in the high T region. Thus, one
can get reliable ns in both the real- and the imaginary-μs
regions. This allows us to determine the value of Gv;s

sharply from the LQCD data.
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The interaction described by Eq. (35) corresponds to
the interaction mediated by the ϕ meson in the context of
the relativistic mean-field theory [54–58] and affects the
maximum mass of a neutron star when the strange quark
exists in the inner core of the neutron star. It is an
interesting future work to investigate the interplay between
theGv;s determined from the LQCD data and the maximum
mass and to discuss what happens in the two-solar-mass
neutron star [59,60].

V. SUMMARY

In this paper, we investigated properties of the 2þ 1-
flavor QCD in the imaginary chemical potential region with
finite μl ¼ iθlT and μs ¼ iθsT using two approaches. One
is a theoretical approach based on the QCD partition
function and the other is a qualitative one based on an
effective model. In the theoretical approach, we proved that
the QCD thermodynamic potential ΩQCD exhibits the RW
periodicity only whenΩQCD is invariant under the extended
Z3 transformation. In other words, the RW periodicity
disappears when two chemical potentials are fixed to a
constant value. Next, we showed that the thermodynamic
potential of the PNJL model also possesses the extendedZ3

symmetry. We then took the PNJL model as a useful
effective model.
Taking the PNJL model, we calculated ΩPNJL, ImðnqÞ

(the imaginary part of quark number density), and the QCD
phase diagram as a function of θl for two conditions: (I)
θs ¼ θl and (II) θs ¼ 0. For condition (I), the RW perio-
dicity is seen in all the results. The structure of the phase
diagram is similar to the one in the two-flavor case [28].
As for condition (II), there is no RW periodicity, but we
found that the region available for the analytic continuation

is broader than condition (I). The noteworthy points on the
phase diagram are the following:
(1) The crossover chiral transition line becomes discon-

tinuous on the RW-like phase transition line.
(2) The first-order deconfinement transition line is

asymmetric with respect to the RW-like phase
transition line, except for at θl ¼ π.

(3) The first-order RW-like phase transition line can be
well fitted by a polynomial function of Eq. (32)
with nmax ¼ 3.

Finally, we calculated the imaginary part of the up- and
strange-quark number densities, ImðnuÞ and ImðnsÞ. We
considered the situation that two chemical potentials are
fixed to constant values, and thereby the RW periodicity
disappears. When θs ¼ 0 and θd ≤ π=8, ImðnuÞ becomes
an analytic function of θu for any T. The condition for
ImðnsÞ to be an analytic function of θs for any T is
θu ¼ θd ¼ θl ≤ π=5. When these conditions are satisfied,
the values of nu and ns can be easily calculated by the
analytic continuation, for any T of interest.
In the present paper, we concentrated on a qualitative

discussion based on the extended Z3 symmetry. The results
mentioned above are interesting theoretically but do not
exactly correspond to the realistic case. As a future work, it
is quite interesting to make systematic and quantitative
analyses, particularly in more realistic cases.
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