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Leading twist light cone distribution amplitudes (LCDAs) are key ingredients in calculating various
hadronic amplitudes using light cone QCD sum rules. This work concentrates on calculating the leading
twist LCDAs of p-wave heavy quarkonia. Quark model wave functions for the ground, first, and second
excited states of p-wave charmonia and bottomonia have been calculated and are used for calculating the

relevant LCDAs and leptonic decay constants.
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I. INTRODUCTION

Understanding hadron structure and spectrum has been
one of the major issues in high energy physics for over half
a century. Various models have been studied for this
purpose up to now, either treating hadrons as fundamental
(structureless) particles or composite systems. Today, it is
mostly believed that quantum chromodynamics (QCD) is
the correct model of the fundamental constituents of
hadrons [1,2]. However, it appears to be dramatically
difficult to explain hadron structure and spectrum relying
solely on QCD, and phenomenological models (such as
nonrelativistic or relativized quark models) are still relevant
for studies in hadronic physics (e.g., see [3]), although the
connection between such models and QCD has not been
rigorously established up to now.

The main difficulty in understanding hadron structure is
in revealing the source of the confinement phenomenon on
theoretical grounds. However, the phenomenon is contin-
uously being demonstrated experimentally (no free quarks
or glouns have been detected up to now) and has to be taken
into account for understanding properties of hadrons. This
issue motivates the use of potential models, which also
involve a “confinement potential” [4]. In the seminal paper
[4], a “relativized” quark model motivated by QCD is
constructed, and the spectrum and various transitions of
mesons are calculated.

Due to its nonperturbative nature, nonperturbative meth-
ods are necessary to study the hadronic spectrum. One of
these methods for analyzing the spectrum and interactions
of hadrons is provided by QCD sum rules [5] or its
improved light cone QCD sum rules [2,3,6]. However,
this method provides reliable information concerning only
states that are not radially excited, while there are many
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known radially excited states in the hadron spectrum.
There had been some efforts to study the radially excited
states in the literature (see, e.g., [7,8]). Other than potential
models, the most promising method for studying excited
states (as well as all other properties of the hadron
spectrum) is lattice QCD, which also has an extensive
literature [3].

All methods concentrate on calculating physically
observable quantities related to hadrons and hadron inter-
actions, though they may be regarding part of those as
inputs (e.g., a number of hadron masses) for the calcu-
lations. Hadron interactions constitute part of the observ-
ables involving hadrons. In light cone QCD sum rules,
these interactions are expressed in terms of light cone
distribution amplitudes (LCDAs) [2,9-23]. Hence, it is of
crucial importance to be able to calculate these LCDAs for
the hadrons. One proposed way to obtain leading-twist
LCDAs is to use the nonrelativistic quark model wave
functions obtained through some potential quark models
[21,23,24]. One advantage of this approach is that it also
allows one to obtain the LCDAs of the radially excited
states [21].

As more and more heavier quarkonia are being discov-
ered in experiments, the question of radial excitation
attracts attention. Excitations above open flavor thresholds
especially present a puzzle for the potential quark model
calculations. There are indications that some of these
quarkonia, close to or above thresholds, contain both a
molecular component, and a quarkonium component
[3,25,26]. Although these quarkonium components them-
selves are not directly observable in nature, to study these
mixed quarkonium-molecular systems, it is necessary to
know the couplings of the quarkonium component to the
molecular component [25,26]. LCDAs obtained through
wave functions calculated using potential quark models can
be a window to study such systems.

In light cone QCD sum rules, to study the coupling of the
hadron H to those which can be created by the currents j
and j’, a correlation function of the form

© 2017 American Physical Society
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Flp.q) =i / dhxe=e (0T (x)/ O)H(p)) (1)

is analyzed [2,9,10,14-16]. In Eq. (1), the hadron H(p) is
on shell. Such correlation functions reduce to expressions
involving LCDAs once an expansion around x?> = 0 is
performed [2,9,10,14—16]. Such an expansion allows one to
perform a partial summation of the operators appearing in a
usual x = 0 expansion in terms of their twist, which is
defined as the difference between the dimension and spin of
an operator [2]. Although a sum rules approach can be used
for calculating the LCDAs as well (e.g., [19-23]), LCDAs
corresponding to excited states cannot be calculated using
this method. Relating the LCDAs to nonrelativistic poten-
tial models circumvents this difficulty.

The connection between wave functions (calculated by
any means, not necessarily using a potential model) and
LCDAs has already been studied (e.g., see [24]). In [24],
ground state p-wave quarkonium wave functions obtained
using a variational wave function have been used to obtain
the LCDAs. In [21], excited s-wave charmonia are studied.
However, LCDAs corresponding to the excited p-wave
quarkonium states are still to be discussed. In this work,
relations between the quark model wave functions and
leading-twist LCDAs obtained in [24] are used. The quark
model wave functions are obtained by explicitly solving the
model presented in [4].

This work is organized as follows. In Sec. II, definitions
of light cone coordinates and main results obtained in [24]
are summarized. In this section, the quark model of [4] is
also presented shortly. Section III is devoted to the
numerical analysis of our results and describing model
functions for the LCDAs. Finally, we conclude our work
in Sec. IV.

II. LEADING TWIST LIGHT CONE
DISTRIBUTION AMPLITUDES FOR
p-WAVE QUARKONIA

The components of some four-vector k in light cone
coordinates are defined as [9-13,24]
=k K, k= (kK. (2)

For a system of particles having total momentum P, one
can define the light cone momentum fractions u; as
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u =k /P* (3)

where k; are the momenta of the constituents. The LCDA:s,
as functions of these light cone momentum fractions, are
obtained by integrating over the transverse momenta.
Defined in such a way, they are frame-independent quan-
tities [9-13,24].

For the wave functions, one considers the quark-gluon
Fock states carrying the quantum numbers of the hadron,
and calculates the LCWFs of each state contributing to the
hadron state as follows [9-13,24]:

[M(P251 L))

5] [ (- 36)

Fock states

X Z‘Pi{g(l},, A;)|relevant Fock state), (4)
Ai

where k = (k*, k 1) and ‘Pﬁg(ic,) are the light cone wave
functions corresponding to the given hadron quantum
numbers and relevant Fock states. When one wishes to
calculate hadronic couplings, one encounters matrix ele-
ments of the form [2,17-23] (¢'g(p, €)|q'(x)'q(y)|0). For
lightlike separations x —y, this matrix element can be
written as

(d'g(p.e)|g' (x)T'q(y)|0)

:—fq/q/)]duexp(iup-eriﬁP'Y)‘I’(M,M)V[F]’ (5)

where ®(u, p) is the leading-twist distribution amplitude of
the ¢'g system, u is the scale at which @ (u, ) is calculated,
and V[I'] represents the Lorentz structure related to the
Dirac matrix structure I' and possible other factors.
Through the hadron states, wave functions enter the
calculation, and one can obtain corresponding LCDAS in
terms of the relevant wave functions.

In [24], a detailed analysis is presented on how to relate
the wave functions to the LCDAs. For completeness, main
points in their derivation is presented below. Leading-twist
distribution amplitudes of p-wave heavy quarkonia are
extracted from the following matrix elements:

(0/2(~2)72,q()[S(P)) 2o = F5P -2 / ' dueP g ), (6)
01a(=2)r"r52,a AP €1-0)) |2 = if sMae 2 / ' duePs g (u. ). (7)
ez,7, [1 A
(01(=2)2,a ()T (P, €s0)) 2o = FrM 2 / due< (1 = 200) by (1, ). (8)
Z Jo
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(01g(=2)0"rse1,2,q9(2)|A(P, €1—s1))| 220 = fﬁAl due "y (u.p)(e; -€,)(P-z2), )

1 .
(01g(=z)0"€1,y2"2,q(2)|T(P, €1=11))| 20 = if%MT/O due P pr | (u, pu) (€ z,€1,,2"), (10)

where z is half the spacetime separation between the quark
and the antiquark, £ = 1—2u, ¢ and /¥ are the polarization
vector and tensor of the relevant mesons, P, M, and f are
the four-momentum, mass, and decay constant of the
relevant mesons, respectively, and [24]

M?
:P —_ —_—,
Du " Zﬂzp_z
€7 M?
€,=¢€,——— - ,
Lu = €y Pz Py Z”2p~z

€,,7"7" M?
€1’ = €2 = IZ Z (pﬂ_zﬂzp.z) (1

The abbreviations S, A, and T correspond to scalar, axial-
vector, and tensor, respectively. Using the C-parity, it can
be shown that the distribution amplitudes should have
definite symmetry properties under reflections through
u= % The p-wave scalar and tensor mesons have positive
C-parities, and hence their distribution amplitudes (DAs)
are odd under the exchange of u <> &, where it = 1 — u.
The axial vector can be C-odd or C-even. For C-odd axial
vectors ¢y is odd and ¢4 is even, and for C-even axial
vectors, ¢y is even and ¢, is odd.

The matrix elements for the axial-vector and tensor
mesons given in [17,18,24] are equivalent, and differ only
in notation. However, the Lorentz structure in the matrix
elements involves distribution amplitudes having different
twists, and it is necessary to disentangle these distribution
amplitudes. In [24], an expansion around z = 0 has been
performed, and the leading terms in those expansions are
given in Eqgs. (2.26)—(2.28), (2.38)—(2.39). In this work, these
matrix elements have been presented for the sake of com-
pleteness of the discussion, and so only the fact that Z2=0
has been used without any expansion around z = 0, and
Egs. (6)—(10) have been obtained. Owing to the observations
€ -2=0,e -p=0,€,,77"=0and p-z= P-zwhen
72 = 0, one obtains the expressions in Egs. (6)—(10).

Taking only the quark-antiquark component of the
quarkonia, leading-twist distribution amplitudes are related
to the quark model wave function through [24] as follows:

V2 [ dk, (1-2u)m,

(;Sspo(u,,u):JTPU 2077 un pap,(uk ), (12)
72\@ dQKJ_ l<2l
Prale) =5 | 20a) aao(mg, w %)
X @ip (UKL ), (13)

V6 [ dky (1-2u)m,

Praltor) = Fond 2@n7 Vaw M (€1,
(14)
V6 [ Pk, (1 —=2u)
bspy) (1, 1) = R —
fipy ) 2Q27)°  Vui
2
. K5
- [MO(mq’u’KL) " Mo(u, k1) +2m,
X ¢3P2||(M,EJ_), (15)
V3 [ &k, (1 =2u)m .
Pr (1) = e ) 22n)*  um Lap, 1 (1K),
(16)
V6 d*« K2
¢'P,L(”7ﬂ) :f 202 J_3 = = >
P (27)° VuaMo(my, u, k)
X @ip 1 (U.KL), (17)

V6 [ dky (1-2u)
Praln) =5, ] 26y Vam
23

M(mg,u,k;)+2m,

(P3P2¢(”a ’?J_)v

(18)

where m,, is the mass of the quark, u enters as the upper
limit of k| integration (see, e.g., [10]), @ o (m,. u. K ) is the
wave function of the state M, and

X {mq—f—

2 4 .2 2 .2
qurKL_I_mq+1<l

u u

M3 = (19)
In Egs. (12)—(18), spectral notation is used such that the
scalar meson S is the 3P0 state, the axial vector mesons are
the 3P, and 'P, states, and the tensor meson is the 3P,
state. The leptonic decay constants can be obtained through
the normalization condition for the distribution amplitudes,

1
/ dudhorenit.t) = 1,

0

[ autt =20 = 1 (20)

where @eyen(odq) 18 @ distribution amplitude that is even(odd)

with respect to u = 1.
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The functions ¢, used in Egs. (12)—(18) can be related
to the quark model wave functions as follows. Let

om(u,xy) = (pp(u’Kl)KL3(u’Kl) (21)

where k7, = (k] F iky)/V/2 and K=o = K3 (. k).
If K(|«]) is the radial function calculated in terms of the
standard Minkowski coordinates, the function ¢, can be

related to the function K (|I:|) as

Ok,

@p(u.x ) =Ax a(u,KL)M

R
where |«](u, k) is the relative momentum of the quark and
antiquark, and A is the normalization constant that can
be obtained using the normalization condition for the
functions ¢,

dud?
/ oy oMk )3 (k) = B (23)

Note that, for a given radial excitation quantum number,
and ignoring the effect of any spin or angular momentum
dependent potentials, all the states considered in this work
have the same ¢,. Under this assumption, the following
relations between the leptonic decay constants and LCDAs
are expected at the leading twist and at scale u = m,, (where
m, is the relevant quark mass) [23,24],

PHYSICAL REVIEW D 96, 014026 (2017)

Vfi, = Fiy = V2Fon = fo

fip,
%:flPIJ_ = feven- (24)

¢3PO =¢ip = P3p, L = Poua;
¢3P1 = ¢‘P1L = Peven- (25)

Up to this point, relations between quark model wave
functions and LCDAs are discussed. As a result, once the
quark model wave function for a state is calculated, its leading
twist distribution amplitudes can be obtained through
Egs. (12)—(18). In this work, quark model wave functions
calculated using the Godfrey-Isgur Hamiltonian have been
used. The Hamiltonian presented in [4] can be written as

H = Hy+H" + HY™ + HY (26)

lj’

where H,, is the relativistic kinetic energy, Hl?}’“f' is the

confinement potential, H?jyp " is the hyperfine potential, and
H}? is the spin-orbit interaction. By construction, this
Hamiltonian is written in the meson rest frame so that its
eigenvalues correspond directly to meson masses.
Eigenfunctions of the 3-dimensional simple harmonic
oscillator are chosen as the basis in which this Hamiltonian
is to be diagonalized. In terms of this basis, the eigenstates can
be written as

WOM(Rin, L, S, J.J.) =Y CX (L, LS. S,|L,S.J.J.) % ys.s. % Y1 (0 br)
LS

m! K I+1/2 K
(vk)Eexp {—21/2} L " >2): (27)

N
2
X Ry [2 X —=
mZo \/ PT(m+L+3H2(L +m)+ 1]

where K is the relative momentum of the quarks, Lf,_,H/ 2(5—;)

are Laguerre polynomials, Y, ; (6, ¢,) are spherical
harmonics in momentum space, n is the radial quantum
number, C = % (RR + BB + GG) is the color part, and
Xs,s. i the spin part of the wave function. To make a
numerical diagonalization of the Hamiltonian possible, the
Hamiltonian matrix is truncated by keeping only the first
N = 16 states in the corresponding block specified by the
conserved quantities of the system. £,,,, are determined by
diagonalizing the N x N Hamiltonian matrix. The param-
eter v appearing in the above expression parametrizes the
frequency of the oscillator. Its value is determined as to
minimize the ground state energy in the corresponding
Hamiltonian block. Dressed ¢ quark and b quark masses
are taken to be m,. = 1628 MeV, m;, = 4977 MeV in our
calculations. Other parameters related to the quark model
calculations can be found in [4].

Within the above mentioned framework, the spectrum
and the wave functions are obtained. The obtained
masses for the first three levels are presented in
Table 1. In Table II, we present the observed masses
(if available) for the corresponding states. Comparing the
two tables, it is observed that the model is quite

TABLE 1. Quark model masses calculated for the first three
levels of charmonia and bottomonia.

Masses cc bb
M(GeV)\n n=1 n=2 n= n=1 n=2 n=3

Mip,(x0) 337 388 430 981 102 107
Msp (z) 354 397 433 989 103 106
Mip (hy) 353 396 437 988 103 106
Msp,(xp) 354 398 434 989 103 106
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TABLEII. Masses of experimentally observed states in Particle
Data Group listings [27].

Masses cc bb

MMeV)\n n=1 n=2n=3 n=1 n=2 n=3
Mip, (1) 341475 —  — 985944 102325 -
Msp, (xs1) 351066 — — 9892.78 10255.46 10512.1
Mip (h,) 352538 —  — 98993 10259.8 -
Mspz(;(qz) 3556.20 3927.2 - 9912.21 10268.65 -
successful in reproducing the observed masses (when
available).

III. NUMERICAL ANALYSIS AND MODEL LCDAS

Once the wave functions are obtained, the calculation of
the LCDAs is straightforward. One issue that needs to be
addressed is the scale dependence of the LCDAs and decay
constants. One can consult the evolution equations relating
the LCDAs and decay constants calculated at a generic
scale u to the ones calculated at some reference scale p
(see, e.g., [10,23]). One can also proceed to a direct
|
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calculation for various scales. This latter approach has
been adopted in this work, since wave functions calculated
in the quark model have been used and the &, integrals in
Egs. (12)—(18) are convergent for all values of the scale p.
In this work, LCDAs and decay constants at scales y =
m,;, and p = oo have been calculated.

On practical grounds, it is also desirable to express the
LCDAs in terms of a few parameters which can be easily
tabulated and used. In [23], the following expressions for
the LCDAs have been motivated using sum rules tech-
niques (for £-odd and £-even LCDAs respectively):

- )
- )
1-&)

-2
(1-&)°E, <
(28)

Boaal®) = c(B)(1 — E)exp (—

¢even(§) = _/_f dl(ﬁodd(t) = @

et

where E;(x) = [ dt 5, and the parameters ¢ and f are to

be fitted to the LCDAs. In this work, we generalize this
model to the excited states as well. The models for even
LCDAs are chosen to be

n:1um@:au—gyOngg>+bapC€7)

) _ 1 & p
n:2,3.y/(f)—a{mfzjé)ﬂrbexp(—c)}exp <—1_§2>, (29)
and for odd LCDAs,
p &
n=1: 00 = act -2 fexn (<12 ) oo (-£) |
: __d 1 & p
n=273: gb(f) = _d_g{a[l_’_szﬁﬂz+beXp <—?>:| exXp (— 1 _52)}. (30)

For n = 1, the model functions we use correspond to the
model used in [23] when b = 0. In [28], alternative model
functions are proposed on physical grounds. Using the
arguments of [28], for excited states, it is possible to obtain

b
a model for the DAs where the exponential factor e - (for
odd LCDASs) or E; (%) (for even LCDAS) is multiplied by

a linear combination of various powers of /1 — &2, To
obtain a reliable fit to our LCDAs, it is required to have
many terms in this linear combination. The model that we
propose, although is not physically motivated, can repro-
duce our LCDAs reliably with fewer fit parameters.

The results for the relevant leptonic decay constants are
presented in Tables III-V. In the tables, both leptonic decay
constants, and the leptonic decay constant multiplied by the

|
coefficient, when not equal to one, in the relations
presented in Eq. (24) are presented in order to facilitate
their comparison.

It is observed that the relations in Eq. (24) are qualita-
tively satisfied. The largest deviation is observed in f3p ,
which can be as large as, e.g., 50% for the n =23
bottomonium case. The values given in [23,24] and the
results of this work agree in the order of magnitude of
the numbers. The fact that there is no precise agreement in
the decay constants stems from using different model
functions to calculate the decay constants and LCDAs. It
is also generally observed that the deviations from relations
in Eq. (24) are enhanced when n increases but are sup-
pressed when p = m,; is used. Both are expected from
spin-orbit effects as in both cases since the model functions
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TABLE IIl.  Decay constants fip , f3p,, f3p, for relevant charmonia and bottomonia.

n\f(GeV) fsp, fipL fip, \/§f3p0 \/§f3plj_ fodd

charmonia U =00

n=1 0.109 0.0959 0.142 0.189 0.136 0.118

n=2 0.0801 0.0881 0.129 0.139 0.125 0.105

n=73 0.0755 0.0824 0.133 0.131 0.117 0.103
u=m,

n=1 0.0916 0.0875 0.127 0.159 0.124 0.105

n=>2 0.0588 0.0741 0.107 0.102 0.105 0.0860

n=3 0.0459 0.0615 0.0946 0.0795 0.0870 0.0735

bottomonia U= 0

n=1 0.104 0.0802 0.119 0.180 0.113 0.100

n=>2 0.103 0.0832 0.124 0.178 0.118 0.104

n=3 0.131 0.0834 0.143 0.227 0.118 0.116
K= my

n=1 0.0972 0.0794 0.117 0.168 0.112 0.0981

n=2 0.0976 0.0822 0.121 0.169 0.116 0.101

n= 0.118 0.0820 0.136 0.204 0.116 0.0951

TABLE IV. Decay constants fip |, f3p, for relevant charmonia and bottomonia.

n\f(GeV) S3p, Sip L Fpy Seven fp, Sfip L S, Seven

V2 V2

charmonia U= u=m,

n=1 0.264 0.199 0.187 0.232 0.185 0.133 0.131 0.159

n=>2 0.279 0.209 0.197 0.244 0.143 0.101 0.101 0.122

n=3 0.290 0.246 0.205 0.268 0.0852 0.0595 0.0603 0.0724

bottomonia U= 0 uw=my

n=1 0.182 0.138 0.129 0.160 0.173 0.126 0.122 0.146

n=>2 0.197 0.148 0.139 0.173 0.184 0.135 0.130 0.156

n=73 0.204 0.182 0.144 0.193 0.187 0.153 0.132 0.170

TABLE V. Decay constants fp , f3p,| for tensor charmonia

and bottomonia.

n\f(GeV) fap, fip,1 fp, fip,1

charmonia U= 0 u=m,

TABLE VI. Comparison of the spin averaged leptonic decays
n=1 0.198 0.141 0.177 0.128 constant for the ground state charmonium with the results in the
n=2 0.229 0.142 0.189 0.118  literature.
n=73 0.245 0.140 0.182 0.101 this work this work
bottomonia U= oo u=m, [24] (23] (A=) A=m)
n=1 0.133 0.113 0.131 0.112  Jfoaa (GeV) — 0.088 - 0.118 0.105

Seven (GeV) 0.109 0.192 0.232 0.159
n=2 0.148 0.121 0.146 0.119 fry (GeV) 0.124 - 0.198 0.177
n=3 0.178 0.137 0.168 0.131  fr. (GeV) 0.098 - 0.141 0.128
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TABLE VII. Comparison of the spin averaged leptonic decays constant for the ground state bottomonium with the
results in the literature.

[24] this work (A = o) this work (A = my)
foda (GeV) 0.067 0.100 0.098
feven (GeV) 0.072 0.160 0.146
Sy (GeV) 0.075 0.133 0.131
friL (GeV) 0.069 0.113 0.112
cc bb
T T T T T T T 6 T T T T T T T

#\p, (€)

©)

(2)
3P,

o5 (€)

FIG. 1. LCDA plots for * P, states. Upper limit of k, integration is indicated in parentheses. “Or.” refers to the original function, and
“fit” refers to the fitted function. The radial quantum number 7 is indicated in parentheses as superscript: ¢ (u).

014026-7



PHYSICAL REVIEW D 96, 014026 (2017)

M. A. OLPAK, A. OZPINECI, and V. TANRIVERDI
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Aﬂﬁmm
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¢

FIG. 2. LCDA plots as in Fig. 1, but for >P, | states.
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LCDA plots as in Fig. 1, but for lP1” states.

FIG. 3.
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FIG. 4. LCDA plots as in Fig. 1, but for ' P, states.
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LCDA plots as in Fig. 1, but for 3P1|| states.
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FIG. 6. LCDA plots as in Fig. 1, but for 3P2” states.
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FIG. 7. LCDA plots as in Fig. 1, but for 3P, states.

take spin-orbit effetcs into account. Scale dependence of
the leptonic decay constant for the charmonium is appa-
rently more significant compared to the bottomonium
sector. Scale dependence of the LCDAs with different
radial quantum numbers become more significant as n
increases in both sectors, whereas for ground states, scale

dependence is not so significant in both sectors. However,
the spin weighted average f 44 of charmonium also appears
to be slightly affected by the scale.

In [23,24], leptonic decay constants of only the ground
states are analyzed ignoring spin-orbit effects. For com-
parison, we present the spin averaged leptonic decay
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TABLE VIII. 3P, charmonium fit parameters, y = oco.

PHYSICAL REVIEW D 96, 014026 (2017)

a o o’ p b c
n=1 5.29486 - - 0.867659 1.36101 0.352628
n=2 6.98919 0.257499 0.182999 1.50283 —0.560786 0.149576
n=73 1.98475 0.51822 0.0928117 0.847995 0.482135 0.083937
TABLE IX. 3P, charmonium fit parameters, y = m,.

a o o’ p b c
n=1 5.87696 - - 1.00251 1.2953 0.346534
n=2 7.26777 0.255466 0.185855 1.52799 —0.567534 0.152166
n=3 2.22227 0.538532 0.063798 0.736003 0.262874 0.0490782
TABLE X. 3P, bottomonium fit parameters, y = oco.

a o o’ p b c
n=1 14.9131 - - 1.29523 247014 0.070175
n=2 4.08343 0 0.018278 1.01745 —0.155892 0.0244758
n=3 6.5 0.288561 0.0244281 1.70944 0.260454 0.0285309
TABLE XI. 3P, bottomonium fit parameters, y = m,,.

a o o’ p b c
n=1 7.88045 - - 1.03344 5.01843 0.0756304
n=72 4.15287 0 0.0173548 1.01512 —0.173547 0.0256279
n=73 3.33759 0.280277 0.0230325 1.10439 0.283173 0.0283235
TABLE XII. 'P,, charmonium fit parameters, y = co.

a o o’ p b c
n=1 1.78365 - - 1.4891 0.636329 0.431836
n=2 2.43681 0.284756 0.0966684 0.921282 0 -
n=73 1.53215 0.487944 0.122605 0.734715 0.562724 0.122482
TABLE XIII. 'P,, charmonium fit parameters, y = m,.

a o o’ p b c
n=1 2.26917 - - 2.14573 0.541302 0.383543
n=2 1.40861 0.370795 0.0301022 0.303023 0 -
n=73 2.15625 0.530031 0.0483686 0.23274 0.269402 1.01888
TABLE XIV. !'P;, bottomonium fit parameters, y = oco.

a o o p b c
n=1 11.7196 - - 1.74248 0.126342 0.0638176
n= 1.59483 0.12902 0.00748694 0.1 0 -
n=3 17.2954 0.254288 0.0186876 2.57763 0.18766 0.0149827
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TABLE XV. !P,, bottomonium fit parameters, y = m,,.

PHYSICAL REVIEW D 96, 014026 (2017)

a o o’ p b c
n=1 13.3807 - - 1.94856 0.120252 0.0635912
n=2 1.61774 0.135557 0.00687409 0.1 0 -
n=73 8.28066 0.24319 0.0150691 1.86152 0.242844 0.0159363
TABLE XVL 1P1” charmonium fit parameters, y = 0.

a 50 0'2 ﬁ b c
n=1 7.28898 - - 4.6828 1.79244 0.273028
n=2 8.65428 0.242683 0.167489 1.86131 —0.326097 0.128336
n=3 2.8194 0.514286 0.0924345 1.13424 0.456194 0.0903501
TABLE XVIIL. 1P1|| charmonium fit parameters, y = m,.

a o o’ p b c
n=1 53.6273 - - 2.39208 0.155202 0.273479
n=2 10.0745 0.269738 0.160284 1.92211 —0.426175 0.13256
n=73 2.74678 0.516953 0.0704437 0.980324 0.294645 0.0616262
TABLE XVIIIL 1P1|| bottomonium fit parameters, y = oo.

a o o’ p b c
n=1 10.5205 - - 1.50861 5.65674 0.0638543
n=2 24.2512 0 0.0147382 2.63148 —0.199554 0.0189217
n=73 3.28997 0.232939 0.0123631 0.987534 0.300752 0.0169844
TABLE XIX. IP1|| bottomonium fit parameters, p = m,,.

a o o’ p b c
n=1 9.97137 - - 1.52337 6.0868 0.0639454
n=2 8.82176 1.25 x 1076 0.0113222 1.63918 —0.18903 0.0186983
n=73 18.256 0.255062 0.0130517 2.61225 0.240445 0.0151002
TABLE XX. 3P, charmonium fit parameters, y = co.

a o o p b ¢
n=1 47.933 - - 2.33766 0.183997 0.263943
n=2 9.78918 0.142262 0.180577 1.92684 —0.391433 0.12737
n=73 2.62768 0.474425 0.07959 1.05711 0.437048 0.0611108
TABLE XXI. 3P, charmonium fit parameters, y = m,.

a o o’ p b c
n=1 58.1733 - - 2.42818 0.148617 0.258012
n= 12.3322 0.156543 0.184174 2.02338 —0.500837 0.135897
n=3 2.71267 0.487316 0.062559 0.966985 0.318898 0.044592
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TABLE XXII. 3P, bottomonium fit parameters, u = 0.

PHYSICAL REVIEW D 96, 014026 (2017)

a o o’ p b c
n=1 460.545 - - 3.96925 0.127859 0.0535103
n=2 24.2512 0 0.0147382 2.63148 —0.199554 0.0189217
n=73 1.33436 0.207932 0.009408 0.1 0.314583 0.0117902
TABLE XXIII. 3P, bottomonium fit parameters, u = m,,.

a & o p b ¢
n=1 460.778 - - 3.98292 0.129095 0.515475
n=2 24.2512 0 0.0147382 2.63148 —0.199554 0.0189217
n=3 2.50176 0.21579 0.00891723 0.692022 0.312109 0.0119042
TABLE XXIV. 3P1” charmonium fit parameters, u = 0.

a & o2 B b c
n=1 1.89725 - - 0.833424 0.531147 0.334782
n=72 3.59963 0.000054 0.148262 0.571469 —0.551464 0.67177
n=73 2.32785 0.469035 0.109016 0.999494 0.406331 0.0780892
TABLE XXV. 3P1H charmonium fit parameters, yu = m,.

a o o’ p b c
n=1 11.121 - - 1.91255 0.0836092 0.343286
n=2 5.84685 1x1078 0.152987 0.33432 —0.847095 0.529515
n=73 1.34405 0.487261 0.0170547 0.05 0.0564819 0.00851709
TABLE XXVI. 3P1|| bottomonium fit parameters, y = oo.

a o o’ p b c
n=1 15.1067 - - 1.99935 0.104585 0.0630898
n=72 1.62749 0.129254 0.00695058 0.1 0 -
n=73 4.52742 0.216833 0.0131697 1.26096 0.233993 0.0111891
TABLE XXVIIL 3P1” bottomonium fit parameters, u = m;,.

a o o’ p b c
n=1 8.43243 - - 1.68704 0.200742 0.0638126
n=2 1.63952 0.133876 0.00654186 0.1 0 -
n=73 33.7026 0.252602 0.0148385 3.14863 0.181075 0.00958596
TABLE XXVIII. 3P,, charmonium fit parameters, y = co.

a & o2 B b c
n=1 18.9386 - - 1.53348 0.588362 0.187505
n= 9.78268 0.000301 0.159954 1.92414 —0.331021 0.125204
n=73 2.98352 0.455036 0.0789049 1.21573 0.49737 0.0706649
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TABLE XXIX. 3P,, charmonium fit parameters, y = m,..

PHYSICAL REVIEW D 96, 014026 (2017)

a o o? p b c

n=1 23.5577 - - 1.70536 0.469824 0.191909
n=2 6.95313 0.2615 0.122794 1.72871 —0.251262 0.0784634
n=73 3.28322 0.4731 0.0684879 1.16459 0.309103 0.0461067
TABLE XXX. 3P, bottomonium fit parameters, y = co.

a o o’ p b c
n=1 5.03627 - - 1.36603 12.6441 0.066995
n=2 54.0733 0 0.0147382 3.38888 —0.199327 0.0189271
n=73 4.27052 0.223597 0.0109257 1.21376 0.305811 0.0155296
TABLE XXXI. 3P,, bottomonium fit parameters, u = m,,.

a & c? B b c
n=1 4.60379 - - 1.34201 14.0572 0.0666158
n=2 22.905 1.04 x 1076 0.0121405 2.55386 —0.184869 0.0175767
n=3 7.66472 0.231103 0.0112419 1.75192 0.282943 0.014799
TABLE XXXII. 3P2“ charmonium fit parameters, y = oo.

a o o’ p b c
n=1 11.3608 - - 1.21471 0.697849 0.272678
n=2 4.44771 0.232039 0.158319 1.41475 —0.119605 0.0808185
n=3 2.3202 0.461568 0.0998141 1.01046 0.418644 0.0858612
TABLE XXXIII. 3P2” charmonium fit parameters, y = m...

a o o’ p b c
n=1 14.4417 - - 1.40581 0.551405 0.278178
n=2 8.83337 0.173308 0.229571 1.85411 —0.360409 0.141981
n=73 2.51931 0.476137 0.0902674 0.976052 0.253069 0.0561185
TABLE XXXIV. 3P2” bottomonium fit parameters, y = co.

a & o2 p b c
n=1 5.24954 - - 1.11938 10.5179 0.069816
n=2 26.8594 0 0.0147382 2.73992 —0.168346 0.0189217
n=73 3.78742 0.222412 0.0131263 1.13605 0.259637 0.0157952
TABLE XXXV. 3P2” bottomonium fit parameters, y = m;,.

a o o’ p b c
n=1 4.7464 - - 1.09225 11.8753 0.0695242
n= 26.8594 0 0.0147382 2.73992 —0.168346 0.0189217
n=73 2.28 0.222311 0.0105893 0.673188 0.326787 0.01804064
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constant in Tables VI and VII. As can be seen from the
tables, results obtained in this work for f 44 are larger by
about 30% from the results of [24] in both sectors. For
feven» the discrepancy is even larger, and results obtained in
this work are almost twice as large as the results of [24]. In
[23], only the result for f.,., for charmonium is available.
The result of [23] is in agreement with the result of
this work.

In Figs. 1-7, LCDAs are depicted for various states. In
each of the plots, LCDAs are obtained using Egs. (12)—(18)
with both y = co and u =m,, and also the fits to the
LCDAs for both y values are shown. The parameters used
for each fit are presented in Tables VIII-XXXV. As can be
observed from the figures, the fits reliably reproduce the
calculated LCDAs. Some general observations about the
DA are in order. Odd DAs have 2n + 1 extrema for u > 0,
reflecting the nodal structure of the wave functions of the
excited states. Even DAs have one (three) extrema when
n=1(m = 2orn = 3). Some of the extrema for even DAs
for n = 2 and n = 3 are converted into inflection points due
to nearby, larger extrema. As n increases, some of the
extrema move towards the £ = +1 region. Similarly, the
DAs for a given n are localized closer to £ =0 for
bottomonium than for charmonium. This is again a reflec-
tion of the highly nonrelativistic nature of the bottomonium
system. As expected, another reflection of the nonrelativ-
istic nature of small n and the bottomonium system is the

PHYSICAL REVIEW D 96, 014026 (2017)

dependence on the scale p. In general, bottomonium
systems and small n systems are more nonrelativistic
compared to charmonium and larger n systems.

IV. CONCLUSIONS

In this work, the three lowest lying states of p-wave
charmonia and bottomonia have been considered. Their
LCDAs and decay constants have been calculated.

It is observed the spin-orbit effects can be important in
the determination of the leptonic decay constants. Also,
leptonic decay constants and LCDAs exhibit a more
significant scale dependence for charmonium than for
the bottomonium. The importance of the relativistic con-
tributions becomes also larger as n (the radial excitation
quantum number) increases.

Also, the DAs of the bottomonium are closer to the £ = 0
region than the charmonium DAs. Also, as n increases, in
both of the sectors DAs shift towards larger values of |£|.

For future usage, model functions have been fitted to the
obtained LCDAs so that the obtained DAs can be easily
used in future works.
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