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We complement studies of the neutral pion transition form factor π0 → γð�Þγð�Þ with calculations for the
electromagnetic decay widths of the processes π0 → eþe−, π0 → eþe−γ and π0 → eþe−eþe−. Their
common feature is that the singly or doubly virtual transition form factor serves as a vital input that is tested
in the nonperturbative low-momentum region of QCD. We determine this form factor from a well-
established and symmetry-preserving truncation of the Dyson-Schwinger equations. Our results for the
three- and four-body decays match results of previous theoretical calculations and experimental
measurements. For the rare decay we employ a numerical method to calculate the process directly by
deforming integration contours, which in principle can be generalized to arbitrary integrals as long as the
analytic structure of the integrands are known. Our result for the rare decay is in agreement with dispersive
calculations but still leaves a 2σ discrepancy between theory and experiment.
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I. INTRODUCTION

Over the last years, low-energy electromagnetic proc-
esses in the meson sector have seen continuous interest
both in the theoretical and experimental physics commun-
ities. Electromagnetic decays of the pion are particularly
interesting because they combine the nonperturbative
physics of dynamical mass generation and the associated
generation of (pseudo-) Goldstone bosons with the Abelian
anomaly and its perturbative elements, thus creating an
interesting laboratory for theoretical approaches to non-
perturbative QCD. Moreover, the rare decay π0 → eþe−
poses a puzzle since theoretical estimates show a discrep-
ancy with the experimental result from the KTeV E799-II
experiment at Fermilab [1,2] of similar magnitude as the
muon g-2.
In this work we focus on electromagnetic decays of

pseudoscalar mesons such as the rare decay π0 → eþe−, the
Dalitz decay π0 → eþe−γ and double Dalitz decay π0 →
eþe−eþe− using a well-explored combination of Dyson-
Schwinger and Bethe-Salpeter equations. All calculations
involve the π0 → γð�Þγð�Þ transition form factor (TFF) with
one or two off-shell photons, thus testing it in the region of
(very) low momenta. The present work complements a
recent evaluation of the TFF at large spacelike momenta,
see Ref [3].
The paper is organized as follows. In the next section we

give a short introduction to the details of our calculations
and discuss features of the resulting TFF. In Sec. III we then

give results for the leptonic three- and four-body decays of
the neutral pion and compare with the experimental values.
In Sec. IV we discuss corresponding results for the rare
decay of the pion into an electron-positron pair. We
conclude in Sec. V.

II. TRANSITION FORM FACTOR π0 → γ�γ�

A. Kinematics and definitions

We begin by defining the transition current and the
kinematic regions of interest. The π0 → γγ transition matrix
element is given by

ΛμνðQ;Q0Þ ¼ e2
FðQ2; Q02Þ
4π2fπ

εμναβQ0αQβ; ð1Þ

where Q and Q0 are the photon momenta, fπ ≈ 92 MeV is
the pion’s electroweak decay constant, and e2 ¼ 4παem the
squared electromagnetic charge. The pseudoscalar transi-
tion is described by a single scalar function, the transition
form factor FðQ2; Q02Þ, and the convention of prefactors is
such that Fð0; 0Þ ¼ 1 in the chiral limit due to the Abelian
anomaly.
In the following it is useful to work with the average

photon momentum Σ and the pion momentum Δ,

Σ ¼ QþQ0

2
; Δ ¼ Q −Q0; ð2Þ

with Δ2 ¼ −m2
π for an on-shell pion. The process then

depends on two Lorentz invariants,

ηþ ¼ Q2 þQ02

2
¼ Σ2 þ Δ2

4
; ð3Þ
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ω ¼ Q2 −Q02

2
¼ Σ · Δ; ð4Þ

or vice versa: fQ2; Q02g ¼ ηþ � ω, with the third invariant
fixed when the pion is on shell:

η− ¼ Q ·Q0 ¼ Σ2 −
Δ2

4
¼ ηþ þm2

π

2
: ð5Þ

Note that the TFF is symmetric inQ2 andQ02 so it can only
depend on ω quadratically.
For practical calculations it is convenient to introduce the

alternative variables

σ ¼ Σ2; t ¼ Δ2

4
; Z ¼ Σ̂ · Δ̂ ¼ Σ · Δ

2
ffiffiffiffiffi
σt

p ð6Þ

where t ¼ −m2
π=4 when the pion is on shell and a hat

denotes a normalized four-vector. We will refer to those in
Sec. IV and Appendix A.
In the physical processes we study in this work the TFF

is tested in both spacelike and timelike regions as shown in
Fig. 1. The timelike region, where either Q2 < 0 or
Q02 < 0, contains the physical singularities such as the
vector-meson poles in the complex plane of Q2 and Q02.
For dilepton decays this region is kinematically restricted
such that Q2, Q02 ≥ −m2

π . The double Dalitz decay π →
2eþ2e− is constrained to the light blue shaded area below
ηþ < 0, while the Dalitz decay π → eþe−γ probes the
asymmetric timelike form factor, given by the dark blue
lines along the Q2, Q02 axes. These decays are discussed in
Sec. III.
The spacelike region with both photon virtualities

positive, Q2 > 0 and Q02 > 0, is free of any physical

singularities. The region that is relevant for the rare decay
π0 → eþe−, discussed in Sec. IV, is the doubly virtual or
symmetric limit (red line in Fig. 1) when Q2 ¼ Q02 viz.
ω ¼ 0. Direct experimental measurements of the spacelike
TFF are available in the singly virtual or asymmetric limit
with one of fQ2; Q02g vanishing [4–7].
In addition, very different kinematic regions to these can

be tested where the pion is “off shell” corresponding to
spacelike momentum transfer Δ2 > 0. This and various
applications are discussed in [3].

B. Triangle diagram

In the impulse approximation, the transition form factor
π0 → γð�Þγð�Þ is displayed in Fig. 2 and given by

Λμν ¼ 2e2Tr
Z

d4k
ð2πÞ4 SðkþÞΓπðk;ΔÞSðk−Þ

× Γμðr−;−QÞSðkþ ΣÞΓνðrþ; Q0Þ: ð7Þ

The photon momenta were defined in the previous sub-
section. In addition, k is the loop momentum and

k� ¼ k� Δ
2
; r� ¼ kþ Σ

2
� Δ

4
; ð8Þ

are the internal quark momenta and the relative momenta
appearing in the quark-photon vertices, respectively. The
trace in Eq. (7) is over Dirac indices only1 and the factor 2
in front of the integral stems from the exchange of the
photons.

FIG. 1. Kinematic domains in Q2 and Q02 including the
symmetric (red line) and asymmetric limits (Q2, Q02 axes).
The area with jωj < ηþ corresponds to spacelike momentum
transfer. In the timelike region we show the relevant domains for
the Dalitz and double Dalitz decays and the dotted lines indicate
the vector-meson pole locations (not to scale).

FIG. 2. The transition form factor given by Eq. (7). The
nonperturbative input is the Bethe-Salpeter amplitude Γπ of
the pion (grey circle), the dressed quark propagators (straight
lines) and the dressed quark-photon vertices Γν (blue circles).

1All quantities are color diagonal and thus the color trace is 3.
The flavor matrix of the π0 amplitude is diagð1;−1Þ and that of
the quark-photon vertex is diagðqu; qdÞ, so the flavor trace is
q2u − q2d ¼ 1=3. Since the overall normalization of the pion
amplitude is determined by the canonical Bethe-Salpeter norm,
which follows from demanding unit residue at the pion pole in the
qq̄ scattering matrix, a different color-flavor normalization can
always be absorbed by the dressing functions in Eq. (10). Our
choice above is such that f1ðk2Þ ¼ Bðk2Þ=fπ in the chiral limit,
with Bðk2Þ ¼ Mðk2Þ=Zfðk2Þ.
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All ingredients in Eq. (7) are determined from numerical
solutions of their Dyson-Schwinger and Bethe-Salpeter
equations. The renormalized quark propagator is given by

SðpÞ ¼ Zfðp2Þ−ipþMðp2Þ
p2 þM2ðp2Þ ð9Þ

with nonperturbative dressing functions Zfðp2Þ and
Mðp2Þ. The renormalization-group invariant quark mass
function Mðp2Þ encodes effects of dynamical mass gen-
eration due to the dynamical breaking of chiral symmetry.
The Dirac structure of the pseudoscalar Bethe-Salpeter
amplitude Γπ is given by

Γπðk;ΔÞ ¼ ðf1 þ f2iΔþ f3k · Δikþ f4½k;Δ�Þγ5; ð10Þ

where the fi are functions of k2 and k · Δ with Δ2 ¼
−m2

π fixed.
The nonperturbative quark-photon vertex Γμ describes

the coupling of a dressed quark to a photon and is
dominated by QCD corrections. It can be decomposed
into twelve tensor structures,

Γμðp;QÞ ¼
X12
i¼1

λiðp2; p ·Q;Q2Þτμi ðp;QÞ ð11Þ

with basis components τμi ðp;QÞ and Lorentz-invariant
dressing functions λi; see Appendix B of Ref. [8] for
details. The argument p denotes the average momentum of
the two quark legs and Q is the incoming photon momen-
tum. Due to electromagnetic gauge invariance the vertex
can be split into a transverse and nontransverse part, where
the latter is the Ball-Chiu vertex [9] and determined by the
vector Ward-Takahashi identity. We obtain a numerical
solution of the quark-photon vertex from its inhomo-
geneous Bethe-Salpeter equation; see [10–15]. As dis-
cussed in detail in [8,10,16], the transverse part of the
vertex contains poles in the timelike momentum region
corresponding to vector-meson states. Thus, the underlying
physics of vector-meson dominance is automatically con-
tained in the numerical representation of the vertex without
the need for further adjustments.
In this work we restrict ourselves to the rainbow-ladder

approach as reviewed in [8].We use theMaris-Tandymodel,
Eq. (10) of Ref. [17] with parameters Λ ¼ 0.74 GeV and
η ¼ 1.85� 0.2 (the parameters ω and D therein are related
to the above viaωD ¼ Λ3 andω ¼ Λ=η). The variation of η
changes the shape of the quark-gluon interaction in the
infrared, cf. Fig. 3.13 in Ref. [8], and we use it in the
following to estimate our theoretical error. This construc-
tion, with the same respective kernel in the Bethe-Salpeter
equation for the pseudoscalar mesons and the one for the
quark-photon vertex, preserves chiral symmetry and has the
merit of producing reliable results in the pseudoscalar and

vector-meson sector as well as for nucleon and Δ baryons.
Our input current-quark mass is mq ¼ 3.57 MeV at a
renormalization point μ ¼ 19 GeV; the resulting pion mass
and pion decay constant are mπ0 ¼ 135.0ð2Þ MeV and
fπ0 ¼ 92.4ð2Þ MeV.

C. Result for the transition form factor

With the ingredients described above we are able to
determine the π0 → γγ transition form factor in the space-
like domain Q2 > 0 and Q02 > 0 as well as for small
timelike momenta. In practice it turns out that a straightfor-
ward calculation is only possible in restricted kinematic
regions. As explained in Appendix A, this is due to the
singularities of the quark propagator in the integrand,2

whose nearest singularities correspond to a scale
mp ∼ 0.5 GeV. The symmetric limit is accessible for all
ηþ > 0, whereas in the asymmetric limit one is limited to
Q2

max ≈ 4 GeV2, which is also the domain covered in the
calculation of Ref. [12]. In addition, also small timelike
momenta of the order Q2, Q02 ≳ −m2

p are accessible
directly; cf. Fig. 9 in the appendix.
To determine the TFF in the full spacelike domain, we

employ the strategy introduced in Ref. [3]: we calculate the
form factor for an off-shell pionwithΔ2 > 0 and extrapolate
to the on-shell point using the lowest-lying vector-meson
pole as a constraint. This allows us to determine the TFF for
all spacelike momenta, and in the regions that are accessible
by direct calculation and extrapolation we have checked that
the results of both methods are in perfect agreement.
In Fig. 3 we show the on-shell transition form factor

FðQ2; Q02Þ as a function of the variable ηþ, Eq. (3). The plot
reveals that the TFF is essentially a function of ηþ, which is
larger in the asymmetric limit and smaller in the symmetric
limit, and this behavior persists up to asymptotically large ηþ
[3,19,20]. Moreover, in the chiral limit the Abelian anomaly
entails Fð0; 0Þ ¼ 1 which is reproduced by our numerical
result at the physical pion mass, Fð0; 0Þ ¼ 0.996, using the
full vertexwith Ball-Chiu and transverse parts. This quantity
provides an important consistency check: replacing both
dressed quark-photon vertices by bare ones would only give
Fð0; 0Þ ≈ 0.29. Even a Ball-Chiu vertex, which is con-
structed to satisfy the Ward identity and is therefore
sufficient to guarantee charge conservation in the pion’s
electromagnetic form factor, produces Fð0; 0Þ ≈ 0.86 only
for the transition form factor. Including the transverse
structure of the vertex is therefore crucial for a quantitative
description of the π0 → γγ transition.
We finally provide a fit function that accurately repre-

sents our results in the spacelike region. Abbreviating
w ¼ ηþ=m2

v and z ¼ ω=ηþ, the TFF is described by

2Note that these singularities are not artifacts of the rainbow-
ladder approximation employed in this work, but also naturally
appear in truncations beyond rainbow ladder [18].
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FðQ2; Q02Þ ¼ AðwÞ þ wð1 − z2ÞB1ðwÞð1þ B2ðwÞz2Þ
ð1þ wÞ2 − w2z2

:

ð12Þ

The denominator implements the lowest-lying vector-
meson pole at wz ¼ �ð1þ wÞ, which corresponds toQ2 ¼
−m2

v and Q02 ¼ −m2
v with mv ¼ 0.77 GeV. The functions

in the numerator ensure that the TFF asymptotically
approaches a monopole behavior both in the symmetric
(z ¼ 0) and asymmetric limit (z ¼ �1); they are given by

AðwÞ ¼ a0 þ ξða1b1wþ a2b2w2 þ a3b3w3Þ
1þ b1wþ b2w2 þ b3w3

;

BiðwÞ ¼
cieiw2

1þ diwþ eiw2
ð13Þ

with fit parameters a0 ¼ 0.996 and

a1 ¼ 0.735; b1 ¼ 0.089;

a2 ¼ 1.214; b2 ¼ 0.133;

a3 ¼ 1.547; b3 ¼ 0.0002;

c1 ¼ 0.384; c2 ¼ 0.430;

d1 ¼ 2.010; d2 ¼ 0.024;

e1 ¼ 1.540; e2 ¼ 0.00005: ð14Þ

This fit provides the input for our calculations of the various
π0 decays. The value ξ ¼ 1.0� 0.1 reflects our combined
theoretical uncertainty from varying the parameter η ¼
1.85� 0.2 in the effective interaction as well as the
uncertainty in the determination of the TFF away from
the symmetric limit. These are also the error estimates that
we quote in the following results.
Let us finally briefly comment on alternative fit

functions available in the literature (see, e.g., Appendix B
of Ref. [21] for a discussion). The simplest vector-meson

dominance (VMD) parametrization FVMDðQ2; Q02Þ ¼
1=½ð1þ wÞ2 − w2z2� does not reproduce the monopole
behavior in the symmetric limit z ¼ 0 but instead
approaches a dipole at large Q2. Its refined version based
on lowest-meson dominance, the LMDþ V model [22],
reproduces both the symmetric and the asymmetric limits
and implements two vector-meson poles; an analogous form
was recently employed to fit lattice results for the TFF [23].
Our fit is practically indistinguishable from the LMDþ V
parametrization at low Q2, i.e., in the momentum range
shown in Fig. 3. Also at large Q2 the fits in the symmetric
limit are almost identical and in the asymmetric limit they are
at least qualitatively similar. However, the behavior in
between (0 < jzj < 1) differs substantially: at large ηþ
the LMDþ V form factor develops a sharp peak very close
to jzj ¼ 1, with a turnover to reach the asymmetric point
z ¼ 1 followed by the vector-meson poles at jzj > 1. By
comparison, our fit variesmonotonously from z¼0 to z ¼ 1
and is therefore better suited for applications where the TFF
is tested in the whole spacelike domain.

III. THREE- AND FOUR-BODY DECAYS

In this subsection we discuss our results for the three-
and four-body decays of pseudoscalar mesons shown in
Figs. 4(a)–4(b). The Dalitz decay of the neutral pion into a
photon and an electron-positron pair has the largest
branching ratio Bðπ0 → eþe−γÞ ¼ ð1.174� 0.035Þ%
[24] after that of the two-photon decay. The neutral pion
also decays into two dilepton pairs with a branching ratio of
Bðπ0 → eþe−eþe−Þ ¼ ð3.34� 0.16Þ × 10−5 [24]. Both
decays depend on the transition form factor discussed
above as the only nontrivial input.

A. Dalitz decay: π0 → e + e− γ
The leading-order Feynman diagram for the three-body

decay of the neutral pion is shown in Fig. 4(a). The decay
rate is easily calculated and given by [25]

Γπ0→eþe−γ ¼
e6m3

π

6ð4πÞ3
Z

m2
π

4m2

dx
x

����FðQ2; 0Þ
4π2fπ

����2

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2

x

r �
1þ 2m2

x

��
1 −

x
m2

π

�
3

; ð15Þ

where m is the electron mass, mπ the pion mass, and x ¼
−Q2 is the momentum squared of the virtual photon which
evaluates the form factor in the timelike region.
Due to the kinematics of the three-body decay the TFF is

probed in the asymmetric region of one photon on shell and
one off shell and timelike. The leading contribution to the
integral in Eq. (15) comes from the lower end of the
integral. In this region the calculated TFF can in general be
described by a simple linear fit with respect to ηþ ¼
ðQ2 þQ02Þ=2,

FIG. 3. On-shell transition form factor in the symmetric limit
(ηþ ¼ Q2 ¼ Q02) and asymmetric limit (ηþ ¼ Q2=2, Q02 ¼ 0)
for moderate spacelike values ηþ > 0.
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FðQ2; Q02Þ ¼ 0.996 − 3.55ð10Þηþ; ð16Þ

which is also used in the four-body decay below. The TFF
is shown in Fig. 5, where the asymmetric limit required for
the three-body decay, FðQ2; 0Þ, is represented by either one
of the dark blue lines.
Employing the PDG values for m and αem in

Eq. (15), our calculated decay width is Γπ→eþe−γ ¼
9.11ð4Þ × 10−11 GeV. Since the theoretical uncertainty in
Eq. (16) affects this number only at the sub-per-mille level,
the error bar in the decay rate comes from the model
dependence of mπ and fπ which enter in Eq. (15). In
Table I we compare our result with the PDG and the result
of a calculation using an effective theory [26]. Within the
quoted errors all results are in good agreement. This is to be
expected because the TFF—as the only nonperturbative
input—is probed in the kinematic region governed by the
anomaly. Since any reasonable construction obeys this
constraint, the discriminative potential of the Dalitz decay
with regard to different nonperturbative input is very limited.

B. Four-body decay: π0 → e+ e− e + e−
We now proceed with the four-body decay of the neutral

pion into two electron-positron pairs. The decay rate is
given by [28]

Γπ0→2eþ2e− ¼ 1

ð2!Þ2
1

2mπ

Z
dΦ4jMj2; ð17Þ

where jMj2 is the squared and spin-summed matrix
element and the symmetry factor in front accounts for
the two pairs of identical final-state particles. dΦ4 is the
four-dimensional phase-space measure whose detailed
derivation is given in Appendix B. Because the amplitude
M with all initial and final particles on shell depends on
five independent variables, dΦ4 involves five nontrivial
integrations.
Figure 4(b) shows the possible diagrams, D1 and D2,

where exchange of two leptons (antileptons) introduces a
relative minus sign between the two contributions.
Squaring these we obtain

jMj2 ¼ jD1j2 þ jD2j2 þ 2Re½D1D�
2�: ð18Þ

As discussed in Refs. [26,29], the first two terms are equal
and can thus be combined. It follows that the decay rate can
be decomposed into

Γπ0→2eþ2e− ¼ ΓðdirectÞ
π0→2eþ2e− þ ΓðindirectÞ

π0→2eþ2e− ; ð19Þ

where the first (direct) contribution comes from the two
squared magnitudes and the second (indirect or interfer-
ence) term comes from the cross terms.
Abbreviating Gμν

ij ¼ ðipi þmÞγμðipj −mÞγν, the inte-
grand for the direct contribution is given by

jD1j2 þ jD2j2 ¼ 2e4
ΛμνðQ;Q0ÞΛαβðQ;Q0Þ

Q4Q04 TrGμα
34TrG

νβ
12;

where ΛμνðQ;Q0Þ is the π0 → γγ transition current defined
in Eq. (1). Because in this case the integrand only depends
on the pairwise sums Q0 ¼ −ðp1 þ p2Þ and Q ¼ p3 þ p4,
the five-dimensional phase-space integral dΦ4 can be
reduced to just two integrations, namely

FIG. 5. Transition form factor shown in the region relevant for
the three- and four-body decays. The singly virtual form factor for
the three-body decay, for which either Q2 ¼ 0 or Q02 ¼ 0, is
indicated by the heavy blue lines.

(a) (b) (c)

FIG. 4. The tree-level contributions to the (a) single Dalitz decay, (b) double Dalitz decay and (c) rare decay of the neutral pion. The
yellow circle denotes the pion transition form factor FðQ2; Q02Þ, see Eq. (1).
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ΓðdirectÞ
π0→2eþ2e− ¼

e8

36ð2πÞ5m3
π

Z ðmπ−2mÞ2

4m2

dx
Z ðmπ−

ffiffi
x

p Þ2

4m2

dy

×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x− 4m2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y− 4m2

q �ðxþ y−m2
πÞ2

4xy
− 1

�
3=2

×

�
1þ 2m2

x

��
1þ 2m2

y

�����FðQ2;Q02Þ
4π2fπ

����2:
ð20Þ

Here we used the shorthands x ¼ −Q2 and y ¼ −Q02 for
the two-photon virtualities, where x; y > 0 are timelike and
restricted by the thresholds for the two two-body decays.
The direct contribution constitutes the largest fraction of the
decay rate.
In contrast, the interference term depends on all possible

four-vector combinations of electron and positron pairs.
Consequently, the phase-space integral cannot be further
reduced and its integrand is given by

Re½D1D�
2� ¼ e4

ΛμνðQ;Q0ÞΛαβðK;K0Þ
Q2Q02K2K02 TrGμβ

32G
να
14;

where Q0 ¼−ðp1þp2Þ, Q¼p3þp4 and K0 ¼−ðp2þp3Þ,
K ¼ p1 þ p4 are the possible momenta of the virtual
photons. To perform the five-dimensional integral we used
various methods, ranging from tensor-product quadrature
with a combination of Gauss-Legendre and double expo-
nential rules, to 5-dimensional adaptive cubature as well as
standard Monte-Carlo methods [30]; all agreed perfectly.
For the direct and indirect contributions to the decay rate

we obtain

ΓðdirectÞ
π0→2eþ2e− ¼ 2.66ð1Þ × 10−13 GeV; ð21Þ

ΓðindirectÞ
π0→2eþ2e− ¼ −0.03 × 10−13 GeV: ð22Þ

The sum of these values gives our final result, shown in
Table II together with the value from experiment and other
theoretical calculations. In Ref. [26] the authors use an
extension of chiral perturbation theory to calculate the form
factor, whereas in Ref. [29] a data-driven approach is
employed, which is based on the use of rational approx-
imants applied to the experimental data of the π0, η and η0
transition form factors in the spacelike region. All results
are compatible with experiment within the quoted error. As

with the Dalitz decay, the phase-space restriction of the
virtual photons to timelike momenta between 4m2 and m2

π

entails that the sensitivity to the details of the TFF beyond
that dictated by the anomaly is rather small and deviates
from its nominal value of 1 by no more than 3%.

IV. RARE DECAY: π0 → e+ e−

Finally we consider the two-body decay of the neutral
pion into one electron-positron pair. For the π0 this is
certainly the most interesting decay due to a discrepancy
between the KTeV experimental result and theoretical
calculations [1,2,31–34] of the order of 2σ. Using the
elaborate reanalysis of radiative corrections [32,33] to
the experimental result of the KTeV Collaboration [1]
(close to the value given in PDG [24]) one arrives at an
extracted experimental value for the branching ratio of
Bðπ0 → eþe−Þ ¼ ð6.87� 0.36Þ × 10−8, which is consid-
erably smaller than the decays considered above.
To lowest order in QED the process is described by the

one-loop graph in Fig. 4(c), which again includes the
transition form factor FðQ2; Q02Þ as the only nonperturba-
tive input. Defining t ¼ Δ2=4 as in Eq. (6), the correspond-
ing normalized branching ratio is given by [35–37]

R ¼ Bðπ0 → eþe−Þ
Bðπ0 → γγÞ ¼ 2

�
mαem
πmπ

�
2

βðt0ÞjAðt0Þj2; ð23Þ

where βðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þm2=t

p
stems from the two-body phase-

space integration and Bðπ0 → γγÞ ¼ 0.988. The scalar
amplitude AðtÞ can be viewed as the pseudoscalar form
factor of the electron due to the two-photon coupling,
which must be evaluated at the on-shell pion point
t0 ¼ −m2

π=4.

A. AðtÞ with dispersive input

For arbitrary t the amplitude AðtÞ can be defined from
the matrix element for the π0 → eþe− decay:

Z
d4Σ
ð2πÞ4 ΛðpþÞγμSðpþ ΣÞγνΛðp−Þ

ΛμνðQ;Q0Þ
Q2Q02 ð24Þ

¼ AðtÞ
ð4πÞ2

2imαem
πfπ

ΛðpþÞγ5Λðp−Þ; ð25Þ

TABLE I. Result for the Dalitz decay.

Collaboration Γπ0→eþe−γ [10−11 GeV]

PDG [24] 9.06(18)
Terschlüsen et al. [26] 9.26
Hoferichter et al. [27] 9.065
Our result 9.11(4)

TABLE II. Result for the double Dalitz decay.

Collaboration Γπ0→2eþ2e− [10−13 GeV]

PDG [24] 2.58(12)
Terschlüsen et al. [26] 2.68
Escribano et al. [29] 2.62
Our result 2.63(1)
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where ΛμνðQ;Q0Þ is the π0 → γγ transition current from
Eq. (1) and Λðp�Þ ¼ 1

2
ð1þ p�=ðimÞÞ is the positive-

energy projector of the lepton. The kinematics are as
discussed in Sec. II A; in particular, the averaged photon
momentum Σ becomes the loop momentum and therefore
the variables in Eq. (6) take the values σ > 0 and
Z ∈ ½−1; 1�. As a consequence, the photon virtualities
Q2 and Q02 are tested at complex values close to the
symmetric limit as shown in Fig. 6. In principle the integral
depends on the pion momentum Δ and the average lepton
momentum p, but since the electron and the positron are on
shell with momenta p2

� ¼ ðp� Δ=2Þ2 ¼ −m2 only t
remains as an independent variable.
Taking traces yields the following expression for AðtÞ:

AðtÞ ¼ 1

2π2t

Z
d4Σ

ðΣ · ΔÞ2 − Σ2Δ2

ðpþ ΣÞ2 þm2

FðQ2; Q02Þ
Q2Q02 : ð26Þ

This integral has poles in the integration domain (which we
discuss in more detail in Sec. IV B) and thus cannot be
naively integrated except for the unphysical point
t ¼ Δ2=4 ¼ 0. A standard way to circumvent the problem
uses dispersive methods (see e.g., [38,39]). In that case the
imaginary part of the amplitude along its cut at t < 0 is
given by [36]

ImALOðtÞ ¼ π ln γðtÞ
2βðtÞ Fð0; 0Þ; ð27Þ

with γðtÞ ¼ ð1 − βðtÞÞ=ð1þ βðtÞÞ, which follows from
cutting the two-photon lines. The imaginary part gives
the well-known unitary bound for the branching ratio
through the inequality jAðt0Þj2 ≥ jImAðt0Þj2:

R ≥
�
mαem
mπ

�
2 ln2γðt0Þ
2βðt0Þ

¼ 4.75 × 10−8:

Using a once-subtracted dispersion relation one then
obtains the real part of the amplitude via [38,40–42]

ReAðtÞ ¼ Að0Þ þ ln2γðtÞ þ 1
3
π2 þ 4Li2ð−γðtÞÞ
4βðtÞ ; ð28Þ

where Li2ðzÞ is the dilogarithm or Spence function. In
particular, this implies ReAðt0Þ ¼ Að0Þ þ 31.92ð2Þ so that
the only unknown left is the constant Að0Þ.
In fact, t ¼ 0 is the only point where Eq. (26) can be

integrated directly to yield

Að0Þ ¼ 4

3

Z
∞

0

dx

�
ðx − 2Þ

ffiffiffiffiffiffiffiffiffiffiffi
1þ 1

x

r
− xþ 3

2

�
FðQ2; Q2Þ;

ð29Þ

where we temporarily abbreviated x ¼ Q2=ð4m2Þ. A sim-
ilar formula can be derived using a Mellin-Barnes repre-
sentation [2,43–45],

Að0Þ ≈ −
5

4
þ 3

2

Z
∞

0

dx lnð4xÞ d
dx

FðQ2; Q2Þ; ð30Þ

which is however only valid to leading order in an
expansion in the electron mass. At the point t ¼ 0 the
transition form factor in both cases is evaluated in the
symmetric limit of equal photon momenta, and due toQ2 ¼
4m2x it is mainly probed at very low Q2 of the order of the
electron mass. Implementing our result for FðQ2; Q02Þ, we
extract the same value Að0Þ ¼ −21.85ð2Þ from both
formulas above, where the error comes from varying the
ξ parameter in Eq. (13). With Eqs. (27)–(28) one then
arrives at the on-shell valueAðt0Þ ¼ 10.07ð4Þ − i17.45ð1Þ,
which corresponds to a branching ratio of

Bðπ → eþe−Þ ¼ 6.21ð3Þ × 10−8: ð31Þ

Our result is compared to other approaches in Table III.
Whereas our calculation represents a top-down approach
using a well-tested model for the underlying quark-
gluon interaction, Refs. [2,31] use a phenomenological

FIG. 6. Relevant kinematic domain of the transition form factor
in the π0 → eþe− decay. The parabola starting at ηþ ¼ −m2

π=4 is
the region that is sampled in the integral.

TABLE III. Our result for the rare decay, obtained either with
the dispersion relation (DR) or directly from the contour
deformation, compared to other theoretical calculations and
experiment (after removing the final state radiative corrections).

Collaboration Bðπ0 → eþe−Þ [10−8]
Experiment [1,32,33] 6.87(36)
Dorokhov et al. [2,31] 6.23(9)
Husek et al. [46] (THS) 6.14(8)
Masjuan et al. [34] 6.23(5)
Our result (DR) 6.21(3)
Our result (direct) 6.22(3)
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parametrization of the transition form factor that is adapted
to reproduce experimental data from CLEO together with
additional high-energy QCD constraints. A generalization
of LMDþ V is the two-hadron saturation model (THS) of
Ref. [46]. The more recent Ref. [34] employs a data-driven
approach via Padé Theory and Canterbury approximants.
All four theoretical results are in agreement with each other,
thus showing consistency between different approaches.
Again, it appears that the decay rate is not overly sensitive
to different representations of the form factor as long as the
QCD constraints are satisfied (as guaranteed in all three
approaches). However, we would like to point out that all
three calculations rely on dispersion relations and the
Mellin-Barnes representation. Thus the only number that
influences the final result is the constant Að0Þ. Although
a priori one would deem the dispersive approach reliable
for this process, it still remains to be checked via a direct
calculation.

B. Direct calculation of AðtÞ
The integrand in Eq. (26) has poles for vanishing

denominators, i.e., if either of the photons or the inter-
mediate lepton go on shell. Depending on the value of t,
this may prohibit a straightforward Euclidean integration.
Specifically, for t ∈ C one can draw a kinematically safe
region in the complex t plane where such an integration is
possible, and a forbidden region where the poles enter in
the integration domain and the integration would produce a
wrong result. The latter case would usually be interpreted
as a failure of the Wick rotation; however, as we demon-
strate below, the Euclidean expression Eq. (26) is still valid
if the poles are treated correctly. Problems of this kind are
frequent in Euclidean bound-state calculations and pose
limitations, e.g., in computing excited hadrons or form
factors for timelike or large spacelike arguments [8] and
thus it is desirable to find a general method to deal
with them.
In the case of Eq. (26) it is the unfortunate combination

of all three external momenta being on shell that compli-
cates the situation. The analysis in Appendix A shows that
the lepton poles lead to a narrow parabola

ðImtÞ2 < 4m2Reð−tÞ; ð32Þ

around the negative (timelike) t axis which is kinematically
safe, whereas the photon poles admit a straightforward
integration only for real and positive t. Taken in combi-
nation, the integration is only possible for t ¼ 0, which
leads to the result for Að0Þ quoted above.
To analyze the situation for general t, we write the

integral in hyperspherical variables defined by

σ¼Σ2; Z¼ Σ ·Δ
2
ffiffiffiffiffi
σt

p ; Y¼ p ·Σ
i
ffiffiffi
σ

p ffiffiffiffiffiffiffiffiffiffiffiffi
tþm2

p ffiffiffiffiffiffiffiffiffiffiffiffi
1−Z2

p ;

cf. Eq. (6), where the process becomes particularly simple in
the frame Δ ¼ 2

ffiffi
t

p ½0; 0; 0; 1�, p ¼ i
ffiffiffiffiffiffiffiffiffiffiffiffiffi
tþm2

p
½0; 0; 1; 0� and

Σ ¼ ffiffiffi
σ

p

2
66664

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Z2

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Y2

p
sinψffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − Z2
p ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − Y2
p

cosψffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Z2

p
Y

Z

3
77775: ð33Þ

The innermost ψ integration is trivial and thus the integral
AðtÞ takes the form

AðtÞ ¼ −
2

π

Z
∞

0

dσσ2
Z

1

−1
dZ

ð1 − Z2Þ3=2FðQ2; Q02Þ
ðσ − tÞ2 þ 4σtð1 − Z2Þ

×
Z

1

−1
dY

1

σ − tþ 2i
ffiffiffi
σ

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
tþm2

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Z2

p
Y
: ð34Þ

The denominator under the dZ integral is equal to Q2Q02
whereas the second denominator corresponds to the lepton
pole. The integration in Y can be performed analytically:Z

1

−1
dY

1

aþ Y
¼ ln

aþ 1

a − 1
; ð35Þ

for all a ∈ C except −1 < a < 1, in which case the
logarithm develops a branch cut.
After performing all angular integrations, the conditions

Q2Q02 ¼ 0 and −1 < a < 1 produce poles and cuts in the
complex σ plane which are visualized in Fig. 7. In principle,
the σ integration goes from zero to infinity but the “naive”
Euclidean’ integration path σ ∈ Rþ would cross a singu-
larity, hence causing the problems described above. The

FIG. 7. Sketch of the overlapping branch cuts in the integrand
of AðtÞ, i.e., the complex σ plane, for t ¼ ð−1þ iÞm2

π=4 and
m ¼ 40 MeV. The cut σl (solid, red) is generated by the lepton
pole and the cut σγ (dashed, blue) by the photon poles; the latter
opens at σ ¼ t but the former does not. The dotted line shows a
possible integration path avoiding all singularities. The units are
in GeV2.
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vanishing denominator for the photons produces a cut
along

σ�γ ðZÞ ¼ t
�
Z � i

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Z2

p 	
2
;

with −1 < Z < 1, which describes a circle with radius jtj.
The circle opens at σ ¼ t since in this case the remaining
ð1 − Z2Þ factor in the denominator of Eq. (34) cancels with
the numerator. On the other hand, the lepton denominator
leads to a cut

σ�l ðZÞ ¼ ðtþm2Þ
 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Z2 −
m2

tþm2

s
� i

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Z2

p !2

;

which does not open at σ ¼ t as this would correspond to
a ¼ 0 in Eq. (35). Instead, it never crosses the arc that
passes through σ ¼ −t as shown in Fig. 7.
We solve the problem by exploiting Cauchy’s theorem in

finding an integration contour that connects σ ¼ 0 and
σ → ∞ but never crosses any singularity. Such a possible
path is shown in Fig. 7: (1) it departs from the origin in the
direction opposite to t, (2) then navigates between the cuts
until it reaches the point σ ¼ t, (3) returns to the positive
real axis at a value σ > jtj, (4) and from there proceeds to
the numerical cutoff at σ → ∞. This strategy ensures that
for each σ along the path the integrand in Z is free of any
singularities.
In practice, however, the problem is made worse by the

small lepton mass m ≪ mπ: in that case both cuts essen-
tially describe the same circle but open on opposite sides,
σ ¼ t and σ ¼ −t, so that the path along segment (2) pro-
ceeds along a narrow ridge between the two cuts. As a
consequence, the integrand in Z is sharply peaked which
requires an enormous number of grid points to obtain stable
results. To this end we have optimized the procedure so that
path (2) is always equally spaced between the cuts, thus
minimizing the numerical error. In addition, we implement
an adaptive integration in −1 < Z < 1 that accumulates the
grid points according to the nearest singularities in the
complex Z plane, which are determined by solving σ�γ ðZÞ
and σ�l ðZÞ for Z. In that way we gain a factor of ∼103 in
CPU time while maintaining the same numerical accuracy.
As a result, we are in principle able to determine AðtÞ in

the whole complex plane, which is shown in Fig. 8 in the
momentum region relevant for the π0 → eþe− decay. The
real part is sharply peaked at the origin t ¼ 0, whereas
the imaginary part develops the expected branch cut on the
timelike axis. The resulting on-shell value is Aðt0Þ ¼
10.10ð3Þ − 17.45ð1Þi, where the error reflects the uncer-
tainty in the TFF discussed below Eq. (14). The corre-
sponding branching ratio,

Bðπ0 → eþe−Þ ¼ 6.22ð3Þ × 10−8; ð36Þ

nicely agrees with the result in Eq. (31) obtained via
dispersion relations.
We have thus established a fast and efficient numerical

method to calculate Euclidean integrals, which is appli-
cable even in cases where a naive Wick rotation fails. It can
be generalized to arbitrary integrals as long as the singu-
larity structure of the integrand is known, which is not
restricted to real poles but accommodates complex poles or
cuts as well. Perhaps unsurprisingly, this demonstrates that
both Euclidean and Minkowski descriptions are completely
equivalent as long as the singularities in the integrand are
treated correctly: the correct Euclidean expression, such as
Eq. (34), is the one that connects zero with infinity without
crossing any singularities.
Exploratory calculations using contour deformations

have been performed, e.g., in determining quark, gluon
and ghost propagators in the complex plane [18,47–50]. In
those cases the singularity structure of the integrands is
usually less intertwined. In turn, one has to deal with
integral equations and thus self-consistent problems where
the singularities that are dynamically generated by the
integration enter again into the integrand and must be
accounted for as well. In addition to other methods to
calculate propagators in the complex plane [51–54], or a
direct inclusion of residues as done for example in Ref. [55],
contour deformationmethodsmay become an attractive tool

FIG. 8. Result for AðtÞ in the complex t plane. The units for t
are GeV2 and AðtÞ is dimensionless. The on-shell pion point is
t0 ¼ −m2

π=4 ≈ −0.005 GeV2.
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for overcoming several long-standing obstacles in the
Dyson-Schwinger/Bethe-Salpeter approach, e.g., the calcu-
lation of (highly) excited states, form factors at timelike or
large spacelike momentum transfer, or the treatment of
genuine resonances.

V. CONCLUSIONS

In this work we determined the branching ratios of various
leptonic decays of the neutral pion. The common central
element in these calculations is the pion transition form
factor. We calculated its momentum dependence in a Dyson-
Schwinger and Bethe-Salpeter framework employing an
underlying quark-gluon interaction that has been successful
elsewhere in describing a range of different static and
dynamic meson and baryon properties, see e.g., [8,56] for
reviews. The resulting form factor dynamically generates
vector-meson dominance and can be shown to comply with
the perturbative scaling behavior at large spacelike momenta
in the symmetric limit, whereas the coefficient of the scaling
limit is modified in the asymmetric limit [3].
Due to the kinematic constraints imposed by Dalitz

decays—as is well known—only a very small range of
timelike momenta around the zero-momentum limit con-
trolled by the anomaly is probed. Consequently, our results
for these pion decays very much resemble those of other
theoretical approaches that use, e.g., vector-meson domi-
nance models for the form factor supplemented with
constraints from the anomaly. The results are subsequently
compatible with experiment.
For the rare decay the form factor is probed in the

spacelike region and we have been able to confirm
theoretical calculations using dispersion relations, however
through a direct calculation using contour deformations.
Thus our result for the rare decay π0 → eþe− still leaves a
2σ discrepancy between theory and experiment.
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APPENDIX A: SINGULARITY RESTRICTIONS

Here we return to the problem mentioned in Sec. II C,
namely, to find the kinematic regions where a Euclidean
integral with singularities in the integrand can be calculated
directly without any contour deformations. For generality,
consider a Lorentz-invariant integral

Iðp1;…pnÞ ¼
Z

d4k1

Z
d4k2…fðq2Þ… ðA1Þ

It depends on a collection of external momenta pμ
i and one

integrates over the loop momenta kμj . The integrand
consists of Lorentz-invariant functions such as fðq2Þ,
where qμ is a linear combination of the external and loop
momenta. The loop momenta kμj are always real; however,
if an external momentum is timelike (p2

i < 0) it will inject
imaginary components into qμ, which is therefore a
complex four-vector. Splitting qμ into its real and imaginary
parts, where A, B ∈ R and eμ, e0μ are Euclidean unit
vectors, yields

qμ ¼ Aeμ þ iBe0μ ⇒ q2 ¼ A2 − B2 þ 2iABðe · e0Þ:
Because e · e0 ∈ ½−1; 1�, the Lorentz invariant q2 is tested
inside a parabola ðA� iBÞ2 with apex −B2 on the real axis;
for B ¼ 0 it becomes the positive real axis. In other words,
if qμ has imaginary components then q2 is sampled inside a
complex parabola.
Now, if fðq2Þ has singularities in the complex plane, the

corresponding parabola passing through the first singularity
(e.g., a real pole, complex conjugate poles, or the onset of a
cut) defines the “contour mass” q2 ¼ −m2

p. The kinemat-
ically safe region is then subject to the restriction

−B2 > −m2
p ⇔ ½Imq�2 ¼ B2 < m2

p: ðA2Þ
Because the imaginary part of qμ can only come from the
external momenta pμ

i , this imposes restrictions on the
domain of the external Lorentz invariants.
We specifically consider the transition matrix element in

Eq. (7), where the quark momenta in the loop are given by
k� Δ=2 and kþ Σ. The dressing functions of the quark
propagator in Eq. (9),

Zfðp2Þ
p2 þM2ðp2Þ and

Zfðp2ÞMðp2Þ
p2 þM2ðp2Þ ;

develop a certain singularity structure in the complex plane.
In a rainbow-ladder truncation the nearest singularities are
complex conjugate poles with a typical contour mass mp ∼
0.5 GeV for light quarks (see [57] for a detailed inves-
tigation). The loop momentum k is always real and thus one
arrives at the conditions�

Im
Δ
2

�
2

< m2
p and ðImΣÞ2 < m2

p: ðA3Þ

In general these restrictions depend on the chosen frame
for Σ and Δ. The components of Σ and Δ can be arranged
arbitrarily as long as the Lorentz invariants defined in
Eqs. (3)–(6), Σ2 ¼ σ ¼ ηþ þm2

π=4, Δ2 ¼ −m2
π and

Σ · Δ ¼ ω, remain unchanged. For any possible choice,
however, one can find a linear combination Σþ αΔ that
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has a four-component only, with an arbitrary parameter
α ∈ R. The general arrangement satisfying these con-
straints is

Δ ¼ 1

N

2
6664

0

0

−i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σm2

π þ ω2
p
ω − αm2

π

3
7775; Σ ¼ 1

N

2
6664

0

0

iα
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σm2

π þ ω2
p
σ þ αω

3
7775

with N ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ þ 2αω − α2m2

π

p
.

Take for example the pion’s rest frame, which corre-
sponds to α → ∞:

Δ ¼

2
6664

0

0

0

imπ

3
7775; Σ ¼

2
66664

0

0ffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2

m2
π
þ σ

q
ω
imπ

3
77775 ¼ ffiffiffi

σ
p
2
6664

0

0ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Z2

p

Z

3
7775:

If σ > 0 and Z ∈ ½−1; 1�, Σ is real and the imaginary part
only comes from Δ, so the resulting conditionmπ < 2mp is
always satisfied. However, the situation is different in the
quadrant ηþ > 0, jωj < ηþ shown in Fig. 1, because in this
case Z is imaginary. Here both Δ and Σ have imaginary
four-components and the resulting condition becomes
jωj < mπmp, which defines a narrow strip around the
symmetric limit ω ¼ 0.
The arbitrariness of α can be exploited to optimize the

frame, i.e. to reach kinematic regions for the form factor
that are not accessible in the pion rest frame. The resulting
domains are plotted in Fig. 9 for different values of α. The
leftmost plot shows α ¼ 0 and the rightmost plot α ¼ 8; for
α → ∞ one recovers the pion rest frame. For example, with
α ¼ 0 the momentum Σ is the one with a four-component
only, whereasΔ has an imaginary three-component and, for
σ > 0, leads to the condition

ω2 < ð4m2
p −m2

πÞ
�
ηþ þm2

π

4

�
: ðA4Þ

For the singly virtual form factor FðQ2; 0Þ the optimal
choice is α ¼ 1=2 (second plot in Fig. 9). In that case it is
the photon momentum Q ¼ Σþ Δ=2 that has a four-
component (resembling the Breit frame in elastic form

factor calculations). The denominator N ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ηþ þ ω

p
is

always real if ηþ > 0 and jωj < ηþ, and therefore the three-
components of Σ and Δ are imaginary. The resulting
condition is

m2
πηþ þm4

π

4
þ ω2 < 4m2

pðηþ þ ωÞ: ðA5Þ

This region crosses the line ηþ ¼ ω at

ηþ ¼ ω ¼ Q2

2
¼ 4m2

p

�
1 −

ε

2
þ

ffiffiffiffiffiffiffiffiffiffi
1 − ε

p �
≈ 8m2

p; ðA6Þ

with ε ¼ m2
π=ð4m2

pÞ. Hence, in the asymmetric limit the
form factor can be calculated up toQ2

max ≈ 16m2
p ≈ 4 GeV2

without crossing any quark singularities.
As a second example we consider the integral AðtÞ in

Eq. (26) which describes the π0 → eþe− decay. In that case
the external momenta are Δ and p, with Lorentz invariants
Δ2 ¼ 4t, p2 ¼ −ðtþm2Þ and p · Δ ¼ 0, whereas Σ is the
real loop momentum. The internal photon momenta are
Σ� Δ=2 and the lepton momentum is Σþ p, so the
singularity conditions become

�
Im

Δ
2

�
2

< 0 and ðImpÞ2 < m2; ðA7Þ

where m is the lepton mass. The analogous arrangement in
the general frame is

Δ¼ 1

N

2
6664

0

0

−2i
ffiffi
t

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
tþm2

p

4αt

3
7775; p¼ 1

N

2
6664

0

0

2iα
ffiffi
t

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
tþm2

p

−ðtþm2Þ

3
7775;

with N ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ðtþm2Þ þ 4α2t

p
. In this case the maximal

domains correspond to the limits α ¼ 0 or α → ∞ and one
arrives at the condition ðImtÞ2 < 4m2Reð−tÞ from the
lepton pole and t > 0 from the photon poles, which are
quoted in Eq. (32). Although in principle these regions are
disjoint, the analysis of Eq. (34) shows that the point t ¼ 0
contains an integrable singularity and thus Að0Þ is well-
defined if m > 0.

FIG. 9. Kinematically accessible regions in the ðω; ηþÞ plane for different frames; the units are in GeV2. From left to right: α ¼ 0, ½, 1,
3 ⁄2, 8. The (blue) triangles are merely drawn for guidance and show the spacelike domain (Q2 > 0, Q02 > 0).
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APPENDIX B: FOUR-BODY PHASE SPACE

In this appendix we work out the four-body phase-space
integral dΦ4 that enters in the π0 → eþe−eþe− decay of
Eq. (17). The decay width of a particle with momentum P
and mass M decaying into n daughter particles with
momenta pi and masses mi is given by

ΓðP → piÞ ¼
1

S
1

2M

Z
dΦnjMj2; ðB1Þ

with S the symmetry factor, jMj2 the spin-summed and
squared matrix element, and dΦn the phase-space integral
for an n-particle final state given by

dΦn ¼ ð2πÞ4δ4
�
P −

Xn
i¼1

pi

�Yn
i¼1

d3pi

ð2πÞ32Ei
: ðB2Þ

Following Ref. [58], we rewrite the integration in terms
of invariant mass variables. For n ¼ 4 one obtains

dΦ4 ¼
1

ð2πÞ8
π2

32M2

ds12ds34ds124ds134ds14ffiffiffiffiffiffiffiffiffiffiffiffi
−Δð4Þ

p ðB3Þ

where, for degenerate decay products with mi ¼ m, the
two- and three-particle Mandelstam variables read

sij ¼ −ðpi þ pjÞ2 ¼ 2m2 − 2pi · pj;

sijk ¼ −ðpi þ pj þ pkÞ2 ¼ sij þ sik þ sjk − 3m2 ðB4Þ
and the four-dimensional Gram determinant Δð4Þ contains
all possible dot products of four-vectors:

Δð4Þ ¼ det

2
66664

−m2 p1 · p2 p1 · p3 p1 · p4

p1 · p2 −m2 p2 · p3 p2 · p4

p1 · p3 p2 · p3 −m2 p3 · p4

p1 · p4 p2 · p4 p3 · p4 −m2

3
77775: ðB5Þ

In contrast to [29,58,59] we employ a Euclidean signature,
however with sij and sijk defined such that they have the
same meaning in Minkowski and Euclidean conventions.
To work with the invariant mass variables of Eq. (B3), one
replaces the pi · pj in the Gram determinant according to
Eq. (B4) together withX

i<j

sij ¼ −ðM2 þ 8m2Þ: ðB6Þ

The physical region of integration is bounded by
the surface Δð4Þ ¼ 0. Following the derivation of

Refs. [29,59,60], we impose this relation on the invariant
mass variables and begin by solving Δð4Þ ¼ 0 for s14. It
yields

s�14 ¼
b� 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gðs124; s34; s12ÞGðs134; s12; s34Þ

p
λðs12; s34;M2Þ ; ðB7Þ

where λðu;v;wÞ ¼ u2þv2þw2− 2uv− 2uw− 2vw is the
Källen function, the G functions are given by

Gðu; v; wÞ ¼ m2ðw −M2Þ2
þ v½ðu −m2Þ2 − ðuþm2ÞðwþM2Þ
þ wM2 þ uv�;

and b is the coefficient of −8Δð4Þ linear in s14:

b ¼ Gðs124; s34; s12Þ þ Gðs134; s12; s34Þ
þM2cd − ðcþ dÞðs12dþ s34cÞ

with c ¼ s124 −m2 and d ¼ s134 −m2.
The regions of the s124 and s134 integrations are bounded

by the surfaces satisfying sþ14 ¼ s−14, which is fulfilled
when either of the G functions in Eq. (B7) vanishes
Gðs124; s34; s12Þ ¼ 0 or Gðs134; s12; s34Þ ¼ 0. Solving
Gðu; v; wÞ ¼ 0 for u yields

s�14 ¼
w − vþM2 þ 2m2

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v − 4m2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðv; w;M2Þ

p
2
ffiffiffi
v

p

and thus determines the integration boundaries s�124 and s
�
134

as functions of the two dilepton invariant masses s12
and s34.
Finally, s34 and s12 range from the threshold at 4m2 to

ðM − ffiffiffiffiffiffi
s12

p Þ2 and ðM − 2mÞ2, respectively; here the order-
ing is arbitrary and could also be exchanged.
A valuable check when rewriting the phase-space inte-

gral in different coordinates is the massless limit. For
massless daughter particles the n-body phase space is
given by

Φn ¼
1

2ð4πÞ2n−3
M2n−4

ΓðnÞΓðn − 1Þ : ðB8Þ

Integrating over the phase-space volume only, as given in
Eq. (B3) with the borders as suggested for m ¼ 0, repro-
duces the limit exactly as it should.
The final decay rate for the decay of the neutral pion

(M ¼ mπ) into two dileptons (m ¼ me) is then given by

Γπ0→2eþ2e− ¼ 1

216π6m3
π

Z ðmπ−2meÞ2

4m2
e

ds12

Z ðmπ−
ffiffiffiffiffi
s12

p Þ2

4m2
e

ds34

Z
sþ
124

s−
124

ds124

Z
sþ
134

s−
134

ds134

Z
sþ
14

s−
14

ds14
jMj2ffiffiffiffiffiffiffiffiffiffiffiffi
−Δð4Þ

p : ðB9Þ
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