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We extend the two-flavor hard-wall holographic model of Erlich, Katz, Son, and Stephanov [Phys. Rev.
Lett. 95, 261602 (2005)] to four flavors to incorporate strange and charm quarks. The model incorporates
chiral and flavor symmetry breaking and provides a reasonable description of masses and weak decay
constants of a variety of scalar, pseudoscalar, vector, and axial-vector strange and charmed mesons. In
particular, we examine flavor symmetry breaking in the strong couplings of the ρ meson to the charmed D
and D� mesons. We also compute electromagnetic form factors of the π, ρ, K, K�, D and D� mesons. We
compare our results for the D and D� mesons with lattice QCD data and other nonperturbative approaches.
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I. INTRODUCTION

There is considerable current theoretical and experimen-
tal interest in the study of the interactions of charmed
hadrons with light hadrons and atomic nuclei [1–3]. There
is special interest in the properties of D mesons in nuclear
matter [4], mainly in connection withD-mesic nuclei [5–8],
J=Ψ and ηc binding to nuclei [9–12], and ND molecules
[13]. D-mesons are also of interest in the context of the so-
called X,Y,Z exotic hadrons, which have galvanized the
field of hadron spectroscopy since the discovery in 2003 of
the charmed hadron Xð3872Þ by the Belle collaboration
[14]. They are exotic because they do not fit the conven-
tional quark-model pattern of either quark-antiquark mes-
ons or three-quark baryons. Most of the X,Y,Z hadrons
have masses close to open-flavor thresholds and decay into
hadrons containing charm (or bottom) quarks. Presently
there is no clear theoretical understanding of the new
hadrons, despite of the huge literature that has accumulated
over the last decade. In the coming years, existing and
forthcoming experiments will produce numerous new, and
very likely surprising results—Ref. [15] is a very recent
review on exotic hadrons, with an extensive list of
references on theory and experiment. The P̄ANDA col-
laboration [16], in particular, at the forthcoming FAIR
facility has an extensive program [17,18] aiming at the
investigation of charmed hadrons and their interactions
with ordinary matter.
A major difficulty in the theoretical treatment of in-

medium interactions of charmed hadrons is the lack of
experimental information on the interactions in free space.
For example, almost all knowledge on the DN interaction
comes from calculations based on effective Lagrangians
that are extensions of light-flavor chiral Lagrangians using

SUð4Þ flavor symmetry [19–25] and heavy quark sym-
metry [6,26]. The Lagrangians involve coupling constants,
like gρDD, gωDD, gρD�D, and gρD�D� , whose values are taken
from SUð4Þ flavor and heavy-quark symmetry relations.
For instance, SUð4Þ symmetry relates the couplings of
the ρ to the pseudoscalar mesons π, K, and D, namely
gρDD ¼ gKKρ ¼ gρππ=2. If in addition to SUð4Þ flavor
symmetry, heavy-quark spin symmetry is invoked, one
has gρDD ¼ gρD�D ¼ gρD�D� ¼ gπD�D to leading order in the
charm quark mass [27,28]. The coupling gρππ is constrained
by experimental data; the studies of the DN interaction in
Refs [22–24] utilized such a SUð4Þ relation, taking
gρππ ¼ 6.0, which is the value used in a large body of
work conducted within the Jülich model [29,30] for light-
flavor hadrons. This value of gρππ implies through SUð4Þ
symmetry gρDD ¼ 3, which is not very much different from
predictions based on the vector meson dominance (VMD)
model: gDDρ ¼ 2.52–2.8 [31,32]. Moreover, to maintain
unitarity in calculations of scattering phase shifts and cross
sections, lowest-order Born diagrams need to be iterated
with the use of a scattering equation, like the Lippmann-
Schwinger equation, and phenomenological form factors
are required to control ultraviolet divergences. Form factors
involve cutoff parameters that also are subject to flavor
dependence. Again, due to the lack of experimental
information, they are also poorly constrained.
Flavor symmetry is strongly broken at the level of the

QCD Lagrangian due to the widely different values of the
quark masses; while in the light quark sector one has good
SUð2Þ symmetry,mu ≃md, thereby, e.g., gρDD ¼ gωDD (up
to a phase), in the heavy-flavor sector SUð3Þ and SUð4Þ
symmetries are badly broken: mc ≫ ms ≫ mu. Given the
importance of effective Lagrangians in the study of a great
variety of phenomena involving D-mesons, in the present
work we examine their properties in a holographic model
of QCD. We extend the holographic QCD model of
Refs. [33,34] to the case of Nf ¼ 4 and investigate the
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implications of the widely different values of the quark
masses on the effective three-meson couplings gρDD and
gρD�D� and the electromagnetic form factors of the D and
D� mesons. The parameters of the model are the quark
masses and condensates as well as the mass gap scale.
Using experimental data for a selected set of meson masses
to fix the model parameters, allows us to predict not only
the strong couplings and electromagnetic form factors
mentioned above but also many other observables not
studied before with a holographic model.
The works in Refs. [33,34] pioneered in the modeling of

low energy QCD by incorporating features of dynamical
chiral symmetry breaking in holographic QCD. They
correctly identify the five dimensional gauge fields dual
to the left and right currents associated with chiral sym-
metry as well as the five dimensional scalar field dual to the
chiral condensate. The extension proposed in Ref. [35]
incorporated the strange quark and was able to identify the
appearance of scalar modes associated with flavor sym-
metry breaking. In the present work, by extending the
model of Refs. [33,34] to the case Nf ¼ 4, we are able to
investigate the consequences of the dramatically different
values of the quark masses on the phenomenology of
charmed mesons. Moreover, by combining the formalism
of Kaluza-Klein expansions and the AdS/CFT dictionary,
we are able to directly extract the leptonic decay constants
of mesons and find an expansion for the flavor currents that
relate flavor symmetry breaking to the appearance of scalar
modes. That relation bears a strong analogy with the
generalized PCAC (partially conserved axial current rela-
tion) [36,37] that relates dynamical chiral symmetry break-
ing to the appearance of the pion and its resonances [38].
In the model of Refs. [33,34], dynamical chiral sym-

metry breaking becomes manifest when considering fluc-
tuations of the five dimensional gauge fields associated
with the axial and vectorial sector. While the kinetic terms
of the axial sector acquire a mass, signalizing chiral
symmetry breaking, the vector sector remains massless.
In our framework, it turns out that the vector sector also
acquires a mass signalizing the breaking of flavor sym-
metry. The Kaluza-Klein decomposition of these fields
allows us to obtain effective kinetic Lagrangians for the
mesons from the five dimensional kinetic terms, with
masses and decay constants obtained in terms of the wave
functions representing the Kaluza-Klein modes. Moreover,
expanding the five dimensional action to cubic order in the
fluctuations and performing again a Kaluza-Klein decom-
position allows us to obtain effective Lagrangians describ-
ing the three-meson interactions, with strong couplings
given in terms of integrals involving the wave functions of
the corresponding Kaluza-Klein modes.
It turns out that the symmetry breaking pattern in the

strong couplings differs somewhat from previous studies in
the literature. Calculations employing QCD sum rules
found SUð4Þ symmetry breaking in three-hadron couplings

that vary within the range of 7% to 70% [39]. In Ref. [40],
using a model constrained by the Dyson-Schwinger equa-
tions of QCD, it was found that the relation gρDD ¼ gρππ=2
is strongly violated at the level of 300% or more. In a recent
follow up of that study within the same framework, Ref. [41]
finds that couplings between D-, D�-mesons and π-,
ρ-mesons can differ by almost an order-of-magnitude, and
that the corresponding form factors also exhibit different
momentum dependences. Our results calculations are more
in line with calculations using the 3P0 quark-pair creation
model in the nonrelativistic quark model [42,43].
The organization of this paper is as follows. In Sec. II we

describe how chiral and flavor symmetry breaking is
realized in our model. Then in Sec. III we describe the
five dimensional field equations and the AdS/CFT dic-
tionary for the flavor and axial currents. In Sec. IV we
describe the formalism of Kaluza-Klein expansions and
obtain effective kinetic Lagrangians for the mesons. In
Sec. V we use the prescription of our previous studies in
Ref. [38] for the leptonic decay constants and obtain
relations describing flavor symmetry breaking and chiral
symmetry breaking in terms of scalar and pseudoscalar
modes respectively. In Sec. VI we obtain effective
Lagrangians describing three-meson interactions with the
holographic prescription for the strong couplings. Finally,
in Sec. VII we fit the model parameters and present our
numerical results for many observables, including the
strong couplings gρDD and gρD�D� as well as the electro-
magnetic form factors of the D and D� mesons. We
compare the latter against lattice QCD data obtained in
Ref. [44]. Section VIII presents our conclusions.

II. CHIRAL SYMMETRY AND FLAVOR
SYMMETRY IN HOLOGRAPHIC QCD

Chiral symmetry SUðNfÞL × SUðNfÞR for Nf flavors
holds in the massless limit of QCD and is described in
terms of the left and right currents

Jμ;aL=R ¼ q̄L=RγμTaqL=R; ð1Þ

where Ta, a ¼ 1;…N2
f − 1 are the generators of the

SUðNfÞ group, and qL=R ¼ 1=2ð1� γ5Þq, with q being
the quark Dirac field. The SUð4Þ generators Ta are
normalized by the trace condition TrðTaTbÞ ¼ 1=2δab,
satisfying the Lie algebra ½Ta; Tb� ¼ ifabcTc. The gener-
ators Ta are related to the Gell-Mann matrices λa by
Ta ¼ 1=2λa. Chiral symmetry is broken by the presence
of the operator q̄q ¼ q̄RqL þ q̄LqR. This breaking can be
explicit, when it appears in the QCD Lagragian associated
with the nonzero quark masses, or dynamically, when it
acquires a vacuum expectation value, giving rise to a
condensate hq̄qi in limit of zero quark masses.
In the case Nf ¼ 2, dynamical chiral symmetry breaking

goes as SUð2ÞL × SUð2ÞR → SUð2ÞV , where SUð2ÞV is an
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exact vector symmetry and the broken symmetry occurs in
the axial sector. This is described in terms of the vector and
axial currents Jμ;aV=A ¼ Jμ;aR � Jμ;aL . The symmetry associated
with the vector sector Jμ;aV is known as isospin symmetry.
When Nf > 2, both chiral and flavor symmetries are
broken by the quark masses. We will describe how chiral
and flavor symmetry breaking are implemented in a holo-
graphic model for Nf ¼ 4.
In the pioneering work of Refs. [33,34], a simple

holographic realization of chiral symmetry breaking
(CSB) was proposed. They considered the simplest back-
ground in holographic QCD, known as the hard wall model
[45], consisting in a slice of anti-de-Sitter spacetime:

ds2 ¼ 1

z2
ðημνdxμdxν − dz2Þ; ð2Þ

with 0 < z ≤ z0. The parameter z0 determines an infrared
(IR) scale at which conformal symmetry is broken. The
action proposed in Ref. [33] includes Nf gauge fields Lm

and Rm, corresponding to the left and right flavor currents
Jμ;aL=R, and a bifundamental field X dual to the operator
q̄RqL. The action can be written as

S ¼
Z

d5x
ffiffiffiffiffi
jgj

p
TrfðDmXÞ†ðDmXÞ þ 3jXj2

−
1

4g25
ðLmnLmn þ RmnRmnÞg; ð3Þ

where DmX ¼ ∂mX − iLmX þ iXRm is the covariant
derivative of the bifundamental field X, and

Lmn ¼ ∂mLn − ∂nLm − i½Lm; Ln�;
Rmn ¼ ∂mRn − ∂nRm − i½Rm;Rn�; ð4Þ

are non-Abelian field strengths. The 5-d squared mass of
the field X is fixed to m2 ¼ −3, to match with the
conformal dimension Δ ¼ 3 of the dual operator q̄RqL.
The model of Ref. [33] focused on Nf ¼ 2 and worked in
the limit of exact flavor symmetry. In Ref. [35], Abidin and
Carlson extended the model to Nf ¼ 3, to incorporate the
strange-quark sector. In the present paper we further extend
that model to Nf ¼ 4, with the aim of making predictions
for charmed mesons. In our approach we use a Kaluza-
Klein expansion for the 5-d fields in order to find a 4-d
effective action for the mesons. This approach allows us to
find directly the meson weak decay constants, couplings
and expansions for the vector and axial currents. We find in
particular a relation for the vector current describing flavor
symmetry breaking (FSB).
We start with the classical background that describes

chiral symmetry breaking:

L0
m ¼ R0

m ¼ 0; 2X0 ¼ ζMzþ Σ
ζ
z3; ð5Þ

where M is the quark-mass matrix, M ¼
diagðmu;mu;ms;mcÞ, and Σ is the matrix of the quark
condensates, Σ ¼ diagðσu; σu; σs; σcÞ. The parameter ζ ¼ffiffiffiffiffiffi
Nc

p
=2π is introduced to have consistency with the

counting rules of large-Nc QCD—for details, see
Ref. [46]. Note that we are assuming SUð2Þ isospin
symmetry in the light-quark sector, i.e. md ¼ mu and
σd ¼ σu, which is a very good approximate symmetry
in QCD.
For the strange and charm quarks we will fit their masses

ms and mc to the physical masses for the mesons. Note,
however, that the model should not be valid for arbitrarily
large quark masses. The reason is that, from the string
theory perspective, the action in Ref. (3) is expected to arise
from a small perturbation of Nf coincident space-filling
flavor branes. Specifically, the mass term M appearing in
Eq. (5) acts as a small source for the operator q̄RqL,
responsible for the breaking of the chiral and flavor
symmetries. A holographic description of quarks with very
large masses requires the inclusion of long open strings and
two sets of flavor branes distinguishing the heavy quarks
from the light quarks (see, e.g., [47]). In that framework,
the string length is proportional to the quark mass and each
set of flavor branes will carry a set of fields describing the
dynamics of light and heavy mesons respectively. In this
work wewill show that the model described by the action in
Eq. (3) is still a very good approximation for the dynamics
of light and heavy-light charmed mesons, the reason being
that the internal structure in both cases is governed by
essentially the same nonperturbative physics, that occurs at
the scale ΛQCD [27]. In heavy-heavy mesons, on the other
hand, the internal dynamics is governed by short-distance
physics. For recent holographic studies of mesons involv-
ing heavy quarks see Refs. [48–51].
To investigate the consequences of chiral and flavor

symmetry breaking it is convenient to rewrite the fluctua-
tions of left and right gauge fields in terms of vector and
axial fields, i.e., Lm ¼ Vm þ Am and Rm ¼ Vm − Am. The
bifundamental field X can be decomposed as

X ¼ eiπX0eiπ; ð6Þ

where X0 is the classical part and π contains the fluctua-
tions. The fields Vm, Am, and π can be expanded as Va

mTa,
Aa
mTa, and πaTa respectively.
It is important to remark that organizing the heavy-light

D mesons together with the light pions and kaons in a
15-plet πaTa of fluctuation fields does not imply, auto-
matically, that the heavy-light D mesons are being approxi-
mated by Nambu-Goldstone bosons. The reason is that the
explicit breaking of chiral symmetry, driven by the heavy
charm quark, is large and by no means its effects are
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neglected in the model. In the same way, the fact the D
mesons appear in the same multiplet of the SU(4) flavor
group does not mean that flavor symmetry is exact; it is
explicitly broken by the widely different values of the
quark masses. The main advantage of using such a SU(4)
representation with explicit symmetry-breaking terms is
that it allows us to make contact with the four dimensional
effective field theories describing the interactions of light
and heavy-light mesons commonly used in phenomeno-
logical applications. This not only extends the work of
[20,32] but also leads to quantitative predictions for the
strong couplings that can be tested against experiment or
lattice QCD data, which is our main objective in the present
paper. An alternative approach to describe the heavy-light
mesons is to make contact with a particularly interesting
class of four dimensional models that treat the light mesons
as in the present paper, and treat heavy mesons by invoking
heavy-quark symmetry. The Lagrangian in the heavy sector
is written as an expansion in inverse powers of the heavy
quark mass; Refs. [6,26] are examples of such models. In
holography the heavy quarks are realized in terms of long
open strings, as described above in this section. For recent
progress in the heavy quark approach to heavy-light
mesons within holographic QCD see [50,51].
Expanding the action in Eq. (3) up to cubic order in the

fields Va
m, Aa

m and πa, we find

S ¼ Sð2Þ þ Sð3Þ þ � � � ; ð7Þ

where

Sð2Þ ¼
Z

d5x
ffiffiffiffiffi
jgj

p �
−

1

4g25
vmn
a vamn þ

1

2
ðMa

VÞ2Vm
a Va

m

−
1

4g25
amn
a aamn þ

Mab
A

2
ð∂mπa − Am;aÞð∂mπb − Am;bÞ

�

ð8Þ

Sð3Þ ¼
Z

d5x
ffiffiffiffiffi
jgj

p �
−

1

2g25
fabcvmn

a ðVb
mVc

nþAb
mAc

nÞ

−
1

g25
fabcamn

a Vb
mAc

n −
ðMb

VÞ2
2

fabcð∂mπ
a− 2Aa

mÞVm;bπc

þMae
A febcð∂mπ

a−Aa
mÞVm;bπc

�
; ð9Þ

and we have defined the Abelian field strengths vamn ¼∂mVa
n − ∂nVa

m and aamn¼∂mAa
n−∂nAa

m. In the kinetic
term Sð2Þ, the vector and axial symmetry breaking is
dictated by the mass terms Ma

V and ~Mab
A , defined

by the traces 2Trð½Ta; X0�½Tb; X0�Þ ¼ −ðMa
VÞ2δab and

2TrðfTa; X0gfTb; X0gÞ ¼ Mab
A . Note, however, that

the axial sector in Sð2Þ is invariant under the gauge
transformation

Aa
m → Aa

m − ∂mλ
a
A; πa → πa − λaA: ð10Þ

Using Eq. (5) we find the following nonzero values
for MV :

ðMa
VÞ2 ¼

1

4
ðvs − vuÞ2 for a ¼ ð4; 5; 6; 7Þ;

ðMa
VÞ2 ¼

1

4
ðvc − vuÞ2 for a ¼ ð9; 10; 11; 12Þ;

ðMa
VÞ2 ¼

1

4
ðvc − vsÞ2 for a ¼ ð13; 14Þ; ð11Þ

and the nonzero values for MA:

Ma;a
A ¼ v2u for a ¼ ð1; 2; 3Þ;

Ma;a
A ¼ 1

4
ðvs þ vuÞ2 for a ¼ ð4; 5; 6; 7Þ;

Ma;a
A ¼ 1

4
ðvc þ vuÞ2 for a ¼ ð9; 10; 11; 12Þ;

Ma;a
A ¼ 1

4
ðvc þ vsÞ2 for a ¼ ð13; 14Þ;

M8;8
A ¼ 1

3
ðv2u þ 2v2sÞ;

M15;15
A ¼ 1

12
ð2v2u þ v2s þ 9v2cÞ;

M8;15
A ¼ M15;8

A ¼ 1

3
ffiffiffi
2

p ðv2u − v2sÞ: ð12Þ

In Eqs. (11) and (12) we have defined

vqðzÞ ¼ ζmqzþ
1

ζ
σqz3; q ¼ ðu; s; cÞ: ð13Þ

In the interesting case where all the masses and con-
densates are equal we have that ðMa

VÞ2 ¼ 0 and the SUð4Þ
flavor symmetry is preserved. In this paper we consider
quark masses and condensates that lead to a realistic
spectrum for the mesons so that we could explore the
consequences of SUð4Þ flavor symmetry breaking. The
kinetic term in Eq. (8) allows us to extract the meson
spectrum and decay constants whereas the action in Eq. (9)
leads to nontrivial predictions for three-meson couplings,
including the heavy-light charmed mesons D and D�.
Note that the mass term for the vectorial sector ðMa

VÞ2 is
zero not only for a ¼ ð1; 2; 3Þ, corresponding to the light
SUð2Þ sector but also for a ¼ ð8; 15Þ, which implies that
flavor symmetry has not been broken in the sector
describing the dynamics of the ω0 and ψ mesons. This is
one clear example of heavy-heavy mesons (mesons com-
posed by a heavy quark-antiquark pair), where we actually
expect some corrections to appear in (3) describing flavor
symmetry breaking. Those terms would arise from the
dynamics of long open strings dual to heavy quarks, as
explained above in this section.
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III. FIELD EQUATIONS AND DUAL CURRENTS

Writing the kinetic action in Eq. (8) as Sð2Þ ¼ R
d5xLð2Þ,

its variation takes the form δSð2Þ ¼ δSð2ÞBulk þ δSð2ÞBdy where

δSð2ÞBulk ¼
Z

d5x
��∂Lð2Þ

∂Va
l
− ∂mPml

V;a

�
δVa

l

þ
�∂Lð2Þ

∂Aa
l
− ∂mPml

A;a

�
δAa

l

þ
�∂Lð2Þ

∂πa − ∂mPm
π;a

�
δπa

�
; ð14Þ

δSð2ÞBdy ¼
Z

d5x∂mðPml
V;aδV

a
l þ Pml

A;aδA
a
l þ Pm

π;aδπ
aÞ; ð15Þ

and

Pml
V;a ≔

∂Lð2Þ

∂ð∂mVa
lÞ

¼ −
1

g25

ffiffiffiffiffi
jgj

p
vml
a ;

Pml
A;a ≔

∂Lð2Þ

∂ð∂mAa
lÞ

¼ −
1

g25

ffiffiffiffiffi
jgj

p
aml
a ;

Pm
π;a ≔

∂Lð2Þ

∂ð∂mπ
aÞ ¼ Mab

A

ffiffiffiffiffi
jgj

p
ð∂mπb − Am

b Þ; ð16Þ

are conjugate momenta to the 5-d fields Va
m, Aa

m and πa

respectively. The bulk term in Eq. (14) leads to the field
equations

∂m

h ffiffiffiffiffi
jgj

p
vmn
a

i
þ g25ðMa

VÞ2
ffiffiffiffiffi
jgj

p
Vn
a ¼ 0;

∂m

h ffiffiffiffiffi
jgj

p
amn
a

i
− g25M

ab
A

ffiffiffiffiffi
jgj

p
ð∂nπb − An

bÞ ¼ 0;

∂m

h
Mab

A

ffiffiffiffiffi
jgj

p
ð∂mπb − Am

b Þ
i
¼ 0: ð17Þ

Imposing the boundary conditions ∂zVa
μjz¼z0 ¼∂zAa

μjz¼z0 ¼ 0 and ∂zπ
ajz¼z0 ¼ Azjz¼z0 ¼ Vzjz¼z0 ¼ 0 the

boundary term (15) reduces to

δSð2ÞBdy ¼ −
Z

d4x½hJμ̂V;aiðδVa
μ̂Þz¼ϵ

þ hJμ̂A;aiðδAa
μ̂Þz¼ϵ

þ hJπ;aiðδπaÞz¼ϵ�; ð18Þ

where we find the dual 4-d currents

hJμ̂V;aðxÞi ¼ Pzμ
V;ajz¼ϵ ¼ −

1

g25

	 ffiffiffiffiffi
jgj

p
vzμa



z¼ϵ

; ð19Þ

hJμ̂A;aðxÞi ¼ Pzμ
A;ajz¼ϵ ¼ −

1

g25

	 ffiffiffiffiffi
jgj

p
azμa



z¼ϵ

; ð20Þ

hJπ;aðxÞi ¼ Pz
π;ajz¼ϵ ¼

h ffiffiffiffiffi
jgj

p
Mab

A ð∂zπb − Az
bÞ
i
z¼ϵ

¼ ∂ μ̂hJμ̂A;aðxÞi: ð21Þ

Note that we distinguish the vector Minkowski indices μ̂
from the AdS indices μ. The results in Eqs. (19), (20),
and (21) define the holographic prescription for expectation
values of the 4-d vector, axial, and pion current operators.
Note from Eqs. (17) and (19) that ∂ μ̂hJμ̂V;aðxÞi ≠ 0 when
ðMa

VÞ2 ≠ 0, i.e., the vector current is not conserved for
those cases. Similarly, from Eqs. (17) and (20), one sees
that ∂ μ̂hJμ̂A;aðxÞi ≠ 0 for any a (because Mab

A ≠ 0), i.e. the
axial current is never conserved.

IV. THE 4-D EFFECTIVE ACTION

After decomposing the vector and axial fields into their
ðz; μÞ components and evaluating the metric in Eq. (2), the
kinetic action in Eq. (8) takes the form

Sð2Þ ¼ Sð2ÞV þ Sð2ÞA ; ð22Þ

where

Sð2ÞV ¼
Z

d4x
Z

dz
z

�
−

1

4g25
½ðvaμ̂ ν̂Þ2 − 2ðvazμ̂Þ2�

þ ðMa
VÞ2

2z2
½ðVa

μ̂Þ2 − ðVa
z Þ2�

�
; ð23Þ

and

Sð2ÞA ¼
Z

d4x
Z

dz
z

�
−

1

4g25
½ðaaμ̂ ν̂Þ2 − 2ðaazμ̂Þ2�

þMab
A

2z2
½ð∂ μ̂πa − Aμ̂;aÞð∂ μ̂π

b − Ab
μ̂Þ

− ð∂zπ
a − Aa

z Þð∂zπ
b − Ab

z Þ�
�
: ð24Þ

The vector and axial sectors admit a decomposition in
irreducible representations of the Lorentz group. For the
vector sector we find

Va
μ̂ ¼ V⊥;a

μ̂ þ ∂ μ̂ð ~ϕa − ~πaÞ;
Va
z ¼ −∂z ~π

a; ð25Þ

where ∂ μ̂V
⊥;a
μ̂ ¼ 0. The 5-d field V⊥;a

μ̂ describes an infinite
tower of 4-d massive spin 1 fields, i.e., the vector mesons,
whereas the 5-d fields ~ϕa and ~πa describe an infinite tower
of massive scalar fields, i.e., scalar mesons associated with
flavor symmetry breaking (FSB).
On the other hand, the gauge symmetry in Eq. (10)

allows us to decompose the axial sector as
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Aa
μ̂ → A⊥;a

μ̂ ; Aa
z → −∂zϕ

a;

πa → πa − ϕa; ð26Þ

where ∂ μ̂A
⊥;a
μ̂ ¼ 0. This time the 5-d field A⊥;a

μ̂ will
describe an infinite tower of 4-d massive axial spin 1
fields, i.e., the axial vector mesons. The 5-d fields ϕa and
πa will describe an infinite tower of 4-d pseudoscalar fields,
i.e., the pions associated with chiral symmetry break-
ing (CSB).
Using Eqs. (25), (25), and (26) the actions in Eqs. (23)

and (24) take the form

Sð2ÞV ¼
Z

d4x
Z

dz
z

�
−

1

4g25
½ðv⊥;a

μ̂ν Þ2 − 2ð∂zV
⊥;a
μ̂ Þ2

− 2ð∂z∂ μ̂
~ϕaÞ2� þ ðMa

VÞ2
2z2

½ðV⊥;a
μ̂ Þ2 þ ð∂ μ̂ ~π

a − ∂ μ̂
~ϕaÞ2

− ð∂z ~π
aÞ2� þ ∂ μ̂ð…Þ

�
; ð27Þ

Sð2ÞA ¼
Z

d4x
Z

dz
z
−

1

4g25
½ða⊥;a

μ̂ν Þ2 − 2ð∂zA
⊥;a
μ̂ Þ2

− 2ð∂z∂ μ̂ϕ
aÞ2� þMab

A

2z2
½Aμ̂;a

⊥ A⊥;b
μ̂

þ ð∂ μ̂πa − ∂ μ̂ϕaÞð∂ μ̂π
b − ∂ μ̂ϕ

bÞ − ð∂zπ
aÞð∂zπ

bÞ�
þ ∂ μ̂ð…Þg; ð28Þ

where the terms in ð…Þ are surface terms that vanish after
choosing periodic boundary conditions for the fields.
The actions in Eqs. (27) and (28) are in a suitable form to

perform a Kaluza-Klein expansion for the 5-d fields. Before
performing this expansion note that the nondiagonal
mass term M8;15

A induces a mixing in the axial sector for
meson states with flavor indices a ¼ ð8; 15Þ. In this
paper we are mainly interested in the axial sector states
with a ¼ ð9;…; 14Þ and a ¼ ð1; 2; 3Þ, corresponding to the
heavy-light charmed mesons and the usual light mesons.
Then from now on we will consider for the axial sector
only those states where a ≠ ð8; 15Þ. The axial sector states
corresponding to a ¼ ð8; 15Þ have an interesting physical
interpretation, e.g., η − ηc mixing for the pseudoscalar
sector, and deserve a further study that will be pursued
in a future project.
The 5-d fields in the vector sector admit a Kaluza-Klein

expansion of the form

V⊥;a
μ̂ ðx; zÞ ¼ g5va;nðzÞV̂a;n

μ̂ ðxÞ; ð29Þ

~πaðx; zÞ ¼ g5 ~πa;nðzÞπ̂a;nV ðxÞ; ð30Þ

~ϕaðx; zÞ ¼ g5 ~ϕ
a;nðzÞπ̂a;nV ðxÞ; ð31Þ

where a sum from n ¼ 0 to n ¼ ∞ is implicit. A similar
decomposition holds for the 5-d fields in the axial sector:

A⊥;a
μ̂ ðx; zÞ ¼ g5aa;nðzÞÂa;n

μ̂ ðxÞ; ð32Þ

πaðx; zÞ ¼ g5πa;nðzÞπ̂a;nðxÞ; ð33Þ

ϕaðx; zÞ ¼ g5ϕa;nðzÞπ̂a;nðxÞ: ð34Þ

Using these expansions the actions in Eqs. (27) and (28)

factorize into z integrals and x integrals and we find Sð2ÞV ¼R
d4xLV and Sð2ÞA ¼ R

d4xLA, with the vector and axial 4-d
Lagrangians given by

LV ¼ −
1

4
Δa;nm

V v̂a;nμ̂ ν̂ v̂
μ̂ ν̂
a;m þ 1

2
Ma;nm

V V̂a;n
μ̂ V̂ μ̂

a;m

þ 1

2
Δa;nm

πV ð∂ μ̂π̂
a;n
V Þð∂ μ̂πa;mV Þ− 1

2
Ma;nm

πV π̂a;nV π̂a;mV ; ð35Þ

LA ¼ −
1

4
Δa;nm

A âa;nμ̂ ν̂ â
μ̂ ν̂
a;m þ 1

2
Ma;nm

A Âa;n
μ̂ Âμ̂

a;m

þ 1

2
Δa;nm

π ð∂ μ̂π̂
a;nÞð∂ μ̂π̂a;mÞ− 1

2
Ma;nm

π π̂a;nπ̂a;m; ð36Þ

with coefficients defined by the z integrals

Δa;nm
V ¼

Z
dz
z
va;nðzÞva;mðzÞ;

Ma;nm
V ¼

Z
dz
z
f½∂zva;nðzÞ�½∂zva;mðzÞ�

þ βaVðzÞva;nðzÞva;mðzÞg;

Δa;nm
πV ¼

Z
dz
z
f½∂z

~ϕa;nðzÞ�½∂z
~ϕa;mðzÞ�

þ βaVðzÞ½ ~πa;nðzÞ − ~ϕa;nðzÞ�½ ~πa;mðzÞ − ~ϕa;mðzÞ�g;

Ma;nm
πV ¼

Z
dz
z
βaVðzÞ½∂z ~π

a;n�½∂z ~π
a;m�; ð37Þ

for the vector sector and

Δa;nm
A ¼

Z
dz
z
aa;nðzÞaa;mðzÞ;

Ma;nm
A ¼

Z
dz
z
f½∂zaa;nðzÞ�½∂zaa;mðzÞ�

þ βaAðzÞaa;nðzÞaa;mðzÞg;

Δa;nm
π ¼

Z
dz
z
f½∂zϕ

a;nðzÞ�½∂zϕ
a;mðzÞ�

þ βaAðzÞ½πa;nðzÞ − ϕa;nðzÞ�½πa;mðzÞ − ϕa;mðzÞ�g;

Ma;nm
π ¼

Z
dz
z
βaAðzÞ½∂zπ

a;n�½∂zπ
a;m�; ð38Þ

for the axial sector. Here we have defined
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βaV ≔
g25
z2

ðMa
VÞ2; βaA ≔

g25
z2

Maa
A : ð39Þ

In order to obtain standard kinetic terms in Eqs. (35)
and (36) we impose the following conditions:

Δa;nm
V ¼ Δa;nm

πV ¼ Δa;nm
A ¼ Δa;nm

π ¼ δnm;

Ma;nm
V ¼ m2

Va;nδnm; Ma;nm
πV ¼ m2

πa;nV
δnm;

Ma;nm
A ¼ m2

Aa;nδnm; Ma;nm
π ¼ m2

πa;nδ
nm: ð40Þ

The Lagrangians in Eqs. (35) and (36) then reduce to

LV ¼ −
1

4
v̂a;nμ̂ ν̂ v̂

μ̂ ν̂
a;n þ 1

2
m2

Va;n V̂a;n
μ̂ V̂ μ̂

a;n

þ 1

2
ð∂ μ̂π̂

a;n
V Þð∂ μ̂πa;nV Þ − 1

2
m2

πa;nV
π̂a;nV π̂a;nV ; ð41Þ

LA ¼ −
1

4
âa;nμ̂ ν̂ â

μ̂ ν̂
a;n þ 1

2
m2

Aa;n Âa;n
μ̂ Âμ̂

a;n

þ 1

2
ð∂ μ̂π̂

a;nÞð∂ μ̂π̂a;nÞ − 1

2
m2

πa;n π̂
a;nπ̂a;n: ð42Þ

The conditions for the Δ coefficients are normalization
rules for the corresponding wave functions. The conditions

for the masses are equivalent to the conditions for the Δ
coefficients if we impose the following equations:

�
−∂z

�
1

z
∂z

�
þ 1

z
βaVðzÞ

�
va;nðzÞ ¼ m2

Va;n

z
va;nðzÞ;

βaVðzÞ
z

½ ~πa;nðzÞ − ~ϕa;nðzÞ� ¼ −∂z

�
1

z
∂z

~ϕa;nðzÞ
�
;

βaVðzÞ∂z ~π
a;nðzÞ ¼ m2

πa;nV
∂z

~ϕa;nðzÞ; ð43Þ

for the vector sector and

�
−∂z

�
1

z
∂z

�
þ 1

z
βaAðzÞ

�
aa;nðzÞ ¼ m2

Aa;n

z
aa;nðzÞ;

βaAðzÞ
z

½πa;nðzÞ − ϕa;nðzÞ� ¼ −∂z

�
1

z
∂zϕ

a;nðzÞ
�
;

βaAðzÞ∂zπ
a;nðzÞ ¼ m2

πa;n∂zϕ
a;nðzÞ; ð44Þ

for the axial sector.
We finish this section writing the SUð4Þ pseudoscalar

and vector meson matrices π̂ and V̂ in terms of the charged
states

π̂ ¼ π̂aTa ¼ 1ffiffiffi
2

p

0
BBBBBBBB@

π0ffiffi
2

p þ ηffiffi
6

p þ ηcffiffiffiffi
12

p πþ Kþ D̄0

π− − π0ffiffi
2

p þ ηffiffi
6

p þ ηcffiffiffiffi
12

p K0 D−

K− K̄0 −
ffiffi
2
3

q
ηþ ηcffiffiffiffi

12
p D−

s

D0 Dþ Dþ
s − 3ffiffiffiffi

12
p ηc

1
CCCCCCCCA
; ð45Þ

V̂ ¼ V̂aTa ¼ 1ffiffiffi
2

p

0
BBBBBBBB@

ρ0ffiffi
2

p þ ω0ffiffi
6

p þ ψffiffiffiffi
12

p ρþ K⋆þ D̄⋆0

ρ− − ρ0ffiffi
2

p þ ω0ffiffi
6

p þ ψffiffiffiffi
12

p K⋆0 D⋆−

K⋆− K̄⋆0 −
ffiffi
2
3

q
ω0 þ ψffiffiffiffi

12
p D⋆−

s

D⋆0 D⋆þ D⋆þ
s − 3ffiffiffiffi

12
p ψ

1
CCCCCCCCA
; ð46Þ

where in the last equation we have omitted the index μ for
simplicity.

V. DECAY CONSTANTS, CSB, AND FSB

As observed in [38], the simplest method for extracting
the leptonic decay constants is to replace the fields in the
right-hand side (r.h.s.) of the dual currents prescription,

Eqs. (19)–(21), by their Kaluza-Klein expansions in
Eqs. (29)–(34). We find:

hJμ̂V;aðxÞi ¼
�
1

g5z
∂zva;nðzÞ

�
z¼ϵ

V̂ μ̂
a;nðxÞ

þ
�
1

g5z
∂z

~ϕa;nðzÞ
�
z¼ϵ

∂ μ̂π̂a;nV ðxÞ; ð47Þ
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hJμ̂A;aðxÞi ¼
�
1

g5z
∂zaa;nðzÞ

�
z¼ϵ

Âμ̂
a;nðxÞ

þ
�
1

g5z
∂zϕ

a;nðzÞ
�
z¼ϵ

∂ μ̂π̂a;nðxÞ; ð48Þ

∂ μ̂hJμ̂A;aðxÞi ¼ hJΠ;aðxÞi

¼ −
�
βaAðzÞ
g5z

∂zπ
a;nðzÞ

�
z¼ϵ

π̂a;nðxÞ; ð49Þ

where a sum from n ¼ 0 to n ¼ ∞ is implicit. In the
expansions (47)–(49) the 4-d fields V̂ μ̂

a;nðxÞ; Aμ̂
a;nðxÞ;

π̂a;nV ðxÞ, and π̂ā;nðxÞ are on-shell. From these expansions
we find the holographic prescription for leptonic decay
constants:

gVa;n ¼
�
1

g5z
∂zva;nðzÞ

�
z¼ϵ

; ð50Þ

fπa;nV
¼ −

�
1

g5z
∂z

~ϕa;nðzÞ
�
z¼ϵ

; ð51Þ

gAa;n ¼
�
1

g5z
∂zaa;nðzÞ

�
z¼ϵ

; ð52Þ

fπa;n ¼ −
�
1

g5z
∂zϕ

a;nðzÞ
�
z¼ϵ

: ð53Þ

Taking the divergence of Eqs. (47) and (48) we find

∂ μ̂hJμ̂V;aðxÞi ¼ fπa;nV
m2

πa;nV
π̂a;nV ðxÞ; ð54Þ

and

∂ μ̂hJμ̂A;aðxÞi ¼ fπa;nm2
πa;n π̂

a;nðxÞ; ð55Þ

where a sum from n ¼ 0 to n ¼ ∞ is implicit.
Equation (55) is a generalization of the partially conserved
axial current relation (PCAC), which encodes the effect of
chiral symmetry breaking (CSB) in the current algebra.
Equation (54) encodes the effect of flavor symmetry
breaking (FSB) in the vector current. Interestingly, the
scalar mesons π̂a;nV ðxÞ of FSB and the pions π̂a;nðxÞ of CSB
appear in a similar way in Eqs. (54) and (55), respectively.

VI. COUPLING CONSTANTS AND
FORM FACTORS

The three-point interactions are described by the 5-d
action in Eq. (9). After decomposing the fields into their
ðz; μÞ components and evaluating the metric in Eq. (2), the
action takes the form

S3 ¼ SVVV þ SVAA þ SVAπ þ SVππ; ð56Þ

where

SVVV ¼ −
1

2g25
fabc

Z
d4x

Z
dz
z
½vμ̂ ν̂a Vb

μ̂V
c
ν̂ − 2vazμ̂V

b
zV

μ̂
c�;

ð57Þ

SVAA ¼ 1

2g25
fabc

Z
d4x

Z
dz
z
½vμ̂ ν̂a Ab

μ̂A
c
ν̂ − 2vazμ̂A

b
zA

μ̂
c

− 2aμ̂ ν̂a Vb
μ̂A

c
ν̂ þ 2aazμ̂ðVb

zA
μ̂
c − V μ̂

bA
c
zÞ�; ð58Þ

SVAπ ¼
1

g25
fabc

Z
d4x

Z
dz
z
½βbVðzÞ − βaAðzÞ�

× ½−Aa
zVb

z þ Aa
μ̂V

μ̂
b�πc; ð59Þ

SVππ ¼
1

2g25
fabc

Z
d4x

Z
dz
z
½−βbVðzÞ þ 2βaAðzÞ�

× ½−ð∂zπ
aÞVb

z þ ð∂ μ̂π
aÞV μ̂

b�πc: ð60Þ

Here we are interested in the following 4-d triple
couplings

SV̂ V̂ V̂ ¼ gV̂a;lV̂b;mV̂c;n

Z
d4xV̂ μ̂

a;lv̂
b;m
μ̂ ν̂ V

ν̂
c;n; ð61Þ

SV̂ π̂ π̂ ¼ gπ̂a;lV̂b;mπ̂c;n

Z
d4xð∂ μ̂π̂

a;lÞV̂ μ̂
b;mπ̂

c;n; ð62Þ

where a sum over a, b, c as well as l; m; n is implicit.
Using (25)–(26) in (57), (58), and (60) as well as the KK

expansions (29), (33), and (34) we find that

gV̂a;lV̂b;mV̂c;n ¼ g5
2
fabc

Z
dz
z
va;lðzÞvb;mðzÞvc;nðzÞ; ð63Þ

gπ̂a;lV̂b;mπ̂c;n ¼
g5
2
fabc

Z
dz
z
f2ð∂zϕ

a;lÞvb;mð∂zϕ
c;nÞ

þ ½−βbVðzÞ þ 2βaAðzÞ�
× ðπa;l − ϕa;lÞvb;mðπc;n − ϕc;nÞg: ð64Þ

In order to compare our results with chiral theory models
we rewrite the 3-point interactions in Eqs. (61) and (62) as

SV̂ V̂ V̂ ¼ 2fabcḡV̂a;lV̂b;mV̂c;n

Z
d4xV̂ μ̂

a;lð∂ μ̂V̂
b;m
ν̂ ÞV ν̂

c;n; ð65Þ

SV̂ π̂ π̂ ¼ fabcḡπ̂a;lV̂b;mπ̂c;n

Z
d4xV̂ μ̂

b;m½ð∂ μ̂π̂
a;lÞπ̂c;n

− ð∂ μ̂π̂
c;nÞπ̂a;l�; ð66Þ

where
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ḡV̂a;lV̂b;mV̂c;n ¼ g5
2

Z
dz
z
va;lðzÞvb;mðzÞvc;nðzÞ; ð67Þ

and

ḡπ̂a;lV̂b;mπ̂c;n ¼
g5
8

Z
dz
z
vb;mf4ð∂zϕ

a;lÞð∂zϕ
c;nÞ

þ ½−2βbVðzÞ þ 2ðβaAðzÞ þ βcAðzÞÞ�
× ðπa;l − ϕa;lÞðπc;n − ϕc;nÞg: ð68Þ

To arrive at Eqs. (65) and (66), we have integrated by parts
the actions in Eqs. (61) and (62) and also used the
transversality of the vector mesons (∂ μ̂V̂

μ̂
a;l ¼ 0). Note

that the coupling in Eq. (68) is symmetric when

interchanging the pion flavor indices a and c, as required
by crossing symmetry.
We are interested in describing strong couplings involv-

ing charmed mesons D and D�, strange mesons K and K�
as well as light mesons π and ρ. Then in (65) and (66) we
select only a ¼ ð1;…; 7Þ and a ¼ ð9;…; 12Þ for the
pseudoscalar mesons πa, whereas for the vector mesons
we pick a ¼ ð1.:; 7Þ, a ¼ ð9;…; 12Þ, and a ¼ ð8; 15Þ.
The other states are taken to zero. The reason we include
a ¼ ð8; 15Þ in the vectorial sector is because it contributes
to the electromagnetic form factors of the D and D�
as shown below in this section. Using also the results in
(45)–(46) and evaluating the SUð4Þ structure constants fabc
we arrive at the effective Lagrangians

LVππ ¼ LπD�D þ LρDD þ Lω0DD þ LψDD þ LπK�K þ LρKK þ Lω0KK þ Lρππ; ð69Þ

LVVV ¼ LρD�D� þ Lω0D�D� þ LψD�D� þ LρK�K� þ Lω0K�K� þ Lρρρ; ð70Þ

where

LπD�D ¼ i
ffiffiffi
2

p
gπD�D

h
D�þ

μ

	
D̄0∂μ

↔
π−



þD�−

μ

	
πþ∂μ

↔
D0



þD�0

μ

	
D−∂μ

↔
πþ



þ D̄�0

μ

	
π−∂μ

↔
Dþ


i

þ igπD�D

h
D�þ

μ

	
π0∂μ

↔
D−



þD�−

μ

	
Dþ∂μ

↔
π0


þD�0

μ

	
D̄0∂μ

↔
π0


þ D̄�0

μ

	
π0∂μ

↔
D0


i
; ð71Þ

LρDD ¼ i
ffiffiffi
2

p
gρDD

h
ρþμ

	
D0∂μ

↔
D−



þ ρ−μ

	
Dþ∂μ

↔
D̄0


i
þ igρDD

h
ρ0μ
	
D−∂μ

↔
Dþ



þ ρ0μ

	
D0∂μ

↔
D̄0


i
; ð72Þ

Lω0DD ¼ iffiffiffi
3

p gω0DD

h
ω0
μ

	
Dþ∂μ

↔
D−



þ ω0

μ

	
D0∂μ

↔
D̄0


i
; ð73Þ

LψDD ¼ i

ffiffiffi
8

3

r
gψDD

h
ψμ

	
Dþ∂μ

↔
D−



þ ψμ

	
D0∂μ

↔
D̄0


i
; ð74Þ

LρD�D� ¼ i
ffiffiffi
2

p
gρD�D�

h
D�þ

μ

	
ρ−ν ∂μ

↔
D̄ν

�0


þD�−

μ

	
D�0

ν ∂μ
↔
ρνþ



þD�0

μ

	
ρþν ∂μ

↔
Dν�−



þ D̄�0

μ

	
D�þ

ν ∂μ
↔
ρν−




þ ρþμ
	
D�−

ν ∂μ
↔
Dν

�0


þ ρ−μ

	
D̄�0

ν ∂μ
↔
Dν�þ


i
þ igρD�D�

h
D�þ

μ

	
D�−

ν ∂μ
↔
ρν0



þD�−

μ

	
ρ0ν∂μ

↔
Dν�þ




þD�0
μ

	
ρ0ν∂μ

↔
D̄ν

�0


þ D̄�0

μ

	
D�0

ν ∂μ
↔
ρν0



þ ρ0μ

	
D�þ

ν ∂μ
↔
Dν�−



þ ρ0μ

	
D̄�0

ν ∂μ
↔
Dν

�0

i

; ð75Þ

Lω0D�D� ¼ −
iffiffiffi
3

p gω0D�D�
h
D�þ

μ

	
D�−

ν ∂μ
↔
ω0ν



þD�−

μ

	
ω0ν∂μ

↔
D�þ

ν



þD�0

μ

	
D̄�0

ν ∂μ
↔
ω0ν



þ D̄�0

μ

	
ω0ν∂μ

↔
D�0

ν




þ ω0
μ

	
D�þ

ν ∂μ
↔
Dν�−



þ ω0

μ

	
D�0

ν ∂μ
↔
D̄ν

�0

i

; ð76Þ

LψD�D� ¼ −i
ffiffiffi
8

3

r
gψD�D�

h
D�þ

μ

	
D�−

ν ∂μ
↔
ψν



þD�−

μ

	
ψν∂μ

↔
D�þ

ν



þD�0

μ

	
D̄�0

ν ∂μ
↔
ψν



þ D̄�0

μ

	
ψν∂μ

↔
D�0

ν




þ ψμ

	
D�þ

ν ∂μ
↔
Dν�−



þ ψμ

	
D�0

ν ∂μ
↔
D̄ν

�0

i

; ð77Þ
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LπK�K ¼ i
ffiffiffi
2

p
gπK�K

h
K�þ

μ

	
π−∂μ

↔
K̄0



þ K�−

μ

	
K0∂μ

↔
πþ



þ K�0

μ

	
πþ∂μ

↔
K−



þ K̄�0

μ

	
Kþ∂μ

↔
π−


i

þ igπK�K

h
K�þ

μ

	
π0∂μ

↔
K−



þ K�−

μ

	
Kþ∂μ

↔
π0


þ K�0

μ

	
K̄0∂μ

↔
π0


þ K̄�0

μ

	
π0∂μ

↔
K0


i
; ð78Þ

LρKK ¼ i
ffiffiffi
2

p
gρKK

h
ρþμ

	
K−∂μ

↔
K0



þ ρ−μ

	
K̄0∂μ

↔
Kþ


i
þ igρKK

h
ρ0μ
	
K−∂μ

↔
Kþ



þ ρ0μ

	
K0∂μ

↔
K̄0


i
; ð79Þ

Lω0KK ¼ i
ffiffiffi
3

p
gω0KK

h
ω0
μ

	
K−∂μ

↔
Kþ



þ ω0

μ

	
K̄0∂μ

↔
K0


i
; ð80Þ

LρK�K� ¼ i
ffiffiffi
2

p
gρK�K�

h
K�þ

μ

	
K̄�0

ν ∂μ
↔
ρν−



þ K�−

μ

	
ρþν ∂μ

↔
K�0

ν



þ K�0

μ

	
K�−

ν ∂μ
↔
ρνþ



þ K̄�0

μ

	
ρ−ν ∂μ

↔
Kν�þ




þ ρþμ
	
K�0

ν ∂μ
↔
Kν�−



þ ρ−μ

	
K�þ

ν ∂μ
↔
K̄ν

�0

i

þ igρK�K�
h
K�þ

μ

	
K�−

ν ∂μ
↔
ρν0



þ K�−

μ

	
ρ0ν∂μ

↔
Kν�þ




þ K�0
μ

	
ρ0ν∂μ

↔
K̄ν

�0


þ K̄�0

μ

	
K�0

ν ∂μ
↔
ρν0



þ ρ0μ

	
K�þ

ν ∂μ
↔
Kν�−



þ ρ0μ

	
K̄�0

ν ∂μ
↔
Kν

�0

i

; ð81Þ

Lω0K�K� ¼ i
ffiffiffi
3

p
gω0K�K�

h
K�þ

μ

	
K�−

ν ∂μ
↔
ω0ν



þ K�−

μ

	
ω0
ν∂μ
↔
Kν�þ



þ K�0

μ

	
K̄�0

ν ∂μ
↔
ω0ν



þ K̄�0

μ

	
ω0
ν∂μ
↔
Kν

�0



þ ω0
μ

	
K�þ

ν ∂μ
↔
Kν�−



þ ω0

μ

	
K�0

ν ∂μ
↔
K̄ν

�0

i

; ð82Þ

Lρππ ¼ igρππ
h
ρþμ

	
π0∂μ

↔
π−



þ ρ−μ

	
πþ∂μ

↔
π0


þ ρ0μ

	
π−∂μ

↔
πþ


i
; ð83Þ

Lρρρ ¼ igρρρ
h
ρþμ

	
ρ−ν ∂μ

↔
ρν0



þ ρ−μ

	
ρ0ν∂μ

↔
ρνþ



þ ρ0μ

	
ρþν ∂μ

↔
ρν−


i
: ð84Þ

In the above, the couplings are given by

gπD�D ¼ ḡπ̂aV̂bπ̂c ; a¼ ð1;2;3Þ; ðb;cÞ ¼ ð9;…;12Þ;
gρDD ¼ ḡπ̂aV̂bπ̂c ; ða;cÞ ¼ ð9;…;12Þ; b¼ ð1;2;3Þ;
gω0DD ¼ ḡπ̂aV̂bπ̂c ; ða;cÞ ¼ ð9;…;12Þ; b¼ 8;

gψDD ¼ ḡπ̂aV̂bπ̂c ; ða;cÞ ¼ ð9;…;12Þ; b¼ 15;

gρD�D� ¼ ḡV̂aV̂bV̂c ; a¼ ð1;2;3Þ; ðb;cÞ ¼ ð9;…;12Þ;
gω0D�D� ¼ ḡV̂aV̂bV̂c ; a¼ 8; ðb;cÞ ¼ ð9;…;12Þ;
gψD�D� ¼ ḡV̂aV̂bV̂c ; a¼ 15; ðb;cÞ ¼ ð9;…;12Þ;
gπK�K ¼ ḡπ̂aV̂bπ̂c ; a¼ ð1;2;3Þ; ðb;cÞ ¼ ð4;…;7Þ;
gρKK ¼ ḡπ̂aV̂bπ̂c ; ða;cÞ ¼ ð4;…;7Þ; b¼ ð1;2;3Þ;
gω0KK ¼ ḡπ̂aV̂bπ̂c ; ða;cÞ ¼ ð4;…;7Þ; b¼ 8;

gρK�K� ¼ ḡV̂aV̂bV̂c ; a¼ ð1;2;3Þ; ðb;cÞ ¼ ð4;…;7Þ;
gω0K�K� ¼ ḡV̂aV̂bV̂c ; a¼ 8; ðb;cÞ ¼ ð4;…;7Þ;

gρππ ¼ 2ḡπ̂aV̂bπ̂c ; ða;b;cÞ ¼ ð1;2;3Þ;
gρρρ ¼ 2ḡV̂aV̂bV̂c ; ða;b;cÞ ¼ ð1;2;3Þ: ð85Þ

We have used the double arrow derivative f∂μ
↔
g ≔

fð∂μgÞ − ð∂μfÞg and for simplicity we have omitted the
indices l; m; n that distinguish the fundamental states from
the corresponding resonances. The Lagrangians in
Eqs. (70) and (69) are typically used in phenomenology
of charmed mesons—see e.g. Ref. [32].
In the limit where the quark masses and condensates are

equal, flavor symmetry is recovered and the couplings
satisfy the relations

gπD�D ¼ gρDD ¼ gω0DD ¼ gψDD

¼ gπK�K ¼ gρKK ¼ gω0KK ¼ 1

2
gρππ ≕

g
4
; ð86Þ

gρD�D� ¼ gω0D�D� ¼ gψD�D�

¼ gρK�K� ¼ gω0K�K� ¼ 1

2
gρρρ ≔

~g
4
: ð87Þ

In this case all the couplings can be obtained
from the interaction terms igTrð∂μπ½π; Vμ�Þ and
i~gTrð∂μVν½Vμ; Vν�Þ—see e.g. Ref. [20].
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A. Electromagnetic form factors

The effective Lagrangian (69) describes the interaction
between a vector meson and two pseudoscalar mesons. If
the vector meson is off-shell and the pseudoscalar mesons
are on-shell we can use (69) to investigate the electromag-
netic (EM) form factors of pseudoscalar mesons. Similarly,
using the effective Lagrangian (70) and taking one of the
vector mesons off-shell we can investigate the EM form
factors of vector mesons. The (elastic) EM form factors of
pseudoscalar mesons appear in the decomposition of the
EM current as

hπaðpþ qÞjJμEMð0ÞjπaðpÞi ¼ ð2pþ qÞμFπaðq2Þ: ð88Þ

Similarly, the (elastic) EM form factors of vector mesons
appear as the Lorentz scalars in the EM current decom-
position [52]

hVaðpþ qÞ; ϵ0jJμEMð0ÞjVaðpÞ; ϵi
¼ −ðϵ0 · ϵÞð2pþ qÞμF1

Vaðq2Þ
þ ½ϵ0μðϵ · qÞ − ϵμðϵ0 · qÞ�½F1

Vaðq2Þ þ F2
Vaðq2Þ�

þ 1

M2
Va

ðq · ϵ0Þðq · ϵÞð2pþ qÞμF3
Vaðq2Þ: ð89Þ

Linear combinations of the form factors in (89) define the
so called electric, magnetic and quadrupole form factors:

FE
Va ¼ F1

Va þ q2

6M2
Va

�
F2
Va −

�
1 −

q2

4M2
Va

�
F3
Va

�
;

FM
Va ¼ F1

Va þ F2
Va ;

FQ
Va ¼ −F2

Va þ
�
1 −

q2

4M2
Va

�
F3
Va: ð90Þ

In the absence of baryonic number the EM current is
obtained from a linear combination of flavor currents, i.e.

JμEMðxÞ ¼
X

a¼ð3;8;15Þ
caJ

μ
aðxÞ; ð91Þ

where the coefficients ca can vary depending on the quarks
that will be considered in the EM current. When consid-
ering the EM form factors of the heavy-light D and D�
charmed mesons the strange quark does not participate in
the process and we can define the EM current as

JμEM ¼ 2

3
ūγμu −

1

3
d̄γμdþ 2

3
c̄γμc: ð92Þ

Then the EM current can be decomposed as (91) with
coefficients c3 ¼ 1, c8 ¼ 7=ð3 ffiffiffi

3
p Þ and c15 ¼ −8=ð3 ffiffiffi

6
p Þ,

up to the strangeness current which do not contribute when
evaluating the current at the external states. On the other
hand, when evaluating the EM form factors for the strange

K and K� as well as the light mesons π and ρ we define the
EM current as

JμEM ¼ 2

3
ūγμu −

1

3
d̄γμd −

1

3
s̄γμs; ð93Þ

which admits the decomposition (91) for the coefficients
c3 ¼ 1, c8 ¼ 1=

ffiffiffi
3

p
and c15 ¼ 0.

As explained in the previous section, each flavor current
admits a decomposition in terms of vector mesons. This
implies from (91) that the photon decays into ρ0;n,ω0n, and
ψn mesons. This is a holographic realization of generalized
vector meson dominance (GVMD) [53], in that also the
resonances are included and not only the fundamental
states as VMD.
For the pion and ρ meson only the states ρ0;n contribute

to the EM form factors. In the case of strange mesonsK and
K� the states ρ0;n and ω0n contribute to the EM form factors
whereas in the case of the charmed D and D� mesons we
have contributions from ρ0;n, ω0n and ψn. In our model it
turns out that the states ω0n and ψn are identical to the states
ρ0;n as well as their couplings to external states. Although
this implies an unrealistic spectrum for those mesons, its
contribution to the EM form factors is not only required by
consistency but also leads to reasonable results consistent
either with experimental data or lattice QCD data, as we
will show below.
Using the Feynman rules for the vector meson propa-

gator in (41) and the triple vertex (69) as well as the EM
current decomposition (91), with the appropriate coeffi-
cients, we extract the (elastic) EM form factors for the pion,
kaon and D meson:

FπðQ2Þ ¼
X
n

gρngρnππ
m2

ρn þQ2
; ð94Þ

FKðQ2Þ ¼
X
n

�
gρngρnKK
m2

ρn þQ2
þ gω0ngω0nKK

m2
ω0n þQ2

�

¼ 2
X
n

gρngρnKK
m2

ρn þQ2
; ð95Þ

FDðQ2Þ ¼
X
n

�
gρngρnDD

m2
ρn þQ2

−
7

9

gω0ngω0nDD

m2
ω0n þQ2

þ 16

9

gψngψnDD

m2
ψn þQ2

�
¼ 2

X
n

gρngρnDD

m2
ρn þQ2

; ð96Þ

where Q2 ¼ −q2. The second equalities in (95) and (96)
come from the identification of the states ω0n and ψn with
the states ρ0;n. Similarly for the vector sector, we use the
Feynman rules associated with the triple vertex (70) and the
vector meson propagator in (41) to extract the (elastic) EM
form factors for the ρ meson, K� meson, and D� meson:
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F1
ρ ¼ F2

ρ ¼ FρðQ2Þ ¼
X
n

gρngρnρρ
m2

ρn þQ2
; ð97Þ

F1
K� ¼ F2

K� ¼ FK� ðQ2Þ ¼ 2
X
n

gρngρnK�K�

m2
ρn þQ2

; ð98Þ

F1
D� ¼ F2

D� ¼ FD�ðQ2Þ ¼ 2
X
n

gρngρnD�D�

m2
ρn þQ2

; ð99Þ

F3
ρ ¼ F3

K� ¼ F3
D� ¼ 0: ð100Þ

The electric, magnetic, and quadrupole form factors are
obtained using (90).

B. Low and high Q2

At low Q2 the EM form factor of a pseudoscalar meson
can be expanded as

FπaðQ2Þ ¼ 1 −
1

6
hr2πaiQ2 þ � � � ; ð101Þ

where the second term defines the charge radius. A similar
expression follows for the vector mesons. Notice that we
have used the relation Fπað0Þ ¼ 1, which is due to charge
conservation. In fact, the relation Fπað0Þ ¼ 1 follows nicely
from the sum rules

X
n

gρngρnππ
m2

ρn
¼ 2

X
n

gρngρnKK
m2

ρn

¼ 2
X
n

gρngρnDD

m2
ρn

¼ 1: ð102Þ

These sum rules can be proven using the equation and
completeness relation of vector mesons as well as the
normalization of the external states. For the vector mesons
the electric radius is obtained from the electric form
factor as

hr2Vai ¼ −6
dFE

VaðQ2Þ
dQ2

����
Q2¼0

: ð103Þ

The magnetic μ and quadrupole D moments of the vector
mesons in our model take the canonical values

μ ¼ FM
Vað0Þ ¼ 2;

D ¼ 1

M2
Va

FQ
Vað0Þ ¼ −

1

M2
Va

; ð104Þ

where we have used the relation FVað0Þ ¼ 1 which follows
from the sum rules

X
n

gρngρnρρ
m2

ρn
¼ 2

X
n

gρngρnK�K�

m2
ρn

¼ 2
X
n

gρngρnD�D�

m2
ρn

¼ 1: ð105Þ

Again these sum rules follow from the equation and
completeness of the ρn states and the normalization of
the external states. In fact, the sum rules Eqs. (102) and
(105) are universal in bottom up and top-down holographic
models for QCD. A discussion of these sum rules in the
top-down approach can be found in Ref. [54].
In the regime of large Q2, the EM form factors of

pseudoscalar mesons can be expanded as

FπðQ2Þ ¼ 1

Q2

X∞
n¼0

gρngρnππ

�
1 −

m2
ρn

Q2
þ � � �

�
;

FKðQ2Þ ¼ 2

Q2

X∞
n¼0

gρngρnKK

�
1 −

m2
ρn

Q2
þ � � �

�

FDðQ2Þ ¼ 2

Q2

X∞
n¼0

gρngρnDD

�
1 −

m2
ρn

Q2
þ � � �

�
: ð106Þ

A similar expansion holds for the EM form factors of vector
mesons

FρðQ2Þ ¼ 1

Q2

X∞
n¼0

gρngρnρρ

�
1 −

m2
ρn

Q2
þ � � �

�
;

FK�ðQ2Þ ¼ 2

Q2

X∞
n¼0

gρngρnK�K�

�
1 −

m2
ρn

Q2
þ � � �

�
;

FD�ðQ2Þ ¼ 2

Q2

X∞
n¼0

gρngρnD�D�

�
1 −

m2
ρn

Q2
þ � � �

�
: ð107Þ

In the next section we present our predictions for the
couplings and form factors involving the pions, kaons, ρ
mesons, K� mesons as well as the charmed mesons D and
D�. For the D and D� EM form factors we compare our
results against data from lattice QCD. Using (101)
and (103) we will also extract the charge radii of all those
mesons and compare against experimental data or lattice
QCD data. Last but not least, the high-Q2 behavior of the
form factors in Eqs. (106)–(107) will be checked and
compared with perturbative QCD calculations.

VII. RESULTS AND COMPARISON
WITH LATTICE QCD

In this section we present our numerical results for the
spectrum, decay constants, coupling constants and EM
form factors involving the charmed mesons. It is convenient
to define unnormalized wave functions for the scalar
mesons ( ~ϕa;n

U and ~πa;nU ), pseudoscalar mesons (ϕa;n
U and

πa;nU ), vector mesons (va;nU ), and axial vector mesons (aa;nU )
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so that the first coefficient in the near boundary expansion
is fixed arbitrarily (due to the linearity of the differential
equations). Eqs. (43) and (44) dictate the near boundary
behavior of the unnormalized wave functions:

~ϕa;n
U ðzÞ ¼ −z2 þ � � � ; ~πa;nU ðzÞ ¼ −

m2
πa;nV

βaVð0Þ
z2 þ � � � ;

ϕa;n
U ðzÞ ¼ −z2 þ � � � ; πa;nU ðzÞ ¼ −

m2
πa;n

βaAð0Þ
z2 þ � � � ;

va;nU ðzÞ ¼ z2 þ � � � ; aa;nU ðzÞ ¼ z2 þ � � � : ð108Þ

In Eq. (108), the first coefficients were fixed to 1 or −1 to
guarantee a positive sign for the decay constants in
Eqs. (50)–(53) and positive normalization constants. The
normalized wave functions take the form

~ϕa;nðzÞ¼Nπa;nV
~ϕa;n
U ðzÞ; ~πa;nðzÞ¼Nπa;nV

~πa;nU ðzÞ;
ϕa;nðzÞ¼Nπa;nϕ

a;n
U ðzÞ; πa;nðzÞ¼Nπa;nπ

a;n
U ðzÞ;

vn;aðzÞ¼NVa;nva;nU ðzÞ; an;aðzÞ¼NAa;naa;nU ðzÞ; ð109Þ

with the normalization constants defined by the integrals

N−2
πa;nV

¼
Z

dz
z
fð∂z

~ϕa;n
U ðzÞÞ2

þ βaVðzÞð ~πa;nU ðzÞ − ~ϕa;n
U ðzÞÞ2g;

N−2
πa;n ¼

Z
dz
z
fð∂zϕ

a;n
U ðzÞÞ2

þ βaAðzÞðπa;nU ðzÞ − ϕa;n
U ðzÞÞ2g;

N−2
Va;n ¼

Z
dz
z
ðva;nU ðzÞÞ2;

N−2
Aa;n ¼

Z
dz
z
ðaa;nU ðzÞÞ2: ð110Þ

The spectrum of vector mesons and scalar mesons is
obtained by solving Eqs. (43) and imposing the
Neumann boundary conditions at the hard wall z ¼ z0.
Similarly, the spectrum of axial vector mesons and pseu-
doscalar mesons is obtained by solving Eqs. (44) and
imposing Neumann boundary conditions at the hard wall.
On the other hand, using Eqs. (108) and (109) we find

that the meson decay constants, defined in Eqs. (50)–(53),
are determined by the normalization constants through the
relations

fπa;nV
¼ 2

g5
Nπa;nV

; fπa;n ¼
2

g5
Nπa;n ;

gVa;n ¼ 2

g5
NVa;n ; gAa;n ¼ 2

g5
NAa;n : ð111Þ

Having described the procedure for finding the meson
spectrum and decay constants now we describe how we fit

the parameters of our model, namely the quark masses mu,
ms,mc, quark condensates σu, σs, σc and the position of the
hard wall z0. We choose to fit the parameter z0 using only
the mass of the ρ meson, since that observable does not
depend on any other parameter. We find z−10 ¼ 322.5 MeV.
Then we proceed with a global fit for the quark masses and
quark condensates using 10 observables, namely the light
meson masses ðmπ; ma1Þ, the strange meson masses
ðmK;mK� ; mK1

; mK�
0
Þ and the charmed meson masses

ðmD;mD� ; mDs
; mD�

s
Þ. Note that we have included the scalar

meson K�
0, which is associated with flavor symmetry

breaking. Numerically, we find the best global fit for the
parameters mu ¼ 9 MeV, ms ¼ 190 MeV and mc ¼
1560 MeV for the quark masses; σu ¼ ð198 MeVÞ3, σs ¼
ð205 MeVÞ3 and σc ¼ ð280 MeVÞ3 for the quark conden-
sates. In Table I we compare the model fit to the
observables with their experimental values.
Note that the fit works very well for the isospin and

strange sectors, as already known from previous works.
The extension of the model to the charm sector also gives a
reasonably good fit of properties of heavy-light mesons,
like the D and D� mesons.
Once we have fitted the parameters of the model, we are

able to make predictions. In Table II we show a set of
predictions for masses and decay constants. In the cases
where experimental or lattice data is available the measured
values are presented. Regarding the masses mD�

0
and mD�

0s
,

the large difference between the model prediction and the
experimental values [55] may be related to the not clear
distinction between the ground and excited states.
Now we move to the triple meson couplings defined in

the effective Lagrangians (69) and (70). Using the dic-
tionary (67), (68) and the relations (85) we find the
couplings gρnππ , gρnρρ, gρnKK , gρnK�K� , gρnDD, and gρnD�D� .
The results are shown in Table III where we notice an
interesting feature taking place. The triple coupling gρnDD,
involving the heavy-light pseudoscalar charmed mesons,
does not decrease with n in the same way as the triple

TABLE I. Global fit to masses of eleven selected mesons. The
mass of the ρ meson was fit separately using z0.

Mass Model (MeV) Measured (MeV)

mρ 775.6 775.3� 0.3 [55]
mπ 142.5 139.6 [55]
ma1 1232 1230� 40 [55]
mK 489.2 493.7 [55]
mK� 803.7 891.7� 0.3 [55]
mK1

1359 1272� 7 [55]
mK�

0
674.9 682� 29 [55]

mD 1831 1870 [55]
mDs

1987 1968 [55]
mD� 2161 2010 [55]
mD�

s
2006 2112 [55]
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couplings gρnππ and gρnKK , involving light and strange
pseudoscalar mesons respectively. The same behavior
appears in the triple coupling gρnD�D� , involving vectorial
charmed mesons, when compared to the triple couplings
gρnρρ and gρnK�K� , involving vectorial light and strange
mesons respectively. In the case of gρnDD we see that
actually the first resonance ρn¼1 couples stronger than the
fundamental ρn¼0.
Due to flavor symmetry breaking, through the different

values for the quark masses and condensates, we expect a
violation of SUð4Þ relations given in (86)–(87). We
compare in Table IVour results with the expectations from
the SUð4Þ flavor symmetric case. We note that we find the
trend gρDD < gρKK < gρππ=2 for the pseudoscalar mesons,
which opposite to that found with the QCD sum rules [39]
and Dyson-Schwinger calculations in Ref. [40], but it

agrees with calculations based 3P0 quark-pair creation
model in the nonrelativistic quark model of Refs. [42].
For the vectorial mesons we find a similar trend
gρD�D� < gρK�K� < gρρρ=2. Note, however, that the cou-
pling gρK�K� is very close to gρρρ=2. The reason behind this
proximity is that the vector meson spectrum, found from
the first equation in (43), depends more on the condensate
difference than the mass difference appearing in βaVðzÞ.
Since the strange and light condensates σs and σu are very
close to each other the masses and wave functions of the ρ
and K� are very similar.

TABLE III. Couplings for the pseudoscalars mesons with the ρ
meson and their excitations.

n 0 1 2 3 4

gρnππ 4.9144 1.6019 −0.8511 0.0325 0.0231
gρnρρ 6.8634 −1.9971 0.022 −0.0025 0.0005
gρnKK 2.2163 1.1512 −0.377 −0.0241 0.0103
gρnK�K� 3.4246 −0.981 0.0013 0.0003 −0.0002
gρnDD 1.103 1.8591 0.8386 0.0327 −0.0564
gρnD�D� 2.1431 1.5691 −0.4344 −0.3573 −0.0467

TABLE IV. SU(4) flavor symmetry breaking in our model.

Ratios SUð4Þ symmetry Model
2gρKK
gρππ

1 0.902

2gρK�K�
gρρρ

1 0.998

2gρDD

gρππ
1 0.449

2gρD�D�
gρρρ

1 0.625

TABLE V. Contributions of the five first states to the EM form
factors of mesons at Q2 ¼ 0.

n 0 1 2 3 4
gρn
m2

ρn
gρnππ 0.886 0.192 −0.082 0.003 0.002

gρn
m2

ρn
gρnρρ 1.237 −0.239 0.002 0.000 0.000

2
gρn
m2

ρn
gρnKK 0.799 0.276 −0.072 −0.004 0.002

2
gρn
m2

ρn
gρnK�K� 1.235 −0.235 0.000 0.000 0.000

2
gρn
m2

ρn
gρnDD 0.398 0.446 0.161 0.005 −0.008

2
gρn
m2

ρn
gρnD�D� 0.773 0.376 −0.083 −0.059 −0.007

TABLE II. Set of predictions for masses and decay constants,
compared to experimental or lattice data. The measured value for
fD and fDs

, taken from Ref. [55], are averages from lattice QCD
results. The other measured values are taken from experimental
data.

Observable Model (MeV) Measured (MeV)

fπ 84.41 92.07� 1.2 [55]
g1=2ρ 329.3 345� 8 [56]

g1=2a1
440.9 420� 40 [57]

fK 98.14 110� 0.3 [55]
g1=2K� 331 -

g1=2K1

478.3 -

fK�
0

33.48 -
mD1

2500 2423� 2 [55]
mD�

0
1704 2318� 29 [55]

mD�
0s

1547 2318� 1 [55]
fD 186.7 149.8� 0.8 [55]
fDs

195 176.1� 0.8 [55]

g1=2D� 572.7 -

g1=2D�
s

546.4 -

g1=2D1

722 -

fD�
0

159 -
fD�

0s
150.5 -

FIG. 1. Electromagnetic form factor of the pion (solid line)
compared to experimental data [62] (points with error bars).
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Finally, we show our results for the meson (elastic) EM
form factors defined in the previous section. Using the
couplings obtained in Table III and evaluating the expres-
sions in Eqs. (94)–(96) we obtain a series expansion for the
EM form factors of the pion, kaon, and D meson. In a
similar fashion, we take the coupling in Table III and
evaluate the expressions in Eqs. (97)–(99) to obtain a series
expansion for the EM form factors of the ρ, K�, and D�
mesons. In both cases, a good convergence is achieved after
considering 5 states (4 resonances ρn besides the funda-
mental ρn¼0). This is explicitly shown in Table V for the
case Q2 ¼ 0.
Table V reveals again a clear distinction between the

light mesons and charmed mesons. In the former, vector
meson dominance (VMD) is a good approximation,
whereas in the case of the latter the EM form factors

FIG. 2. The electric (blue), magnetic (red), and quadrupole
(green) EM form factors of the ρ meson.

FIG. 3. Electromagnetic form factor of the kaon (solid line)
compared to experimental data [63] (points with error bars).

FIG. 5. Electromagnetic form factor of theDmeson (solid line)
compared to lattice QCD data [44] (points with error bars).

FIG. 4. The electric (blue), magnetic (red) and quadrupole
(green) EM form factors of the K� meson.

FIG. 6. The electric (blue), magnetic (red), and quadrupole
(green) EM form factors of the D� meson. The electric form
factor FE

D� ðQ2Þ (solid blue line) is compared to lattice QCD data
[44] (points with error bars).
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receive substantial contribution from the first ρ resonance.
This is a nice example of generalized vector meson
dominance (GVMD) in EM form factors. This is consistent
with Ref. [58], where the authors claimed that the radial
excitations of the ρ meson are important for EM form
factors of nonzero spin hadrons, as nucleons.

In Figs. 1–4 we show our results for the EM form factors
of the π, ρ, K, and K� mesons. The pion and kaon EM form
factors are compared against experimental data. Previous
results for the pion and kaon EM form factors in holo-
graphic QCD can be found in [59–61] respectively.
Previous results for the ρ meson EM form factor can be
found in [52]. Finally we show in Figs. 5 and 6 our results
for the D meson and D� meson EM form factors compared
with data from lattice QCD. As promised, we find a
reasonable agreement between our model and the lattice
results.
At lowQ2, we use the relations in Eqs. (101) and (103) to

extract the charge radii of pseudoscalar and vector mesons.
In Table VI we compare our results for the light mesons
against experimental data and those for the charmed
mesons against lattice QCD data.
We use the expansions in Eqs. (106) and (107) to obtain

the Q2 dependence of the EM form factors; the results are
shown in Figs. 7 and 8. For the case of pseudoscalar
mesons, we find the behavior FπaðQ2Þ ∼Q−2. For the
vector meson EM form factors we find that
FVaðQ2Þ ∼Q−4. Both results are consistent with perturba-
tive QCD expectations and conformal symmetry in the UV.

VIII. CONCLUSIONS

We have extended the two-flavor hard-wall holographic
model of Ref. [33] to four flavors. By fitting the seven
parameters of the model, which are three quark masses,
three condensates, and the hard-wall scale z0, to eleven
selected meson masses, the model provides a good
description of weak decay constants of more than a dozen
light and strange and charmed mesons. We have also
investigated the effects of flavor symmetry breaking on
three-meson couplings and form factors. In particular, we
have made predictions for the strong couplings gρnππ , gρnρρ,
gρnKK , gρnK�K� , gρnDD, and gρnD�D� . Moreover, using our
results for those couplings we have been able to evaluate
the π, ρ, K, K�, D, and D� electromagnetic form factors.
For the D and D� electromagnetic form factors we found a
reasonable agreement with the lattice QCD results of
Ref. [44].
Our results for the couplings involving the ground-state ρ

meson and the charmedmesons, namely gρDD and gρD�D� are
smaller than the SUð4Þ symmetry values, as shown in
Table IV. Our result gρDD ¼ 1.103 is also smaller than
predictions based on the VMD model [31,32] where
gρDD¼ 2.52�2.8. Moreover, we found that gρDD<gρππ=2,
which is of the opposite trend to the predictions based on
QCD sum rules [39] and Dyson-Schwinger equations of
QCD [40], but it agrees with that obtained with the 3P0 pair-
creation model in the nonrelativistic quark model of
Refs. [42,43]. A possible explanation for the discrepancy
for the small values of the couplings is that the electromag-
netic form factor of theDmeson is a dramatic examplewhere

TABLE VI. The charge radii of π, ρ, K, K�, D and D� meson
compared to experiment and lattice QCD.

hr2i (fm2) Model Experiment Lattice QCD

πþ 0.35 0.45� 0.01 [55] -
ρþ 0.53 0.56� 0.04 [64] -
Kþ 0.33 0.31� 0.03 [55] -
K�þ 0.52 - -
Dþ 0.19 - 0.14� 0.01 [44]
D�þ 0.33 - 0.19� 0.02 [44]

FIG. 7. Large Q2 behavior for the D-meson, kaon and pion
electromagnetic form factor.

FIG. 8. Large Q2 behavior for the D�-meson, K�-meson
and ρ-meson electromagnetic form factor.
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the VMD approximation is broken and the contribution from
the resonances ρn can not be neglected. It is interesting to
notice the relation between the breaking of the VMD
approximation and the breaking of the SUð4Þ symmetry.
In a VMD approximation we would find that

2gρDD ¼ m2
ρ

gρ
¼ gρππ: ð112Þ

The first equality comes fromapplyingVMDto theD isospin
form factor; in our framework, this relation also comes from
the EM form factor. The second equality is the well known
VMD result for the pion EM form factor. The relation in
Eq. (112) can be extended to other couplings and it means
that a VMDapproximation necessarily implies a universality
between the couplings. Interestingly, the result in Eq. (112)
for the coupling gρDD matches with the SUð4Þ symmetry
expectations. Then it is reasonable to interpret a dramatic
breakingof theSUð4Þ flavor symmetry in termsof a dramatic
breaking of the VMD approximation, which is exactly what
we have found for the charmed mesons D and D�.
We finish this paper by reiterating our earlier remarks on

the applicability of our model. Our holographic QCD
model is based on an extensions of a light-flavor chiral
Lagrangian, which should be adequate to describe heavy-
light mesons, as the internal structure of these mesons is
governed by essentially the same nonperturbative physics
governing the internal structure of light mesons, which
occurs at the scale ΛQCD. On the other hand, the internal
structure of heavy-heavy mesons, as the ψ and ηc mesons,
is governed by short-distance physics at the scale of the
heavy quark mass. An appropriate holographic description
of such mesons most likely requires the inclusion of long
open strings. In that scenario, it should be possible, in
particular, to describe the non-relativistic limit of heavy
quarks where a spin-flavor symmetry emerges [27].
Although there have been some interesting top-down
[47,48,50,65] and bottom-up [49,51] proposals, a realistic
model for heavy-heavy mesons remains a challenge in
holographic QCD.
In holographic QCD, it is assumed that the quark mass

coefficient mq in the near boundary expansion of the
classical field X0ðzÞ behaves as the source of the operator
q̄ðxÞqðxÞ. Then the holographic dictionary leads to con-
clude that the parameter σ is also in one to one correspon-
dence with the vacuum expectation value (v.e.v.)
hq̄ðxÞqðxÞi. This matching, however, is ambiguous, as
discussed in Ref. [46], because hq̄ðxÞqðxÞi is actually a
scale-dependent quantity whereas mq and σ are obtained
from a global fit to the meson spectrum. This issue actually
becomes exacerbated as the quark mass increases.
In QCD, the quantity hq̄ðxÞqðxÞi is identified with the

trace of the quark propagator S, i.e., hq̄ðxÞqðxÞi ¼
−TrSðx − xÞ ¼ −TrSð0Þ. It contains a nonperturbative,
low-energy contribution from a dynamical component of

chiral symmetry breaking, and an essentially perturbative
contribution due to the explicit chiral symmetry breaking
driven by the quark mass. In the heavy quark mass limit, the
perturbative contribution dominates and the nonperturba-
tive contribution goes to zero. For that reason, and to make
contact with the traditional definition of the quark con-
densate in QCD sum rules [66], in lattice simulations the
perturbative contribution is subtracted; see, e.g., [67].
Interestingly, the authors of Ref. [67] found, after sub-
tracting the perturbative contribution, that the strange quark
condensate at the MS scale of 2 GeV is larger than that of
the light quarks. So far there are no such lattice calculations
for the charm and bottom quark, but calculations within the
framework of Dyson-Schwinger equations [68] find
that the nonperturbative component of chiral symmetry
breaking decreases with increasing current-quark mass, as
expected.
Our results, obtained from a global fit to the meson

spectrum, indicate that σ increases with mq. Although, as
discussed above, the relation between σ and the QCD v.e.v.
hq̄ðxÞqðxÞi is far from clear, one could assume that relation
as being strictly one-to-one and conclude that hq̄ðxÞqðxÞi
increases with the quark mass unless a perturbative sub-
traction is also implemented in the holographic model. For
the case of the charm quark this means that a large value for
σc does not necessarily imply a large charm quark con-
densate. There is an additional issue that requires further
study. In QCD, the v.e.v. of the operator q̄q, with canonical
dimension Δ ¼ 3, is expected to acquire a large anomalous
dimension in the infrared. In our holographic model, we
have made the ad hoc approximation of keeping the same
canonical dimension for hq̄qi. If we take into account
anomalous dimension effects, corrections to mq and σ are
expected. We hope to pursue this line of research in the near
future.
It is also important to bear in mind that results from a

holographic QCD approach are supposedly referring to
leading-order in an expansion of 1=Nc and in the large ’t
Hooft coupling λ ¼ g2YMNc. As such, loop corrections for
the hadronic propagators and vertices are not taken into
account. The 1=Nc and/or 1=λ corrections to the effective
chiral-flavor Lagrangians in holographic QCD is a fasci-
nating open problem and deserves further studies.
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