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We present a new procedure to determine parton distribution functions (PDFs), based on Markov chain
Monte Carlo (MCMC) methods. The aim of this paper is to show that we can replace the standard χ2

minimization by procedures grounded on statistical methods, and on Bayesian inference in particular, thus
offering additional insight into the rich field of PDFs determination. After a basic introduction to these
techniques, we introduce the algorithm we have chosen to implement—namely Hybrid (or Hamiltonian)
Monte Carlo. This algorithm, initially developed for Lattice QCD, turns out to be very interesting when
applied to PDFs determination by global analyses; we show that it allows us to circumvent the difficulties
due to the high dimensionality of the problem, in particular concerning the acceptance. A first feasibility
study is performed and presented, which indicates that Markov chain Monte Carlo can successfully be
applied to the extraction of PDFs and of their uncertainties.
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I. INTRODUCTION AND MOTIVATION

Quantum chromodynamics (QCD) is the theory of
strong interaction, whose ambition is to explain nuclei
cohesion as well as neutron and proton structure, i.e. most
of the visible matter in the Universe. Its application domain
is even wider, since QCD controls the structure and
interactions of all hadrons: proton, neutron, hyperons,
pions, kaons, etc. It is one of the most elegant theories
of science (with general relativity); it has only very few
parameters and allows us to give a physical interpretation to
a very broad range of phenomena using a well-defined and
very compact formalism.
Among the fundamental ingredients of QCD, parton

distribution functions (PDFs) are key elements and play an
essential role to connect the QCD dynamics of quarks and
gluons to the measured hard scattering cross sections of
colliding hadron(s). They carry an invaluable source of
information on the hadrons’ partonic structure, and enor-
mous theoretical and experimental effort has been devoted
for years to the extraction of these distribution functions.
PDFs are all the more important nowadays; with the start

of data taking at the LHC, they are essential for the
computation of a large class of observables. Built for the
discovery of the Higgs boson and the study of physics
beyond the standard model, the LHC is indeed essentially a
QCD factory, producing events in an unexplored energy
range. The LHC potential of discovery crucially depends
on the quality of predictions for QCD signals and back-
grounds and, thus, on the PDFs quality.

PDFs are intrinsically nonperturbative objects and, thus,
cannot be determined using only perturbative QCD tools.
One of the most efficient methods to perform non-
perturbative QCD calculations is Lattice QCD. However,
although nucleon structure has been the subject of intense
activity in Lattice QCD for years, and even if promising
techniques to compute PDFs directly on the lattice have
recently been proposed [1], ab initio calculations of PDFs
are very challenging and still not a competitive alternative
to global analyses. These latter, thus, remain the chosen
method to obtain PDFs, which are parametrized by func-
tional forms whose parameters are constrained by fits to
the data.
Parton distribution function determination thus consists

in extensive exploitation of data sets collected at colliders to
constrain the parameters of the PDF functional forms given
at a fixed scale in energy. Such analyses are usually based
on a least square fit method, i.e. on the minimization of a
χ2, which compares the input data and theory predictions.
PDFs determined this way did not, for a long time, include
any estimate of uncertainties, other than the mere com-
parison of results provided by different global analyses
collaborations. However, with the advent, at the dawn of
the 21st century, of the new generation of colliders and
the active search for new physics, the need to assess the
uncertainties of the PDFs became clear [2–5]. Many studies
have since been devoted to the estimates of uncertainties on
physical predictions due to the uncertainties of PDFs (see
for instance [6–8] and references therein) and considerable
progress has been made. Nevertheless, this task is far from
being trivial, and many issues remain open [6].
Our current understanding of PDF uncertainties is

mainly based—with the notable exception of neural
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network techniques—on the Hessian or the Lagrange
multiplier method [6,7]. The determination of the uncer-
tainties then relies on an assumption on the permissible
range of “acceptable” Δχ2 for the fit and the choice of a
tolerance parameter. In order to improve on this point and
get a deeper insight, we propose to use Markov chain
Monte Carlo (MCMC) techniques to define the uncertain-
ties in a way based as much as possible on robust statistical
methods. Markov chain Monte Carlo algorithms have been
an extremely popular tool in statistics. While these tech-
niques are already widely used in many areas of physics
(see for instance [9–11]) they have not yet been employed
as a stand-alone method to compute PDF parameters and
their errors—i.e. without resorting to a χ2 minimization
procedure.1

The Markov chain Monte Carlo method allows us to
estimate a posteriori probability densities for multidimen-
sional models and provides reliable estimates of errors.
MCMC consists in sequentially simulating a single Markov
chain whose limit distribution is the chosen one.
The main challenge of the present paper is to demonstrate

that Markov chain Monte Carlo techniques can be applied to
PDF extraction. The higher the dimension of the chain (i.e.
in our case, the more PDF free parameters to be determined),
the more computing time is needed to generate the chain.
The large number of parameters to be computed in a full
PDF determination has led us to make use of a Monte Carlo
algorithm based on molecular dynamics, initially developed
for lattice field theory. We apply this algorithm to a realistic
(though not full) extraction of PDFs, based on ten-parameter
functional forms and four data sets, to demonstrate that
Markov chain Monte Carlo can successfully be applied to
PDF computation.
This paper is organized as follows: in Sec. II, we

formulate the PDF determination problem in terms of
Bayesian inference. In the next section, the basic principles
of Markov chain Monte Carlo methods are recalled and
illustrated utilizing the widely used Metropolis algorithm.
The fourth section briefly presents the hybrid Monte Carlo
algorithm and shows how it allows us to deal with the large
number of PDF parameters to be determined. Section V
details the MCMC analysis procedure and Sec. VI displays
first results with a realistic run using ten parameters and
four sets of data. Conclusions and outlook are discussed in
the last section.

II. FORMULATION OF THE PROBLEM IN TERMS
OF BAYESIAN INFERENCE

Parton distribution functions are usually (with the
exception of neural network procedure [12]) parametrized
at a given energy scale by functional forms, which are then
evolved at any other scale thanks the DGLAP equations

(this also excepts dipole models [13] and transverse-
momentum dependent [14] and unintegrated PDFs [15],
for instance, that we will not consider here). These PDFs
are convoluted with partonic cross sections to obtain
hadronic cross sections for various processes and a χ2

function, constructed from these theoretical cross sections
and corresponding experimental data, is then minimized
to constrain the PDF parameters. Rather than using a
minimization procedure and a Hessian method to estimate
PDF uncertainties, we propose a Bayesian parameter
inference approach. These techniques have already been
successfully applied in many areas [9] and we only sketch
the main principles in what follows. The interested reader
can referred for instance to [16] for a more extensive review
of the subject.
For compactness, we note q̂ the vector of PDF param-

eters to be determined: q̂ ¼ ðqð1Þ; qð2Þ;…; qðmÞÞT where m
is typically, in the case of a full analysis, of the order of
25–30, and D the data. From a Bayesian perspective,
both model parameters and observables are considered
random quantities, and Bayesian inference aims formally
to determine a joint probability distribution PðD; q̂Þ over
all random quantities. This joint distribution can be
written as PðD; q̂Þ ¼ PðDjq̂ÞPðq̂Þ, where Pðq̂Þ is a prior
distribution—quantifying the degree of belief one has
a priori before observing the data—and PðDjq̂Þ is the

likelihood of the data: Lðq̂Þ¼defPðDjq̂Þ. Bayes theorem is
used to express the distribution of q̂ conditional on D,
Pðq̂jDÞ, in terms of the likelihood PðDjq̂Þ:

Pðq̂jDÞ ¼ PðDjq̂ÞPðq̂ÞR
dq̂PðDjq̂ÞPðq̂Þ ð1Þ

The denominator in (1) does not depend on the parameters
and can be considered only as a normalization. This so-
called “posterior” probability density Pðq̂jDÞ quantifies
the probability to have the model parameters q̂ given the
observed data D and is the object we deal with in all
Bayesian inference. To determine this conditional proba-
bility, we thus need to set a prior distribution for the
parameters, and to compute the likelihood of the data. The
probability density Pðq̂jDÞ is then sampled using a
Monte Carlo algorithm.
Assuming that the fluctuations of the n experimental data

points under consideration around their corresponding
theoretical values are uncorrelated and distributed accord-
ing to a Gaussian law (assumption whose validity can be
assessed a posteriori—see Sec. VI), the least square
method and the maximum likelihood are equivalent and
the logarithmic likelihood function can be written as

logLðq̂Þ ¼ −
1

2

Xn
i¼1

ðDi − TiÞ2
σ2i

¼ −
1

2
χ2 ð2Þ

where Di and Ti denote respectively the ith experimental
point and the corresponding theoretical calculation, and

1Uncertainties estimations using pseudodata replicas are also
based on Monte Carlo methods [8], but still rely on fits.
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σ2i is the uncertainty associated with the measured data i.
The inclusive cross section Ti in hadron collision can be
written as a convolution of PDFs with a partonic cross
section, computed at a given order in perturbation theory.
The likelihood function (2) thus contains the PDFs.
Correlated experimental uncertainties can also be taken
into account by introducing for instance a covariant matrix
and properly modifying the χ2 [17].
For this work, we have used the χ2 function given by the

default settings provided by the HeraFitter package [17]
with 10 parameters (default HeraFitter steering file and
minuit.in.txt.10pHERAPDF input file) and four data sets
with an initial PDF parametrization set at Q2

0 ¼ 1.9 GeV2

and a lower cut on the data at Q2
min ¼ 10 GeV2. These

settings provide already a computation of PDFs realistic
enough for this feasibility study.
We thus apply Bayesian inference to the likelihood

function defined in (2), that is, we compute the probability
density function of the model parameters, based on selected
experimental data. To this purpose, we use Monte Carlo
Markov chain procedure, whose principles are briefly
sketched in the next section. One of the crucial interest
of these methods is the fact that the mean value and
uncertainty in these parameters are by-products of the
probability density functions computed.

III. PRINCIPLE OF MARKOV CHAIN
MONTE CARLO

A. Basics of the method

The Markov chain Monte Carlo method allows us
to estimate a posteriori probability densities for multi-
dimensional models—which, as explained briefly in the
previous section, is exactly what we want—and provides
reliable estimates of errors. MCMC algorithms enable us to
draw samples from a probability distribution known up to a
multiplicative constant. They consist in sequentially sim-
ulating a single Markov chain whose limiting distribution is
the chosen one (in our case, the maximum likelihood times
a prior density). More precisely, a Markov chain is a
stochastic process characterized by the fact that the condi-
tional distribution of the random variable at iteration t,
denoted q̂t, given the ensemble of random variables at all
previous steps q̂0;…; q̂t−1, depends only on q̂t−1, and not
on the previous history. Such a chain can be used to sample
a probability density. To converge to a given stationary
distribution, the chain needs to satisfy important properties:
it has to be irreducible, aperiodic and positive recurrent. We
will not expand further on Markov chain theory and we
refer the reader interested by formal details to [9] and
references therein.
Two ingredients are necessary to define a Markov chain:

(i) the initial values (that is the marginal distribution) of
parameters and (ii) the transition kernel between two sets
of parameters: Tðq̂ → q̂0Þ, for going from a set q̂ to another

set q̂0. There are several issues arising when implementing
MCMC: the influence of the starting point of the chain
(leading to the “burn-in” time), the choice of the transition
kernel, the rate of convergence, the acceptance of the
algorithm,…. These questions will be illustrated in detail in
the following sections.

B. Metropolis algorithm

The so-called “Metropolis-Hastings algorithm,” pro-
posed in 1953 by Metropolis et al. [18] and generalized
by Hastings in 1970 [19], is one of the simplest
Monte Carlo algorithms. It is the standard computational
workhorse of MCMC methods both for its simplicity and
its versatility, and is in principle applicable to any system.
It is extremely straightforward to implement and to sample
a target density Pðq̂jDÞ (see Sec. II), it proceeds as follows:
at each Monte Carlo time t − 1, the next state q̂t is chosen
by sampling a candidate point q̂0 from a proposal distri-
bution πð:jq̂t−1Þ. The candidate point is then accepted with
the probability

αðq̂t−1; q̂0Þ ¼ min

�
1;

Pðq̂0jDÞπðq̂t−1jq̂0Þ
Pðq̂t−1jDÞπðq̂0jq̂t−1Þ

�
;

and the Metropolis-Hastings transition kernel is thus

Tðq̂t−1 → q̂0Þ ¼ πðq̂0jq̂t−1Þαðq̂t−1; q̂0Þ:

If the new set of parameters q̂0 is accepted, the next state of
the chain becomes q̂t ¼ q̂0. If it is rejected, the chain does
not move and the point at t is identical to the point at
t − 1: q̂t ¼ q̂t−1.
A special case of the Metropolis-Hastings algorithm is

the random walk Metropolis, for which the proposal
distribution is chosen to be such that πðq̂0jq̂t−1Þ ¼
πðjq̂t−1 − q̂0jÞ. The acceptance probability then reduces

to αðq̂t−1; q̂0Þ ¼ minð1; Pðq̂0jDÞ
Pðq̂t−1jDÞÞ. Frequently, the proposal

for the random walk jump has a form which depends on a
scale parameter, giving the typical “size” of the leap from
one site to the other. For instance the proposal distribution
for q̂0 could be a normal distribution centered in q̂t−1 with a
standard deviation σ. A meticulous attention has to be taken
when choosing this scale parameter. If it is too large, a very
high percentage of the iterations will be rejected, leading to
an inefficient algorithm. If it is too small, the random walk
will explore the parameter space very slowly, leading again
to inefficiency. This problem is all the more difficult to
handle that the number of parameters (i.e. the dimension of
the vector q̂) to be sampled increases.
Ideally, to optimize the efficiency of the MCMC, the

proposal distribution should be as close as possible to
the target distribution. In practice, the performance of the
algorithm is obviously highly dependent on the choice of
proposal distribution πð:jq̂t−1Þ and several options are
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usually considered in the literature to explore the parameter
space: one-dimensional Gaussian distributions, multivari-
ate Gaussian distributions, a distribution obtained by binary
space partitioning [20]…. However, even if adjustments of
the proposal distributions improve the Metropolis effi-
ciency, they are not effective enough to efficiently deal
with several dozen parameters within a reasonable CPU
and user time. To circumvent these problems—since in the
case of PDF extraction, the number of free parameters to
determine (that is the number of parameters in the PDF
functional form) is of the order of ∼25–30—we have
implemented a much more efficient algorithm, based on
molecular dynamics, which has initially been developed for
Lattice QCD and is widely used in this field.

IV. HYBRID (OR HAMILTONIAN)
MONTE CARLO

As mentioned before, the main problem of Metropolis-
type algorithms, relies on the choice of the candidate point
at each move of the chain. Choosing a trial point far from
the initial one will lead to a large change in the distribution
to sample, and thus to a small acceptance probability, while
choosing a point close to the initial one will not lead to an
efficient exploration of the parameter space, and thus to a
slow convergence of the chain.
Hamiltonian (or “hybrid”) dynamics [21], developed

originally for lattice field theory, is used to produce
candidate proposals for Metropolis algorithm, in a very
elegant and efficient way. It is an exact algorithm which
combines molecular dynamics evolution with a Metropolis
accept/reject step. This latter is used to correct for dis-
cretization errors in the numerical integration of the
corresponding equations of motion. Very good reviews
and papers exist which detail the properties of this
algorithm (see for instance [16]), and only the main ideas
will be recalled here for completeness.
To implement hybrid Monte Carlo algorithm, one

introduces for each set of parameters q̂ (see previous
section) a set of conjugate momenta p̂ and associates to
this joint state of “position” q̂ and “momentum” p̂ an
Hamiltonian Hðq̂; p̂Þ ¼ p̂TM−1p̂=2þ Uðq̂Þ, where M is a
mass matrix, generally taken to be diagonal, and Uðq̂Þ an
arbitrary potential energy. This allows us to define a joint
distribution as

Pðq̂; p̂Þ ¼ 1

Z
e−Hðq̂;p̂Þ ¼ 1

Z
e−Kðp̂Þe−Uðq̂Þ

where Z is the normalizing constant. We use for the
potential energy Uðq̂Þ ¼ − log½PðDjq̂ÞPðq̂Þ�. Starting from
a point q̂0 of the chain, the HMC procedure consists in
selecting some initial momenta p̂0 normally distributed
around zero and let the system evolve deterministically
for some time according to Hamilton’s equations of
motion for Hðq̂; p̂Þ. It reaches a candidate point ðq̂1; p̂1Þ

which, according to Metropolis procedure described
above, is accepted with probability minð1; e−ΔHÞ. Since
the dynamics conserves energy, i.e. ΔH ¼ 0 along a
trajectory, the acceptance rate is 100%, independently of
the dimension of the vector q̂.
In practice, this acceptance is degraded because of the

numerical resolution of Hamilton equations, but remains
still at a very high level (typically of the order of 70%–90%,
independently of the dimension of the chain). HMC
algorithm is thus very well suited to multiparameter
determination. To discretize Hamilton’s equation, we use
the LeapFrog method, a convenient second order integra-
tion method that gives the time reversal invariance needed
for the Metropolis transition kernel.
We have implemented both Metropolis and hybrid

Hamiltonian Monte Carlo algorithms in the open-source
package HeraFitter and its successor xFitter [17]. This
software provides a modular framework to determine
PDFs by fitting a large ensemble of experimental data.
In what follows, we focus on the proton PDFs, and we use
for the PDF parametrization, the HERAPDF functional
form, that we just recall here for the sake of clarity: the
parametrized HERA PDFs are the valence distribution xuv
and xdv, the gluon distribution xg, and the Ū and D̄
distribution defined as xŪ ¼ xū, xD̄ ¼ xd̄þ xs̄. Their
functional form reads

xfaðxÞ ¼ AaxBað1 − xÞCað1þDaxþ Eax2Þ; ð3Þ

where a labels a parton (g; uval; dval;…. See [17] for more
details). The analysis procedure we apply to the Markov
chain we have produced is explained in the next section.

V. MARKOV CHAIN ANALYSIS

Assessing statistical errors for observables in
Monte Carlo simulations is a subtle task and requires a
careful treatment of the Markov chain. This section
presents the different stages of analysis and the checks
we have performed.
The procedure to analyze a Markov chain consists of

several steps. In particular, it is necessary to remove the
thermalization (or burn-in) region, to verify the conver-
gence of the chain and to properly examine correlations
between neighboring points in the chain. We have also
checked the chain reversibility and the fact that the
distribution was correctly sampled.

A. Thermalization

The thermalization time (or burn-in length) b of a
Markov chain corresponds to a number of states
fq̂tgt¼1;…;b to be discarded from the beginning so that
the chain forgets its starting point. It can be estimated as
being the first state of the random walk—that is the first
set of parameters q̂, denoted q̂b—reaching the median value
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of its target distribution P1=2 computed using the entire
chain, i.e.

Pðq̂bjDÞ > P1=2: ð4Þ

To illustrate thermalization features, we have represented
in Fig. 1 the Monte Carlo history of parameter Bg for three
independent chains, each starting from a different point.
For illustration purposes, we have fixed all parameters to
their value given by the standard minimization procedure of
xFitter, except this parameter Bg, which is obtained by a
Monte Carlo procedure.
We can identify in Fig. 1 the thermalization region,

whose extent depends on the starting point. The chain
represented in solid green line has been started from the
output value of a MINUIT minimization of the χ2 with
respect to parameter Bg and is thus thermalized very
quickly, specifically after one iteration, whereas the other
chains, started far from the minimum χ2, exhibits a
thermalization of about 150 iterations for the chain repre-
sented in dashed red line and 210 iterations for the one
represented by the dotted blue line; as expected, the farther
from the minimum the starting point is, the longer the
thermalization. Starting from a point far from its value
given by the minimization procedure is useful to check that
this latter did not get stuck in a local minimum and that
simulations starting from different points converge to the
same region (see also Sec. V C). In practice, we have
generated several chains (36 chains, to be more precise),

starting from random points. We determined the thermal-
ization time using Eq. (4) for each chain, and we removed
from each chain its burn-in length.

B. Treatment of autocorrelations

By construction of a Markov chain, the state q̂t depends
strongly on the state q̂t−1 and quantities computed from this
chain form themselves a Markov chain with inherent
correlations from one member to the next. These type of
correlations are often referred to as “autocorrelations” in
simulation time.
Let us consider that we would like to extract an

observable O from a Markov chain simulation with N
points. For this estimation, we use the N successive
Monte Carlo estimates Ot (we assume in what follows,
that the thermalization region has already been discarded,
i.e. that the chain has been equilibrated before recording
data) and we compute the usual mean hOi where h:i means
averaging over the N data points. The usual estimate
of root-mean-square deviation of this average can be
computed as

σ2naive ¼
N

N − 1
ðhO2i − hOi2Þ

This “naïve” error relies on the assumption that the
measurements performed on the Markov chain are not
correlated, which is in general not true. In order to account
for the correlations, one can introduce for the given
observable O, the integrated autocorrelation time τint,
which can be defined as follows,

τint ¼
1

2

Xþ∞

−∞
ρðsÞ;

where ρðsÞ is the normalized autocorrelation function,

ρðsÞ ¼ ðOt − hOiÞðOtþs − hOiÞ
ðOt − hOiÞ2 :

The dependence of ρðsÞ on the time separation s only is a
consequence of the chain being in equilibrium. The
integrated autocorrelation time controls the statistical error
in Monte Carlo measurement of hOi and there are mostly
two possibilities to incorporate this autocorrelation time in
the assessment of the statistical errors. The first one consists
in leaving out 2τint points between two effective points, or
in other terms, to do a subsampling by rejecting all states
which are closer than 2τint to each other, in order to get
independent states. This approach has the disadvantage of
requiring the a priori knowledge of τint. The second
approach consists in keeping all measurements, but taking
into account the autocorrelation time to estimate the
statistical errors. The statistical error of correlated mea-
surements can indeed by computed by [10,22]

FIG. 1. Values of the parameter Bg as a function of the
Monte Carlo time for three independent Markov chains. The
green solid line represents a chain starting from the value given by
MINUIT minimization, whereas the two other chains start from
values much higher (blue dotted) or much lower (red dashed).
The initial corresponding χ2=d:o:f: values are, from chain 1 to
chain 3, respectively, χ2=d:o:f: ¼ 67.44, χ2=d:o:f: ¼ 0.87 and
χ2=d:o:f: ¼ 81.58. We identify clearly on this plot the thermal-
ization region, which is limited to the first ∼100–210 iterations.
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σ2τ ¼ 2τintσ
2
naive

This means that the number of “effectively independent
data points” in a run of length N is roughly N=ð2τintÞ.
If the integrated autocorrelation time is used to assess
statistical errors, this means of course that a reliable
estimate of τint and its error itself are needed. Such
estimates require a delicate procedure. An efficient
method—called Γ-method—has been developed in [22],
which relies on the explicit determination of autocorrela-
tion functions and autocorrelation times. This method
provides not only numerical estimators of the integrated
autocorrelation time, but also estimates for mean values
and statistical errors for arbitrary functions of elementary
observables in Monte Carlo simulations. We refer the
interested reader to [22] and references therein for details.
We have used the Γ-method both to obtain the autocor-
relation time and to compute observables.
A further method to reliably estimate the error on

uncorrelated measurements is the so-called “jackknife
binning” [23]. It consists in building N subsets of data
from the initial ensemble of size N, by removing one
observation, leaving samples of size N − 1. Preaveraging
over the blocks of data provides N estimates of the
average:

hOiB ¼ 1

N − 1

�XðB−1Þ
t¼1

Ot þ
XN
t¼Bþ1

Ot

�
; B ¼ 1;…; N:

The jackknife mean and variance for the observable O
are then constructed from

hOiJack ¼
1

N

XN
B¼1

hOiB;

σ2Jack ¼
N − 1

N

XN
B¼1

ðhOiB − hOiJackÞ2:

The jackknife method—and its extensions—is a widely
used procedure, in particular in Lattice QCD. For cross-
checks and comparison, we applied in our analysis both
Γ-method and jackknife binning techniques. For this latter,
to un-correlate the points of a given chain, we performed a
subsampling of this chain using the value of the autocor-
relation time provided by the Γ-method.

C. Reversibility and convergence

We have verified that our implementation of HMC
algorithm satisfies reversibility with a very good precision
(relative accuracy better than 10−6) and that the average
acceptance—computed using the jackknife method, after
removing thermalization region and decorrelating the
chain—is he−ΔHi¼ 1.002�0.016, thus insuring that our
chains indeed converge towards a stationary distribution. In
addition, to exclude the risk of a nonidentified lack of
convergence, we have simulated several chains, with
different (and random) starting points. This is illustrated
in Fig. 2 in the case of one varying parameter, namely
Bg (all others being fixed to their value obtained by
standard χ2 minimization procedure), where the chains
are clearly seen to converge towards the same stationary
distribution.
The results displayed in the next section have been

obtained after skipping thermalization and properly taking

FIG. 2. Values of the parameterBg as a function of the Monte Carlo time for three independent Markov chains (lhs). The starting points
of the chains and the color code are the same as in Fig. 1. The chains are clearly converging towards the same stationary distribution,
what is confirmed by plotting the parameter distribution for each chain (rhs), after removing thermalization points and taking into
account autocorrelation.
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into account the autocorrelation, using either the Γ-method
or the jackknife binning procedure as explained above.

VI. PRELIMINARY RESULTS

A. Setup and simulation parameters

The results shown in this section are obtained from a
Markov chain using the HERAPDF functional forms for
initial PDFs at a scale Q0 ¼ 1.9 GeV2 with ten free
parameters: Bg, Cg, Buval , Cuval , Euval , Cdval , CŪ, AD̄, BD̄

and CD̄ (see expression (3) for the definition of these
parameters, and [17] for more details). We have used
uniform priors for the parameters, and we consider the
same data ensembles than the ones used to produce
HERAPDF1.0 distributions.
These data are a combination of inclusive deep inelastic

scattering cross sections measured by the H1 and ZEUS
Collaborations in neutral and charged current unpolarized
e�p scattering at HERA, during the period 1994–2000
[17]. Other settings and cuts–with the exception of the
heavy flavor scheme, see below–were also identical to the
ones of HERAPDF1.0 distributions. In particular, we do
not rely of K factors, nor on grids techniques. The latter
could, however, interestingly be used to speed up the
computation.2

Since the aim of this work is to demonstrate the
applicability of MCMC methods to PDF determination—
rather than producing competitive PDF sets—we apply the
ZMVFN scheme in order to speed up the computation of
the χ2, and a lower cut on the data at Q2

min ¼ 10 GeV2.
These settings give a total number of data points of 537.
We will denote by “HERAPDF1.0 ZMVFNS” the PDFs
thus obtained by minimization.
As already mentioned in the previous section, we have

generated 36 Monte Carlo chains, each chain starting from
a different random point, using the HMC algorithm.
The HMC algorithm requires the tuning of essentially

two parameters: the number of leapfrog steps L and the step
size ε, this latter potentially depending on the direction in
the parameter space. These two quantities are chosen such
as to keep both the acceptance high (requiring small ε, to
minimize the numerical errors in solving Hamilton equa-
tions), and the correlation between two successive
Monte Carlo iterations small (thus requiring large trajectory
length Lε). We have chosen L ¼ 100 and one leapfrog step
size for each parameter, depending on the parameter typical
standard deviation. Namely we took εi ¼ 3.10−2Δqtypi ,
where Δqtypi is, for each parameter, the value of its standard
deviation provided by the minimization. With these HMC
parameters, we obtain an acceptance of 80% and chains
which have almost no correlation, since the integrated

autocorrelation time τint computed by the Γ-method is less
than 2 for all parameters.
The HMC algorithm also requires the computation of the

potential energy (that is in our case the χ2) with respect to
the parameters. These derivatives are computed numeri-
cally, using a symmetric derivative. We thus need, for 10
parameters, 20 evaluations of the χ2 for each step of the
Leapfrog algorithm. We have run 36 jobs in parallel,
and collected the results after three days of running. We
computed for each of our 36 chains the burn-in length, and
we removed the maximum burn-in (namely 28) to all of
them, to obtain a total of 4 400 points per chain. To analyze
these chains with the Γ-method, we kept all 158 400 points,
while the jackknife analysis was done considering one
point every four (i.e. 2τint), that is 39 600 points.3

B. PDF parameter values, marginal
distributions and correlations

Table I compares the mean value and its statistical error
for each of the ten PDF parameters under consideration,
using the two analysis procedures we have presented
above, namely Γ-method and jackknife binning. The
computation of the integrated autocorrelation time by the
Γ-method gives values of τint less than 2 and we have used
for the jackknife one point of the chain every four. As can
be seen from Table I, both methods give very close results,
showing that we have analyze our Markov chain in a

TABLE I. Comparison of mean values and their statistical
errors obtained for PDF parameters using two different analysis
methods. The jackknife binning has been applied after subsam-
pling the chain, selecting points not closer than 2τint ¼ 4 from
each other. Since the number of points considered for the
jackknife analysis is thus four times less than for the Γ-method,
the errors are expected to be smaller by roughly a factor 2 for this
latter procedure, which is indeed the case.

Parameter Γ-method Jackknife binning

Bg −0.0537� 0.0001 −0.0537� 0.0002
Cg 5.9449� 0.0015 5.9483� 0.0025
Buval

0.6124� 0.0001 0.6125� 0.0002
Cuval

4.7458� 0.0003 4.7455� 0.0006
Euval

14.965� 0.008 14.961� 0.012
Cdval 3.2054� 0.0014 3.2077� 0.0016
CŪ 4.0917� 0.0038 4.0961� 0.0048
AD̄ 0.3096� 0.0002 0.3098� 0.0002
BD̄ −0.0174� 0.0001 −0.0173� 0.0002
CD̄ 6.2203� 0.0054 6.2096� 0.0076

2and we are exploring this possibility for more complete
computations.

3For a fully realistic PDF determination, systematic uncer-
tainties (factorization and renormalization scales, heavy quark
treatment, …) are much bigger than the sub-percent accuracy we
obtain with such a long Markov chain. In realistic cases, a
Markov chain with about a thousand decorrelated points will lead
to results statistically accurate enough.
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consistent way. For the rest of this paper, we will thus
display only the results obtained using jackknife binning
techniques. We also notice that for the chain length
considered (∼40 000 thermalized and decorrelated points),
the statistical errors on the mean values are tiny.
In Table II are displayed the results provided by MCMC

method—using jackknife binning for error estimate—for
the parameters mean, best fit4 and standard deviation,5

compared with the output of the standard MINUIT min-
imization. We notice, as already stated above, that the
determination of parameters by Monte Carlo methods,
gives much more information than a standard minimiza-
tion. We can in particular extract the statistical errors on
the quantities we are interested in and this error decreases
with the length of the Markov chain. As seen from the

table, the best fit value extracted from the para-
meter probability distributions are compatible with the
parameter values provided by the minimization procedure.
For what concerns standard deviations however, although
MCMC and minimization gives similar results, no precise
comparison can be made since the minimization does not
provide estimates of errors for the usual one-standard
deviation of the parameters. In addition, both quantities
(MCMC standard deviation and minimization deviation)
should coincide only if the probability density of the
parameter considered is Gaussian, which is not necessarily
true (see below). This fact is already visible in Table II,
where we can see that the mean and best fit values do not
coincide within errors for some of the parameters (Cdval , CD̄
for instance).
The probability distribution functions of the parameters,

together with the two-dimensional correlation plots
between parameters are displayed in Fig. 3. The marginal
posterior parameter distributions are shown on the diagonal
graphs, and 2D-correlations on the off-diagonal plots.

TABLE II. Comparison of results obtained for PDF parameter values extracted from an independent Markov chain of length 39 600,
and the results provided from a MINUIT minimization. We compute from the MCMC the best fit value, the mean value and the standard
deviation value for each of the 10 parameters considered, together with their statistical errors estimated by jackknife binning method.
The standard deviation given by the minimization is the usual one-sigma deviation.

Parameter Values MCMC MINUIT minimization

Bg Mean −0.0537� 0.0002
Best fit −0.0632� 0.0168 −0.0559
Standard deviation 0.0299� 0.0001 0.0288

Cg Mean 5.9483� 0.0025
Best fit 5.8952� 0.0615 5.9274
Standard deviation 0.5037� 0.0019 0.5078

Buval
Mean 0.6125� 0.0002
Best fit 0.6092� 0.0121 0.6098
Standard deviation 0.0371� 0.0001 0.0389

Cuval
Mean 4.7455� 0.0006
Best fit 4.7467� 0.0525 4.7122
Standard deviation 0.1280� 0.0005 0.1332

Euval
Mean 14.961� 0.012
Best fit 15.42� 0.94 14.76
Standard deviation 2.494� 0.010 2.571

Cdval Mean 3.2077� 0.0016
Best fit 3.084� 0.076 3.143
Standard deviation 0.3183� 0.0016 0.2830

CŪ Mean 4.0961� 0.0048
Best fit 4.323� 0.814 4.052
Standard deviation 0.9617� 0.0035 0.9782

AD̄ Mean 0.3098� 0.0002
Best fit 0.320� 0.039 0.305
Standard deviation 0.0485� 0.0002 0.0488

BD̄ Mean −0.0173� 0.0002
Best fit −0.0097� 0.0237 −0.0178
Standard deviation 0.0304� 0.0001 0.0306

CD̄ Mean 6.2096� 0.0076
Best fit 5.888� 0.142 5.875
Standard deviation 1.505� 0.009 1.290

4The parameter best fit values are the parameters values that
minimized the χ2 function.

5we have computed here the corrected sample standard
deviation
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The inner and outer contours of these latter are taken to be
regions containing respectively 68% and 95% of the
probability density. We note that the probability distribu-
tion of some parameters cannot properly be described by a
Gaussian law, as illustrated in Fig. 4, and are even non-
symmetric. We have also checked that our correlation plots
are compatible with the values provided by the covariant
matrix.
In Fig. 5 is shown the χ2=d:o:f: distribution for our ten-

dimensional Monte Carlo chain. The solid red line is an

adjustment with a χ2 distribution law with 10 degrees of
freedom, which perfectly describes our results. The fact
that the χ2 function built in Eq. (2) follows a χ2 distribution
law with the expected number of degrees of freedom is a
strong indication (though not a formal proof) that our
assumptions concerning the fluctuations of the experimen-
tal data points around their corresponding theoretical
values, are justified.
Though this is not the case in the example we present, we

would also like to note that potential flat directions in the

FIG. 3. Probability distribution functions of the PDF parameters (diagonal) and 2D correlation plots between parameters (off-diagonal).
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parameter space are less problematic for MCMC method
than for minimization techniques.
We need now to calculate, from the Markov chain of

parameters, the parton distribution functions we are inter-
ested in. The procedure we use is explained in the next
section and is more generally valid for any observable we
want to compute from the MCMC.

C. PDF marginal distributions and
confidence interval

To extract parton distribution functions from the Markov
chain, we compute, from the set of 10 parameters obtained
at each Monte Carlo iteration, the corresponding PDFs for
a range of x and Q2 values. This provides the marginal
probability density functions of PDFs at fixed ðx;Q2Þ,
as illustrated on Fig. 6 for the gluon, for two different
x values.

FIG. 5. χ2 distribution for a 10D Monte Carlo chain. The solid
red line is an adjustment of these data with a χ2 distribution law
with 10 degrees of freedom. The dashed (dashdot) vertical line
indicates the 68% (95%) confidence limit.

FIG. 4. Marginal probability distribution of parameters Bg (lhs) and CD̄ (rhs). They do not follow a Gaussian law, as can be seen from
the gaussian fit (solid red line).

FIG. 6. Gluon PDF probability distribution function for x ≈ 10−4 (lhs) and x ≈ 0.83 (rhs) at fixedQ2 ¼ 10 GeV2. The 68% confidence
interval is obtained from this distribution, considering the region of the distribution containing 68% of the data remaining on each side of
the best fit value.
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For each ðx;Q2Þ, we determine the α%-confidence
interval around the best fit value of the PDF (with typically
α ¼ 68 or α ¼ 95) by considering the region of the
distribution on each side of the best fit, and taking α%
of the data on each of these regions. This provides the (not
necessarily symmetric) α%-confidence limit intervals we
show in Figs. 7 and 9 to 11.
The gluon and uval parton distributions obtained this

way are plotted as functions of x and for Q2 ¼ 10 GeV2

in Fig. 7. The central PDF is the best fit value. These
MCMC PDFs are compared with the HERAPDF1.0 PDFs
(ZMVFN scheme), with a direct comparison in Fig. 7, and
a ratio plot in Fig. 8. They are, as expected, very close,
both in central value and in confidence interval. Maximum
likelihood estimator and least square method are indeed
equivalent under Gaussian assumption, which in our case
can be reasonably applied, as mentioned in the previous
section.
The uncertainties obtained by the MCMC method and

the Hessian method are also consistent within the kinematic
range of HERA. This is demonstrated in Fig. 9 where
experimental uncertainties—normalized by the best-fit

value—obtained for HERAPDF1.0 NLO and MCMC
NLO, respectively, by the Hessian and MCMC methods
are compared for the uval and the gluon distributions.

FIG. 8. Ratio of MCMC PDFs and HERAPDF1.0 (ZMVFN
scheme) central values for xuval and xg at Q2 ¼ 10 GeV2.

FIG. 7. The parton distribution functions obtained using MCMC (right) compared to HERAPDF1.0 (ZMVFN scheme) from xFitter
output (left) for xuval and xg, at Q2 ¼ 10 GeV2. The bands show the 68% confidence interval around the central value (in solid red line)
for the MCMC PDFs, and the standard Δχ2 ¼ 1 deviation for HERAPDF.
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The MCMC uncertainties tend to be slightly larger than
the standard deviations obtained in the Hessian approach.
For completeness, we also display in Fig. 10 the
antiquark PDFs atQ2 ¼ 10 GeV2, and in Fig. 11 the central

value and 68% confidence limit interval for xuval, xdval, xg
and xΣ (xΣ ¼ xūþ xd̄þ xs̄þ xc̄, with xc̄ ¼ 0 for
Q2 < m2

c) on the same plot, at Q2 ¼ 1.9 GeV2 and
Q2 ¼ 10 GeV2.

FIG. 10. The MCMC parton distribution functions xū, xd̄, xs̄ and xc̄ at Q2 ¼ 10 GeV2. The bands show the 68% confidence interval
around the best fit value (in solid red line).

FIG. 9. Comparison of the PDF uncertainties, normalized by the best fit value, as determined by the Hessian and MCMC methods at
NLO for the valence distribution xuval and the gluon distribution xg, at a scale Q2 ¼ 10 GeV2.
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VII. CONCLUSION AND OUTLOOK

We have shown that MCMC, known to be well suited
to multiparameter determination, is applicable to PDF
determination and that Bayesian parameter inference
approach applied to global PDF analysis can lead to a
deeper insight into PDF uncertainties. The innovative
procedure we implemented, which combines Monte Carlo
techniques, lattice-developed algorithms and global PDF
analysis is complementary to the existing methods. We
have for the first time applied the hybrid Monte Carlo
algorithm to PDF determination and computed marginal
probability densities of PDF parameters, and the PDFs
themselves. This allows us to study the probability
distribution of these functions, to determine mean, best
fit and median values, and to extract confidence intervals
in a statistically controlled way.
This work will lead to an innovative PDF uncertainties

determination, and thus to a reliable determination of
uncertainties for many collider observables, in a way that
is complementary to the existing methods. This will also
open new ways to analyze the impact of new data sets being
added to the analysis, to check which data set has outliers
and if these latter can be tolerated.

This feasibility study paves the way for a more
complete PDF determination by MCMC techniques,
and our goal is to extend the present work to the full
ensemble of PDF free parameters, including also as
parameters, the strong coupling constant and c and b
quark masses. We will consider more complex χ2 func-
tions including correlation and complete our analysis on a
fully realistic case, studying, in particular, the impact of
priors. No doubt that Markov chain Monte Carlo methods
will give interesting and valuable information on PDFs
and will contribute to our deeper understanding of these
key elements of QCD.
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