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We calculate the masses and weak decay constants of flavorless and flavored ground and radially excited
JP ¼ 1− mesons within a Poincaré covariant continuum framework based on the Bethe-Salpeter equation.
We use in both the quark’s gap equation and the meson bound-state equation an infrared massive and finite
interaction in the leading symmetry-preserving truncation. While our numerical results are in rather good
agreement with experimental values where they are available, no single parametrization of the QCD
inspired interaction reproduces simultaneously the ground and excited mass spectrum, which confirms
earlier work on pseudoscalar mesons. This feature being a consequence of the lowest truncation, we pin
down the range and strength of the interaction in both cases to identify common qualitative features that
may help to tune future interaction models beyond the rainbow-ladder approximation.
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I. INTRODUCTION

Vector mesons play an important role in the physics of
strong interactions and hadron phenomenology. Since these
mesons and the photon share the same quantum numbers,
JPC ¼ 1−−, flavorless neutral vector mesons can directly
couple to the photon via an electromagnetic current.
Historically, this led to the vector meson dominance model.
Compared to other mesons their production can be measured
with very high precision, for instance in electron-positron
collisions via the process eþe− → γ� → q̄q which
provides a much cleaner signal than hadronic reactions.
Notwithstanding complications with hadronic final states,
vector mesons are abundant decay products in electropro-
duction of excited nucleons [1,2], N�, and exclusive
vector meson production reactions are responsible for a large
fraction of the total hadronic cross section and precede
dilepton decays in relativistic heavy-ion collisions [3]. In
flavor physics, exclusive B decays with final-state vector
mesons, e.g.,B → Vπ,B → Vlνl,B → Vμþμ−, orB → Vγ,
are a central component of the LHCb experimental program,
and the B → K�μþμ− and Bs → K�μþμ− decays are of
particular interest, as their angular distributions are very
sensitive probes of new physics [4–9]. In the latter cases, a
precise knowledge of the pseudoscalar and vector meson
light-cone distribution amplitudes is essential [10].
A characteristic feature of the 1−− ground-state vector

mesons is their predominant occurrence as pure q̄q states:

in the case of the ωð782Þ and ϕð1020Þ mesons the vector
flavor-nonet mixing angle is close to ideal mixing; i.e.,
ϕð1020Þ is nearly a pure js̄si state andω ¼ ðūuþ d̄dÞ=p2.
This ideal mixing is not evident in pseudoscalar and scalar
meson multiplets. Thus, vector mesons as decay products
of heavier nonvector mesons are a very good probe of their
flavor content measured in their respective decay rates into
different types of mesons.
The study of vector mesons is complementary to that

of light pseudoscalar mesons, the Goldstone bosons, as
their masses are more in agreement with the sum of their
typical constituent quark masses. This stands in contrast
to the light pseudoscalar’s properties best described by
the dichotomy of dynamical chiral symmetry breaking
(DCSB), which generates a light-quark mass consistent with
typical empirical constituent masses [11–15] even in the
chiral limit, yet also produces a very light Goldstone boson
due to explicit breaking of chiral symmetry of nonzero
current-quark masses. These characteristic features of the
light pseudoscalar octet are dictated by an axial-vectorWard-
Green-Takahashi identity which relates dynamical quantities
in the chiral limit. Most chiefly, it implies that the leading
Lorentz covariant in the pseudoscalar quark-antiquark γ5
channel is equal to Bðp2Þ=fπ , where Bðp2Þ is the scalar
component of the chiral quark self-energy. As a corollary, the
two-body problem is solved almost completely once a
nontrivial solution of the gap equation is found.
This remarkable fact facilitates the phenomenology of

light pseudoscalar and is taken advantage of within the joint
approach of the Dyson-Schwinger equation (DSE) and
Bethe-Salpeter equation (BSE) in continuum quantum
chromodynamics (QCD) [2,16–22]. That is because in
both the two-point and four-point Green functions, the
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axial-vector Ward-Green-Takahashi identity is preserved
by their simplest approximation, namely, the rainbow-
ladder (RL) truncation. There is no reason to expect a priori
this truncation to be as successful in describing vector
mesons whose solutions contain double the amount of
covariants and whose higher masses sample the quark
propagator in a larger domain of the complex p2 plane.
Moreover, the axial-vector Ward-Green-Takahashi identity
does not constrain the transverse components of the vector
meson Bethe-Salpeter amplitude (BSA). Nonetheless, the
simplest truncation carried out with the Maris-Tandy model
[23,24] for the quark-gluon interaction function works
remarkably well for the lowest ground-state vector mesons,
such as the ρ, ω, K�, and ϕ mesons.
We here reassess the seminal work on vector mesons

by Maris and Tandy [24] within a modern understanding of
the QCD interactions [25,26]. This ansatz produces an
infrared behavior of the interaction, commonly described
by a “dressing function” Gðk2Þ, that mirrors the decoupling
solution found in DSE and lattice studies of the gluon
propagator [27–38]. This solution multiplied by 1=k2 is a
bounded and regular function of spacelike momenta with a
maximum value at k2 ¼ 0.
The present aim is to extend previous work [39] on

radially excited states of pseudoscalar mesons with a given
interaction [25]. We compute the mass spectrum of the
ground and radially excited states of the light, strange, and
charm vector mesons as well as of vector charmonia and
bottomonia without employing any extrapolation of eigen-
value curves, λnðP2Þ − 1 ¼ 0, and use consistently the
same light- and heavy-quark masses of the pseudoscalar
0−þ and 0−− mesons [39]. These ground-state mesons have
also been the object of intense studies in Refs. [40–47]
while the spectrum of excited mesons was investigated for
quarkonia in Refs. [48–52] and with lattice-regularized
QCD [53–55]. In addition, we compute the weak decay
constants of the radially excited states whose precise
knowledge is important in hadronic observables measured
by LHCb and FAIR-GSI, for example.
It can algebraically be shown that for any weak decay

constant of a radially excited state the relation, f0Pn
ðμÞ≡ 0,

n ≥ 1, holds in the chiral limit; as a remainder the decay
constants of radially excited heavy quarkonia are strongly
suppressed with respect to the ground-state values. The
values of the weak decay constants for a wide range of
quarkonia were very recently obtained in an extensive
analysis of the quark-mass dependence with the Alkofer-
Watson-Weigel and Maris-Tandy interactions [50]. We
choose, on the other hand, a fixed set of light, strange,
and charm masses fitted to the ground-state pseudoscalar
mesons and find no significant flavor dependence in our
IR-finite interaction ansatz that describes very well the 0−

and 1− ground-state spectrum. However, the same inter-
action yields masses for the radially excited states that
compare poorly with experiment.

II. BOUND STATES IN THE VECTOR CHANNEL

In analogy with previous work on pseudoscalar ground
and excited states [39], we employ the RL truncation in
both the quark’s DSE and the vector meson’s BSE, which is
the leading term in a symmetry-preserving truncation
scheme. The following two sections detail their respective
kernels and lay out the setup for the numerical implemen-
tation to compute vector meson properties.

A. Quark gap equation

The quark’s gap equation is generally described by the
DSE,1

S−1ðpÞ ¼ Z2ðiγ · pþmbmÞ

þ Z1g2
Z

Λ

k
DμνðqÞ λ

a

2
γμSðkÞΓa

νðk; pÞ; ð1Þ

where q ¼ k − p, Z1;2ðμ;ΛÞ are the vertex and quark wave-
function renormalization constants, respectively, andRΛ
k ≡ R Λ d4k=ð2πÞ4 represents throughout a Poincaré-
invariant regularization of the integral with the regulariza-
tion mass scale, Λ. Radiative gluon corrections in the
second term of Eq. (1) add to the current-quark bare mass,
mbmðΛÞ, where the integral is over the dressed gluon
propagator, DμνðqÞ, and the dressed quark-gluon vertex,
Γa
νðk; pÞ; the SU(3) matrices, λa, are in the fundamental

representation. The gluon propagator is purely transversal
in Landau gauge,

Dab
μνðqÞ ¼ δab

�
gμν −

kμkν
q2

�
Δðq2Þ
q2

; ð2Þ

where Δðk2Þ is the gluon-dressing function. In RL approxi-
mation, the quark-gluon vertex is simply given by its
perturbative limit,

Γa
μðk; pÞ ¼

λa

2
Z1γμ; ð3Þ

and since we neglect the three-gluon vertex and work in the
“Abelian” version of QCD, which enforces a Ward-Green-
Takahashi identity [23,56,57], Z1 ¼ Z2, we reexpress the
kernel of Eq. (1),

Z1g2DμνðqÞΓμðk; pÞ ¼ Z2
2Gðq2ÞDfree

μν ðqÞγμ; ð4Þ

where we suppress color factors and Dfree
μν ðqÞ≔

ðgμν−qμqν=q2Þ=q2 is the free gluon propagator. An effec-
tive model coupling, whose momentum dependence is

1We employ throughout a Euclidean metric in our notation:
fγμ;γνg¼2δμν; γ

†
μ¼γμ; γ5 ¼ γ4γ1γ2γ3, tr½γ4γμγνγργσ � ¼ −4ϵμνρσ ;

σμν ¼ ði=2Þ½γμ; γν�; a · b ¼ P
4
i¼1 aibi; and Pμ timelike ⇒

P2 < 0.
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congruent with DSE- and lattice-QCD results and yields
successful explanations of numerous hadron observables
[2,22,39,58], is given by the sum of two scale-distinct
contributions,

Gðq2Þ
q2

¼ 8π2

ω4
De−q

2=ω2 þ 8π2γmF ðq2Þ
ln½τ þ ð1þ q2=Λ2

QCDÞ2�
; ð5Þ

The first term is an infrared-massive and finite ansatz for
the interaction, where γm¼12=ð33−2NfÞ, Nf¼4, ΛQCD ¼
0.234 GeV; τ ¼ e2 − 1; and F ðq2Þ¼½1−expð−q2=4m2

t Þ�=
q2, mt ¼ 0.5 GeV. The parameters ω and D control the
width and strength of the interaction, respectively. At first
sight they seem to be independent, yet a large collection of
observables of ground-state vector and isospin-nonzero
pseudoscalar mesons are practically insensitive to varia-
tions of ω ∈ ½0.4; 0.6� GeV, as long as Dω ¼ const. The
second term in Eq. (5) is a bounded, monotonically
decreasing continuation of the perturbative-QCD running
coupling for all spacelike values of q2. The most important
feature of this ansatz is that it provides sufficient strength
to realize DCSB and implements a confined-gluon inter-
action [22]. At k2 ≳ 2 GeV2, the perturbative component
dominates the interaction. In Fig. 1 we plot the interaction,
Gðq2Þ in Eq. (5) for a typical value, wD ¼ ð0.8 GeVÞ3,
and ω ¼ 0.4 [39], employed in RL approximation as
well as for other values of ω to illustrate the decrease of
and shift toward larger k2 of its strength. For ω≃ 0.6, the
functional form of the interaction is more akin to that
employed in combination with a ghost-dressed Ball-Chiu
vertex [59–61].

The solutions for spacelike momenta, p2 > 0, of the gap
equation (1) include a vector and a scalar piece,

S−1f ðpÞ ¼ iγ · pAfðp2Þ þ 1DBfðp2Þ; ð6Þ

for a given flavor, f, which requires a renormalization
condition for the quark’s wave function,

Zfðp2Þ ¼ 1=Afðp2Þjp2¼4 GeV2 ¼ 1: ð7Þ

This imposed condition is supported by lattice-QCD
simulations of the dressed-quark propagator. The mass
function, Mfðp2Þ ¼ Bfðp2; μ2Þ=Afðp2; μ2Þ, is renormali-
zation-point independent. In order to reproduce the quark-
mass value in perturbative QCD, another renormalization
condition is imposed,

S−1f ðpÞj
p2¼μ2

¼ iγ · pþ 1DmfðμÞ; ð8Þ

at a large spacelike renormalization point, μ2 ≫ Λ2
QCD,

where mfðμÞ is the renormalized running quark mass,

Zf
mðμ;ΛÞmfðμÞ ¼ mbm

f ðΛÞ: ð9Þ

Here, Zf
mðμ;ΛÞ ¼ Zf

4ðμ;ΛÞ=Zf
2ðμ;ΛÞ is the flavor depen-

dent mass-renormalization constant and Zf
4ðμ;ΛÞ is asso-

ciated with the mass term in the Lagrangian. In particular,
mfðμÞ is nothing else but the dressed-quark mass function
evaluated at one particular deep spacelike point, p2 ¼ μ2,
namely, mfðμÞ ¼ MfðμÞ.

B. Vector bound-state equation

The wave function of a bound state of a quark of flavor,
f, and an antiquark of flavor, ḡ, in the 1− channel is related
to their BSA, Γfḡ

Vμðp;PÞ, which for a relative momentum, p,
and total momentum, P, is obtained from the homogeneous
BSE,

ΓV
μ ðp;PÞ ¼

Z
Λ

k
Kðp; k; PÞSfðkþÞΓV

μ ðk; PÞSḡðk−Þ; ð10Þ

where kþ ¼ kþ ηþP, k− ¼ k − η−P; ηþ þ η− ¼ 1. We
employ a ladder truncation of the BSE kernel consistent
with that of the quark’s DSE (4),

Kðp; k; PÞ ¼ −Z2
2Gðq2Þ

λa

2
γμDfree

μν ðqÞ λ
a

2
γν; ð11Þ

which satisfies an axial-vector Ward-Green-Takahashi
identity [62], and consequently the pseudoscalar mesons
are massless in the chiral limit. The BSE defines an
eigenvalue problem with physical on-shell solutions for
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FIG. 1. The solid indigo curves correspond to the effective
coupling strength G in Ref. [25] with wD ¼ ð0.8 GeVÞ3; the
dash-dotted magenta curve depicts the effective strength in the
Maris-Tandy model [24]; the dotted red curve corresponds to
the effective strength extracted from lattice QCD data by using
the maximum entropy method (MEM); see Ref. [59] for details.
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P2 ¼ −M2
V0

for the ground state and for the radially excited
states, P2 ¼ −M2

Vn
, M2

Vnþ1
> M2

Vn
, n ¼ 1; 2; 3;….

As we are interested in radially excited JP ¼ 1− states,
the question arises whether they can be described by the
interaction in Eq. (5) with exactly the same parameter set as
for ground states, whether the parameters have to be
adjusted or whether the truncation fails to achieve at least
a reasonable description of their mass spectrum. The
masses and weak decay constants of excited states are
very sensitive to the strength and width of the long-range
term in Eq. (5), which provides more support at large
interquark separation than, e.g., the Maris-Tandy model
[24]. In here, we extend the studies of Refs. [25,39] to the
excited states of vector mesons with an interaction that
differs from those employed in Ref. [50]. We also refer to
the discussion in Ref. [63], where it is pointed out that
beyond-RL contributions are important in heavy-light
mesons due to the strikingly different impact of the
quark-gluon vertex dressing for a light and a heavy quark.
The effects of DCSB and the importance of other quark-
gluon tensor structures are increasingly more important for
lighter quarks [22,57]. Thus, one does not expect the RL
truncation to accurately describe either the ground or the
excited states of charm and beauty mesons. On the other
hand, the RL approximation describes very well equal-
mass bound states, such as quarkonia [41–46,48–50].
The normalization condition for the Bethe-Salpeter

amplitude is

2Pμ ¼
∂

∂Pμ

Nc

3

Z
Λ

k
TrD½Γ̄V

ν ðk;−KÞSfðkþÞ

× ΓV
ν ðk; KÞSḡðk−Þ�P

2¼−M2
V

K¼P : ð12Þ

The charge-conjugated BSA is defined as Γ̄ðk;−PÞ ≔
CΓTð−k;−PÞCT , where C is the charge conjugation
operator.
Finally, the weak decay constant for 1− meson is defined

as

fVMVϵ
λ
μðPÞ ¼ h0jq̄ḡγμqfjVðP; λÞi; ð13Þ

where ϵλμðPÞ is the meson’s polarization vector satisfying
ϵλμ · P ¼ 0 and normalized such that ϵλμ� · ϵλμ ¼ 3; Eq. (13)
can be expressed as

fVMV ¼ Z2Nc

3

Z
Λ

k
TrD½γμSfðkþÞΓfḡ

Vμðk; KÞSḡðk−Þ�: ð14Þ

III. NUMERICAL IMPLEMENTATION

A. Quark propagators on the complex plane

In solving the BSE (10), the quark propagators with
momentum ðk� PÞ2 ¼ k2 þ 2iη�jkjMV − η2�M

2
V , where k

is collinear with P ¼ ð0⃗; iMVÞ in the meson’s rest frame,
must necessarily be treated in the complex plane [39,50].
Complex-conjugate pole positions of the propagators
depend on the analytical form of the interaction and can
be represented by analytical expressions based on a
complex-conjugate pole model [64],

SðpÞ ¼
Xn
i

�
zi

iγ · pþmi
þ z�i
iγ · pþm�

i

�
; mi; zi ∈ C:

ð15Þ

The propagator in Eq. (15) is poleless on the real timelike
axis and therefore has no Källén-Lehmann representation,
which is a sufficient condition to implement confinement
[2,16]. The numerical DSE solutions we obtained on the
complex plane [39,63] can be fitted with n ¼ 3 complex-
conjugate poles. In Ref. [39] we solved the BSE (10) both
ways, employing full numerical DSE solutions for the
quark in the complex plane and the pole model in Eq. (15),
and found agreement at the 1% level. Here, in order to
avoid numerical difficulties arising from nonanalyticities in
the complex plane, we limit ourselves to quark propagators
described by Eq. (15).
With respect to the current-quark masses given by

Zf
4ðμ;ΛÞmfðμÞ ¼ Zf

2ðμ;ΛÞmmb
f ðΛÞ; ð16Þ

where Zf
4ðμ;ΛÞ is associated with the mass term in the

QCD Lagrangian, mu ¼ mdðμÞ, msðμÞ and mcðμÞ are
fixed in Eq. (1) by requiring that the pion and kaon
BSEs produce mπ ¼ 0.138 GeV and mK ¼ 0.493 GeV,
respectively. This, in turn, yields mu;dðμÞ ¼ 3.4 MeV,
msðμÞ ¼ 82 MeV, mcðμÞ ¼ 0.828 GeV, and mbðμÞ ¼
3.86 GeV for μ ¼ 19 GeV.

B. Solving the Bethe-Salpeter equation

The general Poincaré-invariant form of the solutions of
Eq. (10) in the vector meson channel and for the eigenvalue
trajectory, P2 ¼ −M2

Vn
, in an orthogonal base with respect

to the Dirac trace is given by

ΓVn
μ ðq;PÞ ¼

X8
α¼1

Tα
μðq; PÞF n

αðq2; q · P;P2Þ; ð17Þ

with the dimensionless orthogonal Dirac basis [24],

T1
μðq; PÞ ¼ γTμ ; ð18Þ

T2
μðq; PÞ ¼

6

q2
ffiffiffi
5

p
�
qTμ ðγT · qÞ − 1

3
γTμ ðqTÞ2

�
; ð19Þ

T3
μðq; PÞ ¼

2

qP
½qTμ ðγ · PÞ�; ð20Þ
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T4
μðq; PÞ ¼

i
ffiffiffi
2

p

qP
½γTμ ðγ · PÞðγT · qÞ þ qTμ ðγ · PÞ�; ð21Þ

T5
μðq; PÞ ¼

2

q
qTμ ; ð22Þ

T6
μðq; PÞ ¼

i

q
ffiffiffi
2

p ½γTμ ðγT · qÞ − ðγT · qÞγTμ �; ð23Þ

T7
μðq; PÞ ¼

i
ffiffiffi
3

p

P
ffiffiffi
5

p ð1 − cos2θÞ½γTμ ðγ · PÞ ð24Þ

− ðγ · PÞγTμ � −
1ffiffiffi
2

p T8
μðq; PÞ; ð25Þ

T8
μðq; PÞ ¼

i2
ffiffiffi
6

p

q2P
ffiffiffi
5

p qTμ γT · qγ · P: ð26Þ

The C-parity properties of this basis are elucidated else-
where [24], and the transverse projection, VT , is defined by

VT
μ ¼ Vμ −

PμðP · VÞ
P2

; ð27Þ

with q · P ¼ qP cos θ. These covariants satisfy the ortho-
normality condition,

1

12
TrD½Tα

μðq; PÞTβ
μðq; PÞ� ¼ fαðcos θÞδαβ; ð28Þ

where the functions fαðzÞ are given by f1ðzÞ ¼ 1, fαðzÞ ¼
4
3
ð1 − z2Þ with α ¼ 3, 4, 5, 6, and fαðzÞ ¼ 8

5
ð1 − z2Þ2 for

α ¼ 2, 7, 8. The normalization constants fα satisfyZ
π

0

dθsin2θfαðcos θÞ ¼
π

2
: ð29Þ

Making use of the covariant decomposition in Eq. (17) and
the orthogonality relations (28), the homogeneous BSE
(10) with the kernel (11) can be recast in a set of eight
coupled-integral equations,

F n
αðp2; p · P;P2ÞfαðzÞ

¼ −
4

3

Z
Λ

k
Gðq2ÞDfree

μν ðqÞF n
βðk2; k · P;P2Þ

×
1

12
TrD½Tα

ρðp;PÞγμSfðkþÞTβ
ρðk;PÞSḡðk−Þγν�: ð30Þ

This equation can be posed as an eigenvalue problem for a
set of eigenvectors F n ≔ fF n

α; α ¼ 1;…; 8g,
λnðP2ÞF n ¼ Kðp; k; PÞF n: ð31Þ

For every solution eigenvector, F n, there exists a mass,
MVn

, such that λnð−M2
Vn
Þ ¼ 1 [39,58,65–68]. The set

of masses, MVn
, represents the radially excited meson

spectrum of quark-antiquark bound states with JP ¼ 1−. In
order to improve a faster convergence in solving the
coupled equations (30), we expand the eigenfunction into
Chebyshev polynomials,

F n
αðk2; k · P;P2Þ ¼

X∞
m¼0

F n
αmðk2;P2ÞUmðzkÞ; ð32Þ

where the UmðzÞ are Chebyshev polynomials of the second
kind and the angles, zk ¼ P · k=ðpP2

p
k2Þ and zp ¼

P · p=ðpP2
p
p2Þ, and momenta, k and p, are discretized

[39]. We employ three Chebyshev polynomials for the
ground and five for excited states. We solve the eigenvalue
problem posed in Eq. (31) by means of the implicitly
restarted Arnoldi method, as implemented in the ARPACK

library [69] which computes the eigenvalue spectrum for a
given N × N matrix. A practical implementation requires a
mapping of the BSE kernelKαβðp; k; PÞ onto such a square
matrix and is described in detail in Ref. [39].
We obtain the eigenvalue spectrum, λnðP2Þ, of the

kernel in Eq. (30) and the associated eigenvectors, F n,
of the vector meson’s BSAs where the root, MVn

, of the
equation λnðP2 ¼ −M2

Vn
Þ − 1 ¼ 0 is found by employing

the Numerical Recipe [70] subroutines ZBRENT and RTSEC.
We verify the ARPACK solutions with the commonly used
iterative procedure and find excellent agreement of the
order 10−16.

IV. DISCUSSION OF RESULTS

We summarize our results for the mass spectrum and
weak decay constants of the flavor-singlet and light-
flavored vector mesons in Tables I and II, where the
DSE and BSE are solved for two interaction, Gðq2Þ,
parameter sets in Eq. (5), namely, ω ¼ 0.4 GeV and

TABLE I. Mass spectrum (in GeV) of flavor singlet and
nonsinglet mesons in the JP ¼ 1− channel. The model parameter
ω refers to the interaction ansatz in Eq. (5), and we exemplify the
spectrum for the values ω ¼ 0.4 GeV and ω ¼ 0.6 GeV with
ωD ¼ ð0.8 GeVÞ3 fixed. We consider the ground state and first
radial resonance, n ¼ 0, 1, and compare with experimental values
of the PDG [71] whose conventions we use in the last column.

JP ¼ 1− Mω¼0.4
Vn

Mω¼0.6
Vn

Mexp
Vn

[71]

ρ0ð770Þ 0.742 0.695 0.775
ρ0ð1450Þ 0.942 0.927 1.465
K�ð892Þ 0.951 0.914 0.896
K�ð1410Þ 1.217 1.206 1.414
ϕð1020Þ 1.087 1.055 1.019
ϕð1680Þ 1.295 1.376 1.659
J=ψ 3.114 3.065 3.097
ψð2SÞ 3.393 3.507 3.689
ϒð1SÞ 9.634 9.552 9.460
ϒð2SÞ 9.945 9.848 10.023
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ω ¼ 0.6 GeV, and the fixed value ωD ¼ ð0.8 GeVÞ3; see
also discussion in Ref. [58]. In Table I, we list the 1−

masses for the ground state and first radial excitation
following the Particle Data Group (PDG) conventions
[71], whereas in Table II this is done for the weak decay
constants.
A direct comparison of the mass and decay constant

entries in both model-interaction columns reveals that the
values obtained with ω ¼ 0.4 GeV are in much better
agreement with experimental values of the 1− ground
states, namely, in case of the ρ, K�ð892Þ, ϕð1020Þ, and
J=ψ . However, their ω dependence in the range ω ∈
½0.4; 0.6� GeV is not as weak as observed in the pseudo-
scalar channel [39]. On the other hand, for ω ¼ 0.6 GeV
the masses obtained for the radially excited states, ϕð1680Þ
and ψð2SÞ, are only marginally better. It turns out that in
the RL approximation, a realistic description of the
radially excited vector meson masses is not possible with
ωD ¼ ð0.8 GeVÞ3.
We thus chooseωD ¼ ð1.1 GeVÞ3 andω ¼ 0.6 GeV for

which the numerical mass and decay constant values of the
radially excited states are presented in Table III and
compare well with experimental values, yet the ground
states are no longer insensitive to ω variations for ωD ¼
ð1.1 GeVÞ3 [58]. In order to maintain mπ ¼ 0.138 GeV, ω
must increase beyond our reference value, ω ¼ 0.6 GeV,
for the excited spectrum. These results confirm an analo-
gous trend observed for pseudoscalar mesons [39].
Nonetheless, the ground states are noticeably less depen-
dent on the ωD values than the radial excitations where
large mass differences are observed between both param-
eter sets. This agrees with the observations made in
Refs. [39,58] and extends them to the charmonium and
bottomonium vector mesons: the quantity rω ≔ 1=ω is a

length scale that measures the range of the interaction’s
infrared component in Eq. (5). The radially excited states
were shown to be more sensitive to long-range character-
istics of Gðq2Þ than the ground states, and we observe that
the masses of the radially excited states are lowered when
rω decreases for ωD ¼ ð0.8 GeVÞ3 fixed, except in the
case of the ϕð1680Þ and ψð2SÞmesons. In comparison with
ground states, a more accurate description of excited states
in our interaction ansatz, namely, using ωD ¼ ð1.1 GeVÞ3,
requires a stronger support at somewhat smaller distances.
A comparison with a like-minded study [52], where the

mass spectrum of quarkonia is investigated for varying
polynomial forms multiplying the Gaussian-type interac-
tion at low- and mid-range momenta, reveals a few
differences but also similarities. When the authors of
Ref. [52] include a term linear in q2 along with one
quadratic in q2, the former producing a functional form
similar to Eq. (5) while the latter form is reminiscent of the
Maris-Tandy interaction, the masses of J=ψ and ψð2SÞ are
in very good agreement with experiment. On the other
hand, the ηc mass compares somewhat less favorably with
data. The parameter space of the polynomial terms strongly
affects the masses of excited states which can be over-
inflated. Since we do not choose the parameters ω and D in
Eq. (5) independently, but rather keep the product ωD
fixed, we necessarily find numerically stable combinations
that allow for a good description either of the ground states
or of the radially excited states. However, we do not
observe any flavor dependence of the interaction, as the
same parameter set produces a good mass spectrum of
either ground-state or excited-state charmonia and
bottomonia.
The masses of the ground and the radial excitation

states of the vector mesons we find correspond to the
first and third eigenvalues (from highest to lowest),
respectively. This is because the second eigenvalue does
not correspond to 1−− states since the even Chebyshev
moments are strongly suppressed. The exceptions are the
ρð1450Þ using Dω ¼ ð1.1 GeVÞ3 and the K�ð1410Þ with

TABLE II. Weak decay constants (in GeV) of flavor singlet and
nonsinglet JP ¼ 1− mesons; see Table I for explanations.
Reference values for fVn

are listed in the last column when
available [71]. The centered ellipses stand for numerically
unstable results; i.e., the integral expression (14) does not
stabilize with increasing numbers of Chebyshev moments. In
the last column, experimental decay constants are extracted from
the PDG values [71] using the formulas in Appendix A.

JP ¼ 1− fω¼0.4
Vn

fω¼0.6
Vn

fexp:Vn

ρ0ð770Þ 0.231 0.242 0.221
ρ0ð1450Þ � � � � � �
K�ð892Þ 0.287 0.304 0.217
K�ð1410Þ 0.195 0.127
ϕð1020Þ 0.299 0.305 0.322
ϕð1680Þ 0.102 0.061
J=ψ 0.433 0.463 0.416
ψð2SÞ 0.208 0.230 0.295
ϒð1SÞ � � � � � � 0.715
ϒð2SÞ � � � � � � 0.497

TABLE III. Mass spectrum and weak decay constants for the
first radially excited flavorless JP ¼ 1− states following PDG
conventions. All values are in GeV and were obtained with the
interaction in Eq. (5) and the parameter values ω ¼ 0.6 GeV and
ωD ¼ ð1.1 GeVÞ3. The centered ellipses denote numerically
unstable results. In the first and fifth columns, experimental
masses [71] and reference values for the decay constants fVn

are
given when available. Experimental values for fVn

are extracted
from the PDG [71] using the formulas in Appendix A.

JP ¼ 1− MVn
fVn Mexp

Vn
fexp:Vn

ρð1410Þ 1.284 0.150 1.465 � � �
ϕð1680Þ 1.650 0.138 1.659 � � �
ψð2sÞ 3.760 0.176 3.689 0.295
ϒð2sÞ 10.140 0.564 10.023 0.497

MOJICA, VERA, ROJAS, and EL-BENNICH PHYSICAL REVIEW D 96, 014012 (2017)

014012-6



Dω ¼ ð0.8 GeVÞ3 and ω ¼ 0.6 where the radial excitation
does correspond to the second eigenvalue. (N.B.: the radial
excitations have identical quantum numbers as the ground
state; therefore, the odd Chebyshev polynomials must be
suppressed as it occurs for the ground states).
In summary, we do not find a parameter set that describes

equally well the entire mass spectrum of ground and
excited states, which demonstrates the insufficiency of this
truncation and confirms our findings in the pseudoscalar
channel [39].

V. CONCLUSION

We computed the BSAs for the ground and first excited
states of the flavor-singlet and light-flavored vector mesons
with an interaction ansatz that is massive and finite in the
infrared and massless in the ultraviolet domain. This
interaction is qualitatively in accordance with the so-called
decoupling solutions of the gluon’s dressing function and
thus supersedes the Maris-Tandy model [24] that vanishes
at small momentum squared. In conjunction with the RL
truncation, the latter proved to be a successful interaction
model for the flavorless light pseudoscalar and vector
mesons as well as quarkonia.
Motivated by the successful application of this inter-

action to the mass spectrum of light vector mesons as well
as some of their excited states in Ref. [58], we extend this
study to the strange and charm sectors and obtain the
masses of ground and radially excited states as presented in
Table I and also compute their weak decay constants. The
numerical values obtained are in good agreement with
experimental data in case of ground states, but the same
parametrization yields values that compare poorly with
experiment for the excited states. We thus confirm our
earlier observation that no single parametrization of Eq. (5)
is suitable to reproduce the mass spectrum of both the
ground and the excited states in RL truncation. Although
not explicitly detailed here, this approximation also fails to

produce the correct masses for the DðsÞ and BðsÞ vector
mesons and the discrepancy is even more pronounced than
in the case of charmed pseudoscalar mesons [39]. Reasons
for this were put forward, e.g., in Ref. [63].
It has therefore become strikingly clear that a unified

description of flavored pseudoscalar and vector mesons,
quarkonia, and their radial excitations can only be achieved
within a treatment of the BSE beyond the leading
truncation.
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APPENDIX: EXTRACTION OF THE
DECAY CONSTANTS

Following Refs. [24,72], we can extract the decay
constant of the vector mesons from the experimental value
[71] for the partial width of the ρ; V → eþe− decay, where
V denotes the ϕ and heavy-flavored mesons,

f2ρ ¼
3mρ

2πα2
Γρ→eþe− ;

f2V ¼ 3mV

4πα2Q2
ΓV→eþe− : ðA1Þ

In this expression, Q is the charge of the quarks in the
meson and α is the fine structure constant.
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