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We study the Landau gauge correlators of Yang-Mills fields for infrared Euclidean momenta in the
context of a massive extension of the Faddeev-Popov Lagrangian which, we argue, underlies a variety of
continuum approaches. Standard (perturbative) renormalization group techniques with a specific, infrared-
safe renormalization scheme produce so-called decoupling and scaling solutions for the ghost and gluon
propagators, which correspond to nontrivial infrared fixed points. The decoupling fixed point is infrared
stable and weakly coupled, while the scaling fixed point is unstable and generically strongly coupled except
for low dimensions d → 2. Under the assumption that such a scaling fixed point exists beyond one-loop
order, we find that the corresponding ghost and gluon scaling exponents are, respectively, 2αF ¼ 2 − d and
2αG ¼ d at all orders of perturbation theory in the present renormalization scheme. We discuss the relation
between the ghost wave function renormalization, the gluon screening mass, the scale of spectral positivity
violation, and the gluon mass parameter. We also show that this scaling solution does not realize the
standard Becchi-Rouet-Stora-Tyutin symmetry of the Faddeev-Popov Lagrangian. Finally, we discuss our
findings in relation to the results of nonperturbative continuum methods.
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I. INTRODUCTION

Understanding the behavior of the correlation functions of
Yang-Mills (YM) fields for infrared momenta is of key
importance, in particular, for continuum approaches to the
dynamics of strong interactions. In the past two decades,
intense efforts have been devoted to compute the Landau
gauge1 Yang-Mills ghost and gluon correlators for infrared
Euclidean momenta [5,6]. Lattice studies [7–13] have
unambiguously demonstrated that, in d ¼ 3 and d ¼ 4
dimensions, the gluon propagator saturates to a finite value
at vanishingmomentum, corresponding to a nonzero screen-
ing mass, and shows a violation of spectral positivity, which
indicates that the corresponding massivelike excitation does
not correspond to an asymptotic state, as expected from
confinement. At the same time, the ghost dressing function
is finite for all momenta, which realizes a particular case of
the class of so-called decoupling solutions. Noticeably, the
gauge coupling, extracted from the gluon-ghost-antighost
vertex, stays finite for all momenta and even vanishes in the
deep infrared [6,9]. The situation is different ind ¼ 2, where
the regimeof infraredmomenta is characterized by a scaling-

type solution, with a vanishing gluon propagator (i.e., an
infinite screening mass), a power law divergent ghost
dressing function, and a finite, nonzero ghost-gluon cou-
pling [14–16]. Both the decoupling and the scaling solutions
are clearly at odds with standard perturbation theory, based
on the Faddeev-Popov (FP) quantization procedure, which
is plagued by a Landau pole for infraredmomenta, where the
coupling grows without bound.
A wide variety of continuum approaches has been

developed to tackle this issue in the Landau gauge. These
include nonperturbative approximation schemes based on
truncations of the hierarchy of Dyson-Schwinger (DSE)
[17–30] or functional renormalization group (FRG) [31–36]
equations as well as variational methods in the Hamiltonian
formalism (HF) [37–39]. Other approaches are based on
modified quantization schemes, which deal with the issue
of Gribov ambiguities (namely the fact that the Landau
gauge condition fixes the gauge only up to a discrete set of
equivalent copies), such as the (refined) Gribov-Zwanziger
approach [1,40–42] or the massive extension of the FP
Lagrangian [43,44] based on the quantization procedure of
Ref. [45]. These methods are all able to produce various
decoupling and scaling solutions.
Two related points are worth emphasizing here. First, the

nonperturbative continuum approaches mentioned above

1The Coulomb gauge has also been the subject of many studies
[1–4]. The infrared behavior of correlators is quite different from
that in the Landau gauge, and we shall not discuss it here.
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have to adjust one extra parameter on top of the gauge
coupling in order to reproduce the lattice results for the
ghost and gluon correlators. This is, for instance, a
boundary condition for the ghost dressing functions in
DSE studies [19,20,35] or an ultraviolet (UV) gluon mass
parameter in FRG works [33,35,36]. Second, these
approaches are not directly based on the sole FP
Lagrangian. This is because it is not known, to date,
how to keep track of the local Becchi-Rouet-Stora-
Tyutin (BRST) symmetry of the latter beyond perturbation
theory [46].2

In fact, gauge-fixed lattice simulations are not based on
the FP Lagrangian either because of the Gribov ambigu-
ities. Various ways of dealing with Gribov copies have been
considered [49], the simplest one consisting in randomly
picking up one copy on each gauge orbit, the so-called
minimal Landau gauge. In any case, existing numerical
algorithms are efficient only in the first Gribov region
(where the FP operator is positive definite), a restriction
which explicitly breaks the BRST symmetry of the FP
Lagrangian.3 It is thus not surprising that the nonperturba-
tive continuum approaches mentioned above have to adjust
(at least) one extra parameter to describe actual lattice data.
This is usually understood as an effective, a posteriori way
to fix the residual gauge freedom, although we stress that,
despite some attempts to put this idea on more solid
grounds [53], this remains to be firmly established. It is
also not completely surprising that continuum approaches
can reach a whole class of solutions that differ from lattice
results, since they can explore a wider range of “gauge-
fixed” (in the loose sense described above) Lagrangians.
In parallel to trying to reproduce lattice data in the

minimal Landau gauge, one may also want to explore the
possibility to produce results with the actual BRST–
symmetric FP Lagrangian. To deal with the explicit break-
ing of the BRST symmetry induced by the regularization
procedure, one should include, in the regularized
Lagrangian defined at some UV scale, a whole set of
relevant BRST breaking (couter)terms and adjust them so
that the BRST symmetry is recovered when the regulator is
removed. We stress again that whether this procedure
makes sense beyond perturbation theory is a nontrivial
open question. Moreover, there is the “in principle” versus
“in practice” issue. In principle, the procedure described
here imposes one to include all BRST–breaking terms
allowed by power counting [54–57]. In practice, however,
existing studies essentially include, for technical reasons,
the minimal ingredient necessary to deal with quadratic

divergences introduced by the BRST–breaking UV regu-
lator [33,36,38,56,58], which amounts to a gluon mass
(counter)term.4 The hope is then that there exists a unique
value of the latter which exactly cancels the BRST breaking
effect of the regulator. It has been conjectured that this
corresponds to a scaling solution [20,35]. We stress again
that, although appealing, this scenario remains, at present,
hypothetical.
We see that, for all practical purposes, existing non-

perturbative works are effectively based on a massive
deformation of the FP Lagrangian, equivalent to the
Landau limit of the Curci-Ferrari (CF) Lagrangian [59],
which has one more (dimensionful) parameter than the
original YM theory. The question is, therefore, whether
there exists a range of parameter space where the CF model
actually provides a sensible realization of YM theory,
possibly including a BRST symmetric solution.
Another line of reasoning, initiated in Refs. [43,44,60], is

to consider the massive CF Lagrangian, not as an unwanted
albeit necessary deformation of the theory that one has to
eventually get rid of, but, instead, as an actual sensible
starting point to study the infrared regime of the Landau
gauge YM correlators. Here, the gluon mass term is seen as
the minimal (local and renormalizable in d ≤ 4 dimen-
sions) extension of the FP Lagrangian which takes into
account the effective BRST breaking due to the Gribov
problem.5 An explicit realization of this model in the
context of a gauge fixing procedure, which consistently
deals with the Gribov ambiguities, has been discussed
in Ref. [45].
It has been shown that, first, the lattice results for the

ghost and gluon propagators in the Landau gauge can be
accurately described by a simple one-loop calculation in the
massive model [43] and, second, that the latter possesses
infrared-safe renormalization schemes, with no Landau
pole, which allow for renormalization group (RG)
improved perturbative studies of the infrared regime
[44]. In this context, the lattice results correspond to an
infrared-safe trajectory where the relevant expansion
parameter remains moderate along the flow [6]. This
perturbative approach has been extended to the calculation
of two- and three-point YM and QCD correlators [61] and
to nonzero temperature applications [62–65]. Similar ideas

2We mention that a generalization of the BRST symmetry has
been recently discovered in the context of the Gribov-Zwanziger
approach [47,48]. However, this concerns a modified FP action.

3The possibility that the FP construction for the Landau gauge
is correct at a nonperturbative level even in presence of Gribov
copies has been suggested [50–52] but remains, for the moment,
unproven.

4Some studies also include different couplings for the
three-gluon, four-gluon, and ghost-gluon vertices [36,56], but
these do not play an important role for the present discussion. In
particular, the transition from decoupling to scaling solutions is
essentially triggered by the gluon mass term.

5The general idea is that the BRST symmetry of the FP
Lagrangian is likely not to be realized in a complete gauge fixing
due to the Gribov problem. Assuming that the resulting gauge-
fixed theory can at all be (at least effectively) formulated as a
local Lagrangian, this will result in corresponding deformations
of the FP Lagrangian. The simplest modification which preserves
the well-tested UV behavior of the FP Lagrangian is a gluon mass
term.
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have also been implemented in Refs. [66–68]. This has the
great advantage to rely on standard (and often simple)
perturbative calculations, which can be systematically
improved. Although the philosophical status of the gluon
mass here is very different from the one mentioned above in
the context of nonperturbative approaches, it is of great
interest to study the possibility of scaling solutions and the
various related questions mentioned above within this
perturbative approach. This is the purpose of the
present work.
We study in detail the parameter space of the massive

theory by means of the perturbative infrared-safe RG
approach. At one-loop order, the RG flow exhibits a rich
structure with different phases, corresponding to either
Landau pole or infrared-safe trajectories, separated by a
transition line (separatrix), which relates the ultraviolet
Gaussian fixed point to a nontrivial infrared fixed point
[45]. Trajectories in the infrared-safe phase correspond to
the continuous family of decoupling solutions, while the
trajectory corresponding to the separatrix yields a scaling
solution. An interesting simplification of the infrared-safe
renormalization scheme used here is that the ghost and
gluon propagators assume particularly simple forms in
terms of the running coupling and mass parameters, which
allow for discussing various features of the solutions in a
simple way. Moreover, thanks to dimensional regulariza-
tion, we can explicitly keep track of the deformed BRST
symmetry of the massive model. In particular, this forbids
quadratic divergences and guarantees that the gluon mass is
multiplicatively renormalized. Moreover, the correspond-
ing modified Slavnov-Taylor (ST) identities pose con-
straints on the possible infrared (perturbative) solutions.
We establish various properties, valid at all orders of

perturbation theory, under the only assumption of the
existence of an infrared scaling fixed point away from
the (massless) FP limit. For instance, we determine the
exact values of the exponents describing the scaling
behavior of the ghost and gluon propagators on the
separatrix, valid in dimensions 2 ≤ d ≤ 4. We explicitly
check that the assumption of a nontrivial infrared fixed
point is satisfied at one-loop order in this range. Our scaling
exponents agree with some results from DSE studies
[19,20], although the latter—as well as other nonperturba-
tive approaches—typically also find other possible
exponents.
We also take advantage of the simplicity of our approach

to discuss various questions raised in previous studies.6 In
particular, we compute explicitly at one-loop order the
relation between the ghost dressing function at vanishing
momentum and the gluon mass parameter. These are

related to the control parameters of DSE and FRG/HF
studies, respectively. We also investigate the dependence of
the gluon screening mass squared (defined as the inverse
correlator at vanishing momentum) and of the scale of
spectral positivity violation in the gluon sector as functions
of the gluon mass parameter. It has been proposed in
Ref. [36] that these can be used to distinguish between two
“phases”, called “confining” and “Higgs–like” in this
reference. Here, we find no sign of a sharp transition
between qualitatively distinct phases, but rather a smooth
crossover between quantitatively different regimes.
Finally, we discuss the scaling solution in relation with

the issue of the possible BRST symmetry restoration
mentioned earlier. The modified ST identities of the
massive model impose that the longitudinal component
of the gluon two-point vertex function is proportional to the
ghost dressing function and, thus, does not vanish (as
would be required by the BRST symmetry), whatever the
(nonzero) value of the gluon mass parameter. In particular,
in our RG scheme, the longitudinal and transverse gluon
screening masses are always proportional to each other and
are thus both infinite for the scaling solution. More
generally, we show that, for any renormalization scheme
compatible with the modified ST identities, demanding an
approximate restoration of the BRST symmetry (in the
sense that the longitudinal screening mass be negligible as
compared to the transverse one) in the infrared regime
strongly constrains the exponents of a possible (perturba-
tive) scaling solution.
The paper is organized as follows. We briefly review, in

Sec. II, the massive model in the infrared-safe (perturba-
tive) renormalization scheme and describe the general
structure of the RG flow in d ¼ 4 at one-loop order. We
recall that, in the ultraviolet limit, the running mass is
strongly suppressed so that we recover the standard FP
theory. In Sec. III, we analyze the infrared-safe phase in
detail. Typical trajectories head towards a weakly coupled
attractive fixed point in the infrared, corresponding to the
decoupling solutions for the ghost and gluon propagators
[44]. Instead, the critical trajectory corresponding to the
separatrix ends at a nontrivial infrared fixed point, which
corresponds to a scaling solution of the Gribov type [1].
Although the scaling fixed point is at strong coupling, we
obtain exact values for the scaling exponents, valid at all
orders of perturbation theory. This generalizes to arbitrary
dimensions 2 < d ≤ 4. We analyze in detail the case
d → 2, where both the decoupling and the scaling fixed
points are weakly coupled. Section V presents a discussion
of the various properties of the infrared-safe solutions, in
particular, concerning the ghost dressing function at zero
momentum, the gluon screening mass, the scale of spectral
positivity violation, and the question of BRST symmetry
restoration. Finally, we discuss, in Sec. VI, the results of
our RG analysis concerning the scaling solution in relation
with other (nonperturbative) continuum approaches. We

6As a word of caution, we emphasize that the present analysis
leaves open the possibility of genuine nonperturbative solutions,
not attainable by perturbative means. Clearly, our analysis and
results do not apply to such cases.
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conclude in Sec. VII. For completeness, we recall how
the present infrared-safe RG approach compares with the
lattice data for the SU(3) theory in d ¼ 4 in Appendix A.
Finally, Appendix B presents an illustrative toy DSE with
perturbative and nonperturbative solutions.

II. THE MASSIVE LANDAU GAUGE

As explained above, we consider a massive deformation
of the standard FP Lagrangian in the Landau gauge. The
latter is a particular case of the CF Lagrangian [59]. This
model possesses a nontrivial phase structure in parameter
space with, in particular, infrared-safe renormalization
group trajectories [44,45]. Here, we briefly review the
corresponding renormalization scheme and its actual
implementation at one-loop order, focusing on what is
relevant for the present analysis. The reader is referred to
Ref. [44] for further details.

A. Generalities

We consider the Euclidean action S ¼ R
ddxL in d

dimensions, with

L ¼ 1

4
Fa
μνFa

μν þ
m2

B

2
Aa
μAa

μ þ iha∂μAa
μ þ ∂μc̄aðDμcÞa; ð1Þ

where Aa
μ is the gauge field, ca and c̄a a pair of ghost and

antighost fields, and ha is a Nakanishi-Lautrup field, whose
equation of motion enforces the Landau gauge condition
∂μAa

μ ¼ 0. The covariant derivative ðDμcÞa ¼ ∂μca þ
gBfabcAb

μcc and the field strength tensor Fa
μν ¼ ∂μAa

ν −
∂νAa

μ þ gBfabcAb
μAc

ν are expressed in terms of the bare
coupling constant gB and the bare mass parameter mB. The
latin indices correspond to the adjoint representation of
the SU(N) gauge group.
The model (1) is multiplicatively renormalizable and

possesses various symmetries, which reduce the number
of independent renormalization factors to two [59,69,70].
We introduce renormalized fields and parameters as
A ¼ ffiffiffiffiffiffi

ZA
p

AR, c ¼ ffiffiffiffiffi
Zc

p
cR, c̄ ¼ ffiffiffiffiffi

Zc
p

c̄R, gB ¼ Zgg, and
m2

B ¼ Zm2m2. The renormalized ghost and gluon propa-
gators are written as

GabðpÞ ¼ δab
FðpÞ
p2

; ð2Þ

Gab
μνðpÞ ¼ δabP⊥

μνðpÞGðpÞ; ð3Þ

with P⊥
μνðpÞ ¼ δμν − pμpν=p2. The function FðpÞ is

known as the ghost dressing function, and we shall refer
to GðpÞ as the gluon propagator for simplicity.

B. The infrared-safe renormalization scheme

Following Ref. [44], we choose the following renorm-
alization conditions for the two-point functions:

Fðp ¼ μÞ ¼ 1; G−1ðp ¼ μÞ ¼ m2 þ μ2; ð4Þ

and we further fix the values of the following finite
combinations of renormalization factors as7

Zg

ffiffiffiffiffiffi
ZA

p
Zc ¼ 1; Zm2ZAZc ¼ 1: ð5Þ

Renormalization group flows for the running parameters are
obtained from these relations in a standardway.We introduce
the coupling λ ¼ g2N=ð16π2Þ and define the beta functions

βm2 ¼ dm2

d ln μ
; βλ ¼

dλ
d ln μ

; ð6Þ

and

γA ¼ d logZA

d ln μ
; γc ¼

d logZc

d ln μ
; ð7Þ

where the derivatives are taken at fixed bare parameters.With
the renormalization prescriptions (5), we have the relations

βm2 ¼ m2ðγA þ γcÞ; βλ ¼ λðγA þ 2γcÞ: ð8Þ

It is important to remark that the functions γA and γc are finite
in the FP theory so that the flow of the mass term vanishes in
the limit of vanishing mass. This is because the BRST
symmetry prevents the appearance of a gluon mass. In
particular, this guarantees that the UV flow of the mass is
only logarithmic, such that the dimensionless ratio m2=μ2

vanishes and one indeed recovers the correct UV behavior
[44]; see also below.
For later purposes, it is also useful to introduce the

dimensionless quantity ~m2 ¼ m2=μ2, whose beta function
depends only on the renormalized parameters λ and ~m2 and
reads

β ~m2 ¼ ~m2ð−2þ γA þ γcÞ: ð9Þ

Using the renormalization prescriptions (4) and choosing
the renormalization scale μ ¼ p, one obtains the following
expressions of the propagators,8 in terms of the running
parameters m2ðμÞ and λðμÞ:

7That these combinations of renormalization factors are finite
are consequences of nonrenormalization theorems which, them-
selves, follow from the modified ST identities of the massive
model [44,59,69–72].

8Specifically, making explicit the dependence on the RG scale
and running parameters, we have, e.g., for the ghost dressing
function, FðpÞ≡Fðp;μ0;m2

0;λ0Þ¼ zcðμ;μ0ÞFðp;μ;m2ðμÞ;λðμÞÞ,
where the second equality uses the Callan-Symanzik equation,
with zcðμ; μ0Þ ¼ exp

R
μ
μ0
dμ0γcðμ0Þ=μ0. Using μ ¼ p and the

renormalization conditions (4) yields FðpÞ ¼ zcðp; μ0Þ. The
relations (8) then imply the result (10). The gluon propagator
(11) is obtained along similar lines.
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FðpÞ ¼ m2
0

λ0

λðpÞ
m2ðpÞ ; ð10Þ

GðpÞ ¼ λ0
m4

0

m4ðpÞ
λðpÞ

1

p2 þm2ðpÞ ; ð11Þ

where m2
0 ¼ m2ðμ0Þ and λ0 ¼ λðμ0Þ.

It is important to realize that the expressions (10) and
(11) for the propagators are valid at all orders in pertubation
theory. However, we cannot exclude that, for a given set ZA,
Zc, mB, and gB fixing the theory and the normalization of
the fields, in addition to a perturbative solution that obeys
all the renormalization conditions of the IR safe scheme,
there exist genuine nonperturbative solutions such that
some of the renormalization conditions, and in turn (10)
and (11), are not obeyed. We illustrate this situation using a
toy example in Appendix B. The discussion of those
solutions, if they exist, is beyond the scope of the present
work, and we shall restrict to the study of the perturbative
solutions. In particular, any result that follows from (10)
and (11) should be understood for the perturbative solution,
even if it applies to all orders. In the following, we shall
make statements about these perturbative solutions that are
valid at all loop orders and others that will explicitly rely on
a given approximation. We shall use the one-loop flow
functions to illustrate our statements, keeping in mind the
range of validity of this approximation in each case. The
one-loop expressions of the gamma functions in the present
infrared-safe renormalization scheme are [44]

γc ¼ −
λ

2t2
½2t2 þ 2t − t3 ln tþ ðtþ 1Þ2ðt − 2Þ lnðtþ 1Þ�;

ð12Þ

where we denote t ¼ 1= ~m2, and

γA ¼ λ

6t3

�
−17t3 þ 74t2 − 12tþ t5 ln t

− ðt − 2Þ2ð2t − 3Þðtþ 1Þ2 lnðtþ 1Þ

− t
3
2

ffiffiffiffiffiffiffiffiffiffi
tþ 4

p ðt3 − 9t2 þ 20t − 36Þ ln
� ffiffiffiffiffiffiffiffiffiffi

tþ 4
p

−
ffiffi
t

p
ffiffiffiffiffiffiffiffiffiffi
tþ 4

p þ ffiffi
t

p
��

:

ð13Þ

The UV behavior (t ≫ 1) is given by γc≈−3λ=2 and γA≈
−13λ=3, from which we obtain the standard universal beta
function of the coupling βλ≈−22λ2=3 as well as βm2=m2≈
ð35=44Þβλ=λ. We thus recover the correct asymptotic behav-
ior for the coupling λ ∼ 3=½22 lnðμ=ΛLÞ�, withΛL the scale of
theperturbativeLandaupole in themasslessFP theory, and the
mass m2 ∝ λ35=44 runs logarithmically. It follows that, in the
UV, all trajectories in the plane ð ~m2; λÞ take the form

~m2 ∝ λ35=44e−3=ð11λÞ; ð14Þ

and condense on the vertical axis, corresponding to the
massless (FP) theory. There is an exponential focusing effect.
The one-loop RG chart of the theory has been described in

Ref. [45] and is shown in Fig. 1 in the plane ð ~m2; λÞ.
Focusing on regions which are connected to the Gaussian
UV fixed point, there are two distinct phases on each side of
a separatrix. In one phase, the flow towards the infrared ends
at a Landau pole, where the coupling diverges at a nonzero μ.
The other phase contains infrared-safe trajectories, where the
coupling and the mass stay finite all the way to the deep
infrared and actually vanish logarithmically for μ → 0; see
below. Finally, the separatrix between these two phases
relates the Gaussian UV fixed point to a nontrivial infrared
fixed point. We show the RG running of both ~m2 and λ along
the separatrix as well as typical flows on each side of it in
Fig. 2. It is worth emphasizing that RG trajectories cannot
cross the line ~m2 ¼ 0 because the beta function β ~m2 vanishes
identically there. The same is true for the line λ ¼ 0.
Moreover, the fact that ZA, Zc, and g2B should all be positive
or zero together with the first condition (5) imply that λ0 ≥ 0.
Finally, the one-loop expressions of the RG functions only
make sense for ~m2 ≥ 0. In the following, we thus restrict our
attention to the quadrant ~m2 ≥ 0 and λ ≥ 0.

III. THE INFRARED-SAFE PHASE

We now discuss the form of the ghost and gluon pro-
pagators in the infrared-safe phase and on the separatrix and
relate them to decoupling and scaling solutions. The ghost
dressing function and the gluon propagator are completely
determined by the values of the parameters m2

0 and λ0 at a

FIG. 1. One-loop phase diagram and RG flow trajectories in the
plane ð ~m2; λÞ in d ¼ 4. The arrows indicate the flow towards the
infrared. Trajectories which connect to the ultraviolet Gaussian
fixed point (0,0) are separated in two classes: those which end at a
Landau pole (green) and those which are infrared safe (blue),
corresponding to decoupling solutions for the propagators. These
are separated by a critical trajectory (red) which relates the
Gaussian fixed point to a nontrivial infrared fixed point (red dot)
at finite, nonzero values of ~m2 and λ and corresponds to a scaling
solution for the correlators. We also show (orange, lower curve)
the trajectory which describes lattice results for the SU(3) theory
(see Appendix A).
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given scale μ0. The expressions (10) and (11) clearly show
that different sets of parameters ðm2

0; λ0Þbelonging to a given
RG trajectory yield the same functionsFðpÞ andGðpÞ up to
the overall normalizations m2

0=λ0 and λ0=m4
0, respectively.

This merely states that the ghost and gluon propagators are
RG invariant up to some normalization.
Accordingly, in order to study the physically relevant

parameter space of the theory, it is sufficient to choose units
such that μ0 ¼ 1 and consider one representative of each
(relevant) RG trajectory (i.e., those connected to the
Gaussian UV fixed point). In the following, we analyze
the effect of varying the gluon mass parameterm2

0 at a fixed
value of the coupling λ0. As we see from Fig. 2, at one-loop
order, this does not intersect all possible (physically
relevant) RG trajectories since the running coupling λðμÞ
actually reaches a maximum value along infrared-safe
trajectories.9 It is always possible to reach the region of

parameter space corresponding to these trajectories by
lowering the initial coupling, and we do not expect that
the result presented below will be qualitatively affected. We
thus choose a representative value for which the cases of
practical interest (in particular, the parameter describing
lattice results) are represented. In practice, we take
λ0 ¼ 3=π2, corresponding to g0 ¼ 4 in the SU(3) theory
in d ¼ 4.

A. Decoupling solutions

At one-loop order, the flow described by Eqs. (8) and (9),
with the gamma functions (12) and (13), has an attractive
infrared fixed point located at λ ¼ 1= ~m2 ¼ 0. Generic
infrared-safe trajectories are rapidly pushed towards
~m2 ≫ 1 and eventually flow to this weakly coupled fixed
point. In this massive regime, we have γA ≈ λ=3 and γc ≈ 0,
from which it follows that

m2ðμÞ ∝ λðμÞ ∼ 3= lnðμ̄=μÞ; ð15Þ

where μ̄ is an arbitrary scale. Using the expressions (10)
and (11) of the ghost dressing function and the gluon
propagator, we conclude that, for generic initial conditions
in the infrared-safe phase,

Fðp → 0Þ ∼ const and Gðp → 0Þ ∼ const: ð16Þ

Here, the two constants depend on the initial condition m2
0

and are related by the exact identity10

Gð0ÞFð0Þ ¼ 1=m2
0: ð17Þ

Equation (16) describes a decoupling solution. Notice that
the RG flow drives the system towards a weak coupling
regime, which justifies a posteriori the use of the one-loop
approximation.
Furthermore, the behavior (15) allows us to describe the

shape of the infrared-safe trajectories in the plane ð ~m2; λÞ in
the deep infrared. We have

~m2 ∝ λ=μ2 ∝ λe6=λ: ð18Þ

In particular, there exists a value of the proportionality
coefficient corresponding to the curve limiting the infrared-
safe phase in the region of large ~m2. This is another
separatrix of the flow, which is visible in dashed line on
Fig. 1. Trajectories beyond that line are not connected to the
Gaussian UV fixed point.

FIG. 2. The one-loop flow (d ¼ 4) of the reduced mass squared
~m2ðμÞ (top) and of the coupling λðμÞ (bottom) for fixed λ0 ¼
3=π2 and various m2

0 across the transition line (all in units of μ0).
The red curve is the scaling solution (on the separatrix),
corresponding to m2

0 ¼ m2
scal ≈ 0.272, which runs into a fixed

point. Green curves correspond to m2
0 < m2

scal and have a Landau
pole where the coupling diverges and the flow ends. Blue curves,
with m2

0 > m2
scal, yield infrared-safe trajectories which corre-

spond to decoupling solutions.

9To intersect all infrared-safe trajectories, one could, instead,
fix the mass and vary the coupling. Note that, for fixed λ0, there
are two values of ~m2

0 corresponding to a same trajectory. In the
following, we consider intervals of ~m2

0 so as to intersect each
trajectory only once.

10This follows, with the present renormalization prescriptions,
from a similar relation among bare quantities, which derives from
the modified Slavnov-Taylor identities of the massive model and
the assumption that the gluon two-point vertex function is regular
at p ¼ 0; see, e.g., [44]. The latter is satisfied for the infrared-safe
trajectories described here.
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Finally, it is interesting to compute the following running
coupling:

λTðpÞ ¼ λ0p2GðpÞF2ðpÞ ¼ λðpÞ
1þ ~m2ðpÞ ; ð19Þ

which is used in both lattice [9,73,74] and continuum
[20,35,37] studies. It corresponds to the standard Taylor
coupling in the massless FP theory, in which case, it is
simply identical to the coupling λ. Also, as argued in
Ref. [44], λTðpÞ is the relevant loop-expansion parameter,
both in the massless ( ~m2 ≪ 1) and in the massive ( ~m2 ≫ 1)
regimes. For the infrared-safe trajectories (15), we have the
power law behavior

λTðp → 0Þ ∼ λ0Fð0Þ
m2

0

p2; ð20Þ

in agreement with lattice results.

B. The scaling solution

The flow may also have a fixed point at nonzero, finite
values ~m2� and ~λ� of the parameters. Demanding β ~m2= ~m2 ¼
βλ=λ ¼ 0 in Eqs. (8) and (9) yields

γ�c ¼ −2; γ�A ¼ 4: ð21Þ

At one-loop order Eqs. (12) and (13) give a nontrivial
solution with11

~λ� ≈ 16.11; ~m2� ≈ 14.18; ð22Þ

as observed in Fig. 1. This corresponds to g� ¼ 35.66 for
N ¼ 2 and to g� ≈ 29.12 forN ¼ 3. Clearly, this fixed point
solution corresponds to a strong coupling regime for which
the one-loop analysis is questionable. We note, however,
that the situation is less dramatic than the large value of ~λ�
indicates when measured in terms of the relevant expansion
parameter in the infrared λT → ~λ�T , that is

~λ�T ¼
~λ�

1þ ~m2�
≈ 1.06: ð23Þ

Furthermore, we stress that one can infer nontrivial
information on the solutions reachable by our perturbative
approach solely based on the assumption of the existence of
an infrared fixed point at finite, nonzero ~m2� and λ�. For
instance, the values (21) of the anomalous dimensions only
assume that such a fixed point exists and do not rely on the
one-loop approximation. Moreover, the infrared behaviors
of the ghost and gluon propagators on the critical trajectory
ending at the fixed point is of the scaling type, with
exponents entirely determined by the anomalous dimen-
sions (21). Adjusting ~m2

0 ¼ ~m2
sepðλ0Þ, with ~m2

sepðλÞ the
equation of the separatrix, we get, from Eqs. (10) and (11),

Fðp → 0Þ ∼m2
0

λ0

~λ�
~m2�

p−2; ð24Þ

Gðp → 0Þ ∼ λ0
m4

0

~m4�
~λ�

p2

1þ ~m2�
: ð25Þ

The scaling exponents, defined as

p2GðpÞ ∼ p2αG and FðpÞ ∼ p2αF ; ð26Þ

FIG. 3. The ghost dressing function (top) and gluon propagator
(bottom) at one-loop order as functions of momentum (units of
μ0) for λ0 ¼ 3=π2 and various m2

0 from the critical value
m2

0 ¼ m2
scal ≈ 0.272, corresponding to the scaling solution

(red), to deeper in the infrared-safe phase, up to m2
0 ¼ 0.452,

describing decoupling solutions (blue curves).

11Approximate values can be obtained from the approximate
gamma functions in the massive (t ≪ 1) regime. This is because
t� ¼ 1= ~m2� ≈ 0.07. Using the low-t expansions

γA ¼ λ

3
−
217λt
180

þOðt2Þ and γc ¼
λt
2

�
ln t −

5

6

�
þOðt2Þ;

we find

ln ~m2� ≈
~m2�
3

−
367

180
and ~λ� ≈

720 ~m2�
60 ~m2� − 217

:

This gives the approximate values λ� ≈ 16.16 and ~m2� ≈ 14.04.
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are related to the anomalous dimensions as αG ¼ γ�A=2 and
αF ¼ γ�c=2. Our scaling solution is of the Gribov type [1],
with

αG ¼ −2αF ¼ 2: ð27Þ
Finally, we also note that, because the inverse gluon

propagator is nonanalytic at p → 0, the relation (17) does
not hold. Instead, we have

m2
0GðpÞFðpÞjp→0 ¼

~m2�
1þ ~m2�

≈ 1; ð28Þ

where we have used the one-loop result only in the final
estimation. We plot the ghost dressing function and the
gluon propagator for d ¼ 4 in Fig. 3. The different curves
are obtained by integrating the one-loop RG flow for
various initial parameters, from the separatrix (scaling
solution) to deeper in the infrared-safe phase (decoupling
solutions). The structure of the space of solutions, with
continuous families of singular versus decoupling solutions
on each side of a scaling solution is reminiscent of what is
observed in studies based on nonperturbative continuum
approaches; see, e.g., Ref. [36].

IV. GENERAL DIMENSION 2 ≤ d ≤ 4

It is interesting to generalize the previous discussions to
arbitrary dimensions. We introduce the dimensionless
coupling

~λ ¼ μd−4
g2N

ð4πÞd=2Γðd=2Þ ; ð29Þ

and we work with the variable t ¼ 1= ~m2, which proves
more convenient to describe the infrared massive regime
t ≪ 1. The corresponding beta functions read

βt ¼ tð2 − γA − γcÞ ð30Þ

and

β~λ ¼ ~λðd − 4þ γA þ 2γcÞ; ð31Þ

where the functions γA;c ≡ γA;cðt; ~λÞ depend on the dimen-
sion. Their one-loop expressions have been derived in the
integer dimensions d ¼ 2, 3, 4 in Ref. [44], and their
generalizations to arbitrary d can be deduced from the
material presented in that reference; see also Ref. [62].
They involve combinations of hypergeometric functions
which we shall exploit numerically below but which are not
particularly enlightening. However, they assume simpler
forms in the massive regime t ≪ 1, which will be of interest
for our purposes in this section. Generalizing the analysis of
[44], we get

γA ¼ XðdÞ~λþOð~λt6−d2 Þ ð32Þ

and

γc ¼ −
d − 1

4 − d
XðdÞ~λtþOð~λt6−d2 Þ; ð33Þ

with

XðdÞ ¼ 2Γ3ðd=2ÞΓð3 − d=2Þ
ΓðdÞ : ð34Þ

The neglected terms in the expansion (32) and (33) are
subleading for d < 4 and the lower the dimension, the
better the approximation. We also introduce the dimension-
less rescaled coupling

~λT ¼
~λ

1þ ~m2
¼

~λt
1þ t

; ð35Þ

which, again, is the relevant expansion parameter over the
whole momentum range [44]. Finally, we note that the
exponents defined in Eq. (26) can be obtained as

2αF ¼ d lnFðpÞ
d lnp

����
p→0

¼ γcjp→0 ð36Þ

2αG ¼ d lnp2GðpÞ
d lnp

����
p→0

¼ 2 − γc þ γAt
1þ t

����
p→0

: ð37Þ

We shall first discuss the two infrared fixed points
corresponding to the decoupling and scaling solutions.
We then analyze, in detail, the case d → 2, where both fixed
points are at weak coupling and which can, thus, be
described perturbatively.

A. The decoupling fixed point

The flow (30)–(34) has a fixed point at

~λdec� ¼ 4 − d
XðdÞ and tdec� ¼ 0: ð38Þ

Note that ~λdec� > 0 for d < 4. A simple stability analysis
shows that the eigenvalues of the linearized flow are 4 − d
and d − 2, so that the decoupling fixed point (38) is infrared
stable12 for 2 < d < 4. It corresponds to γ�c ¼ 0 and
γ�A ¼ 4 − d and, in turn, from Eqs. (36) and (37), to a
decoupling solution

12One of the eigendirections is the inverse square mass
t ∼ μd−2. We thus verify that the infrared flow is, indeed, driven
towards the massive regime t ≪ 1 for d > 2. The case d ¼ 2 is
discussed below. [Note that, in the present scheme, the dimen-
sionful mass squared, which vanishes as m2 ∝ μ4−d in the
infrared, differs from the screening mass squared G−1ðp ¼ 0Þ,
which tends to a finite, nonzero value.]
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αF ¼ 0; αG ¼ 1: ð39Þ
Finally, we note that, in terms of the rescaled coupling (35),
the decoupling fixed point is at ~λdecT� ¼ 0. In the infrared
regime, we have

~λTðpÞ ∝ pd−2 ð40Þ
and the corresponding dimensionful coupling λT ¼
p4−d ~λT ∝ p2 in all dimensions. In particular, this justifies
the present one-loop analysis for d > 2.

B. The scaling fixed point

As in the d ¼ 4 case, other possible fixed points may
exist at finite nonzero ~m2 (or t) and ~λ. Imposing βt=t ¼
β~λ=~λ ¼ 0 in Eqs. (30) and (31) implies the anomalous
dimensions γ�c ¼ 2 − d and γ�A ¼ d. In turn, Eqs. (36) and
(37) yield the scaling exponents

αF ¼ 2 − d
2

and αG ¼ d
2
: ð41Þ

These obviously satisfy the scaling relation αG þ 2αF ¼
ðd − 4Þ=2, which follows from the fixed point equation
β~λ ¼ 0. It is important to remark that the requirement of a
nontrivial solution to βt ¼ 0 implies the further constraint
αG þ αF ¼ 1 in the present renormalization scheme. As
before, we emphasize that the scaling behavior (41) is an
all-order statement which only relies on the assumption of a
nontrivial infrared fixed point at 0 < m2�, ~λ� < ∞. Using
the one-loop expressions of the functions γA and γc in
d ¼ 3 derived in Ref. [44], one can check explicitly that the
structure of the RG flow in d ¼ 3 is similar to the one
described above in d ¼ 4, with distinct Landau pole and
infrared-safe phases and a separatrix joining the ultraviolet
Gaussian fixed point to the scaling fixed point. The latter is
located at [for d ¼ 3, we have λ ¼ g2N=ð4π2Þ]

λd¼3� ≈ 5.48 and ð ~m2�Þd¼3 ≈ 4.78; ð42Þ

for which ~λd¼3
T� ≈ 0.95. As for d ¼ 4, the scaling fixed

point is at relatively strong coupling, and the one-loop
approximation is questionable at the quantitative level.
We can study the general case 2 ≤ d ≤ 4 by evaluating

the appropriate hypergeometric functions mentioned ear-
lier. For d ≠ 2, we find the same structure as before, with a
scaling fixed point at 0 < ~m2�, ~λ� < ∞. For d ¼ 2, the latter
merges with the decoupling fixed point at ~m2� ¼ ∞, i.e., at
~λT� ¼ 0 (see also the discussion in the next subsection).
This is represented on Fig. 4 and 5. As we decrease d, the
value of ~m2� first decreases and then increases again towards
arbitrarily large values, with a turning point at a dimension
d ≈ 2.63. In this regime, the expressions (32) and (33)
provide good approximations from which we can get a
simple analytic control. These give

~λscal� ≈
d

XðdÞ and tscal� ≈
ð4 − dÞðd − 2Þ

dðd − 1Þ : ð43Þ

As expected, this is not a good description of the d ¼ 4
fixed point (22) despite the fact that the latter sits at a
relatively large ~m2�. This is because the expansion (32)–(33)
is not valid in that case due to large logarithmic corrections.
For d ¼ 3, although the square mass at the fixed point (42)
is not very large, we get the qualitatively good estimate
~λscal� ≈ 3=Xð3Þ ¼ 48=π2 ≈ 4.86 and tscal� ≈ 1=6. Obviously,
this gets better as one decreases the dimension, as dem-
onstrated in Fig. 5. Finally, the massive approximation
allows us to analyze the stability of the fixed point.
A simple calculation shows that the eigenvalues of the
linearized flow around the fixed point (43) are given by the
anomalous dimensions γ�A ¼ d and γ�c ¼ 2 − d, which have

FIG. 4. The RG flow of Fig. 1 (d ¼ 4) in the rescaled variables
~m2=ð1þ ~m2Þ and ~λT ¼ ~λ=ð1þ ~m2Þ. We only show the separatrix
and some infrared-safe trajectories. The scaling and decoupling
fixed point are represented by the red and blue dots, respectively.

d = 4
d = 3

d = 2.63

d = 2

0.85 0.90 0.95 1.00
0.0

0.2

0.4

0.6

0.8

1.0

1.2

m2

m2 1

T

FIG. 5. Evolution of the scaling fixed point in the plane
( ~m2=ð1þ ~m2Þ, ~λT ¼ ~λ=ð1þ ~m2Þ) as the dimension d is varied
from 4 to 2. The dashed curve corresponds to the approximated
formula (43). For d → 2, the scaling fixed point merges with the
decoupling one at ~λT ¼ 1= ~m2 ¼ 0.
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opposite signs for d > 2: The scaling fixed point has one
unstable direction.
The present analysis shows that, in terms of the coupling

~λT , the scaling fixed point becomes perturbative for d → 2,
with ~λ�T ≈ ~λ�t� → d − 2. In the next subsection, we discuss
this limit in detail, and we make a link with the analysis
of Ref. [60].

C. The case d = 2 + ϵ

In that case, both the decoupling and the scaling fixed
points are well described by the massive regime of the RG
flow. From the previous discussions, we get, up to Oðϵ2Þ
corrections,

~λdec� ¼ 1þ ϵ; tdec� ¼ 0 ð44Þ

and

~λscal� ¼ 1þ 2ϵ; tscal� ¼ ϵ: ð45Þ

The eigenvalues of the linearized flow are 2 − ϵ and ϵ for
the decoupling fixed point and 2þ ϵ and −ϵ for the scaling
fixed point.
An equivalent, more appropriate description of the flow

near these fixed points can be made in terms of the variable
~λT . Note that, in the massive regime, the latter reduces to
~λT ≈ ~λ= ~m2, which has also been introduced in [44,60]. We
have, up to OðϵÞ relative corrections,

β~λT ¼ ~λTðϵ − ~λTÞ ð46Þ

βt ¼ 2ðt − ~λTÞ: ð47Þ

The first equation coincides with the one derived by Weber
in Ref. [60], though in a different scheme, where, in
particular, the mass m2 does not run in the infrared. But,
as we see here, the flow of ~λT is independent of the mass in
the limit ϵ → 0. The two fixed points are

~λdecT� ¼ tdec� ¼ 0 ðdecoupling; IR stableÞ ð48Þ

~λscalT� ¼ tscal� ¼ ϵ ðscaling; IR unstableÞ: ð49Þ

They are related by a trajectory ~λT ¼ t, and the infrared-safe
trajectories are such that ~λT ∼ μϵ and ~λT − t ∼ μ2.
For d ¼ 2, the two fixed point merge at ~λT ¼ 0, and the

decoupling and scaling exponents (39) and (41) become
identical. The resulting fixed point is unstable in the
direction ~λT , and there is no infrared-safe phase left: All
RG trajectories have a Landau pole, invalidating the
perturbative analysis.
To summarize, the present RG analysis at one-loop order

gives a picture in qualitative agreement with the lattice

results in d ¼ 4 and d ¼ 3, where the infrared stable fixed
point corresponds to a decoupling solution. In d ¼ 2, there
is no stable fixed point at one-loop order, which is also in
line with the fact that lattice simulations do not find a
decoupling or a Gribov-like scaling solution, but yield a
different scaling behavior with non-Gribov exponents, as
discussed in Sec. VI below. This suggests that the corre-
sponding fixed point may either require another renorm-
alization scheme or more general deformations of the FP
Lagrangian, or it may be truly nonperturbative.

V. DISCUSSION

With the present perturbative approach, we are in a
position to discuss in a simple way the properties of the
decoupling and scaling solutions in relation with various
issues raised in the literature. In particular, we consider here
the relation between the ghost dressing function at zero
momentum, the gluon screening mass squared, and the
control mass parameter m2

0. Another quantity of interest
concerns the scale of spectral positivity violation and its
dependence on m2

0. Finally, we analyze the longitudinal
component of the gluon two-point vertex function, and we
discuss the scaling solution in relation with the issue of
BRST symmetry restoration mentioned in the Introduction.

A. Ghost dressing and gluon screening mass

A first question of interest is the relation between the
ghost wave function renormalization, given by the inverse
dressing function at vanishing momentum F−1ð0Þ, and the
gluon mass parameter m2

0. The former appears as a
boundary condition in DSE calculations. It plays the role
of the control parameter for the family of decoupling
solutions and takes the particular value F−1ð0Þ ¼ 0 for
the scaling solution. Instead, m2

0 is related, although in a
nontrivial way,13 to the control parameter of FRG studies.
In the present scheme, we can easily compute F−1ð0Þ as a
function of m2

0 for a given λ0. This is shown in the upper
panel of Fig. 6. The curve starts at the scaling valuem2

scal ¼
μ20 ~m

2
sepðλ0Þ, for which F−1ð0Þ ¼ 0, and rises monotonously

with increasing values of m2
0, thereby, describing the whole

family of decoupling solution. Using the infrared solution
(15) [or Eq. (40) for arbitrary d], one easily concludes that
F−1ð0Þ approaches 1 for large mass m2

0=μ
2
0 ≫ 1.

Next, we consider the evolution of the gluon screening
mass squared G−1ð0Þ as a function of m2

0. As already

13The present gluon mass parameter m2
0 and the one employed

in FRG studies (see, e.g., Ref. [36]) are defined in very different
setups and renormalization schemes. Note, for instance, that the
running square mass parameter employed in that reference
receives quadratic contributions due to the explicitly BRST
breaking regulator. As mentioned previously, in the present
scheme, the running of the mass parameter is only logarithmic
(in d ¼ 4), being protected by the BRST symmetry of the
massless limit.
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emphasized, in the present renormalization scheme, the
identity (17) holds whenever the inverse gluon propagator
is analytic at p → 0, which is the case for decoupling
solutions. The screening mass squared is thus given by
G−1ð0Þ ¼ m2

0Fð0Þ, and its dependence onm2
0, shown in the

lower panel of Fig. 6 is completely governed by that of the
ghost wave function renormalization F−1ð0Þ discussed
above. First, we recover the fact that in the limit
m2

0 → m2
scal, where F

−1ð0Þ → 0, the gluon screening mass
diverges, corresponding to Gð0Þ → 0 as discussed previ-
ously. Next, we see that G−1ð0Þ presents a counterintuitive
nonmonotonous behavior, first pointed out in Ref. [36],
where it decreases for m2

0 close to the scaling solution and
then increases for larger m2

0.
The decrease at lowm2

0 −m2
scal is a direct consequence of

the behavior of F−1ð0Þ in this region. What happens in this
regime can be understood as follows. In the infrared limit,
we have, from Eq. (15) for d ¼ 4 and from Eq. (40) in
general dimension, that m2ðpÞ=λðpÞ≈pd−2=~λTðpÞ∼ const.
This constant being proportional to F−1ð0Þ, it must vanish
on the separatrix. We thus expect m2ðpÞ=λðpÞjp→0 ¼
cðm2

0 −m2
scalÞ, where both c and m2

scal depend on λ0. We
have checked that this is indeed the case, and we get c ≈
2.766 for λ0 ¼ 3=π2 and d ¼ 4. It follows that

F−1ð0Þ ∼ cλ0
m2

0

ðm2
0 −m2

scalÞ ð50Þ

and, thus,

G−1ð0Þ ∼ m4
0

cλ0ðm2
0 −m2

scalÞ
: ð51Þ

These expressions indeed give an accurate description of
the regime m2

0 ∼m2
scal, as shown on Fig. 6. In fact, we see

that it remains a good approximation for m2
0 < 0.7μ20.

Incidentally, it follows from the above analysis that the
minimum screening mass is obtained for14

m2
min ≈ 2m2

scal; ð52Þ

independent of the constant c.
Further away from the separatrix, we observe a linear rise

G−1ð0Þ ∼ aþ bm2
0, with b ≈ 1. Again, this is the expected

behavior at asymptotically large masses, where we find,
from Eqs. (15) or (40), G−1ð0Þ ≈m2

0.
That the screening (or infrared) mass decreases for

increasing mass parameter m2
0 is not the standard expect-

ation in a massive theory, as pointed out in Ref. [36]
(although we stress again that the status of the control mass
parameter used in that work is different from the present
one). The authors of this reference have proposed to
interpret this as a signature of a “confining” phase as
opposed to a “Higgs–like” phase, where the screening mass
increases as a function of the control mass parameter. In
particular, this would restrict the range of parameter space
where the massive model provides a sensible realization
(or gauge-fixed version) of YM theory. If the relevant
region of parameter space is small enough, this would
essentially fix the mass parameter in a unique way, leaving
only the coupling as free parameter, just as in the original
YM theory in the Landau gauge.
Our findings do not really support this scenario in the

present setup. Although we do find two distinct regimes for
the gluon screening mass as a function of the mass
parameter m2

0, they appear as a simple consequence of

FIG. 6. Top: the ghost wave function renormalization F−1ð0Þ as
a function of the mass parameterm2

0 and fixed λ0 ¼ 3=π2 (units of
μ0 and d ¼ 4). Bottom: the gluon screening mass squaredG−1ð0Þ
as a function of m2

0 for the same parameters. The value m2
0 ¼

m2
scal ≈ 0.272μ20 ¼ 0.073μ20 corresponds to the scaling solution.

The dashed lines show the approximate behaviors (50) and (51).

14It is interesting to compare the values of m2
min −m2

scal
obtained here and in Ref. [36] (keeping in mind that the
respective solutions may, in fact, be of a different nature). Indeed,
we expect the quadratic contributions in the setup of that
reference to cancel out in this difference. For the set m0=μ0 ¼
0.39 and λ0 ¼ 0.26, with μ0 ¼ 1 GeV, which describes well
the SU(3) lattice data in d ¼ 4 (see Appendix A), we get
m2

min −m2
scal ≈m2

scal ≈ 0.05 GeV2. This one-loop result falls in
the same ballpark as the value m2

min −m2
scal ≈ 0.01 GeV2 quoted

in Ref. [36]. We expect that the difference between these two
values mainly originates from the different definitions of the
gluon mass parameter and from logarithmic corrections due to the
different scales at which the quantities m2

scal and m
2
min are defined

(1 GeV here versus 15 GeV there).
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the fact that the former diverges when the latter approaches
the scaling value. Moreover, there is no sign of a sharp
transition between the two regimes. Finally, we find that the
range (52) for which the screening mass is a decreasing
function of m2

0 is not particularly small.
We end this subsection by mentioning that the present

analysis sheds some light on the question raised in the
literature [27,35] as to whether the transition from decou-
pling to scaling solutions is controlled by the inverse ghost
dressing function at vanishing momentum F−1ð0Þ or by the
value of the coupling λ0. It is clear from the RG flow
diagram of Fig. 1 that one can go from a given decoupling
solution (any trajectory in the infrared-safe phase) to the
scaling solution (the separatrix) by tuning the value of the
coupling λ0 as long as ~m2

0 < ~m2�. In that case, there is indeed
a critical coupling for which the scaling solution is reached.
We illustrate the one-to-one relation between F−1ð0Þ and λ0
at one-loop order in Fig. 7.

B. Spectral positivity violation

Another property of interest is the spectral positivity
violation of the gluon propagator. A propagator which
satisfies the Källén-Lehmann representation with a positive
spectral function can be shown to be a monotonously
decreasing function of (Euclidean) momentum and to have
a positive (Euclidean) time Fourier transform [75]. This
allowed both lattice simulations and analytical methods to
show that the Landau gauge gluon propagator violates
reflexion positivity, in line with the fact that (massive)
gluons cannot be asymptotic states. In particular, the gluon
propagator is clearly not monotonous in two and three
dimensions [14,75–77]. In four dimensions, lattice data
seem to indicate a nonmonotonous behavior too, though in
a less conclusive way [9].
As first pointed out in Ref. [43], this feature is correctly

captured in the present model by a genuine perturbative
calculation at one-loop order: although the tree-level

massive gluon propagator is a monotonously decreasing
function of momentum, the relevant nonmonotonicity is
generated by quantum fluctuations. Here, in order to
characterize the positivity violation, we shall consider
the momentum at which the gluon propagator has a
maximum, to which we shall refer as the scale of positivity
violation, following the authors of Ref. [36].
This remains valid with RG improvement, and it is

actually a feature of all infrared-safe solutions in the present
renormalization scheme at one-loop order. For instance, we
have, from Eq. (11),

d lnGðpÞ
d lnp

¼ −
ð2 − γAÞtþ γc

tþ 1
; ð53Þ

where the gamma functions are evaluated at λ ¼ λðpÞ and
t ¼ p2=m2ðpÞ. For the decoupling solutions, the relevant
infrared limit is governed by the massive (t → 0) limit of
the gamma functions, see Eq. (15). We get, in d ¼ 4,15

dGðpÞ
dp2

����
p→0

∼
λ0
4m4

0

ln
�
m2ðpÞ
p2

�
> 0: ð54Þ

As emphasized in Ref. [43], this increase of the gluon
propagator at low momentum is driven by the loop of
massless ghosts. We stress that the behavior (54) is
governed by the infrared limit of the gamma functions,
where the running coupling tends to zero, thus justifying
the use of the one-loop expressions. Hence, we do not
expect higher-order corrections to change this conclusion.
As for the case of the screening mass discussed above,

the authors of Ref. [36] have argued that positivity violation
might be present only for a restricted range of parameters,
corresponding to the “confined” phase, while it would be
absent in the “Higgs” phase. This is not supported by the
present analysis. Based on the above argument, we expect
positivity violation to be a common feature of all decou-
pling solutions, and we do not see any sign of qualitatively
distinct phases. We do observe though two quantitatively
distinct regimes separated by a smooth crossover, where the
scale of positivity violation—measured by the position
pmax of the maximum of GðpÞ—changes from being of
order 1 in the present units16 for m2

0 close to the separatrix,

FIG. 7. The inverse ghost dressing function at vanishing
momentum as a function of the coupling λ0 for m0=μ0 ¼ 0.39
in d ¼ 4 [this describes well the SU(3) lattice data for λ0 ¼ 0.26;
see Appendix A]. It vanishes at a critical value of the coupling,
λc ≈ 0.46, corresponding to the separatrix (scaling solution).

15For arbitrary d, we have, instead,

dGðpÞ
dp2

����
p→0

∼
Gð0Þ
m2ðpÞ ∝ p4−d > 0:

This reproduces the known linear rising behavior of GðpÞ at low
momentum in d ¼ 3 [12,44].

16A typical scale of the problem to compare with is the position
of the perturbative Landau pole of the massless FP theory. At one-
loop in d ¼ 4, the latter is ΛL=μ0 ¼ expf−3=ð22λ0Þg ≈ 0.64,
with the present parameters.
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to pmax ≪ 1 for larger values of the mass parameter. This is
shown in Fig. 8.
We observe a linear decrease of pmax as a function of

m2
0 −m2

scal from its maximum value at the scaling solution
to negligible values, with a transition at about m2

0 ≈ 5m2
scal

for the set of parameters used in this figure. This reproduces
qualitatively the results of the FRG study of Ref. [36].
There, the authors mention a power law decrease with an
exponent 1.95. However, this concerns the behavior close
to the crossover between the two regimes mentioned above.
We have checked that this exponent is not inconsistent with
our results in the appropriate region m2

0 ∈ ½0.3; 0.5�; see the
insert in Fig. 8.
To conclude, the model presents an actual phase tran-

sition between the Landau-pole phase17 to the infrared-safe
phase, with a boundary characterized by the scaling
trajectory. However, we find no sign of qualitatively
distinct “confined” or “Higgs” solutions in the infrared-
safe phase, as advocated in [36], but, rather, a smooth
crossover between quantitatively distinct regimes. In this
respect, it is interesting to see where the lattice data sit in
this picture. As recalled in the Appendix A, the SU(3)
lattice data in d ¼ 4 are well described in the present
approach at one-loop order for the parameters m2

0=μ
2
0 ¼

0.392 ¼ 0.1521 and λ0 ¼ 0.26 at the scale μ0 ¼ 1 GeV.
For this value of the coupling, the value of the mass
parameter on the separatrix is m2

scal ¼ 0.053 GeV2, so that
we have m2

0 > m2
min ¼ 0.106 GeV2, and the lattice results

lie slightly outside the range delimited by (52). Still, they
are well within the regime where the scale of spectral
positivity violation is appreciable: We find pmax ¼
0.17 GeV. Although there is some latitude in describing
the lattice data with slightly different parameter sets, this
illustrates the fact that there is no clearly separated phase of
confining solutions.

C. Longitudinal sector and BRST symmetry

Finally, we discuss the issue of the possible realization of
the BRST symmetry mentioned in the Introduction. The
regularization procedure employed in nonperturbative con-
tinuum approaches explicitly breaks the standard BRST
symmetry of the FP Lagrangian and the possible realization
of a BRST symmetric solution requires that their exists
a particular value of the parameters—in particular, of the
gluon mass (counter)term—which exactly cancels the
BRST breaking contributions. In principle, establishing
whether this is the case or not requires one to analyze the
(modified) ST identities in presence of the regulator, which
involve, in particular, the longitudinal gluon sector
[20,35,36,55]. This is a difficult task in practical non-
perturbative calculations, where one typically focuses on
the transverse sector.
In contrast, the present setup offers an easy access to the

longitudinal sector and to the modified ST identities of the
massive model. We can thus easily test whether there exists
a value of m2

0 for which the standard ST identities are
satisfied and, in particular, whether our scaling solution is
BRST symmetric. We must stress though that this is a
slightly different question from the one above because, in
the present case, the standard BRST symmetry is broken
only by the tree-level mass term, not by the regulator.
The two-point vertex function (inverse propagator) in the

gluon sector admits the following decomposition18:

Γð2Þ
μν ðpÞ ¼ P⊥

μνðpÞΓ⊥ðpÞ þ P∥
μνðpÞΓ∥ðpÞ; ð55Þ

where Γ⊥ðpÞ ¼ G−1ðpÞ. The present model possesses a
modified, non-nilpotent BRST symmetry, which implies
the identity ΓB∥ðpÞ ¼ m2

BFBðpÞ for bare quantities [44,59].
In particular, the standard, nilpotent BRST symmetry of the
(massless) FP Lagrangian implies that the gluon vertex
function is exactly transverse in the Landau gauge. For
renormalized quantities, the above identity becomes
Γ∥ðpÞ ¼ m2FðpÞZm2ZAZc. In the present renormalization
scheme, this translates into

Γ∥ðpÞ ¼ m2
0FðpÞ; ð56Þ

which can be equivalently written as

Γ∥ðpÞ
Γ⊥ðpÞ

¼ m2
0GðpÞFðpÞ ¼

~m2ðpÞ
1þ ~m2ðpÞ : ð57Þ

FIG. 8. pmax as a function ofm2
0 (units of μ0) for λ0 ¼ 3=π2. The

curve starts on the critical line, i.e., at the value m2
scal ≈ 0.272μ20

corresponding to the scaling solution. The insert shows the same
with a logarithmic horizontal scale.

17This phase, characterized by m2
0 < m2

scal, is referred to as the
“Coulomb” phase in Ref. [36].

18We work here directly in the Landau gauge with the
Lagrangian (1), where the inversion of the two-point vertex
function must be done in the sector ðA; hÞ. The h sector being
only linearly coupled to the gluon field, it does not receive any
loop correction. In particular, it follows that Γð2Þ

hh ðpÞ ¼ 0, from
which one easily checks that the gluon propagator is exactly
transverse.
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We see that the modified ST identity of the massive theory
implies that the longitudinal gluon self-energy is com-
pletely controlled by the ghost dressing function. It follows
that, strictly speaking, the only case where the nilpotent
BRST symmetry of the FP Lagrangian, namely, Γ∥ðpÞ ¼ 0,
is exactly recovered is the massless FP theory m2

0 ¼ 0.
Still, there may be situations where the BRST symmetry is

approximately recovered even atm0 ≠ 0. This is, for instance,
the case in the UV limit, where ~m2ðpÞ ≪ 1, and the massive
theory reduces to the massless one. In this regime, the
corresponding ST identity is approximately recovered in
the sense that Γ∥ðpÞ=Γ⊥ðpÞ → 0. However, this is not the
case at any infrared but nonzero momentum. For decoupling
solutions, where ~m2ðp → 0Þ ≫ 1, we recover Γ∥ð0Þ ¼
Γ⊥ð0Þ, which is trivial when ΓμνðpÞ is analytic at p → 0,
and the BRST symmetry is explicitly broken. For the scaling
solution, analyticity is violated, and we find, instead,

Γ∥ðp → 0Þ ∼m4
0

λ0

λ�
~m2�

p2−d; ð58Þ

Γ⊥ðp → 0Þ ∼m4
0

λ0

λ�
~m2�

1þ ~m2�
~m2�

p2−d; ð59Þ

from which we get a nonzero ratio Γ∥ðp → 0Þ=
Γ⊥ðp → 0Þ ¼ ~m2�=ð1þ ~m2�Þ, so the nilpotent BRST sym-
metry is not (even approximately) restored.
It is worth emphasizing that the above argument is valid

at all orders of perturbation theory, relying only on the
modified ST identity of the massive model and on the
present renormalization scheme. Of course it does not
imply that any scaling behavior is incompatible with the
BRST symmetry, but it provides an explicit example where
a scaling solution is not synonymous of BRST symmetry.19

In fact, we can go a bit further and consider generic
approximation schemes which respect the modified ST
identities of the massive model. In that case, the argument is
less stringent, but still constrains the possible (perturbative)
scaling solutions compatible with an approximately
restored nilpotent BRST symmetry (at the level of the
two-point functions). For a generic scaling solution (26)
with αF < 0 (and such that m0 ≠ 0), we have

Γ∥ðp → 0Þ
Γ⊥ðp → 0Þ ∝ p2ðαFþαG−1Þ; ð60Þ

from which we conclude that the (approximate) realization
of the ST identity of the FP theory in the infrared requires
αF þ αG > 1, or m0 ¼ 0.

We stress again that the above analysis is not directly
applicable to the setup of nonperturbative continuum
methods because the latter involve a supplementary source
of BRST breaking, and it might well be that, in that case,
there exists a set of parameters which would correspond to
m2

0 ¼ 0 in the above language. This issue is yet to be
settled.

VI. COMPARISON WITH OTHER APPROACHES

In this section, we compare the results of the above RG
analysis to those of nonperturbative continuum approaches.
In particular, we have seen that, except near d ¼ 2, our
scaling solution is typically not a weak couplings and might
require a nonperturbative treatment. The latter is eased by
the observation that either DSE, FRG, or HF equations are
only slightly modified by the tree-level gluon mass term,20

and we can mostly rely on the extensive literature on the
subject. It is worth emphasizing though that it is only
meaningful to compare with results which are compatible
with the modified ST identities of the massive model, as is
our RG analysis. This is, in particular, the case of early
analytical studies of the possible scaling solutions of the
DSE [19,20], for which the dominant infrared behavior is
independent of the UV sector.
Instead, the regularization procedure used in numerical

studies in either the DSE, FRG, or HF frameworks
explicitly breaks both the BRST symmetry of the FP
Lagrangian and the modified BRST (mBRST) symmetry
of its massive extension. A meaningful comparison thus
requires some care, at least as far as scaling solutions are
concerned. This is because of the possibility, mentioned
earlier, that scaling solutions in such nonperturbative setups
may realize the BRST symmetry of the FP Lagrangian due
to an exact cancellation of the BRST breaking effects from
the regulator and the gluon mass (counter)term whereas, as
discussed at the end of the previous section, our scaling
solution is clearly incompatible with the BRST symmetry.

A. Analytical studies

The possible infrared solutions of the coupled DSE for
the ghost and gluon propagators have been intensively
discussed in the literature [5,6]. Here, we summarize the
results of Refs. [19,20,27] concerning the necessary

19Another such example is given by the original Gribov-
Zwanziger scenario, which does yield a scaling solution in the
infrared, albeit explicitly breaking the BRST symmetry by
restricting the gauge field configurations to the first Gribov
region.

20The DSEs of the massive model are strictly identical to those
of the FP theory, up to a tree-level mass term in the equation for
the gluon propagator. In particular, the ghost propagator DSE,
from which various constraints concerning possible scaling
solutions can be obtained [23,27], is unaffected by the gluon
mass term. Moreover, the latter can be absorbed in a (finite)
redefinition of the subtraction of the quadratic divergence in the
gluon propagator DSE. The same is true in the framework of the
HF. Finally, because the functional flow equations of the FRG
approach only involve resummed vertices, they are identical for
the (massless) FP theory and the massive model. The tree-level
mass only appears in the initial conditions for the flow.
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conditions for possible scaling solutions of the DSE for
the ghost and gluon propagators, where the ghost-gluon
vertex is approximated by its tree-level expression.21

Assuming scaling solutions (26) for p → 0, with αF < 0,
one can safely neglect the gluon loops contributions in the
gluon propagator DSE if αG > 1. Note that this also makes
the complete tree-level propagator contribution, including
the mass term, negligible in the infrared. If, moreover,
αF > −1, the infrared power law contributions to the
relevant loop integrals are convergent while the UV
contributions are negligible. In that case, the precise form
of the UV regulator is irrelevant and a comparison with the
previous RG analysis is meaningful.
Under these assumptions, the coupled ghost and gluon

DSE yield the following necessary conditions for possible
scaling ghost and gluon scaling exponents for 2 ≤ d ≤ 4:

αF ¼ −κ and αG ¼ 2 −
d
2
þ 2κ; ð61Þ

where κ lies in the range ðd − 2Þ=4 ≤ κ ≤ d=4 and solves

Γðd − 2κÞΓð1þ 2κÞ
Γðd=2 − κÞΓð1þ d=2þ κÞ ¼

sinðπκÞ
ðd − 1Þ sin½πðd=2 − 2κÞ� :

ð62Þ

For 2 ≤ d ≤ 4, Eq. (62) always has one or two solutions;
see Fig. 9. One easily checks that

κ� ¼
d − 2

2
ð63Þ

is always a solution for 2 < d < 4, which, however,
spuriously disappears in d ¼ 2 and d ¼ 4, where
Eq. (62) has singular limits.22 The solution (63)

corresponds to the Gribov exponents (41) at the scaling
fixed point obtained in the previous RG analysis. The
solutions of Eq. (62) are plotted as functions of the
dimension d in Fig. 10. The second solution is well
approximated by the linear law [78]

κ ≈
d − 1

5
; ð64Þ

which is exact in d ¼ 2. The two solutions cross each other
for a critical dimension dc ≈ 8=3. In the following, we shall
refer to Eq. (63) as the Gribov branch [1] and to Eq. (64) as
the von Smekal–Hauck–Alkofer (vSHA) branch [17].
Because of the scaling relation 2αG þ 4αF ¼ 4 − d, the

dimensionless coupling ~λTðpÞ ¼ pd−4λTðpÞ [see Eqs. (19)
and (35)] goes to a constant whose value is fixed by the
self-consistency of the scaling Ansatz as [20,27]

~λTðp ¼ 0Þ ¼ g2N

ð4πÞd=2Γðd=2Þ ¼
1

Γðd=2ÞIðd; κÞ ; ð65Þ

with the function

Iðd; κÞ ¼ 1

2

Γ2ðd=2 − κÞΓð1 − d=2þ 2κÞ
Γðd − 2κÞΓ2ð1þ κÞ : ð66Þ

To make contact with our previous RG analysis, we
evaluate the coupling (65) for the Gribov branch (63).
We get

~λ�Tð0Þ ¼
1

Γðd=2ÞIðd; κ�Þ
¼ d − 2; ð67Þ

FIG. 9. Ratio of lhs over rhs of Eq. (62) as a function of
κ ¼ −αF for increasing dimensions (from left to right) between
2 ≤ d ≤ 4. Possible solutions for κ are the intersects with 1. One
trivial solution is always κ ¼ ðd − 2Þ=2. Integer dimensions
d ¼ 2, 3, 4 are shown in dashed lines from left to right. We
also show in red the critical dimension dc ≈ 2.66, for which the
two solutions meet and cross. The solution κ ¼ ðd − 2Þ=2
corresponds to the rightmost intersect for d ≥ dc (blue) and to
the leftmost one for d ≤ dc (green). We see how this solution
apparently disappears in d ¼ 2 and d ¼ 4, although it always
exists for 2 < d < 4, as illustrated by the leftmost and rightmost
nondashed lines.

21The tree-level expression of the ghost-antighost-gluon vertex
is unaffected by the gluon mass term. The latter only enters as a
tree-level contribution to the gluon DSE. This applies more
generally to studies where the dressed vertices are modeled by
Ansätze constrained by the standard ST identities; see, e.g.,
[20,27,35]. This is because the modified ST identities of the
massive model (in the Landau gauge) differ from those of the FP
theory only at the level of the two-point vertex functions (see,
e.g., Ref. [44]) and are identical for the three-and-higher-point
vertices.

22The analytical analysis of Refs. [19,20], which yield
Eq. (62), assume that the ghost and gluon DSEs are dominated
by the infrared (scaling) regime of the ghost loops and that the
UV contributions can be neglected. Possible scaling solutions of
this type are restricted to the range ðd − 2Þ=4 < κ < 1. The
branch (63) does not fall in this category for d ¼ 2 and d ¼ 4 and,
thus, cannot be excluded by this analysis. In these cases, one
should repeat the analysis by taking explicit account of the UV
contributions [27]. Assuming the validity of dimensional regu-
larization, this can be dealt with by taking the limits d → 2þ or
d → 4−, in which case, both branches (63) and (64) are valid
solutions [19]. We mention that, in the context of DSE, the
solution (63) has been first obtained in Ref. [18] in d ¼ 4.
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to be compared to the one-loop estimate from the preceding
section, ~λ�Tð0Þ ≈ 1.06 in d ¼ 4 and ~λ�Tð0Þ ≈ 0.95 in d ¼ 3.
Such a qualitative agreement is remarkable in regard of the
strong values of the coupling. Moreover, this agrees exactly
with our one-loop result (48) in the perturbative limit
d → 2. We plot the coupling (65) for the two solutions of
Eq. (62) in Fig. 10. It is interesting to note that the Gribov
branch (63) corresponds to a strong coupling for dimen-
sions d≳ 3, whereas the vSHA branch (64) always yields a
moderate coupling 0.5 ≤ ~λTð0Þ ≲ 0.75. We mention that
these values do not seem to change much with more
involved Ansätze for the ghost-gluon vertex [20,34,35].
The fact that we do not find it in our previous RG analysis
at one-loop order suggests that it may be a higher loop
effect, that it may require a different renormalization
scheme, or that it corresponds to a genuine nonperturbative
solution.
Finally, we can easily understand why only the Gribov

branch is possible within our perturbative RG approach, at
least for d > dc; see Fig. 10. This is because the other
solution (64) is, in fact, incompatible with Eqs. (10) and
(11). Indeed, the latter imply

m2
0GðpÞFðpÞ ¼

~m2ðpÞ
1þ ~m2ðpÞ : ð68Þ

For ~m2ðpÞ ≥ 0, the combination GðpÞFðpÞ is thus
bounded, 0 ≤ m2

0GðpÞFðpÞ ≤ 1. Now, for any given
scaling solution, we have GðpÞFðpÞ ∼ p2ðαGþαF−1Þ and,
using (61),

αG þ αF − 1 ¼ κ − κ�: ð69Þ

We conclude that our scheme is only compatible with
scaling solutions such that κ ≥ κ�. For d ≥ dc, this selects
the Gribov branch (63). For d < dc instead, both the
Gribov and the vSHA branches, Eqs. (63) and (64), are
possible in principle. Note that the latter corresponds to
~m2 ∝ p2ðκ−κ�Þ → 0, that is, a massless infrared limit. As
discussed below Eq. (60), this also corresponds to the case
where the BRST symmetry is approximately restored in the
infrared.

B. Numerical studies

In the usual DSE treatment reviewed above, there is
a priori no reason to exclude one or the other set of scaling
exponents. One has to resort to numerical calculations to
check whether these are actual solutions of the dynamical
equations. As far as scaling solution are concerned, existing
studies in d ¼ 4, see, e.g., [23,27,35], report the vSHA
branch (64), which is corroborated by numerical calcula-
tions in the FRG [35,36] and HF [37] frameworks. The
same is true for d ¼ 2 [25,29], in which case only a scaling
solution seems to exist, in agreement with lattice results
[14–16]. It is important to recall though that the DSE
analysis of possible scaling solutions misses the Gribov
branch (63) in d ¼ 2 and d ¼ 4. Hence, the numerical DSE
studies mentioned here, performed directly in these dimen-
sions, may not really be conclusive concerning this branch.
Instead, numerical calculations in d ¼ 3 [22], where both
the Gribov and the vSHA branches are a priori possible,
indeed find both scaling solutions.23

At first sight, the comparison of these numerical studies
with the previous RG analysis might appear meaningless
because, unlike the latter which uses dimensional regulari-
zation, the former generically involve an explicit breaking
of the mBRST symmetry from the regularization pro-
cedure: the regulator is a source of explicit breaking of
the BRST symmetry on top of the gluon mass parameter,
which results in an explicit breaking of the mBRST
symmetry. As emphasized above in the DSE framework,
the tree-level gluon mass contribution can be neglected
for scaling solutions and there remains only the question of
the BRST breaking contributions from the UV regulator.
Fortunately, the latter can be exactly projected out by
choosing the so-called Brown-Pennington projection
parameter ζ ¼ d [79]. In that case, the results are inde-
pendent of the UV regulator, and the comparison with the
RG analysis of the previous section should be meaningful.
Interestingly, the vSHA branch is found to disappear for

that particular value ζ ¼ d in DSE calculations in d ¼ 4

FIG. 10. The two possible scaling solutions (63) and (64) of the
DSEs [top] and the corresponding coupling ~λTð0Þ [bottom] for
dimensions 2 ≤ d ≤ 4. The two branches cross at d ¼ dc ≈ 2.66.

23We mention, though, that the status of the scaling solutions in
d ¼ 3 seems not completely settled yet; see, in particular, the
recent study of Ref. [30], which implements an improved
truncation scheme.
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[21] and d ¼ 3 [22], although not in d ¼ 2 [29]. In the case
d ¼ 3, only the Gribov branch remains and, to the best of
our knowledge, one cannot exclude that this may also be
the case in d ¼ 4 in a setup where this branch would be
found. This suggests that, indeed, in cases where a
comparison can be justified, the DSE results qualitatively
agree with those of the previous RG analysis, except for the
peculiar case d ¼ 2. As already mentioned, another sce-
nario is that the vSHA branch is genuinely nonperturbative
and not accessible by our approach. In fact, there could
even exist two families of decoupling solutions continu-
ously connected to the two scaling solutions, one of which
would not be accessible by perturbative means.

VII. SUMMARY AND CONCLUSIONS

Because of the practical difficulty of constructing a
nonperturbative BRST-invariant regularization scheme,
existing continuum approaches to Landau gauge YM
correlators rely on deformations of the FP Lagrangian.
In most cases, a simple subtraction of quadratic divergences
in the gluon self energy is implemented, which amounts to
a simple massive extension of the FP Lagrangian, the
Landau limit of the CF model. In this context, one assumes
that there exists a unique value of the (tree-level) gluon
mass parameter which exactly cancels the BRST breaking
contributions from the regulator, yielding a BRST sym-
metric solution. From another viewpoint, the massive
model can be seen as a minimal effective gauge-fixed
Lagrangian which takes into account the BRST breaking
induced by the Gribov problem. An important question
arises in both contexts as to what extent this provides a
sensible realization of YM theories.
In the present article, we have studied perturbatively the

parameter space of the massive Lagrangian by means of the
infrared-safe RG scheme put forward in Ref. [44]. A one-
loop calculation produces the main qualitative features
obtained in the literature using a variety of nonperturbative
continuum methods, with two classes of either infrared safe
or infrared singular solutions, separated by a critical line.
Infrared-safe solutions yield a decoupling behavior for the
ghost and gluon propagators at infrared momenta, governed
by an infrared stable fixed point of the RG flow, similar to a
high temperature fixed point [60]. The scaling solution,
instead, is governed by a critical fixed point with an
infrared unstable direction and yields a scaling behavior
with Gribov exponents. The decoupling fixed point is
weakly coupled and thus well-described by perturbation
theory. The scaling fixed point is weakly coupled only for
dimensions d → 2 and strongly coupled otherwise, so that
the one-loop analysis is questionable. We have shown
though that, for our perturbative solution, the scaling
exponents are of the Gribov type at all orders of perturba-
tion theory in the present RG scheme under the sole
assumption of a (scaling) fixed point at nonzero finite
values of ~m2� and ~λ�. We have checked that the latter exists

at one-loop order for 2 ≤ d ≤ 4. In d ¼ 2, it actually
merges with the decoupling fixed point, and the whole
class of infrared-safe RG trajectories disappears. As already
mentioned, Weber [60] finds similar results in a d ¼ 2þ ϵ
expansion with a different renormalization scheme.
We have also analyzed, at one-loop order, the dependence

of the ghost dressing function at vanishingmomentum, of the
gluon screening mass, and of the scale of spectral positivity
violation in the gluon propagator with the parameters of the
model. This allows us to discuss in a simple and transparent
manner various questions raised in the literature concerning,
e.g., the relation between the control parameters of DSE and
FRG studies, or the existence of a critical coupling corre-
sponding to the scaling solution. We have also discussed the
question of the restoration of the BRST symmetry of the FP
Lagrangian. We find that, in the present scheme, the scaling
solution does not satisfy, even approximately, the massless
ST identities in the infrared. More generally, we further
obtain a constraint on scaling exponents for an approximately
restored BRST symmetry in the infrared, based solely on the
modified ST identities of the massive model. This constraint
is not satisfied by the scaling solutions obtained on the
literature for d > dc ≈ 2.66. Furthermore, we have analyzed
the possibility that different regions of parameter space
would describe either a “confined” or a “Higgs-like” phase,
as advocated in Ref. [36]. We find no sign of an actual phase
transition, but a smooth crossover between strongly quanti-
tative distinct regimes.We stress again that the present results
apply to the class of solutionswhere themBRST symmetry is
manifest and which can be reached perturbatively (possibly
at infinite order). However, by no means does this exhausts
all possible solutions as there may exist genuine nonpertur-
bative solutions not attainable by perturbative means.
Finally, we have used the existing literature to compare

our results for scaling solutions to those of nonperturbative
continuum approaches. DSE studies support two scaling
solutions in 2 < d < 4, described by the exponents (63) and
(64). The Gribov branch (63) corresponds to the scaling
fixed point of our RG analysis while the vSHA branch
(64) is absent, up to one-loop order. Both branches have
been found in actual numerical solutions of DSE in d ¼ 3
[22] and, interestingly, only the Gribov branch is inde-
pendent of the Brown-Pennington projection parameter. In
dimensions d ¼ 4 and d ¼ 2, only the vSHA branch is
found, but we recall that these are somewhat singular cases
as far as the Gribov branch is concerned.
In conclusion, the present RG approach provides a

useful tool to investigate the infrared behavior of Landau
gauge Yang-Mills propagators, complementary to other
continuum approaches. Among the great advantages
of this approach are the simplicity of the (perturbative)
calculations and the fact that dimensional regularization
allows us to control the modified ST identities of the
massive model. The RG framework also allows us to
select among the possible (decoupling versus scaling)
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solutions by analyzing the stability of the corresponding
fixed points. In this context, the decoupling behavior
found in lattice calculations in d ¼ 4 and d ¼ 3 is
well-described by perturbation theory around the weakly
coupled decoupling fixed point [43,44,66–68], as recalled
in the Appendix A; see Figs. 11 and 12. This decoupling
fixed point becomes unstable in d ¼ 2, where lattice
simulations find an infrared scaling behavior with the
vSHA exponent (64). The fact that, as we have pointed out
above, this corresponds to a moderate coupling suggests
that it may still be described by (appropriate) perturbative
means. However, it remains to be understood how such
scaling solution can be obtained in the present RG
approach. As we have shown above, this cannot corre-
spond to a fixed point at finite nonzero values of the
parameters ~m2� and ~λ� in the RG scheme employed
here. Possible ways out—not excluded by the present
analysis—could be a nontrivial infrared fixed point at
nonzero ~λ� but ~m2� ¼ 0 or a runaway solutions where
~λ → ∞ as μ → 0. These are not seen at one-loop order and
would require a higher-loop analysis. It could also be that
the branch (64) may not be accessible with the present

renormalization scheme and would require either a more
appropriate scheme or a more drastic modification of the
FP Lagrangian to start with, maybe in the line of the
Lifshitz point described in Ref. [60]. Finally, as already
mentioned repeatedly, we cannot exclude that the scaling
behavior in d ¼ 2 could also be a genuine nonperturbative
aspect of the (massive) theory.
It would also be interesting to clarify the status of the two

branches of scaling solutions (63) and (64) on the side of
DSE/FRG/HF calculations. For instance, as already men-
tioned, there could be two separate branches of decoupling
solutions, each ending on one of the scaling solutions.
Finally, it would be of great interest to generalize the
existing numerical studies for arbitrary dimension, e.g.,
along the lines of Ref. [28], and to investigate the
possibility of implementing dimensional regularization,
e.g., following Refs. [81–83]. The transition from a
(perturbative) decoupling behavior in d ¼ 4 to a (possibly
nonperturbative) scaling behavior in d ¼ 2 remains one of
the important open questions in the field.
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APPENDIX A: COMPARISON TO
LATTICE RESULTS

Here we simply recall, for completeness, how the results
of the present approach in the infrared-safe renormalization
scheme at one-loop order compare with the lattice data
[44]. The ghost dressing function and the gluon propagator
of the SU(3) theory in d ¼ 4 dimensions are shown in
Fig. 11. The RG improved one-loop results give a good
description of the lattice results of Refs. [9,80] over a wide
range of momenta, from the ultraviolet to the (deep)
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FIG. 11. The ghost dressing function (top) and the gluon
propagator (bottom) for the SU(3) theory in d ¼ 4. The lattice
data are from Refs. [9] (open circles) and [80] (crosses), and the
curves correspond to the fit from the one-loop infrared-safe
scheme. From Ref. [44].

FIG. 12. Flow of the rescaled coupling ~λT corresponding to the
fit of the lattice data in Fig. 11 [λ0 ¼ 0.26 and m0 ¼ 0.39 GeV,
with μ0 ¼ 1 GeV], compared to the corresponding scaling
solution (red) [λ0 ¼ 0.26 and m0 ¼ 0.23 GeV].
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infrared for the set of parameters λ0 ¼ 0.26 and m0=μ0 ¼
0.39 at the scale μ0 ¼ 1 GeV, where the correlators are
normalized to the lattice ones so that we have the same
definition of GeV.
We also show the corresponding flow of the rescaled

coupling ~λT , the appropriate loop-expansion parameter, in
Fig. 12. We see that it remains moderate throughout the
whole momentum range, which justifies the one-loop
approximation. We also show the flow for the scaling
solution corresponding to the same coupling λ0 ¼ 0.26,
which occurs for the critical mass ~m2

scal ≈ 0.05 GeV2. The
trajectory corresponding to these lattice data is also shown
(orange curve) in Fig. 1.

APPENDIX B: AN INSTRUCTIVE TOY EXAMPLE

In this section, we would like to illustrate on a toy DSE
that, for a given theory (that is given values of the bare
parameters), they may exist various solutions obeying
different renormalization conditions, and that some these
solutions may not be accessible through a perturbative
expansion. Consider the following equation (that would
correspond to a DSE in our toy model):

xðpÞ ¼ m2
B þ gBaðpÞxðpÞ ln xðpÞ; ðB1Þ

for a given function 0 < aðpÞ < 1 and with fixed mB and
gB > 0 specifying the theory. Writing the equation in the
form 0 ¼ fpðxðpÞÞ, we have

f0pðxÞ ¼ −1þ gBaðpÞð1þ ln xÞ; ðB2Þ

which changes from negative to positive at the point
x ¼ x0 ≡ expf1=ðgBaðpÞÞ − 1g. It follows that, as one
increases x from 0 to ∞, fpðxÞ decreases from m2

B > 0

to fpðx0Þ ¼ m2
B − gBaðpÞ expf1=ðgBaðpÞÞ − 1g and then

increases to þ∞. Thus for gB small enough, gBaðpÞ is
small enough for all p, and (B1) admits two solutions,
which obviously obey different renormalization conditions
(for the same mB and gB). Moreover, one of the solutions is
always larger than x0 and thus does not admit an expansion
in powers of gB, since x0 → ∞ as gB → 0. In Fig. 13, we
show the function fpðxÞ for aðpÞ ¼ 1, for fixed mB and
decreasing values of gB.
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