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We present a largely model-independent analysis of the lighter heavy quarkonium hybrids based on the
strong coupling regime of potential nonrelativistic QCD. We calculate the spectrum at leading order,
including the mixing of static hybrid states. We use potentials that fulfill the required short and long
distance theoretical constraints and fit well the available lattice data. We argue that the decay width to the
lower lying heavy quarkonia can be reliably estimated in some cases and provide results for a selected set of
decays. We also consider the mixing with heavy quarkonium states. We establish the form of the mixing
potential at O(1/mg), m being the mass of the heavy quarks, and work out its short and long distance
constraints. The weak coupling regime of potential nonrelativistic QCD and the effective string theory of
QCD are used for that goal. We show that the mixing effects may indeed be important and produce large
spin symmetry violations. Most of the isospin zero XYZ states fit well in our spectrum, either as a hybrid or

standard quarkonium candidate.
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I. INTRODUCTION

The so-called XYZ states in the charmonium and
bottomonium spectrum do not fit in the usual potential
model expectations (see Ref. [1] for a recent review).
A number of models have been proposed to understand
them, ranging from compact tetraquark states to just
kinematical enhancements caused by the heavy-light
meson pair thresholds. We explore here the possibility
that some of these states correspond to heavy quarkonium
hybrids in a QCD-based approach. Since charm and bottom
masses are much larger than the typical QCD scale Agep,
nonrelativistic QCD (NRQCD) [2,3] can be used for these
states. For instance, the spectroscopy of bottomonium
hybrids has been studied in lattice NRQCD in Ref. [4],
and the production of charmonium hybrids in B decays
has been studied in Ref. [5]. Furthermore, if we focus
on a region of the spectrum much smaller than Agcp, we
should be able to build an effective theory in that region, by
integrating out Agcp, in a way similar to the strong
coupling regime of potential NRQCD (pNRQCD)[6].
The static limit is relevant for such a construction, and
the spectrum in that limit is known from lattice QCD in
the case of ny =0 (no light quarks) [7]. In the Born-
Oppenheimer (BO) approximation, each energy level in the
static case plays the role of a potential in a Schrodinger
equation for the dynamical states built on that static energy
level [8]. The static spectrum is displayed in Fig. 1.

The ground state corresponds to the potential for heavy
quarkonium states (X;), namely, the one that it is usually
input in potential models. The higher levels correspond to
gluonic excitations and are called hybrid potentials. If we
are interested in states of a certain energy, we must in
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principle take into account all the potentials below that
energy, since the states built on different potentials may
influence each other through 1/m,, corrections, m, being
the mass of the heavy quarks (Q = ¢, b). We shall focus
here on the lower lying hybrid states built out of I1, and Z;,.
In addition to calculating the spectrum [4,9,10], we will
address the question of how they interact with quarkonium,
namely, with the states built out of X}. The quarkonium
states far below the energy of the hybrid states can be
integrated out and may contribute to the decay width,

0.9 T T T T T T T
aEp p=2.5 N=4
ag~0.2 fm
0.g . Gluon excitations N=3 |
string orderiné
0.7 - i
06 a, i
n'uza | —
05 L g[g ag/ay =25
2=0.976(21)
.
04t - =\ i
short distance
degeneracies
R/a
03l . . . . . LS
0 2 4 6 8 10 12 14
FIG. 1. Energy spectrum in the static limit for n, = 0 [7].

© 2017 American Physical Society


https://doi.org/10.1103/PhysRevD.96.014004
https://doi.org/10.1103/PhysRevD.96.014004
https://doi.org/10.1103/PhysRevD.96.014004
https://doi.org/10.1103/PhysRevD.96.014004

RUBEN ONCALA and JOAN SOTO

whereas the quarkonium states in the same energy range as
hybrid states may mix with them. We will learn that certain
hybrid states do not decay to lower lying heavy quarkonium
at leading order and that the mixing with quarkonium may
induce large spin symmetry violations. These observations
will be instrumental in identifying a number of XYZ states
as hybrids. In fact, it turns out that most of the XYZ states
can eventually be identified with either hybrids or quarko-
nia in our approach. Preliminary results have been reported
in Ref. [11].

The rest of the paper is organized as follows. In Sec. II,
we calculate the spectrum of the lower lying hybrid states,
ignoring any possible mixing with other states. In Sec. III,
we argue that the decay width to lower lying quarkonia can
be reliably estimated in some cases and calculate it for a
number of states. In Sec. IV, we address the mixing with
quarkonium states. We establish the form of the mixing
potential at O(1/my) and derive the short and long
distance constraints that it must fulfill using pNRQCD
in the weak coupling regime [6,12] and the effective string
theory of QCD respectively [13,14]. We explore several
interpolations for the mixing potential and recalculate the
spectrum. In Secs. V and VI, we compare our results with
those of other QCD-based approaches and with the experi-
ment respectively. We also present in the latter the most
likely identifications of the XYZ states as hybrids or
quarkonia. Section VII contains a discussion of our results.
Finally, in Sec. VIII, we present a short summary of the
main results and conclude. Appendix A shows our results
for quarkonia. Appendix B provides details on how we
obtain the two long distance parameters from lattice data.
Appendix C sets our conventions for the tensor spherical
harmonics. The tables in Appendix D display our results for
the full (quarkonium plus hybrid) charmonium and botto-
monium spectrum including mixing.

II. SPECTRUM

In the Born-Oppenheimer approximation, the calculation
of the hybrid spectrum reduces to solving the Schrodinger
equation with a potential V = V(r, Agcp) that has a
minimum at r = ry ~ 1/Aqcp, ¥ = |r|, r being the distance
between the quark and the antiquark. Hence, the energy
of the small fluctuations about that minimum is

E~, /A?2CD /mg < Agep < mg. Consequently, we are

in a situation analogous to the strong coupling regime of
pNRQCD in which the scale Agcp i integrated out. It then
makes sense to restrict the study to the lower lying hybrid
potentials, X, and II,, since the gap to the next states is
parametrically O(Aqcp). Specifically, from Fig. 1, we see
that the gap between the minimum of the I1, potential and
the first excited potential that we neglect (X;’) is about
400 MeV. Hence, for states built out of the X and II,
potentials about 400 MeV or more above the lowest
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lying one, mixing effects with the next hybrid multiplet
(Z;’, I, A,) may be relevant.

The potentials associated to X, and I, are degenerated at
short distances. In weak coupling pNRQCD [12], this is
easily understood as they correspond to different projections
with respect to r of the same operator tr(B(0,)0(0, 1, t)),
where O(R.r,1) is the color octet operator, B(R,¢) the
chromemeagnetic field and we have set the center-of-mass
coordinate R = 0. These projections have well-defined
transformations under the D, group, the group of a
diatomic molecule. ¥B corresponds to X;;, and B — £(fB)
corresponds to I1,, [6]. It is then natural to associate to the
lower lying hybrids a vectorial wave function H(O,r, 1),
such that its projection to r evolves with Vy- and its
projection orthogonal to r evolves with Vi . We then have
the following Lagrangian density,

L =t(H"(6;;i0y — hy;j)H,)

V2
hyij = <_m_Q + VZ,,(r))‘sij

+ (0 = 77V, (r) = Ve (0], (1)

where T = r/|r| and we have ignored the center-of-mass
motion. H=H(R,r,#) is a matrix in spin space and
transforms as H — thh;, hy, h, € SU(2) under spin
symmetry. h;; above does not depend on the spin of the
quarks, and hence it is invariant under spin symmetry
transformations, but it does depend on the total angular
momentum of the gluonic degrees of freedom L ; in this
case L, = 1 as is apparent from the vectorial character of H.
The symmetry properties of H(R, r, #) under parity, time
reversal, and charge conjugation read as follows,

P: H(R,r,t) - —H(-R,-r,1)

T: HR,r,t) » —c’H(R, 1, —1)0?

C: HR,r,t) » —¢’H" (R, -1, t)0?, (2)
where 62 is the second Pauli matrix. Hence, the P and C

associated to a hybrid state with quark-antiquark orbital
angular momentum L and quark-antiquark spin S become
P=(=D)H, C= (- (3)

Leaving aside the spin of the quarks, it is convenient to
express H in a basis of eigenfunctions of J =L + L,
where L is the orbital angular momentum of the quarks.
This is achieved using vector spherical harmonics [15],

1 B =) J B
) = (P00 + >0 Y 1P vE
J=1 M=-J

+ PYE + P 0Y5)). @
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Note that J is a conserved quantity thanks to heavy quark
spin symmetry. Y}, = Y%,,(0, ¢) fulfill

JzY;M =J(J+ 1>Y§M’ L2Y§M =L(L+ 1)Y5Mv
L§Y§M =2Yjy. J3Yhy = MYjy,. (5)

The eigenvalue problem then reduces for J # 0 to

(J=1)J
2 R 0
_Lo ot +Vs-(r)
mgor 0 Urhu+2) "
mQrz
(J+1)J _ B

ﬁ 2J+1 Py (r) . Py(r)
+V,(r) =F

(J+1)J 7 P (r) P (r)

2J+1 2J+1

1 0% JUJ+1)
<_mQ8r2+ mQr2 +VH1‘(7>>P9(F)_EP9U)7

(6)

where V,(r) = Vp (r) = Vg-(r), and for J =0 to

Lo 2 \% Pl (r) = EPJ 7
<———2+W+ z;(r)> o(r)=EPg(r). (7)
The equations above are equivalent to those obtained in
Ref. [10]. We approximate Vy; (r) and Vy-(r) by simple
functions that have the correct behavior at short and long
distances and fit well the lattice results in Fig 1 [7] and
Ref. [16]. For Vy-(r), it is enough to take a Cornell-like
potential with the correct asymptotic behavior in order to
get a good fit to data. We then take

Vs-(r) =2 4 kyr + E2, (8)
“ r

The correct short and long distance behavior implies 6, =
0,/8 and k; = k,, where o, and k, are the corresponding
parameters appearing in the Cornell potential for heavy
quarkonium (Vy:(r)); see Appendix A. We then have

6, =0061, &, =0.187 GeV>. (9)

The constant E2¢ becomes then the only free parameter,
which can be linked to the corresponding parameter for the

heavy quarkonium case, EgQQ, through the lattice data of

Ref. [7]. Finally, EgQ is obtained in Appendix A by fitting
the heavy quarkonium spectrum. We get

EC =0.559 GeV,  E» =0.573 GeV. (10)
For V (r), a Cornell-like form does not fit lattice data well
at intermediate distances. Hence, we take a slightly more
complicated form for it,

PHYSICAL REVIEW D 96, 014004 (2017)

Vi, (1) ="7”<

1 —|—b1r+b2r2

00
1—|—a1r+a2r2> +x,r+Ep~. (11)

At short distances, this potential must coincide with V- (r)

up to terms that vanish when r — 0 [6]. This implies 6, =

o, and E,?Q —E% ¢ o,(b; —a;) = 0. At long distances,
it must be consistent with the effective string theory of
QCD [14],

1 2
i) Hou/r),

EN<Hoo>:Kr+(ﬂN_M>1

(12)
where D is the space-time dimension and N labels the
energy spectrum of the string. The leading term of this

formula implies «x, =k, = k. The next-to-leading term
provides the extra constraint,

Upbz

2r— o, + =0, (13)

a

which follows from Fig. 1 [7]. Indeed, those data show the
nontrivial fact that the Vy; (r) and V- (r) potentials at long
distances correspond to the N = 1 and N = 3 string energy
levels respectively. Putting together all the constraints
above allows us to solve a;, b, and b, as a function of

known parameters and E,?Q and a,, which are fitted to
lattice data. We obtain

5, =0061,  «x,=0.187 GeV2

by = 0.06964 GeV, b, = —1.45934 GeV>

ay = —0.06733 GeV,  a, = 0.01433 GeV>
EF =0.551 GeV,  EY =0.565 GeV. (14)

The central value of lattice data and the outcome of the fits
above are shown in Fig. 2, together with the potential for
quarkonium V. discussed in the Appendix A.

Using the potentials above as an input, we solve (6) and
(7) and obtain the results displayed in Tables I and II in
terms of Myp, = 2mg + E. Details on the code used can
be found in Ref. [17]. We have also displayed the results in
Figs. 3 and 4, where we have included the errors discussed

at the end of Sec. IV C.

III. DECAY

Since we are interested in the lower lying hybrid states, it
is enough for us to consider an effective theory for energy
fluctuations much smaller than Agcp around those states.
The energy gap to the lower lying quarkonium states is
greater than Agcp. Hence, those states can be integrated
out, which will give rise to an imaginary potential AV,
which in turn will produce the semi-inclusive decay width
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FIG. 2. Our fits to the lattice results of Ref. [7] for the three
lower lying BO potentials Vy:, Vp , and V..

for a hybrid state to decay into any quarkonium state,
I'y _s = —2(H,|ImAV|H,). Thisis much in the same way
as integrating out hard gluons in QCD produces operators
with imaginary matching coefficients in NRQCD [3], which
giverise to the total decay width of a given quarkonium state
to light degrees of freedom. Furthermore, if we assume that
the energy gap to a given quarkonium state S,,, AE,,,,, fulfills
AE,,, > Agcp and that the process is short distance
dominated, the integration for that state can be done using
the weak coupling regime of pNRQCD [6,12],

ﬁpNRQCD
= Tr{S%(idy — h,)S + O'(iDy — h,)O}
O'r-gEO OfOr-gE
> T

oo (15)

+ Tr{OTr -gES +H.c. +

The singlet field S encodes the quarkonium states, whereas
the octet field O encodes the heavy quark content of the
hybrid states, i, and h, are Hamiltonians containing the res-
pective Coulomb-type potentials, and E = E(R, 1) is the
chromoelectric field (see Ref. [19] for details). The leading
contribution corresponds to the diagram in Fig. 5. We obtain
2 a F

ImAV = - Z 18,)(Salri(i0, = E,)*. (16)

Tr=1/2, N. =3, and a, = ¢*/4rn is the QCD strong
coupling constant. E,, is the energy of the nth quarkonium
state, S,,.

From the expression above, we identify

4a,T 4
[(Hp = 8,) = 5 (ol F18,) (S|P HW) A, (17)
AE,, = E, — E,, E, being the energy of the hybrid state.

At this order, the decays respect heavy quark spin sym-
metry, and hence the spin of the heavy quarks must be the
same in the initial hybrid state and in the final quarkonium
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TABLE I. Charmonium (S) and hybrid charmonium (P*~0)
energy spectrum computed with m, = 1.47 GeV. Masses are in
MeV. States which only differ by the heavy quark spin (S = 0, 1)
are degenerated. N is the principal quantum number, L is the
orbital angular momentum of the heavy quarks, J is L plus the
total angular momentum of the gluons, S is the spin of the heavy
quarks, and J is the total angular momentum. For the quarko-
nium, J coincides with L, and it is not displayed. The last column
shows the relevant potentials for each state. The (s/d),, p1, Pos
(p/f),, and d, states are named H,, H,, H;, H,, and Hj
respectively in Ref. [10].

NL, w-f Mg Mg S=0JC S=17JC A;
Is S 3068 0+ 1-- T
2s S 3678 0+ 1-- by
3s S 4131 0+ 1-- T
1p0 Pt 4486  0*F 1+ s,
4s S 4512 0+ 1-- )
2p0 Pt 4920 0+ 1+- o
3po Pt 5299 0+ 1= o
4p, Pt 5642 0*F 1+ o
1p S 3494 1= (01,2 %
2p S 3968 1= (01,2 %
1(s/d), P*~ 4011 17 0.1,2*+ T,Z;
1p, PO 4145 1t (0.1,2)*~ I,
2s/d), P*" 4355 1 0,1,2)~* T,Z;
3p S 4369 (S (8 ) R 1
2, PO 4511 17t (0,1,2) I,
3(s/d), P*" 4692 1 0,1,2)7F T,%;
4(s/d), P+ 4718 17 0,1,2*+ T,Z;
4p S 4727 = (012 57
3p, PO 4863 1+ (0,1,2)* T,
5(s/d), P*" 5043 17" 0,1,2)7* T,Z;
5p S 5055 1= 0.1.2)*" %7
1d S 3793 2+ (1,23~ %f
2d S 4210 2+ (1,2,3  =F
1(p/f), P~ 4231 27t (1,23 T3
1d, PO 4334 2 (1,2,3)~+ T,
2p/f), P+ 4563 2+t (1,2,3)F TLZ
3d S 4579 2+ (1,2,3)~ =
2d, PO 4693 27" (1,2,3)7F 1,
3(p/f), P+ 4886 2t (1,2,3) T,
4d S 4916 2+ (1,2,3~  =F
4(p/f), P 4923 2t (1,23 T
3d, PO 5036 27 (1,2,3)~ 1,

state. In addition, a selection rule derived from this formula
is that hybrid states with L = J do not decay to lower lying
quarkonium. This selection rule will be instrumental later
on to select hybrid candidates among competing XYZ
states. For the allowed decays, the numerical values of the
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TABLE II.  Bottomonium (S) and hybrid bottomonium (P*+~0)
energy spectrum computed with m;, = 4.88 GeV. Masses are in
MeV. States which only differ by the heavy quark spin (S = 0, 1)
are degenerated. N is the principal quantum number, L is the
orbital angular momentum of the heavy quarks, J is L plus the
total angular momentum of the gluons, S is the spin of the heavy
quarks, and J is the total angular momentum. For the quarko-
nium, J coincides with L, and it is not displayed. The last column
shows the relevant potentials for each state. The (s/d),, p1, Pos
(p/f),, and d, states are named H,, H,, H3, H,, and Hj
respectively in Ref. [10].

NL, w-f My My, S=0J7C S=17J7C A;
Is S 9442 0t 1- T
2s S 10009 0t 1- T
3s S 10356 0+ 1- T
4s S 10638 0+ 1- g
1po Pt 1o o+t 1= T,
2po P 11299  0+* 1~ o
3p0 P+ 11551 0+F 1= bom
4pg Pt 11779  0*F 1= z,
1p S 9908 = (01,2 z=f
2p S 10265 1= (0,1,2)" =
3p S 10553 = 0. 1,2)t  xf
1(s/d), P* 10690 1=  (0,1,2)~F ILX;
1p, PO 10761 1t (0,1,2)" TI,
4p S 10806 1= (0,1, =
2(s/d), Pt 10885 1= (0,1,2)~* ILX;
2p, PO 10970 1+ (0,1,2)* I,
5p S 11035 1= (0, 1,2)" i
3(s/d), P 11084 17—  (0,1,2)"" I,X;
4(s/d), Pt~ 1is6 1= (0,1,2)~" I,Z,
3p, PO 11175 1+ (0,1,2)* I,
6p S 11247 = (0,1.2* xf
5(s/d), P+ 11284 1= (0,1,2)~F 1%,
1d S 10155 2-+ (1,2,3)  =f
2d S 10454 2~t (1,2,3) =/
3d S 10712 2=t (1,2,3)~ %/
1(p/f), P 10819 2+ (1,2,3)* 1%,
1d, P° 10870 27— (1,2,3)"t I,
4d S 10947 2-+ (1,2,3)  =f
2(p/f), P 11005 2+ (1,2,3)* 1%,
2d, PO 11074 27— (1,2,3)"t I,
5d S 11163 2-t (1,2,3)  =f
3(p/f), P 11197 2+ (1,2,3)* 1%,
3d, P° 11275 2= (1,2,3)~t I,
4(p/f), Pt~ 11291 2+ (1,2,3)* 1%,

decay widths are given in Table III. We have only displayed
numbers that can be reliably estimated, namely, that AE,,,
is large enough and that (H,,|r|S,,) is small enough so that
the weak coupling regime of pNRQCD is sensible; see the
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FIG. 3. Charmonium spectrum in Table I. The height of the

boxes corresponds to the error estimated at the end of Sec. IV C.
The states identified as quarkonium in the Particle Data Group
(PDG) [18] are displayed in the corresponding column, whereas
the states labeled as X in the PDG [18] are displayed in a separated
column. The box assignment of the latter is discussed in Sec. VI.

177 (0,1,2)*4(1,2,3)"(0,1,2)" % (1,2,3)" (0,1,2)* (1,2,3) ' 1%
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FIG. 4. Bottomonium spectrum in Table II. The height of the
boxes corresponds to the error estimated at the end of Sec. IV C.
The states identified as quarkonium in the PDG [18] are displayed
in the corresponding column.

& -3
P =(E,0) p* = (E,0)

FIG. 5. The octet field self-energy diagram in weak coupling
pNRQCD [19]. The double line represents the octet propagator,
while single lines represent the singlet propagator. The curly line
stands for the gluon propagator, and the crossed circles stand for
chromoelectric dipole vertices. The expectator gluons that make
up the physical state together with the octet field are not displayed.
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TABLE III. Decay widths for hybrid charmonium (above) and
bottomonium (below) to lower lying charmonia and bottomonia
respectively. m = NL;, n=N'L', AE = AE,,,, and I are in
MeV, and (r),,, is in GeV~!. a,(AE) is the one-loop running
coupling constant at the scale AE. We only display results for
which AE > 800 MeV and |AE(r),,,| <0.7. The error (in
brackets) includes higher orders in «,; and in the multipole
expansion as well as the average of the linear term in the Cornell
potential in order to account for the difference between weak and
strong coupling regimes.

NL, > NL  AE {(r),, |AE(),,| a(AE) T (MeV)
1py — 2s 808 040 032 041  7.5(7.4)
2s/d), » 1p 861 063 054 039  22(19)
4(s/d), — 1p 1224 042 051 033  23(15)
1po — ls 1569 —0.42  0.65 029  44(23)
1po — 2s 1002 043 043 036  1509)
2po = 2s 1290 —0.14  0.18 032  29(1.3)
2p0 = 3s 943 046 044 037  15(12)
4py — ls 2337 027 063 025  53(25)
4py — 2s 1770 023 0.40 0.28 18(7)
4py — 3s 1423 019 0.8 031  7.4(4.1)
2s/d), > 1p 977 047 046 037  17(8)
3(s/d), > 1p 1176 049  0.58 033 29(14)
3(s/d), > 2p 818 032 026 0.40 5(3)
4(s/d), - 2p 891 —0.74  0.66 039  33(25)
5(s/d), » 1p 1376 —031 043 0.31 18(7)
5(s/d), —2p 1018 —041 042 036 14(8)

table caption for details. We have taken the energies and
wave functions for quarkonium and for hybrids from
Appendix A and from the previous section respectively.
The errors account for the fact that the quarkonium
spectrum in (16) is meant to be calculated in the weak
coupling regime (Coulomb-type bound states), whereas we
actually use in (17) the one in the strong coupling regime.

Model-independent results for hybrid decays in the
Born-Oppenheimer approximation have been obtained
before in Ref. [20]. In that reference, selection rules, based
on the symmetries of the static limit, are obtained for a two-
body decay of a hybrid to a quarkonium plus a light meson,
which constrains the possible quantum numbers of the
latter. Our results are obtained under different assumptions
and may be regarded as complementary to those of
Ref. [20]. First of all, our results hold beyond the static
limit (e.g. I1, — Z;, mixing is taken into account). Second,
they are concerned with semi-inclusive decays, namely,
decays to quarkonium plus any state composed of light
hadrons, rather than two-body decays. And third, they are
based on the additional dynamical assumption that the
decay process is short distance dominated. This assumption
must be verified for each particular decay and does not
always hold. In the cases it does, we are able to put forward
not only constraints on quantum numbers (e.g. L must be
different from J for a hybrid to decay to quarkonium) but
also numerical estimates for the decay widths.
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IV. MIXING

So far, we have not taken into account the possible mixing
of hybrid states with other states that are known to existin the
same energy range, like quarkonium or heavy-light meson
pairs, which may distort the spectrum and the decay
properties. We shall focus here on the effects in the spectrum
of the mixing with the quarkonium, basically because they
are amenable to a systematic treatment. In the static limit, the
quarkonium (the lowest potential in Fig. 1, X) and heavy
hybrids (the remaining potentials in Fig. 1) do not mix by
construction (they are built as orthogonal states). Hence,
the mixing must be due to 1/m,, corrections to the Born-
Oppenheimer approximation.! A way to systematically
compute 1/m,, corrections for quarkonium was established
in Refs. [21,22] for the strong coupling regime of pPNRQCD,
following earlier work in the literature [23]. We show below
how the formalism in Ref. [21] can also be used to calculate
the mixing potentials. We may generally consider an
effective theory for energy fluctuations £ around a hybrid
state, such that £ << Agcp. If there is a heavy quarkonium
state close to that energy, we may expect it to modify the
value of the energy E. This effective theory reads

Lyys = te(S'[idy — hy]S) + te(H[i6,;00 — hyi;|H')
+t(STVY{e', H'} +He.). (18)
The traces are over spin indices, and

Vi = Vi(x) = 8IVI(r) + #H(VE() = VI(r)  (19)

is the mixing potential, /; = —’ZZ + sz(r), and hy,; is
definedin (1). S = S(R, r, ¢) transforms like H under heavy
quark spin symmetry and as follows under the discrete

symmetries [19]:
P: S(R,r,t) > =S(-R, —-r,1)
T: S(R,r,1) - o’S(R,r,—1)0?
C: S(R,r,t) = o*ST(R, -1, 1)0>. (20)

The transformations above together with those in (3) dictate
the form of the last (mixing) term in (18). The form of Vgi (r)
then follows from the symmetries of the static limit (see for
instance Ref. [19]). Notice that in (18) we only include the
1/mg corrections relevant to the mixing. There are also
1/my corrections to i, [21] and to hy;;, briefly discussed in
Sec. VII, that we do not consider. For systems with the quark
and antiquark of different flavor, two more terms, which
vanish in the equal mass limit, are possible,

'In the weak coupling regime of pNRQCD, some p/m
contributions can be reshuffled into rid,, which have the same
size, by local field redefinitions [6,12,19]. This is why singlet-
octet transition terms appear in (15) with no apparent 1/m,
suppression.
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8Ly, s =te(STVLH ol HI)) +tw(STV/LIH)) + Hee.,  (21)

where L' is the angular momentum operator.

A. Matching to NRQCD at O(1/m,)

The NRQCD operators that create states at time ¢ with the
same quantum numbers as S and H in the static limit read

A r r r r
O'r,R. )=y (=t |W(=,—=:¢ -t
k= (S w (55 (-5)

=7*(r)S"(r,R. 1)

O5(r.R, )=yt (z,t> W<§,R;t> B"(R;t)W(R,—%;t)
<r(=50) =@ E R, 22)

where W (r,1’; t) are straight Wilson lines joining the points
r and r’ at a fixed time ¢, and

(Z3?)i (x) = Z>(N#E + Zi{*(r)(87 = #7).  (23)

In the static limit, we have
(0|T{0"(¥,R",T/2)O(r,R,~T/2)}|0)
= (pd(r - 1)5(R’ - R)
(0IT{OF (r'.R". T/2)O}(r, R, ~T/2)}|0)
= (B'(R".T/2)B/(R; ~T/2))8(r' = r)8(R’ - R),
(24)

where (...); means insertions in the square Wilson loop
going from —7'/2 to T /2 with spatial boundaries at R 4 r/2.
In particular, (1) is the Wilson loop itself. The matching
calculation at O(1) leads to

—iTV 4 (r
z;( )

;=T/2))n

= ppiZge V5 )

(1)g = Zse
<Bi(R, T/2)Bf(R

+ (87 = ##) Zge V() (25)

Hence, Vy-(r) and Vp (r) can be obtained from large
T behavior of certain operator insertions in the Wilson loop

and have long been known from lattice calculations [7,8,24].
The NRQCD Lagrangian density at O(1/m) reads

D? B
Lxroep =y [iDy + — + gcr 7
2m 2mg

D2 B
Dy ——— , 26
+x' [l " 2mg Y2y }){ (26)
where ¢y is a matching coefficient that will eventually be
approximated by its tree level value cr = 1. Since the
Lagrangian above contains a spin-dependent term, we expect
the leading contribution to V' to appear at O(1/mg). We
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can easily get it by matching the following correlation
function at O(1/my),
(O|T{O(r,R",T/2)0} (r,R,~T/2)}|0)
=24*(31*)7(x) (0| T{S(r,R",T/2)H"I (r,R,~T/2)}[0),
(27)
and focusing on the spin-dependent terms. The lhs is
calculated using first order in perturbation theory in 1/m
in NRQCD (26). The rhs is calculated again at first order in

perturbation theory in 1/mg from (18) [recall that VS is
treated as O(1/m,)]. Taking into account (19), we obtain

g (117, dr(FB (5, EB(0, ~T/2))5

<1>1/2< B(0.7/2)#B(0, T/2)>1/2
§s1n (Vg = Vy)T/2) (28)
Vz; - VZ;r
e [tz dt
S

(B(.1)B(0.-7/2) - EB(5. )fB(0. -7/2))1,
(B(0,7/2)B(0,~T/2) — #B(0,T/2)iB(0, -T/2))1?

sin (Vi — Vg )T/2)
=22Vl : 1 .
V2vy Vs

(29)

Notice that the Euclidean version of the objects on the lhs can
be easily calculated on the lattice. At large 7, V and VY can
be then extracted by matching the data to the Euclidean
version of the rhs, once Vz;, V-, and Vy are known. In the
following sections, we are going to derive short and long
distance constraints on these potentials using weak coupling
pPNRQCD [6,12] and the QCD effective string theory [13,14]
respectively.

1. Short distance constraints

At short distances, the time evolution of a QQ pair is
described by the weak coupling regime of pNRQCD [6,12],
the Lagrangian of which has been displayed in (15) at
next-to-leading order in the multipole expansion. The
operators O(r, R, 7) and O%(r, R, ) match onto the singlet
field S(r,R,7) and the operator tr(O(r,R,?)B (R, 1))
respectively. The leading spin-dependent term in the
pNRQCD Lagrangian reads [25]

gc
L' ;Nroep = jTT(OT (r,R,)B(R,7){6,S(r,R,1)})
0

+H.c.. (30)

We use tr for the trace over color indices and Tr for the trace
over both color and spin indices. Notice that the term above
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shows an r-independent interaction between the singlet
field and the operator tr(OB'), which implies that

Vi(r) = Vi(r) = +——. (31)
where 4~ Agcp is a constant, and we have put the sign
explicitly.

2. Long distance constraints

At long distances, the energy spectrum of a static QQ
pair is well described by the QCD effective string theory
(EST) [13,14]. The mapping between operator insertions in
the temporal Wilson lines of the Wilson loop and the
corresponding operators in the EST was established in
Ref. [26], following earlier work [27]. For the relevant
operators to us, it reads

B!(1,1/2) — Ne",0.8"(1.7/2)
Bl(t,-r/2) - Ne™d,0.m (1, —r/2)

B3(t,v/2) —» N"€™5,0.E (1, r/2)0.Em(t,r/2)
B3(t,-r/2) = N"e™D,0,E(t,—r/2)0."(t,—r/2), (32)
where [,m = 1,2. Here, we also need to map the states
created by operator insertions in spacial Wilson lines to the
corresponding states in EST. In order to do so, it is convenient
to take the r along the z axis and write the EST Lagrangian in
terms of the complex field ¢(z, 1) = (E(z,1) + i€ (z, 1))/

\/§ . This field has nice transformation properties under D,
the relevant space group,

R.(0): ¢(z.1) = e“p(z.1)

P: g(z.1) = —¢(-2.1)
Rt 9(z.1) = ¢*(2.0), (33)
where R, (0), P, and R, stand for a rotation of angle & around
the z axis, a parity transformation, and a reflection through

the xz plain respectively. The Lagrangian density at leading
order reads

Lgst = k0,00 ¢, (34)
where k is the string tension and ¢(z, 7) fulfills Dirichlet

boundary conditions, ¢(r/2,1) = @(-r/2,t) =0. ¢(z,1)
can written in terms of creation and annihilation operators:

1 . . .
p(z.0)=> S5 € pn(@)a, + el (2)bi)
n=1 n
1 . .
, (Z) — - (ezE,,z + (_1)n+le—1E,,z)
2F
[ama;rn] = [bnvbj’l] :Tnénm? En :? (35)

PHYSICAL REVIEW D 96, 014004 (2017)

The remaining commutators vanish. al (bj;) on the vacuum
creates a state of energy E,, angular momentum 1 (—1) and
parity (—1)". The reflection with respect to the xz plain
interchanges a, <> b,,. If we define

04(r,0,1)
05 (r,0,1)

= 03 (r,0.1) +i0OF(r,0.1)
= 0} (r,0,1) —i0O} (r,0,1), (36)

then the following identifications fulfill the D, symmetry
requirements,

O'(r,0,-T/2)|0) = |0)

OF (r.0.~T/2)(0) (ajb} = bia3)[0)

K
2\2E,E,

O}(r, 0, -T/2)[0) — , /ZLElem
0} (10.~1/2)0) = = [57-al[0). (7)

Let us perform analogous definitions for the chromomag-
netic fields,

B(t,r) = B!(t,r) +iB%(t,r)
B*(t,r) = B'(t,r) — iB*(t,r). (38)
The mapping (32) then reads
B(t,£r/2) - —ivV2N'3,0.9(£r/2.1)
B (1, +r/2) = iV2N 0,0.¢" (£r/2.1)
B3(t,£r/2) - iN"0,0.¢(£r/2,1)0.¢* (£r/2,t) + H.c..
(39)

Upon substituting the above expressions and (37) in (28), we
obtain

3 /2 g A cr
2mg \/Er
The parameters gA’ ~ Aqcp and gA” ~ Agcp also appear in
the spin-orbit and tensor potentials of a heavy quarkonium

[26,28], which have been calculated on the lattice [24,29].
We obtain from fits to the data of Ref. [30]

2 A
s, mghN"cp
Vi(r) = - mQKr3 ’

Vi(r) = (40)

N ~—59 MeV,  gA” ~+230 MeV.  (41)

Details on the fits are given in Appendix B’

3. Modeling the mixing potential

For the actual mixing potentials, we use a simple
interpolation between (31) and (40) that allows for a sign

“Due to an error in the identification, the value of gA’ displayed
in Ref. [11] as A’ is twice the actual value. This change does not
affect the statements made in that paper.
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flip between the short and long distance expressions
without introducing any further scale, namely,

2 /41 = ()2
wﬁﬁﬂ=%x71é%) @)

ﬂ) , (43)

VE[£](r) = : <1+(L)5

"2
where r = (‘gA ‘”2)2 and ry = (lglzzk‘” )i. Note that the
22%K2

+ in VIl and the first & in V¥ are correlated because both
potentials have the same short distance behavior. We will
explore the following values for the only unknown param-
eter 4, 4 =100, 300, 600 MeV, and all possible sign
combinations for the 17~ charmonium states below and
choose the one that suits the phenomenology best.

B. Mixing equations

Now, we need to include the quark spin degree of
freedom in the equations displayed in Sec. II. Let us write

1
S=— (S() + GkS]l()

PHYSICAL REVIEW D 96, 014004 (2017)

where we have omitted the arguments in S = S(R,r, 7) and
H/ = H/(R,r,1), the subscripts 0 and 1 stand for the total
spin of the quark-antiquark pair, and the superscripts k and i
label the three states in the spin 1 case. Recall that the
superscript j labels the three states of the total angular
momentum 1 of the gluonic degrees of freedom. Then, the
last term in (18) reads

te(STVY{o!, HI}) = 2V (S{TH) + SoTH)).  (45)

Note that this term mixes spin O (1) hybrids with a spin 1 (0)
quarkonium. In view of the decomposition of V;j in (19),
we only need to analyze S|"H), SiTH]##, SoTHY, and
St HJ'##/. Consider the first expression,

Jtgl _ Sf;MP(L)JM _ S@MP(%M
dos| = Y B § AT
JML

where J is the orbital angular momentum, plus the quark
spin for S; and plus the gluonic total angular momentum
for H,, and M is its third component. J = 7 and M = M
are the total angular momentum and its third component

JIML

V2 respectively. L = J, J £ 1 are simply denoted by 0, . We
Hi = L ( H-(’; +ol H{i), (44) have used above the same decomposition for S as the one
V2 used for H/ in (4). For the second expression, we have
|
T B J J(T+1)
itpisisj — — ¢ T - _ -+
/dQSI HOI"I" rZSIJM<2j_|_1P0.7M 27 + 1 PO]M
I e (T+1 . JT+1)
+ﬁ 1jM<2j+1POJM_ 27 + 1 Pogm |- (47)

For the third and fourth expressions, we need to introduce tensor spherical harmonics Y’ iL] w(F) (see Appendix C), which are
eigenfunctions of 2, L7, L2, J?, J?, and J; with eigenvalues 2, 2, L(L + 1), J(J + ) J(J + 1), and M respectively,

withL:J,Jj:I,J:j,Jj:I.Wethenhave

H (r, 1)

= ZMY ()P (). (48)
L]J

We will use 0, £ both for L =J,J+1 and J = 7, J £ 1. Hence,

/ dQS,"H/ =

27 - 23+3
0.7/\/1 2j—|—1 lj/\/l IJM 2j—|—1 lj/\/l (49)

iz II=1) J ;
QS Hi'P Pram= i
/d So ZSW (\/ T+ 12T -1) VM T i NaT £ 1) M

+\/<J+1><J+2>P++

J 1 P ) (50)

QI+1)QT+3) M T +3)2T+1) M

014004-9



RUBEN ONCALA and JOAN SOTO PHYSICAL REVIEW D 96, 014004 (2017)

Putting all together, we get the following sets of coupled equations. For S = 0 hybrids, we have for J # 0

12 gy, (Ve VN (S0 _ (St .
mo 8}’2 mQr2 2V151 Vr[u ngM(r) ngM( ) )
[ (T+1)(T+2) J+1 T(T+1) 1
et TV 0 2("“ +37 Vq) —2vi VT
(J-nHg I)J J(T+1)
L + ’ o TV ~2Vs 57 2<VH+2J+1 Vq) E
mo or* (J+1) (T+1)(T+2 T+
2(V‘ST+2~7J++1l vq) ) vzy+1 mQ(r ) vy +Lv, \/2J+1 v,
J(T+1) T(T+1) (T-1)T 741
L _2Vq 2J+1 2(VH+2J+1 V’I) 27+1 Vq mQrZ +VZ +2‘7-:_1V ]
STJM(")
ST r
N 1+JM( ) o -
POJM<r)
PSJM(’”)

where Vi = V% — VI For J = 0, Egs. (51) do not exist, and Eqs. (52) reduce to two coupled equations for Sy, (r) and
Py (r). For S = 1 hybrids, PT} m(r) and P75 % «(r) do not couple to heavy quarkonium. The remaining do it according to

the following equations for J > 1,

JWI+1) f,;z U4 Vs Vit Vit Vi Vi vl
V;—-&- (\7+riz~)<;7+3> 4Lyt -2V, % ‘72+;71+3‘7+2 0 0 0
o vt v, MR IOy 0 0 0 i
— - +
mg or? _ J(T+1) _ (J-nJg
Vs 0 0 T TV Vet 0
_ T-0T  (T-1)T | 1y
Vs 0 0 R o e 0
v 0 0 0 0 I 1V,
Sogm(r)
PT}M(”)
P?}M(r)
x P+— (r) = 0’ (53)
1IM
Pizm(r)
P?%M(r)
where
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TABLE IV. Spectrum of charmonium ($ = 1) and charmonium hybrids (S = 0): 17~ states. Masses are in GeV. The % columns show
the fraction of the hybrid components for the mass states in the previous column. m, = 1.47 GeV.

Vi, Vil++] Vi), Vil+-] V=], V5[] Vil V5[]
NL, A=0 % 2=03 % 21=06 % 2=03 % A1=06 % A=03 % A=06 % A=03 % A1=06 %
Ls 3.068 0 3.064 0 3.001 4 3.066 0 3.053 0 3.063 0 3.036 2 3.061 1 2989 6
2s 3678 0 3.672 1 3.628 14 3.677 1 3.670 4 3.677 0 3.661 4 3.672 1 3.630 7
ld 3793 0 3.773 4 3.687 12 3.790 1 378 2 3792 0 3789 0 3.782 1 3712 7
1(s/d); 4.011 100 4.016 96 4.014 71 4.012 99 4.004 96 4.014 99 4.025 99 4016 98 4.040 85
3s 4131 0 4.127 0 4.107 10 4.128 1 4130 7 4.130 0 4.125 10 4.128 2 4103 12
2d 4210 0 4203 20 4.180 79 4209 10 4.207 39 4.209 2 4205 5 4.204 1 4172 52
2(s/d), 4355 100 4.358 97 4366 65 4.356 98 4.355 89 4357 100 4.368 94 4357 100 4.383 86
4s 4512 0 4515 0 4497 0 4517 1 4513 7 4517 0 4508 8 4515 1 4495 0
3d 4579 0 4.573 2 4559 8 4578 0 4574 5 4578 1 4568 7 4574 0 4550 3
3(s/d); 4.692 100 4.699 98 4711 83 4.694 99 4.699 93 4.693 100 4.699 97 4.698 99 4.724 90
4(s/d), 47718 100 4.730 100 4.785 96 4.719 100 4.718 98 4.720 100 4.728 98 4.728 100 4.779 97
Ss 4865 0 4.8064 0 4848 3 4.865 0 4865 7 4.865 0 4867 7 4.864 1 4846 2
4d 4916 0 4913 7 4903 35 4915 2 4915 19 40915 0 4912 12 4913 3 4894 21
5(s/d), 5.043 100 5.044 99 5.046 84 5043 99 5.043 94 5044 100 5.050 97 5.044 100 5.067 93

identification is that all three states have been observed
to decay to spin 1 quarkonium states, which violates spin
symmetry. However, according to Eq. (52), the spin zero
hybrids mix with spin 1 quarkonium, and hence, if this
mixing is large, we may find a natural explanation to these
decays. We present our results in Table IV (the case 1 =

2T+1)(2T+3) S

J+1 2T +3
Vit =- viey/ v
S /eI 3)eg+) P V2T e

v;*:\/( (T+DIT+2) |,

T J Ve _yn VQRI-1)(2J+1) 100 MeV is not displayed; it produces a tin.y mixing in all
S V2I+3)2T-1) s 7S 27 +1 cases). We observed that the case that provides the largest
amount of mixing is the combination V§ [+—] with V¥[++]
V- \/ J(T-1) Ve and 4 = 600 MeV. This is the sign combination and the
s T+1)2T-1) S value of 1 that we will take for the rest of the paper. The
T4l spectrum of charmonium and charmonium hybrids is given
Vit =Vvy +——=V, in Tables IV-XII, and the one of bottomonium and
t2J+3 bottomonium hybrids is given in Tables XIII-XX. The
Vot =Vy 4 J+2 % general tr'end (with a few exce.ptions) is that hybrid states
2T +43 01 get heavier whereas quarkonium states get lighter due

i J-1 the mixing.
VT=Vy +ﬁvq Since we have used the leading order potential for both
7 quarkonium and hybrids, the potentials we missed start at
V7T =Vs- +qu. (54) order 1/m,. Hence, the error to assign to this calculation for

For J =0, P%,(r), Pio(r), and P{5(r) do not exist,
and the system reduces to the three upper equations.
P95, (r), which does not couple to a heavy quarkonium,
does not exist, either. For J =1, Pij,(r) does not
exist, and the system above reduces to five coupled
equations.

C. Spectrum

In order to fix the signs and the parameter A of the mixing
potentials, we focus on the spin zero n(s/d), (n = 1, 2, 3)
states in Table I, which can be identified with ¥ (4008),
Y(4360), and Y(4660). The main problem with this

the hybrids is AéCD /mg, since Aqcp is the next relevant
scale. For a quarkonium, this is not always the case, since the
typical momenta can be larger than Agcp. A detailed error
analysis is carried out in the Appendix A. For simplicity, we
will stick to the AéCD /mg estimate for quarkonium as well.
Taking Agcp ~ 400 MeV, we obtain a precision of about
110 MeV for charmonium and 33 MeV for bottomonium.
These are the numbers we will have in mind when compar-
ing to experiment and to other approaches.

V. COMPARISON WITH OTHER APPROACHES

In this section, we compare our results with other QCD-
based approaches. For convenience, we will compare our
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results for the spectrum in the case 4 = 0 (no mixing). The
shifts in the spectrum due to mixing are within our
estimated errors.

A. Born-Oppenheimer approximation

In Ref. [4], the lower lying bottomonium hybrid spec-
trum was calculated from the static potentials I, and X
and normalized to the bottomonium spectrum. The mixing
between hybrid states built out of these potentials that
appears at leading order due to the kinetic term of the heavy
quarks was ignored. The masses obtained for H; (1(s/d),),
H, (1py), H3 (1pg), and H) (2(s/d),) are between 150 and
300 MeV heavier than ours. This is probably due to the
different choice of the bottom quark mass.

In Ref. [9], the lower lying hybrid spectrum was
calculated as above. However, for charmonium, the ground
state for each potential was fixed to the lattice data of
Ref. [31]. The mixing between hybrid states was also
ignored. If we compare the splittings obtained from Table X
of Ref. [9] with those obtained from our Tables I and II, we
find agreement within 20 MeV, except for the H,-H | case
for which we obtain a lower value by about 40 MeV and the
H', — H; case for which we obtain a higher value of about
70 MeV. We have identified the states Hy, H', H,, H}, HY,
H;(1P), and H, with 1(s/d),, 2(s/d),, 1py, 1d,, 2py,
3(s/d),, and 1(p/f), respectively.

Our hybrid spectrum is compatible within errors
with that of Ref. [10] both for charmonium and botto-
monium, except for the bottomonium 1(s/d), and 2p,
states, for which we have slightly lower masses. Our
central values tend to be at the lower end of their error
bars. Although the construction of the effective theory for
hybrids is somewhat different and the parametrization of
the potentials is as well, the most relevant difference is
probably the normalization of the spectrum. Indeed, in
Ref. [10], the hybrid spectrum is normalized using the
charm and bottom masses in the renormalon subtraction
(RS) scheme [32], whereas here we normalize it to the
corresponding quarkonium spectrum, which is not calcu-
lated in that reference. We have checked that we reproduce
the results of Ref. [10] with our code if we input their
potentials.3

B. Lattice QCD

In Ref. [33], the spectrum of the lightest exotic charmo-
nium hybrids is calculated in the quenched approximation
for a relativistic charm action in an anisotropic lattice
(a;, = 0.197 = 0.09 fm, a,/a, = 2). Their results for the
17", 07—, and 2%~ states are between 400 and 700 MeV
higher than ours.

*We have also checked that our results are reproduced by the
code of Ref. [10] if our potentials are input. We thank the authors
of that reference for providing their code for the test.
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There has been a recent update [34] of earlier results
[31] by the Hadronic Spectrum Collaboration for the
charmonium spectrum including hybrid states. They use
relativistic charm and dynamical light quarks in an
anisotropic lattice with temporal spacing a; ~0.034 fm
and spatial spacing a; ~0.12 fm. The update basically
consists of taking up and down quark masses smaller
than in the previous calculation (m, ~240 MeV and
m, ~ 400 MeV respectively). The hierarchy of the low-
est lying hybrid multiplets agrees with ours, from lighter
to heavier: 1(s/d),, 1py, 1(p/f),, and 1p,. However,
their numbers are considerably larger than ours: 381,
326, 392, and 151 MeV higher for the spin average of
the 1(s/d),, 1p;, 1(p/f),, and 1p, multiplets respec-
tively. The hierarchy in which quarkonium and hybrid
states arise agrees for the 17" (four states) and 17~ (six
states) quantum numbers but disagrees for the remaining
nonexotic ones.

In Ref. [35], the lower lying charmonium spectrum is
also calculated with four dynamical quarks in a Wilson
twisted mass action. Lattice spacings ranging from
0.0619 fm to 0.0885 fm and pion masses ranging from
225 to 470 MeV are used, and both the continuum and
the chiral extrapolations are carried out. They find a 17~
state at 3951 MeV that is compatible with our 1(s/d), spin
zero hybrid state (4011 MeV). With less significance, they
also find two 2** states at about 4460 and 4530 MeV
which are compatible with our 2f quarkonium
(4428 MeV) and 2(p/f), spin zero hybrid (4563 MeV)
respectively.

In Ref. [4], the bottomonium hybrid spectrum is calcu-
lated in quenched lattice NRQCD using an anisotropic
lattice (a; ~0.11 fm, a,/a, = 3). They find the lightest
hybrid H; (1(s/d);) 1.49(2)(5) GeV above the 1S quarko-
nium; this is about 250 MeV heavier than ours. About
the same difference is also found for H, (1p;) and H;
(1po), whereas for H, (2(s/d),), the difference rises to
470 MeV.

For the bottomonium, there is also a quenched lattice
calculation with relativistic bottom quarks in an anisotropic
lattice (a; ~ 0.04—0.17 fm, a,/a, = 4, 5) [36]. The masses
for the lightest 27~, 17, and 2%~ hybrids are displayed,
which turn out to be either lighter (277) or heavier (1~ and
277) than our results, in spite of the large errors (200—
600 MeV).

C. QCD sum rules

In Ref. [37], the hybrid spectrum for charmonium and
bottomonium is calculated.

For charmonium, the quantum numbers of their lightest
hybrid multiplet coincide with ours (1(s/d),), and the
masses are compatible with ours for the 17" and 277 states
within errors (between 150 and 230 MeV), but below for
the 0" and 17 states. For spin zero hybrids, they obtain a
2%+ state (1(p/f),) as the second lighter state, whereas we
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have a 17" state (1p;). The mass of the 27 state is,
nevertheless, compatible with ours within the large errors,
but the masses of the 17" and 0™ states are higher. The
masses of the spin 1 hybrids 0™~ and 17~ are compatible,
again within large errors.

For the bottomonium, they obtain the same hierarchy of
multiplets as in the charmonium. However, the larger errors
make it now compatible with ours, even though the central
values are not. The masses of the lightest multiplet are
considerably lower than ours, but the ones of the remaining
multiplets (17,07, 177; 2", 0" ") are compatible within
large errors.

VI. COMPARISON WITH EXPERIMENT

In this section, we compare experimental results with
ours in the case of maximum mixing, that is, with the
results displayed on the sixth column of Table IV and on
the fourth column of Tables VI-XX. As mentioned before,
the shifts in the spectrum due to mixing are not very
important. However, the violations of heavy quark spin
symmetry induced by the mixing are crucial to map our
results to the XYZ states. We omit in the analysis the
neutral states that have been identified as isospin partners of
charged states.

A. Charm

(i) X(3823) [18] is compatible with our 27~ charmo-
nium 1d state (3792 MeV).

X(3872) [18] is compatible with our 17+ charmo-
nium 2p states (3967 MeV). Since it sits at the
D°D% threshold, it is expected to have a large
mixing with those states that we have not taken into
account.

X(3915) and X(3940) [18] are also compatible
with our charmonium 2p states (3968 MeV). Since
they are close to the D D, threshold (3936 MeV),
the 0" states may have a large mixing with those
states.

Y(4008) [38] is compatible with our 17~ hybrid
1(s/d), (H,) state (4004 MeV). It mixes with a
spin 1 charmonium (see column 7 in Table IV and
Fig. 6), which may explain the observed spin
symmetry violating decays.

X (4140) [39] and X (4160) [18] are compatible with
our 17F hybrid 1p, (H,) state (4146 MeV). Since
the quantum numbers of X(4160) have not been
established, it may also correspond to the 1(p/f),
hybrid or to the scalar 3s or 2d states. The fact that
no decays to charmonium of the 1p; state are
allowed at leading order is consistent with the fact
that no such decays have been observed so far for
X(4160), which selects it as our favorite hybrid
candidate for that state. If so, there is no room
for the X(4140) (1™*) in our spectrum. These

(ii)

(iif)

(iv)

)
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FIG. 6. The wave function of the charmonium 17~ 1(s/d),
state.

states may be affected by the DD, threshold
(4080 MeV).

X(4230) and Y (4260) [18] are compatible with our
17~ charmonium 2d state (4180 MeV). It may have a
dominant spin zero hybrid component (see Table I'V),
which may help us to understand the recent results
by the BESSIII Collaboration [40]. Indeed, in
Ref. [41], it is claimed that the former Y(4260)
peak observed in z*z~J/y invariant mass actually
consists of two resonances Y(4220) and Y (4390).
The parameters of the first resonance are com-
patible with the ones of X(4230). They are also
compatible with the ones of one of the structures
observed in zTx~h,. [42]. The large hybrid
component (see Fig. 7) may explain why it is
also observed in this second channel, which
would be suppressed by spin symmetry other-
wise. It may also be affected by the DD thresh-
old (4290 MeV).

(vi)

4.18015
04

—— Py

[G'eVl“)

Wave function

04 1 1 L 1 J
0 5 10 15 20 25

r  (GeV7h)

FIG. 7. The wave function of the charmonium 1~ 2d state.
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Y(4274) [39] is compatible with our 17+ charmo-
nium 3 p state (4368 MeV). It may be affected by the
DD} threshold (4224 MeV).

X(4350) [18] is compatible with our spin 1 2(s/d),
hybrid states (4355 MeV) and charmonium 3 p states
(4369 MeV).

Y(4320), Y(4360), and Y(4390) [18,41,42] are
compatible with our spin zero 17~ hybrid 2(s/d),
(H)) state (4366 MeV). Spin symmetry would in
principle favor the latter, as it is observed in the
#tr~h, channel rather than in the z*z~J/y chan-
nel. However, the large mixing with a spin 1
charmonium (see Table IV and Fig. 8) makes the
two first ones also acceptable. The absence of any
other state in this region in Table IV leaves two of
them with no assignment. They may be affected by
the D;D* threshold (4407 MeV).

X(4500) [39] is compatible with our 0" hybrid 1p,
(H3) state (4566 MeV). However, it mixes very little

4.56579

—+— Pl

— S0

15 20 25
r (GeV™!)

The wave function of the charmonium 0% 1p, state.
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FIG. 10. The wave function of the charmonium 17~ 3(s/d),

state.

(xi)

(xii)

(xiii)

with the spin 1 charmonium (see Table VI and
Fig. 9), which does not help us to understand the
observation in the J/w¢ channel. It may be affected
by the D(2550)D* threshold (4557 MeV).
Y(4630) [18] is compatible with our 1~ charmo-
nium 3d state (4559 MeV). It may be affected by the
D, D thresholds (4572 and 4648 MeV).

Y (4660) [18] is compatible with our spin zero 17~
hybrid 3(s/d), (HY) state (4711 MeV). The mixing
with the spin 1 charmonium (see Table IV and
Fig. 10) may explain the observed decays to vector
charmonium. It may be affected by the DD and
D%, Dy* thresholds (4648 and 4685 MeV).
X(4700) [39] is compatible with our 0" " charmo-
nium 4p state (4703 MeV).

The assignments above can be visualized in Fig. 11.

®

(i)

(iii)

We
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B. Bottom

T(10860) [18,43] is compatible with our 17~
bottomonium 5 state (10 881 MeV). Upon mixing,
it becomes lighter than the spin zero 2(s/d), hybrid
nearby (see Table XIII and Fig. 12). Mixing may
also explain the large spin symmetry violating
decays to "z~ h, [44].

Y,(10890) [45] is compatible with our spin zero
17~ hybrid 2(s/d), state (10890 MeV). Upon
mixing, it becomes heavier than the 5s bottomonium
nearby (see Table XIII and Fig. 13).

T(11020) [18,43] is about 1o heavier than our 17~
bottomonium 4d state (10942 MeV). It may be
affected by the BB threshold (11000 MeV).

VII. DISCUSSION

have compared our results to other QCD-based

approaches in Sec. V. We find good agreement with
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FIG. 11. Charmonium spectrum including hybrids. The height

of the boxes corresponds to the error estimated at the end of
Sec. IV C. Blue boxes correspond to a quarkonium, red boxes
correspond to (s/d), and (p/f), hybrids, cyan boxes corre-
spond to p; and d, hybrids, and green boxes correspond to p
hybrids. The black lines are experimental resonances assigned
according to the discussion in Sec. VI. Solid (dashed) lines are
resonances with a single (multiple) possible assignment(s). The
widths of the boxes are chosen arbitrarily in order to facilitate
identifications.

Born-Oppenheimer approaches that have appeared recently
in the literature [9,10], as expected. However, the agree-
ment with QCD sum rules and lattice QCD calculations is
marginal. The lattice calculations in anisotropic lattices
and unphysical quark masses tend to give a heavier
hybrid spectrum, both in relativistic implementations of
heavy quarks [34,36] as well as in lattice NRQCD [4].
Nevertheless, in Ref. [35], a lattice calculation in which
both the continuum and the chiral extrapolations are carried
out, the three states found that are not identified with
known quarkonia fit well in our spectrum. In particular,

10.8899
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FIG. 12. The wave function of the bottomonium 17~ 5s state.
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The wave function of the bottomonium 17~ 2(s/d),

the 17~ state is compatible with the one in our lightest
hybrid multiplet.

It is remarkable that the gross features of the exper-
imental charmonium and bottomonium spectrum, includ-
ing isospin zero XYZ states, can be understood from our
results. The main improvement with respect to previous
works is that, in addition to the Cornell potential for the
quarkonium sector and the Born-Oppenheimer potentials
for the hybrid sector, we include the leading mixing term
between those sectors. The mixing term implies that the
actual physical states are a superposition of spin zero (1)
hybrids and spin 1 (zero) quarkonium. This facilitates the
identification of certain Y states as hybrids, since other-
wise the apparent spin symmetry violating decays were
difficult to understand [10]. We would like to emphasize
that the mixing term we use is essentially derived from
NRQCD, and hence from QCD. Its short and long distance
behaviors are obtained in a model-independent way.
The model dependence comes in through the interpolation
we use. We have chosen the sign combination and a value
of the free parameter such that a large mixing is favored. It
would be very important to have a lattice evaluation
of the mixing potential to validate these choices (or
otherwise). We have produced formulas (28) that can
be easily implemented on the lattice (see for instance
Refs. [29,46]).

There appear to be too many known isospin zero 17~
charmonium resonances to fit our spectrum in Table IV
(see also Fig. 11). If we assign the Y (4008) to the 1(s/d),
state, then y(4040) and y(4160) naturally fall into the 3s
and 2d states respectively. However, the X (4230)/Y (4220)
are also candidates for the 2d state. A possible way out
would be to disregard Y(4008), as it is a very wide
resonance that has only been observed by Belle. Then,
w(4040) would be assigned to the 1(s/d), state, y(4160)
to the 3s state, and X (4230)/Y(4220) to the 2d state. The
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fact that the 1(s/d), state has about a 30% quarkonium
component according to the seventh column of Table IV
(see also Fig. 6) may explain why it has been labeled as
w(4040). For the next state, 2(s/d),, there are three
competing resonances Y(4320), Y(4360), and Y(4390).
This makes us suspect that they could correspond to the
same state. Indeed, the decay widths of Y(4320) and
Y (4360) are compatible and the one of ¥ (4390) is less than
lo away. Concerning the masses, Y (4320) and Y (4360)
are less than 1o away, but Y(4390) is more than 50
away, which casts some doubts on the suggested identi-
fication. Leaving this puzzle aside, there would only be
one state to be discovered below the Y(4660), the 3d
around 4560 MeV.

If we assume for the 2(s/d), states the mixing displayed
in column 7 of Table IV and the decay width in Table III for
the hybrid component, we obtain

(Y (4320/4360/4390) — h, + Lh.) = 14(12) MeV,
(55)

where 1.h. stands for light hadrons. Analogously, for the
X (4230)/Y(4220) state, we have

(X (4230)/Y(4220) - h, +1. h.) = 17(15) MeV. (56)

Concerning the 17~ bottomonium resonances, all of
them fit in our spectrum in Table XIII. In addition, there
should be three states still to be discovered below the
Y(10860), the 2d, 1(s/d),, and 3d around 10440, 10 690,
and 10710 MeV respectively.

If we take the mixing in column 5 of Table XIII and
the decay width in Table III for the hybrid component, we
can also estimate the following decay widths for the
bottomonium:

T(T(10860) — hy, + 1.h.) = 3(1) MeV
I(Y,(10890) — h, +Lh.) = 13(6) MeV.  (57)

According to our identifications in Sec. VI, we can infer
the quantum numbers of some XYZ states:

(i) X(3915) should be the y’, (07).

(i) X(3940) should be the Al (177).

It is important to keep in mind that there are further
1/mg corrections to the hybrid spectrum beyond those that
induce mixing between hybrids and quarkonia we have
focused on. In particular, the fine and hyperfine splittings of
hybrids may appear at O(1/m) rather than at O(1/ sz)
as those of the quarkonium. Indeed, the following terms are
compatible with the symmetries of (3),

i€k VS (r)tr(H' [6*, HY)), (58)

iR VE(r)tr(HTLYHT) (59)

PHYSICAL REVIEW D 96, 014004 (2017)

(L is the angular momentum operator), and may appear at
O(1/mg) in the matching to NRQCD.

Before closing, let us briefly discuss the important
question of how the lattice potentials we use (Fig. 1)
may change in the case ny =3 (three light quarks). We
know that Z; does not change much, and this is also so for
I1, [47], at least up to moderately large distances. Nothing
is known about X7, but there is no reason to expect a
different behavior. Two major qualitative features arise,
though. The first one is the appearance of heavy-light
meson pairs, which amount to roughly horizontal lines at
the threshold energies in Fig. 1. These states interact with
the remaining potentials already at leading order and may
in principle produce important distortions with respect to
the ny = 0 case. In practice, we only know how they cross-
talk to the X} state and turn out to produce a tiny
disturbance to the spectrum, apart from avoiding level
crossing [48]. Hence, we expect the effects of n; # 0 to be
important only when our states are very close to some
heavy-light meson pair threshold. This is the reason why
we quoted the location of nearby thresholds when identi-
fying our hybrid candidates with XYZ states in Sec. VL
The second one is the appearance of light quark excitations,
in addition to the gluon ones, in the static spectrum of
Fig. 1. They may have different quantum numbers, for
instance nonzero isospin (in this case, they may be relevant
to the experimentally discovered charged Z states). We do
not know anything about those, and as pointed out in
Ref. [49] and more recently emphasized in Refs. [9,50], it
would be extremely important to have lattice QCD eval-
uations of the static energies of light quark excitations.
We suspect that light quark excitations with the same
quantum numbers as the gluonic ones will only pro-
vide small modifications to the hybrid potentials, since
they correspond to higher-dimensional operators. In this
respect, it is significant that tetraquark models also
have difficulties in encompassing the X(4140) in their
spectrum together with X(4237), X(4500), and X(4700)
[51]. In fact, the X(4140) structure may be due to a
threshold enhancement according to some authors
[52-54]. This means that tetraquarks with the same
quantum numbers as hybrids will in general be hidden
in the spectrum of the latter.

VIII. CONCLUSIONS

We have calculated the charmonium and bottomonium
hybrid spectrum in a QCD-based approach, including for
the first time the mixing with standard charmonium and
bottomonium states. The latter leads to enhanced spin
symmetry violations, which are instrumental in identifying
a number of XYZ states as hybrid states. Most of the
isospin zero XYZ states fit well in our spectrum, either as
hybrids or as standard quarkonium states. We have also
estimated several decay widths.
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APPENDIX A: QUARKONIUM

A conventional quarkonium, namely, QQ in a color
singlet state, can be described by the Schrodinger equation
using the ground state potential Vzg(r),

VZ
h=——+4 Vs (r). Al
o Va0 (A1)
We approximate V. (r) by the Cornell potential,
ky 00
Vi (r) ~ —7+agr—|—Eg . (A2)
where we take
ky = 0.489, o, =0.187 GeV?, (A3)
which describes lattice data well; see Fig. 2. EgQQ

will be tuned independently for the charmonium
and bottomonium. We write the wave function as S(r) =

R"T(r) Y (0, ¢), which leads to the reduced equation:

1 & L(L+1)

(A4)

The different eigenvalues of this equation correspond to the
energy levels of a heavy quarkonium, many of which have
been experimentally confirmed for the charmonium and

bottomonium [18]. We fix EgQQ by making the charmonium
and bottomonium spectrum to best agree with the respec-
tive experimental spin averages. We obtain

E¥ =-0242 GeV,  EY =-0228 GeV. (A5)
Table V shows the results in terms of M5 = 2mg + E for
Q = ¢, b of Eq. (A4) for the lower nL energy states. It also

shows the expectation value of the momentum, the inverse
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TABLE V. Masses, average momentum, inverse radii, expected
sizes of higher order contributions (1/mg potential, 1/ sz
velocity-dependent potential, 1/ sz velocity-independent poten-
tials, 1/ mz) kinetic energy), and estimated errors (in MeV) for the
charmonium (upper) and bottomonium (lower). The error is
estimated by summing in quadrature the expected sizes of the
higher order contributions (see the text for details on the latter).
We have taken m, = 1.47 GeV and m;, = 4.88 GeV. The ex-
perimental numbers are displayed in the last column.

nL Moy (p) gy YD vy V) 2 AMgp  Eeg
2 my, mg Q

Is 3068 738 518 54 71 35 12 96 3068
2s 3678 836 259 109 129 30 19 173 3674
3s 4130 935 186 109 162 30 30 199 4039
4s 4517 1019 149 109 192 30 42 227 4421
S5s 4865 1097 127 109 223 30 57 256 ?
Ip 3494 753 317 109 105 30 13 155 3525
2p 3968 871 209 109 140 30 23 182 3927
3p 4369 966 162 109 173 30 34 209 ?
4p 4726 1048 135 109 203 30 47 237 ?
Sp 5055 1136 119 109 239 30 66 272 ?
1s 9442 1546 1028 29 37 17 6 50 9445
2s 10009 1408 432 14 22 2 4 26 10017
3s 10356 1494 295 33 38 3 5 50 10355
4s 10638 1594 232 33 43 3 7 54 10579
S5s 10885 1692 195 33 48 3 9 59 10876
Ip 9908 1268 531 17 19 3 3 26 9900
2p 10265 1386 332 33 32 3 4 46 10260
3p 10553 1504 252 33 38 3 5 51 ?
4p 10806 1612 207 33 44 3 7 55 ?
S5p 11035 1727 180 33 50 3 10 61 ?

radius, the expected size of the higher order corrections,
and our error estimate. V(1) V(UZ[,) (velocity dependent), and

V(ﬁ) (velocity independent) depend on Agcp and r. We take
Agcp =400 MeV  and  estimate them as follows. If
Aqcp > 1/(r), we take them as Ajcp, Aqep(p)?, and
Adep respectively. If Agep < 1/(r), we take them accord-
ing to the weak coupling scalings a?/(r)?, a,(p)?/(r), and
a,/{r)? respectively, where a, is the one-loop running
coupling constant evaluated at the scale 1/(r). The total
error is obtained by summing in quadrature these estimates
and the relativistic correction to the kinetic energy dis-
played in the eighth column. We observe that the errors for
the charmonium are rather large and are dominated by the
velocity-dependent potential. We also display the exper-
imental results in the last column.

APPENDIX B: EXTRACTION OF gA’ AND gA”
FROM LATTICE DATA

g\ and gA” also appear in the 1 /m2Q quarkonium

potentials [26,28]. Following the notation of Ref. [30], we
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b e T

FIG. 14.  V’(r) in units of r,? against r units of r,, r, ~ 0.5 fm.

have that the long distance behavior of the spin-orbit,
tensor, and spin-spin potentials reads

2A2A/ /
_ (1 2cpg”AN°N 2epgA
Vi(r) = 2rVys, = — oo i
3.2 2A2
(1.1) o 2 CFg A
V3(r) = 12VS]2 = —15K2r5
3.2 2AM2
Ly TCEg A
Vy(r) = 3‘/(52 = W (B1)

We shall take the tree level value for cp, ¢y = 1.
For the spin-orbit potential, a simple interpolation of the
expected long and short distance behavior, namely,

A B
Vi) =442
5(r) r2+r

(B2)
already produces a good fit to data (R?> = 0.998; see
Fig. 14). We obtain A = 0.181 and B = 0.295 in units
of ry, which translates to |gA’| = 0.059 GeV. If we restrict
ourselves to the longer distance points (from seven to three)
and fit the expected long distance behavior only, we obtain
worse fits (R> < 0.977) with numbers about 40% higher,
which may serve to estimate the error.

For the tensor potential, the following interpolation,
which also has the right short and long distance behaviors,
produces a good fit to data (R? = 0.996; see Fig. 15):

(B3)

We obtain C = 0.191 and D = 1.00 in units of r(, which
translates to [gA”| = 0.230 GeV. We have checked that if
we restrict ourselves to the longer distance points (from
seven to three) and fit the expected long distance behavior
only, we obtain numbers compatible with the latter within a
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FIG. 15. V;3(r) in units of r;?
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against r in units of r,,

35% error. |gA"”| may also be obtained from the long
distance behavior of the spin-spin potential. However, we
have not been able to find a good fit to the data of Ref. [30],
neither using simple interpolations between the expected
short and long distance behavior nor to the expected long
distance behavior for the longer distance points (from nine
to three).

APPENDIX C: TENSOR SPHERICAL
HARMONICS

We follow the notation of Ref. [15]. We define

Y7 = > CULTM-w)Yh, . (Cl)
v=0,%1
where Y4, are the vector spherical harmonics,
Yk = > CILALEM —pu)Y) ™yl (C2)
p=0.%1
where Y are the usual spherical harmonics and
] 1 0
A+l NG . Xo ) (C3)

C(JJ2J; M M,) are the Clebsch-Gordan coefficients.

APPENDIX D: SPECTRUM

We display in this Appendix the tables for the full
charmonium and bottomonium spectrum up to J = 2,
which includes hybrids and quarkonia states, except
for the charmonium 17~ case that is displayed in
Table IV.
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TABLE VI. Spectrum of charmonium (S = 1) and hybrids
(S = 0): 0" states. Masses are in GeV. The % columns show the
fraction of the hybrid components for the mass states in the
previous column. The mixing potentials are fixed to V[+—] and
VE[++]. m. = 1.47 GeV.

PHYSICAL REVIEW D 96, 014004 (2017)

TABLE X. Spectrum of charmonium (S = 0) and charmonium
hybrids (S = 1): 07" states. Masses are in GeV. The % columns
show the fraction of the hybrid components for the mass states in
the previous column. The mixing potentials are fixed to V[-+-]
and VE[++]. m, = 1.47 GeV.

NL, 1=0 % 1=0.6 %  NL, 1=0 % 1=0.6 %
lp 3.494 0 3.396 1s 3.068 0 2913
gl’ Z-zgg g iggg L 3.678 0 3.591 8
120 4486 100 4566 og  1(s/d), 4.011 100 4.033 99
4p 4.727 0 4.703 9 3s 4.131 0 4.069 1
2po 4.920 100 4.965 94 2(s/d), 4355 100 4375 92
5p 5.055 0 5.034 1 4 4512 0 4.468 7
3(s/d), 4.692 100 4.719 99
. 4(s/d), 4.718 100 4.781 96
TABLE VII. Same as in Table VI for 177 states. s 4865 0 4823 0
NL, 1=0 % 1=0.6 % 5(s/d), 5.043 100 5.055 96
1p 3.494 0 3.492 0
2[7 3.968 0 3.967 0 TABLE XI. Same as in Table X for 17~ states.
1 4.145 100 4.146 100
321 4.369 0 4.368 o NL A=0 % 4=06 %
2p, 4.511 100 4.512 100 1p 3.494 0 3.333 9
gi ! g:ggg 108 ;‘:ggg 9? 1p, 4145 100 4.146 100
1(p/f), 4231 100 4.242 99
3p 4369 0 4.320 1
TABLE VIII. Same as in Table VI for 2+ states. 1po 4.486 100 4.511 98
2p, 4511 100 4.526 100
NL, 4=0 % 4=06 % 2(p/f)s 4563 100 4.590 95
1p 3.494 0 3.424 5 4p 4.727 0 4.686 8
2p 3.968 0 3.937 7 3p; 4863 100 4.863 100
1f 4.047 0 3.981 1 3/ 4886 100 4.901 99
1(p/f), 4231 100 4.240 81  2po 4920 100 4.936 95
3p 4.369 0 4.350 o 4r/f): 4923 100 4.959 100
2f 4.428 0 4.391 77 AP 5.055 0 5.020 7
2(p/f), 4.563 100 4.579 53
4p 4727 0 4.709 3 TABLE XII. Same as in Table X for 27" states.
3f 4775 0 4752 N, -0 % =06 %
3(p/f), 4.886 100 4.909 78
A(p/f), 4923 100 4952 o4 1 3.793 0 3.721 6
5p 5055 0 5 040 4 ls/a) 4011 100 4.014 75
2d 4.210 0 4.199 80
1d, 4334 100 4335 100
TABLE IX. Same as in Table VI for 27~ states 2(s/d), 4.355 100 4.353 73
: : 1(d/g), 4.435 100 4.443 100
NL, A1=0 % 1=0.6 % 3d 4.579 0 4.571 11
” 3793 5 3700 5 3(s/d) 4.692 100 4.690 97
24 4210 0 1200 | 2 4.693 100 4.694 98
1d, 4334 100 4335 100 4(s/d), 4718 100 4713 96
3d 4.579 0 4.578 0 2(d/g)s 4.763 100 4.774 90
2d, 4.693 100 4.694 99  4d 4916 0 4911 27
4d 4916 0 4915 0 3d, 5.036 100 5.037 95
3d, 5.036 100 5.037 100 5(s/d), 5.043 100 5.084 98
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TABLE XIII. Spectrum of bottomonium (S = 1) and hybrids TABLE XVII. Same as in Table XIII for 27~ states.
(S = 0): 17~ states. Masses are in GeV. The % columns show the
fraction of the hybrid components for the mass states in the NL, A4=0 % 4=0.6 %
previous column. The mixing potentials are fixed to V?H—] and 1d 10.155 0 10.155 0
VE[4++]. m, = 4.88 GeV. 2d 10.453 0 10.454 0
3d 10.712 0 10.713 0
NL, 4=0 % 4 =06 % 1d, 10.870 100 10.870 100
ls 9.442 0 0.441 0 4d 10.947 0 10.947 0
25 10.009 0 10.000 ) 2d, 11.074 100 10.074 100
1d 10.155 0 10.133 2
3s 10.356 0 10.352 0
2d 10.454 0 10.440 2
4s 10.638 0 10.635 1 TABLE XVIIL.  Spectrum of bottomonium (S = 0) and botto-
1(s/d), 10.690 100 10.688 79 monium hybrids (S = 1): 0" states. Masses are in GeV. The %
3d 10.712 0 10.713 56 columns show the fraction of the hybrid components for the mass
2(s/d), 10.885 100 10.881 17 states in the previous column. The mixing potentials are fixed to
Ss 10.886 0 10.890 75 V§[+-] and V5[++]. m;, = 4.88 GeV.
4d 10.947 0 10.942 11
3(s/d), 11.084 100 11.086 98 NL, 4=0 % 4=06 %
1s 9.442 0 9.427 1
2s 10.009 0 9.987 3
3s 10.356 0 10.343 1
TABLE XIV. Same as in Table XIII for 0" states. 4s 10.638 0 10.629 3
1(s/d), 10.690 100 10.693 99
NL, 4=0 % 4=0.6 % 5s 10.886 0 10.877 16
1p 9.908 0 9.907 0 2(s/d), 10.885 100 10.890 81
2p 10.265 0 10.264 0 3(s/d), 11.084 100 11.086 95
3p 10.553 0 10.553 0
4p 10.806 0 10.805 0
1po 11.011 100 11.013 99
TABLE XIX. Same as in Table XVIII for 17~ states.
NL, A=0 % A=0.6 %
TABLE XV. Same as in Table XIII for 17" states. 1p 9.908 0 0.886 2
2p 10.265 0 10.249 2
NL, A=0 % 4=06 % 3p 10.553 0 10.543 0
1p 9.908 0 9.908 0 1p; 10.761 100 10.761 100
2p 10.265 0 10.265 0 4p 10.806 0 10.798 1
3p 10.553 0 10.553 0o 1p/f) 10.819 100 10.820 100
1p, 10.761 100 10.761 99  2p 10.970 100 10.969 100
1p 10.806 0 10.806 0 1po 11.011 100 11.006 100
2p, 10.970 100 10.970 99
5p 11.034 0 11.035 0
TABLE XVI. Same as in Table XIII for 2+ states. TABLE XX. Same as in Table XVIII for 2=+ states.
NL, A=0 % 4=0.6 % NL, A=0 % 2=0.6 %
Ip 9.908 0 9.898 1 1d 10.155 0 10.144 2
2p 10.265 0 10.258 1 2d 10.454 0 10.444 3
1f 10.348 0 10.331 2 1(s/d), 10.690 100 10.685 82
3p 10.553 0 10.549 0 3d 10.712 0 10.717 52
2f 10.615 0 10.603 5 1d, 10.870 100 10.870 100
4p 10.806 0 10.801 13 2(s/d), 10.885 100 10.886 94
L(p/f), 10.819 100 10.820 91 1(d/g), 10.935 100 10.937 99
3f 10.855 0 10.851 32 4d 10.947 0 10.945 13
2(p/f), 11.005 100 11.009 80 2d, 11.074 100 11.074 99
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