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We present a largely model-independent analysis of the lighter heavy quarkonium hybrids based on the
strong coupling regime of potential nonrelativistic QCD. We calculate the spectrum at leading order,
including the mixing of static hybrid states. We use potentials that fulfill the required short and long
distance theoretical constraints and fit well the available lattice data. We argue that the decay width to the
lower lying heavy quarkonia can be reliably estimated in some cases and provide results for a selected set of
decays. We also consider the mixing with heavy quarkonium states. We establish the form of the mixing
potential at Oð1=mQÞ, mQ being the mass of the heavy quarks, and work out its short and long distance
constraints. The weak coupling regime of potential nonrelativistic QCD and the effective string theory of
QCD are used for that goal. We show that the mixing effects may indeed be important and produce large
spin symmetry violations. Most of the isospin zero XYZ states fit well in our spectrum, either as a hybrid or
standard quarkonium candidate.
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I. INTRODUCTION

The so-called XYZ states in the charmonium and
bottomonium spectrum do not fit in the usual potential
model expectations (see Ref. [1] for a recent review).
A number of models have been proposed to understand
them, ranging from compact tetraquark states to just
kinematical enhancements caused by the heavy-light
meson pair thresholds. We explore here the possibility
that some of these states correspond to heavy quarkonium
hybrids in a QCD-based approach. Since charm and bottom
masses are much larger than the typical QCD scale ΛQCD,
nonrelativistic QCD (NRQCD) [2,3] can be used for these
states. For instance, the spectroscopy of bottomonium
hybrids has been studied in lattice NRQCD in Ref. [4],
and the production of charmonium hybrids in B decays
has been studied in Ref. [5]. Furthermore, if we focus
on a region of the spectrum much smaller than ΛQCD, we
should be able to build an effective theory in that region, by
integrating out ΛQCD, in a way similar to the strong
coupling regime of potential NRQCD (pNRQCD)[6].
The static limit is relevant for such a construction, and
the spectrum in that limit is known from lattice QCD in
the case of nf ¼ 0 (no light quarks) [7]. In the Born-
Oppenheimer (BO) approximation, each energy level in the
static case plays the role of a potential in a Schrödinger
equation for the dynamical states built on that static energy
level [8]. The static spectrum is displayed in Fig. 1.
The ground state corresponds to the potential for heavy

quarkonium states (Σþ
g ), namely, the one that it is usually

input in potential models. The higher levels correspond to
gluonic excitations and are called hybrid potentials. If we
are interested in states of a certain energy, we must in

principle take into account all the potentials below that
energy, since the states built on different potentials may
influence each other through 1=mQ corrections, mQ being
the mass of the heavy quarks (Q ¼ c; b). We shall focus
here on the lower lying hybrid states built out ofΠu and Σ−

u .
In addition to calculating the spectrum [4,9,10], we will
address the question of how they interact with quarkonium,
namely, with the states built out of Σþ

g . The quarkonium
states far below the energy of the hybrid states can be
integrated out and may contribute to the decay width,

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 2 4 6 8 10 12 14

atEΓ

R/as

Gluon excitations

as/at = z*5

z=0.976(21)

β=2.5
as~0.2 fm

Πu

Σ -
u

Σ+
g ’

Δg
Πg

Σ -
g
Πg’

Π ’u
Σ+

u

Δ u

Σ +
g

short distance
degeneracies

crossover

string ordering

N=4

N=3

N=2

N=1

N=0

FIG. 1. Energy spectrum in the static limit for nf ¼ 0 [7].
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whereas the quarkonium states in the same energy range as
hybrid states may mix with them. We will learn that certain
hybrid states do not decay to lower lying heavy quarkonium
at leading order and that the mixing with quarkonium may
induce large spin symmetry violations. These observations
will be instrumental in identifying a number of XYZ states
as hybrids. In fact, it turns out that most of the XYZ states
can eventually be identified with either hybrids or quarko-
nia in our approach. Preliminary results have been reported
in Ref. [11].
The rest of the paper is organized as follows. In Sec. II,

we calculate the spectrum of the lower lying hybrid states,
ignoring any possible mixing with other states. In Sec. III,
we argue that the decay width to lower lying quarkonia can
be reliably estimated in some cases and calculate it for a
number of states. In Sec. IV, we address the mixing with
quarkonium states. We establish the form of the mixing
potential at Oð1=mQÞ and derive the short and long
distance constraints that it must fulfill using pNRQCD
in the weak coupling regime [6,12] and the effective string
theory of QCD respectively [13,14]. We explore several
interpolations for the mixing potential and recalculate the
spectrum. In Secs. V and VI, we compare our results with
those of other QCD-based approaches and with the experi-
ment respectively. We also present in the latter the most
likely identifications of the XYZ states as hybrids or
quarkonia. Section VII contains a discussion of our results.
Finally, in Sec. VIII, we present a short summary of the
main results and conclude. Appendix A shows our results
for quarkonia. Appendix B provides details on how we
obtain the two long distance parameters from lattice data.
Appendix C sets our conventions for the tensor spherical
harmonics. The tables in Appendix D display our results for
the full (quarkonium plus hybrid) charmonium and botto-
monium spectrum including mixing.

II. SPECTRUM

In the Born-Oppenheimer approximation, the calculation
of the hybrid spectrum reduces to solving the Schrödinger
equation with a potential V ¼ Vðr;ΛQCDÞ that has a
minimum at r ¼ r0 ∼ 1=ΛQCD, r ¼ jrj, r being the distance
between the quark and the antiquark. Hence, the energy
of the small fluctuations about that minimum is

E ∼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ3
QCD=mQ

q
≪ ΛQCD ≪ mQ. Consequently, we are

in a situation analogous to the strong coupling regime of
pNRQCD in which the scale ΛQCD is integrated out. It then
makes sense to restrict the study to the lower lying hybrid
potentials, Σ−

u and Πu, since the gap to the next states is
parametrically OðΛQCDÞ. Specifically, from Fig. 1, we see
that the gap between the minimum of the Πu potential and
the first excited potential that we neglect (Σþ

g
0) is about

400 MeV. Hence, for states built out of the Σ−
u and Πu

potentials about 400 MeV or more above the lowest

lying one, mixing effects with the next hybrid multiplet
(Σþ

g
0, Πg, Δg) may be relevant.

The potentials associated to Σ−
u andΠu are degenerated at

short distances. In weak coupling pNRQCD [12], this is
easily understood as they correspond to different projections
with respect to r of the same operator trðBð0; tÞOð0; r; tÞÞ,
where OðR; r; tÞ is the color octet operator, BðR; tÞ the
chromemeagnetic field and we have set the center-of-mass
coordinate R ¼ 0. These projections have well-defined
transformations under the D∞h group, the group of a
diatomic molecule. r̂B corresponds to Σ−

u , and B − r̂ðr̂BÞ
corresponds to Πu [6]. It is then natural to associate to the
lower lying hybrids a vectorial wave function Hð0; r; tÞ,
such that its projection to r evolves with VΣ−

u
and its

projection orthogonal to r evolves with VΠu
. We then have

the following Lagrangian density,

L ¼ trðHi†ðδiji∂0 − hHijÞHjÞ

hHij ¼
�
−
∇2

mQ
þ VΣ−

u
ðrÞ
�
δij

þ ðδij − r̂ir̂jÞ½VΠu
ðrÞ − VΣ−

u
ðrÞ�; ð1Þ

where r̂ ¼ r=jrj and we have ignored the center-of-mass
motion. H ¼ HðR; r; tÞ is a matrix in spin space and
transforms as H → h1Hh†2, h1, h2 ∈ SUð2Þ under spin
symmetry. hHij above does not depend on the spin of the
quarks, and hence it is invariant under spin symmetry
transformations, but it does depend on the total angular
momentum of the gluonic degrees of freedom Lg; in this
caseLg ¼ 1 as is apparent from the vectorial character ofH.
The symmetry properties of HðR; r; tÞ under parity, time
reversal, and charge conjugation read as follows,

P∶ HðR; r; tÞ → −Hð−R;−r; tÞ
T∶ HðR; r; tÞ → −σ2HðR; r;−tÞσ2
C∶ HðR; r; tÞ → −σ2HTðR;−r; tÞσ2; ð2Þ

where σ2 is the second Pauli matrix. Hence, the P and C
associated to a hybrid state with quark-antiquark orbital
angular momentum L and quark-antiquark spin S become

P ¼ ð−1ÞLþ1; C ¼ ð−1ÞLþSþ1: ð3Þ

Leaving aside the spin of the quarks, it is convenient to
express H in a basis of eigenfunctions of J ¼ LþLg,
where L is the orbital angular momentum of the quarks.
This is achieved using vector spherical harmonics [15],

HðrÞ ¼ 1

r

�
Pþ
0 ðrÞYL¼1

00 þ
X∞
J¼1

XJ
M¼−J

½Pþ
J ðrÞYL¼Jþ1

JM

þ P0
JðrÞYL¼J

JM þ P−
J ðrÞYL¼jJ−1j

JM �
�
: ð4Þ
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Note that J is a conserved quantity thanks to heavy quark
spin symmetry. YL

JM ¼ YL
JMðθ;ϕÞ fulfill

J2YL
JM ¼ JðJ þ 1ÞYL

JM; L2YL
JM ¼ LðLþ 1ÞYL

JM;

L2
gYL

JM ¼ 2YL
JM; J3YL

JM ¼ MYL
JM: ð5Þ

The eigenvalue problem then reduces for J ≠ 0 to2
64− 1

mQ

∂2

∂r2þ
0
B@

ðJ−1ÞJ
mQr2

0

0
ðJþ1ÞðJþ2Þ

mQr2

1
CAþVΣ−

u
ðrÞ

þVqðrÞ

0
B@ Jþ1

2Jþ1

ffiffiffiffiffiffiffiffiffiffiffi
ðJþ1ÞJ

p
2Jþ1ffiffiffiffiffiffiffiffiffiffiffi

ðJþ1ÞJ
p
2Jþ1

J
2Jþ1

1
CA
3
75�P−

J ðrÞ
Pþ
J ðrÞ

�
¼E

�
P−
J ðrÞ

Pþ
J ðrÞ

�

�
−

1

mQ

∂2

∂r2þ
JðJþ1Þ
mQr2

þVΠu
ðrÞ
�
P0
JðrÞ¼EP0

JðrÞ;

ð6Þ

where VqðrÞ ¼ VΠu
ðrÞ − VΣ−

u
ðrÞ, and for J ¼ 0 to�

−
1

mQ

∂2

∂r2 þ
2

mQr2
þ VΣ−

u
ðrÞ
�
Pþ
0 ðrÞ ¼ EPþ

0 ðrÞ: ð7Þ

The equations above are equivalent to those obtained in
Ref. [10]. We approximate VΠu

ðrÞ and VΣ−
u
ðrÞ by simple

functions that have the correct behavior at short and long
distances and fit well the lattice results in Fig 1 [7] and
Ref. [16]. For VΣ−

u
ðrÞ, it is enough to take a Cornell-like

potential with the correct asymptotic behavior in order to
get a good fit to data. We then take

VΣ−
u
ðrÞ ¼ σs

r
þ κsrþ EQQ̄

s : ð8Þ

The correct short and long distance behavior implies σs ¼
σg=8 and κs ¼ κg, where σg and κg are the corresponding
parameters appearing in the Cornell potential for heavy
quarkonium (VΣþ

g
ðrÞ); see Appendix A. We then have

σs ¼ 0.061; κs ¼ 0.187 GeV2: ð9Þ

The constant EQQ̄
s becomes then the only free parameter,

which can be linked to the corresponding parameter for the

heavy quarkonium case, EQQ̄
g , through the lattice data of

Ref. [7]. Finally, EQQ̄
g is obtained in Appendix A by fitting

the heavy quarkonium spectrum. We get

Ecc̄
s ¼ 0.559 GeV; Ebb̄

s ¼ 0.573 GeV: ð10Þ

For VΠu
ðrÞ, a Cornell-like form does not fit lattice data well

at intermediate distances. Hence, we take a slightly more
complicated form for it,

VΠu
ðrÞ ¼ σp

r

�
1þ b1rþ b2r2

1þ a1rþ a2r2

�
þ κprþ EQQ̄

p : ð11Þ

At short distances, this potential must coincide with VΣ−
u
ðrÞ

up to terms that vanish when r → 0 [6]. This implies σp ¼
σs and EQQ̄

p − EQQ̄
s þ σpðb1 − a1Þ ¼ 0. At long distances,

it must be consistent with the effective string theory of
QCD [14],

ENðr → ∞Þ ¼ κrþ
�
πN −

ðD − 2Þπ
24

�
1

r
þOð1=r2Þ;

ð12Þ

where D is the space-time dimension and N labels the
energy spectrum of the string. The leading term of this
formula implies κp ¼ κs ¼ κ. The next-to-leading term
provides the extra constraint,

2π − σs þ
σpb2
a2

¼ 0; ð13Þ

which follows from Fig. 1 [7]. Indeed, those data show the
nontrivial fact that the VΠu

ðrÞ and VΣ−
u
ðrÞ potentials at long

distances correspond to the N ¼ 1 and N ¼ 3 string energy
levels respectively. Putting together all the constraints
above allows us to solve a1, b1, and b2 as a function of

known parameters and EQQ̄
p and a2, which are fitted to

lattice data. We obtain

σp ¼ 0.061; κp ¼ 0.187 GeV2

b1 ¼ 0.06964 GeV; b2 ¼ −1.45934 GeV2

a1 ¼ −0.06733 GeV; a2 ¼ 0.01433 GeV2

Ecc̄
p ¼ 0.551 GeV; Ebb̄

p ¼ 0.565 GeV: ð14Þ

The central value of lattice data and the outcome of the fits
above are shown in Fig. 2, together with the potential for
quarkonium VΣþ

g
discussed in the Appendix A.

Using the potentials above as an input, we solve (6) and
(7) and obtain the results displayed in Tables I and II in
terms of MQQ̄g ¼ 2mQ þ E. Details on the code used can
be found in Ref. [17]. We have also displayed the results in
Figs. 3 and 4, where we have included the errors discussed
at the end of Sec. IV C.

III. DECAY

Since we are interested in the lower lying hybrid states, it
is enough for us to consider an effective theory for energy
fluctuations much smaller than ΛQCD around those states.
The energy gap to the lower lying quarkonium states is
greater than ΛQCD. Hence, those states can be integrated
out, which will give rise to an imaginary potential ΔV,
which in turn will produce the semi-inclusive decay width
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for a hybrid state to decay into any quarkonium state,
ΓHm→S ¼ −2hHmjImΔVjHmi. This ismuch in the sameway
as integrating out hard gluons in QCD produces operators
with imaginarymatching coefficients in NRQCD [3], which
give rise to the total decaywidth of a given quarkonium state
to light degrees of freedom. Furthermore, if we assume that
the energy gap to a given quarkonium stateSn,ΔEmn, fulfills
ΔEmn ≫ ΛQCD and that the process is short distance
dominated, the integration for that state can be done using
the weak coupling regime of pNRQCD [6,12],

LpNRQCD

¼ TrfS†ði∂0 − hsÞSþ O†ðiD0 − hoÞOg

þ Tr

�
O†r · gESþ H:c:þ O†r · gEO

2
þ O†Or · gE

2

�
þ � � � : ð15Þ

The singlet field S encodes the quarkonium states, whereas
the octet field O encodes the heavy quark content of the
hybrid states, hs and ho are Hamiltonians containing the res-
pective Coulomb-type potentials, and E ¼ EðR; tÞ is the
chromoelectric field (see Ref. [19] for details). The leading
contribution corresponds to the diagram in Fig. 5.We obtain

ImΔV ¼ −
2

3

αsTF

Nc

X
n

rijSnihSnjriði∂t − EnÞ3; ð16Þ

TF ¼ 1=2, Nc ¼ 3, and αs ¼ g2=4π is the QCD strong
coupling constant. En is the energy of the nth quarkonium
state, Sn.
From the expression above, we identify

ΓðHm → SnÞ ¼
4

3

αsTF

Nc
hHmjrijSnihSnjrijHmiΔE3

mn: ð17Þ

ΔEmn ¼ Em − En, Em being the energy of the hybrid state.
At this order, the decays respect heavy quark spin sym-
metry, and hence the spin of the heavy quarks must be the
same in the initial hybrid state and in the final quarkonium

state. In addition, a selection rule derived from this formula
is that hybrid states with L ¼ J do not decay to lower lying
quarkonium. This selection rule will be instrumental later
on to select hybrid candidates among competing XYZ
states. For the allowed decays, the numerical values of the

FIG. 2. Our fits to the lattice results of Ref. [7] for the three
lower lying BO potentials VΣþ

g
, VΠu

, and VΣ−
u
.

TABLE I. Charmonium (S) and hybrid charmonium (Pþ−0)
energy spectrum computed with mc ¼ 1.47 GeV. Masses are in
MeV. States which only differ by the heavy quark spin (S ¼ 0, 1)
are degenerated. N is the principal quantum number, L is the
orbital angular momentum of the heavy quarks, J is L plus the
total angular momentum of the gluons, S is the spin of the heavy
quarks, and J is the total angular momentum. For the quarko-
nium, J coincides with L, and it is not displayed. The last column
shows the relevant potentials for each state. The ðs=dÞ1, p1, p0,
ðp=fÞ2, and d2 states are named H1, H2, H3, H4, and H5

respectively in Ref. [10].

NLJ w-f Mcc̄ Mcc̄g S ¼ 0 J PC S ¼ 1 J PC Λϵ
η

1s S 3068 0−þ 1−− Σþ
g

2s S 3678 0−þ 1−− Σþ
g

3s S 4131 0−þ 1−− Σþ
g

1p0 Pþ 4486 0þþ 1þ− Σ−
u

4s S 4512 0−þ 1−− Σþ
g

2p0 Pþ 4920 0þþ 1þ− Σ−
u

3p0 Pþ 5299 0þþ 1þ− Σ−
u

4p0 Pþ 5642 0þþ 1þ− Σ−
u

1p S 3494 1þ− ð0; 1; 2Þþþ Σþ
g

2p S 3968 1þ− ð0; 1; 2Þþþ Σþ
g

1ðs=dÞ1 Pþ− 4011 1−− ð0; 1; 2Þ−þ ΠuΣ−
u

1p1 P0 4145 1þþ ð0; 1; 2Þþ− Πu

2ðs=dÞ1 Pþ− 4355 1−− ð0; 1; 2Þ−þ ΠuΣ−
u

3p S 4369 1þ− ð0; 1; 2Þþþ Σþ
g

2p1 P0 4511 1þþ ð0; 1; 2Þþ− Πu

3ðs=dÞ1 Pþ− 4692 1−− ð0; 1; 2Þ−þ ΠuΣ−
u

4ðs=dÞ1 Pþ− 4718 1−− ð0; 1; 2Þ−þ ΠuΣ−
u

4p S 4727 1þ− ð0; 1; 2Þþþ Σþ
g

3p1 P0 4863 1þþ ð0; 1; 2Þþ− Πu

5ðs=dÞ1 Pþ− 5043 1−− ð0; 1; 2Þ−þ ΠuΣ−
u

5p S 5055 1þ− ð0; 1; 2Þþþ Σþ
g

1d S 3793 2−þ ð1; 2; 3Þ−− Σþ
g

2d S 4210 2−þ ð1; 2; 3Þ−− Σþ
g

1ðp=fÞ2 Pþ− 4231 2þþ ð1; 2; 3Þþ− ΠuΣ−
u

1d2 P0 4334 2−− ð1; 2; 3Þ−þ Πu

2ðp=fÞ2 Pþ− 4563 2þþ ð1; 2; 3Þþ− ΠuΣ−
u

3d S 4579 2−þ ð1; 2; 3Þ−− Σþ
g

2d2 P0 4693 2−− ð1; 2; 3Þ−þ Πu

3ðp=fÞ2 Pþ− 4886 2þþ ð1; 2; 3Þþ− ΠuΣ−
u

4d S 4916 2−þ ð1; 2; 3Þ−− Σþ
g

4ðp=fÞ2 Pþ− 4923 2þþ ð1; 2; 3Þþ− ΠuΣ−
u

3d2 P0 5036 2−− ð1; 2; 3Þ−þ Πu
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decay widths are given in Table III. We have only displayed
numbers that can be reliably estimated, namely, that ΔEmn

is large enough and that hHmjrijSni is small enough so that
the weak coupling regime of pNRQCD is sensible; see the

FIG. 3. Charmonium spectrum in Table I. The height of the
boxes corresponds to the error estimated at the end of Sec. IV C.
The states identified as quarkonium in the Particle Data Group
(PDG) [18] are displayed in the corresponding column, whereas
the states labeled asX in the PDG [18] are displayed in a separated
column. The box assignment of the latter is discussed in Sec. VI.

FIG. 4. Bottomonium spectrum in Table II. The height of the
boxes corresponds to the error estimated at the end of Sec. IV C.
The states identified as quarkonium in the PDG [18] are displayed
in the corresponding column.

TABLE II. Bottomonium (S) and hybrid bottomonium (Pþ−0)
energy spectrum computed with mb ¼ 4.88 GeV. Masses are in
MeV. States which only differ by the heavy quark spin (S ¼ 0; 1)
are degenerated. N is the principal quantum number, L is the
orbital angular momentum of the heavy quarks, J is L plus the
total angular momentum of the gluons, S is the spin of the heavy
quarks, and J is the total angular momentum. For the quarko-
nium, J coincides with L, and it is not displayed. The last column
shows the relevant potentials for each state. The ðs=dÞ1, p1, p0,
ðp=fÞ2, and d2 states are named H1, H2, H3, H4, and H5

respectively in Ref. [10].

NLJ w-f Mbb̄ Mbb̄g S¼0 J PC S¼1 J PC Λϵ
η

1s S 9442 0−þ 1−− Σþ
g

2s S 10 009 0−þ 1−− Σþ
g

3s S 10 356 0−þ 1−− Σþ
g

4s S 10 638 0−þ 1−− Σþ
g

1p0 Pþ 11 011 0þþ 1þ− Σ−
u

2p0 Pþ 11 299 0þþ 1þ− Σ−
u

3p0 Pþ 11 551 0þþ 1þ− Σ−
u

4p0 Pþ 11 779 0þþ 1þ− Σ−
u

1p S 9908 1þ− ð0; 1; 2Þþþ Σþ
g

2p S 10 265 1þ− ð0; 1; 2Þþþ Σþ
g

3p S 10 553 1þ− ð0; 1; 2Þþþ Σþ
g

1ðs=dÞ1 Pþ− 10 690 1−− ð0; 1; 2Þ−þ ΠuΣ−
u

1p1 P0 10 761 1þþ ð0; 1; 2Þþ− Πu

4p S 10 806 1þ− ð0; 1; 2Þþþ Σþ
g

2ðs=dÞ1 Pþ− 10 885 1−− ð0; 1; 2Þ−þ ΠuΣ−
u

2p1 P0 10 970 1þþ ð0; 1; 2Þþ− Πu

5p S 11 035 1þ− ð0; 1; 2Þþþ Σþ
g

3ðs=dÞ1 Pþ− 11 084 1−− ð0; 1; 2Þ−þ ΠuΣ−
u

4ðs=dÞ1 Pþ− 11 156 1−− ð0; 1; 2Þ−þ ΠuΣ−
u

3p1 P0 11 175 1þþ ð0; 1; 2Þþ− Πu

6p S 11 247 1þ− ð0; 1; 2Þþþ Σþ
g

5ðs=dÞ1 Pþ− 11 284 1−− ð0; 1; 2Þ−þ ΠuΣ−
u

1d S 10 155 2−þ ð1; 2; 3Þ−− Σþ
g

2d S 10 454 2−þ ð1; 2; 3Þ−− Σþ
g

3d S 10 712 2−þ ð1; 2; 3Þ−− Σþ
g

1ðp=fÞ2 Pþ− 10 819 2þþ ð1; 2; 3Þþ− ΠuΣ−
u

1d2 P0 10 870 2−− ð1; 2; 3Þ−þ Πu

4d S 10 947 2−þ ð1; 2; 3Þ−− Σþ
g

2ðp=fÞ2 Pþ− 11 005 2þþ ð1; 2; 3Þþ− ΠuΣ−
u

2d2 P0 11 074 2−− ð1; 2; 3Þ−þ Πu

5d S 11 163 2−þ ð1; 2; 3Þ−− Σþ
g

3ðp=fÞ2 Pþ− 11 197 2þþ ð1; 2; 3Þþ− ΠuΣ−
u

3d2 P0 11 275 2−− ð1; 2; 3Þ−þ Πu

4ðp=fÞ2 Pþ− 11 291 2þþ ð1; 2; 3Þþ− ΠuΣ−
u

FIG. 5. The octet field self-energy diagram in weak coupling
pNRQCD [19]. The double line represents the octet propagator,
while single lines represent the singlet propagator. The curly line
stands for the gluon propagator, and the crossed circles stand for
chromoelectric dipole vertices. The expectator gluons that make
up the physical state together with the octet field are not displayed.
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table caption for details. We have taken the energies and
wave functions for quarkonium and for hybrids from
Appendix A and from the previous section respectively.
The errors account for the fact that the quarkonium
spectrum in (16) is meant to be calculated in the weak
coupling regime (Coulomb-type bound states), whereas we
actually use in (17) the one in the strong coupling regime.
Model-independent results for hybrid decays in the

Born-Oppenheimer approximation have been obtained
before in Ref. [20]. In that reference, selection rules, based
on the symmetries of the static limit, are obtained for a two-
body decay of a hybrid to a quarkonium plus a light meson,
which constrains the possible quantum numbers of the
latter. Our results are obtained under different assumptions
and may be regarded as complementary to those of
Ref. [20]. First of all, our results hold beyond the static
limit (e.g. Πu − Σ−

u mixing is taken into account). Second,
they are concerned with semi-inclusive decays, namely,
decays to quarkonium plus any state composed of light
hadrons, rather than two-body decays. And third, they are
based on the additional dynamical assumption that the
decay process is short distance dominated. This assumption
must be verified for each particular decay and does not
always hold. In the cases it does, we are able to put forward
not only constraints on quantum numbers (e.g. L must be
different from J for a hybrid to decay to quarkonium) but
also numerical estimates for the decay widths.

IV. MIXING

So far, we have not taken into account the possiblemixing
of hybrid stateswith other states that are known to exist in the
same energy range, like quarkonium or heavy-light meson
pairs, which may distort the spectrum and the decay
properties.We shall focus here on the effects in the spectrum
of the mixing with the quarkonium, basically because they
are amenable to a systematic treatment. In the static limit, the
quarkonium (the lowest potential in Fig. 1, Σþ

g ) and heavy
hybrids (the remaining potentials in Fig. 1) do not mix by
construction (they are built as orthogonal states). Hence,
the mixing must be due to 1=mQ corrections to the Born-
Oppenheimer approximation.1 A way to systematically
compute 1=mQ corrections for quarkonium was established
in Refs. [21,22] for the strong coupling regime of pNRQCD,
following earlier work in the literature [23]. We show below
how the formalism in Ref. [21] can also be used to calculate
the mixing potentials. We may generally consider an
effective theory for energy fluctuations E around a hybrid
state, such that E ≪ ΛQCD. If there is a heavy quarkonium
state close to that energy, we may expect it to modify the
value of the energy E. This effective theory reads

LHþS ¼ trðS†½i∂0 − hs�SÞ þ trðHi†½iδij∂0 − hHij�HjÞ
þ trðS†Vij

S fσi; Hjg þ H:c:Þ: ð18Þ
The traces are over spin indices, and

Vij
S ¼ Vij

S ðrÞ ¼ δijVΠ
S ðrÞ þ r̂ir̂jðVΣ

SðrÞ − VΠ
S ðrÞÞ ð19Þ

is the mixing potential, hs ¼ − ∇2

mQ
þ VΣþ

g
ðrÞ, and hHij is

defined in (1). S ¼ SðR; r; tÞ transforms likeH under heavy
quark spin symmetry and as follows under the discrete
symmetries [19]:

P∶ SðR; r; tÞ → −Sð−R;−r; tÞ
T∶ SðR; r; tÞ → σ2SðR; r;−tÞσ2
C∶ SðR; r; tÞ → σ2STðR;−r; tÞσ2: ð20Þ

The transformations above together with those in (3) dictate
the form of the last (mixing) term in (18). The form ofVij

S ðrÞ
then follows from the symmetries of the static limit (see for
instance Ref. [19]). Notice that in (18) we only include the
1=mQ corrections relevant to the mixing. There are also
1=mQ corrections to hs [21] and to hHij, briefly discussed in
Sec. VII, that we do not consider. For systemswith the quark
and antiquark of different flavor, two more terms, which
vanish in the equal mass limit, are possible,

TABLE III. Decay widths for hybrid charmonium (above) and
bottomonium (below) to lower lying charmonia and bottomonia
respectively. m ¼ NLJ , n ¼ N0L0, ΔE≡ ΔEmn, and Γ are in
MeV, and hrimn is in GeV−1. αsðΔEÞ is the one-loop running
coupling constant at the scale ΔE. We only display results for
which ΔE > 800 MeV and jΔEhrimnj < 0.7. The error (in
brackets) includes higher orders in αs and in the multipole
expansion as well as the average of the linear term in the Cornell
potential in order to account for the difference between weak and
strong coupling regimes.

NLJ → N0L0 ΔE hrimn jΔEhrimnj αsðΔEÞ Γ (MeV)

1p0 → 2s 808 0.40 0.32 0.41 7.5(7.4)
2ðs=dÞ1 → 1p 861 0.63 0.54 0.39 22(19)
4ðs=dÞ1 → 1p 1224 0.42 0.51 0.33 23(15)

1p0 → 1s 1569 −0.42 0.65 0.29 44(23)
1p0 → 2s 1002 0.43 0.43 0.36 15(9)
2p0 → 2s 1290 −0.14 0.18 0,32 2.9(1.3)
2p0 → 3s 943 0.46 0.44 0.37 15(12)
4p0 → 1s 2337 0.27 0.63 0.25 53(25)
4p0 → 2s 1770 0.23 0.40 0.28 18(7)
4p0 → 3s 1423 0.19 0.28 0.31 7.4(4.1)
2ðs=dÞ1 → 1p 977 0.47 0.46 0.37 17(8)
3ðs=dÞ1 → 1p 1176 0.49 0.58 0.33 29(14)
3ðs=dÞ1 → 2p 818 0.32 0.26 0.40 5(3)
4ðs=dÞ1 → 2p 891 −0.74 0.66 0.39 33(25)
5ðs=dÞ1 → 1p 1376 −0.31 0.43 0.31 18(7)
5ðs=dÞ1 → 2p 1018 −0.41 0.42 0.36 14(8)

1In the weak coupling regime of pNRQCD, some p=mQ
contributions can be reshuffled into ri∂0, which have the same
size, by local field redefinitions [6,12,19]. This is why singlet-
octet transition terms appear in (15) with no apparent 1=mQ
suppression.
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δLHþS ¼ trðS†V 0
S
ij½σi;Hj�Þþ trðS†Vij

LL
iHjÞþH:c:; ð21Þ

where Li is the angular momentum operator.

A. Matching to NRQCD at Oð1=mQÞ
The NRQCD operators that create states at time twith the

same quantum numbers as S and H in the static limit read

Ô†ðr;R; tÞ≡ψ†
�
r
2
; t

�
W

�
r
2
;−

r
2
; t

�
χ

�
−
r
2
; t

�

¼Z1=2
S ðrÞS†ðr;R; tÞ

Ô†i
B ðr;R; tÞ≡ψ†

�
r
2
; t

�
W

�
r
2
;R; t

�
BiðR; tÞW

�
R;−

r
2
; t

�

×χ

�
−
r
2
; t

�
¼ðZ1=2

H ÞijðrÞH†jðr;R; tÞ; ð22Þ

whereWðr; r0; tÞ are straight Wilson lines joining the points
r and r0 at a fixed time t, and

ðZ1=2
H ÞijðrÞ ¼ Z1=2

Σ ðrÞr̂ir̂j þ Z1=2
Π ðrÞðδij − r̂ir̂jÞ: ð23Þ

In the static limit, we have

h0jTfÔ†ðr0;R0; T=2ÞÔðr;R;−T=2Þgj0i
¼ h1i□δðr0 − rÞδðR0 −RÞ

h0jTfÔ†i
B ðr0;R0; T=2ÞÔj

Bðr;R;−T=2Þgj0i
¼ hBiðR0; T=2ÞBjðR;−T=2Þi

□
δðr0 − rÞδðR0 −RÞ;

ð24Þ
where h…i□ means insertions in the square Wilson loop
going from−T=2 toT=2with spatial boundaries atR� r=2.
In particular, h1i

□
is the Wilson loop itself. The matching

calculation at Oð1Þ leads to
h1i□ ¼ ZSe

−iTVΣþg
ðrÞ

hBiðR; T=2ÞBjðR;−T=2Þi□
¼ r̂ir̂jZΣe

−iTVΣ−u
ðrÞ þ ðδij − r̂ir̂jÞZΠe−iTVΠu ðrÞ: ð25Þ

Hence, VΣ−
u
ðrÞ and VΠu

ðrÞ can be obtained from large
T behavior of certain operator insertions in the Wilson loop
and have long been known from lattice calculations [7,8,24].
The NRQCD Lagrangian density at Oð1=mQÞ reads

LNRQCD ¼ ψ†
�
iD0 þ

D2

2mQ
þ gcF

σB
2mQ

�
ψ

þ χ†
�
iD0 −

D2

2mQ
− gcF

σB
2mQ

�
χ; ð26Þ

where cF is a matching coefficient that will eventually be
approximated by its tree level value cF ¼ 1. Since the
Lagrangian above contains a spin-dependent term, we expect
the leading contribution to Vij

S to appear at Oð1=mQÞ. We

can easily get it by matching the following correlation
function at Oð1=mQÞ,
h0jTfÔðr0;R0;T=2ÞÔ†i

B ðr;R;−T=2Þgj0i
¼Z1=2

S ðZ1=2
H ÞijðrÞh0jTfSðr0;R0;T=2ÞH†jðr;R;−T=2Þgj0i;

ð27Þ
and focusing on the spin-dependent terms. The lhs is
calculated using first order in perturbation theory in 1=mQ

in NRQCD (26). The rhs is calculated again at first order in
perturbation theory in 1=mQ from (18) [recall that Vij

S is
treated as Oð1=mQÞ]. Taking into account (19), we obtain

gcF
2mQ

R T=2
−T=2 dthr̂Bðr2 ; tÞr̂Bð0;−T=2Þi□

h1i1=2
□

hr̂Bð0; T=2Þr̂Bð0;−T=2Þi1=2
□

¼ 2VΣ
S

sin ððVΣ−
u
− VΣþ

g
ÞT=2Þ

VΣ−
u
− VΣþ

g

ð28Þ

gcF
2mQ

R T=2
−T=2 dt

h1i1=2
□

×
hBðr

2
; tÞBð0;−T=2Þ − r̂Bðr

2
; tÞr̂Bð0;−T=2Þi□

hBð0; T=2ÞBð0;−T=2Þ − r̂Bð0; T=2Þr̂Bð0;−T=2Þi1=2
□

¼ 2
ffiffiffi
2

p
VΠ
S

sin ððVΠu
− VΣþ

g
ÞT=2Þ

VΠu
− VΣþ

g

: ð29Þ

Notice that the Euclideanversion of the objects on the lhs can
be easily calculated on the lattice. At large T, VΣ

S andV
Π
S can

be then extracted by matching the data to the Euclidean
version of the rhs, once VΣþ

g
, VΣ−

u
, andVΠu

are known. In the
following sections, we are going to derive short and long
distance constraints on these potentials using weak coupling
pNRQCD [6,12] and theQCD effective string theory [13,14]
respectively.

1. Short distance constraints

At short distances, the time evolution of a QQ̄ pair is
described by the weak coupling regime of pNRQCD [6,12],
the Lagrangian of which has been displayed in (15) at
next-to-leading order in the multipole expansion. The
operators Ôðr;R; tÞ and Ôi

Bðr;R; tÞ match onto the singlet
field Sðr;R; tÞ and the operator trðOðr;R; tÞBiðR; tÞÞ
respectively. The leading spin-dependent term in the
pNRQCD Lagrangian reads [25]

L0
pNRQCD ¼ gcF

2mQ
TrðO†ðr;R; tÞBðR; tÞfσ; Sðr;R; tÞgÞ

þ H:c:: ð30Þ
We use tr for the trace over color indices and Tr for the trace
over both color and spin indices. Notice that the term above
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shows an r-independent interaction between the singlet
field and the operator trðOBiÞ, which implies that

VΣ
SðrÞ ¼ VΠ

S ðrÞ ¼ � cFλ2

mQ
; ð31Þ

where λ ∼ ΛQCD is a constant, and we have put the sign
explicitly.

2. Long distance constraints

At long distances, the energy spectrum of a static QQ̄
pair is well described by the QCD effective string theory
(EST) [13,14]. The mapping between operator insertions in
the temporal Wilson lines of the Wilson loop and the
corresponding operators in the EST was established in
Ref. [26], following earlier work [27]. For the relevant
operators to us, it reads

Blðt; r=2Þ → Λ0ϵlm∂t∂zξ
mðt; r=2Þ

Blðt;−r=2Þ → Λ0ϵlm∂t∂zξ
mðt;−r=2Þ

B3ðt; r=2Þ → Λ000ϵlm∂t∂zξ
lðt; r=2Þ∂zξ

mðt; r=2Þ
B3ðt;−r=2Þ → Λ000ϵlm∂t∂zξ

lðt;−r=2Þ∂zξ
mðt;−r=2Þ; ð32Þ

where l; m ¼ 1; 2. Here, we also need to map the states
created by operator insertions in spacial Wilson lines to the
corresponding states inEST. In order to do so, it is convenient
to take the r along the z axis andwrite the ESTLagrangian in
terms of the complex field φðz; tÞ ¼ ðξ1ðz; tÞ þ iξ2ðz; tÞÞ=ffiffiffi
2

p
. This field has nice transformation properties underD∞h,

the relevant space group,

RzðθÞ∶ φðz; tÞ → eiθφðz; tÞ
P∶ φðz; tÞ → −φð−z; tÞ

Rxz∶ φðz; tÞ → φ�ðz; tÞ; ð33Þ

whereRzðθÞ,P, andRxz stand for a rotation of angle θ around
the z axis, a parity transformation, and a reflection through
the xz plain respectively. The Lagrangian density at leading
order reads

LEST ¼ κ∂μφ∂μφ�; ð34Þ

where κ is the string tension and φðz; tÞ fulfills Dirichlet
boundary conditions, φðr=2; tÞ ¼ φð−r=2; tÞ ¼ 0. φðz; tÞ
can written in terms of creation and annihilation operators:

φðz; tÞ ¼
X∞
n¼1

1

2En
ðe−iEntφnðzÞan þ eiEntφ�

nðzÞb†nÞ

φnðzÞ ¼
1ffiffiffiffiffi
2r

p ðeiEnz þ ð−1Þnþ1e−iEnzÞ

½an; a†m� ¼ ½bn; b†m� ¼
2En

κ
δnm; En ¼

πn
r
: ð35Þ

The remaining commutators vanish. a†n (b
†
n) on the vacuum

creates a state of energy En, angular momentum 1 (−1) and
parity ð−1Þn. The reflection with respect to the xz plain
interchanges an ↔ bn. If we define

Ô†
Bðr; 0; tÞ ¼ Ô†1

B ðr; 0; tÞ þ iÔ†2
B ðr; 0; tÞ

Ô†�
B ðr; 0; tÞ ¼ Ô†1

B ðr; 0; tÞ − iÔ†2
B ðr; 0; tÞ; ð36Þ

then the following identifications fulfill the D∞h symmetry
requirements,

Ô†ðr; 0;−T=2Þj0i → j0i
Ô†3

B ðr; 0;−T=2Þj0i → κ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2E1E2

p ða†1b†2 − b†1a
†
2Þj0i

Ô†
Bðr; 0;−T=2Þj0i →

ffiffiffiffiffiffiffiffi
κ

2E1

r
b†1j0i

Ô†�
B ðr; 0;−T=2Þj0i → −

ffiffiffiffiffiffiffiffi
κ

2E1

r
a†1j0i: ð37Þ

Let us perform analogous definitions for the chromomag-
netic fields,

Bðt; rÞ ¼ B1ðt; rÞ þ iB2ðt; rÞ
B�ðt; rÞ ¼ B1ðt; rÞ − iB2ðt; rÞ: ð38Þ

The mapping (32) then reads

Bðt;�r=2Þ → −i
ffiffiffi
2

p
Λ0∂t∂zφð�r=2; tÞ

B�ðt;�r=2Þ → i
ffiffiffi
2

p
Λ0∂t∂zφ

�ð�r=2; tÞ
B3ðt;�r=2Þ → iΛ000∂t∂zφð�r=2; tÞ∂zφ

�ð�r=2; tÞ þ H:c::

ð39Þ
Upon substituting the above expressions and (37) in (28), we
obtain

VΣ
SðrÞ ¼ −

π2gΛ000cF
mQκr3

; VΠ
S ðrÞ ¼

π3=2gΛ0cF
2mQ

ffiffiffi
κ

p
r2

: ð40Þ

The parameters gΛ0 ∼ ΛQCD and gΛ000 ∼ ΛQCD also appear in
the spin-orbit and tensor potentials of a heavy quarkonium
[26,28], which have been calculated on the lattice [24,29].
We obtain from fits to the data of Ref. [30]

gΛ0 ∼ −59 MeV; gΛ000 ∼�230 MeV: ð41Þ

Details on the fits are given in Appendix B2

3. Modeling the mixing potential

For the actual mixing potentials, we use a simple
interpolation between (31) and (40) that allows for a sign

2Due to an error in the identification, the value of gΛ0 displayed
in Ref. [11] as Λ0 is twice the actual value. This change does not
affect the statements made in that paper.
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flip between the short and long distance expressions
without introducing any further scale, namely,

VΠ
S ½�−�ðrÞ ¼ λ2

mQ

��1 − ð r
rΠ
Þ2

1þ ð r
rΠ
Þ4
�

ð42Þ

VΣ
S ½���ðrÞ ¼ λ2

mQ

��1� ð rrΣÞ2
1þ ð rrΣÞ5

�
; ð43Þ

where rΠ ¼ ðjgΛ0jπ32
2λ2κ

1
2

Þ12 and rΣ ¼ ðjgΛ000jπ2
λ2κ

Þ13. Note that the

� in VΠ
S and the first � in VΣ

S are correlated because both
potentials have the same short distance behavior. We will
explore the following values for the only unknown param-
eter λ, λ ¼ 100, 300, 600 MeV, and all possible sign
combinations for the 1−− charmonium states below and
choose the one that suits the phenomenology best.

B. Mixing equations

Now, we need to include the quark spin degree of
freedom in the equations displayed in Sec. II. Let us write

S ¼ 1ffiffiffi
2

p ðS0 þ σkSk1Þ

Hj ¼ 1ffiffiffi
2

p ðHj
0 þ σiHji

1 Þ; ð44Þ

where we have omitted the arguments in S ¼ SðR; r; tÞ and
Hj ¼ HjðR; r; tÞ, the subscripts 0 and 1 stand for the total
spin of the quark-antiquark pair, and the superscripts k and i
label the three states in the spin 1 case. Recall that the
superscript j labels the three states of the total angular
momentum 1 of the gluonic degrees of freedom. Then, the
last term in (18) reads

trðS†Vij
S fσi; HjgÞ ¼ 2Vij

S ðSi1†Hj
0 þ S0†H

ji
1 Þ: ð45Þ

Note that this term mixes spin 0 (1) hybrids with a spin 1 (0)
quarkonium. In view of the decomposition of Vij

S in (19),
we only need to analyze Sj1

†Hj
0, S

i
1
†Hj

0r̂
ir̂j, S0†H

jj
1 , and

S0†H
ji
1 r̂

ir̂j. Consider the first expression,

Z
dΩSj1

†Hj
0 ¼

X
JML

SL†1JMP
L
0JM

r2
¼
X
JML

SL†1JMPL
0JM

r2
; ð46Þ

where J is the orbital angular momentum, plus the quark
spin for S1 and plus the gluonic total angular momentum
for H0, and M is its third component. J ¼ J and M ¼ M
are the total angular momentum and its third component
respectively. L ¼ J, J � 1 are simply denoted by 0;�. We
have used above the same decomposition for Sj1 as the one
used for Hj in (4). For the second expression, we have

Z
dΩSi1†H

j
0r̂

ir̂j ¼ 1

r2
S−†1JM

�
J

2J þ 1
P−
0JM −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J ðJ þ 1Þp
2J þ 1

Pþ
0JM

�

þ 1

r2
Sþ†
1JM

�
J þ 1

2J þ 1
Pþ
0JM −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J ðJ þ 1Þp
2J þ 1

P−
0JM

�
: ð47Þ

For the third and fourth expressions, we need to introduce tensor spherical harmonics YjiLJ
JMðr̂Þ (see Appendix C), which are

eigenfunctions of S2, L2
g, L2, J2, J 2, and J 3 with eigenvalues 2, 2, LðLþ 1Þ, JðJ þ 1Þ, J ðJ þ 1Þ, and M respectively,

with L ¼ J, J � 1, J ¼ J , J � 1. We then have

Hji
1 ðr; tÞ ¼

1

r

X
LJJM

YjiLJ
JMðr̂ÞPLJ

1JMðrÞ: ð48Þ

We will use 0;� both for L ¼ J, J � 1 and J ¼ J , J � 1. Hence,

Z
dΩS0†H

jj
1 ¼ 1

r2
X
JM

S†0JM

�
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2J − 1

2J þ 1

r
Pþ−
1JM þ P00

1JM −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2J þ 3

2J þ 1

r
P−þ
1JM

�
ð49Þ

Z
dΩS0†H

ji
1 r̂

ir̂j ¼ 1

r2
X
JM

S†0JM ×

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J ðJ − 1Þ

ð2J þ 1Þð2J − 1Þ

s
P−−
1JM −

Jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2J þ 3Þð2J þ 1Þp Pþ−
1JM

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðJ þ 1ÞðJ þ 2Þ
ð2J þ 1Þð2J þ 3Þ

s
Pþþ
1JM −

J þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2J þ 3Þð2J þ 1Þp P−þ
1JM

!
: ð50Þ

HEAVY QUARKONIUM HYBRIDS: SPECTRUM, DECAY, … PHYSICAL REVIEW D 96, 014004 (2017)

014004-9



Putting all together, we get the following sets of coupled equations. For S ¼ 0 hybrids, we have for J ≠ 0

"
−

1

mQ

∂2

∂r2 þ
J ðJ þ 1Þ
mQr2

þ
 

VΣþ
g

2VΠ
S

2VΠ
S VΠu

!# 
S01JMðrÞ
P0
0JMðrÞ

!
¼ E

 
S01JMðrÞ
P0
0JMðrÞ

!
; ð51Þ

2
6666666664
−

1

mQ

∂2

∂r2 þ

0
BBBBBBBBB@

ðJþ1ÞðJþ2Þ
mQr2

þ VΣþ
g

0 2
	
VΠ
S þ Jþ1

2Jþ1
Vq
S



−2Vq

S

ffiffiffiffiffiffiffiffiffiffiffiffiffi
J ðJþ1Þ

p
2Jþ1

0
ðJ−1ÞJ
mQr2

þ VΣþ
g

−2Vq
S

ffiffiffiffiffiffiffiffiffiffiffiffiffi
J ðJþ1Þ

p
2Jþ1

2
	
VΠ
S þ J

2Jþ1
Vq
S



2
	
VΠ
S þ Jþ1

2Jþ1
Vq
S



−2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
J ðJþ1Þ

p
2Jþ1

ðJþ1ÞðJþ2Þ
mQr2

þ VΣ−
u
þ J

2Jþ1
Vq

ffiffiffiffiffiffiffiffiffiffiffiffiffi
J ðJþ1Þ

p
2Jþ1

Vq

−2Vq
S

ffiffiffiffiffiffiffiffiffiffiffiffiffi
J ðJþ1Þ

p
2Jþ1

2
	
VΠ
S þ J

2Jþ1
Vq
S


 ffiffiffiffiffiffiffiffiffiffiffiffiffi
J ðJþ1Þ

p
2Jþ1

Vq
ðJ−1ÞJ
mQr2

þ VΣ−
u
þ Jþ1

2Jþ1
Vq

1
CCCCCCCCCA

− E

3
7777777775

×

0
BBBBB@

Sþ1JMðrÞ
S−1JMðrÞ
Pþ
0JMðrÞ

P−
0JMðrÞ

1
CCCCCA ¼ 0; ð52Þ

where Vq
S ¼ VΣ

S − VΠ
S . For J ¼ 0, Eqs. (51) do not exist, and Eqs. (52) reduce to two coupled equations for Sþ100ðrÞ and

Pþ
000ðrÞ. For S ¼ 1 hybrids, Pþ0

1JMðrÞ and P−0
1JMðrÞ do not couple to heavy quarkonium. The remaining do it according to

the following equations for J > 1,

2
66666666666666666664

1

mQ

∂2

∂r2 −

0
BBBBBBBBBBBBBBBBBBB@

J ðJþ1Þ
mQr2

þVΣþ
g

Vþþ
S V−þ

S Vþ−
S V−−

S VΠ
S

Vþþ
S

ðJþ2ÞðJþ3Þ
mQr2

þVþþ −2Vq

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðJþ1ÞðJþ2Þ

p
2Jþ3

0 0 0

V−þ
S −2Vq

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðJþ1ÞðJþ2Þ

p
2Jþ3

J ðJþ1Þ
mQr2

þV−þ 0 0 0

Vþ−
S 0 0

J ðJþ1Þ
mQr2

þVþ− Vq

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ðJ−1ÞJ

p
2J−1 0

V−−
S 0 0 Vq

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ðJ−1ÞJ

p
2J−1

ðJ−1ÞJ
mQr2

þV−− 0

VΠ
S 0 0 0 0

J ðJþ1Þ
mQr2

þVΠu

1
CCCCCCCCCCCCCCCCCCCA

þE

3
77777777777777777775

×

0
BBBBBBBBBB@

S0JMðrÞ
Pþþ
1JMðrÞ

P−þ
1JMðrÞ

Pþ−
1JMðrÞ

P−−
1JMðrÞ

P00
1JMðrÞ

1
CCCCCCCCCCA

¼ 0; ð53Þ

where
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Vþþ
S ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðJ þ1ÞðJ þ2Þ

ð2J þ1Þð2J þ3Þ

s
Vq
S

V−þ
S ¼−

J þ1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2J þ3Þð2J þ1Þp Vq
S−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2J þ3

2J þ1

r
VΠ
S

Vþ−
S ¼−

Jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2J þ3Þð2J −1Þp Vq
S−VΠ

S

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2J −1Þð2J þ1Þp
2J þ1

V−−
S ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J ðJ −1Þ

ð2J þ1Þð2J −1Þ

s
Vq
S

Vþþ¼VΣ−
u
þ J þ1

2J þ3
Vq

V−þ¼VΣ−
u
þ J þ2

2J þ3
Vq

Vþ−¼VΣ−
u
þ J −1

2J −1
Vq

V−−¼VΣ−
u
þ J
2J −1

Vq: ð54Þ

For J ¼ 0, P00
100ðrÞ, P−−

100ðrÞ, and Pþ−
100ðrÞ do not exist,

and the system reduces to the three upper equations.
P0−
100ðrÞ, which does not couple to a heavy quarkonium,

does not exist, either. For J ¼ 1, P−−
11MðrÞ does not

exist, and the system above reduces to five coupled
equations.

C. Spectrum

In order to fix the signs and the parameter λ of the mixing
potentials, we focus on the spin zero nðs=dÞ1 (n ¼ 1, 2, 3)
states in Table I, which can be identified with Yð4008Þ,
Yð4360Þ, and Yð4660Þ. The main problem with this

identification is that all three states have been observed
to decay to spin 1 quarkonium states, which violates spin
symmetry. However, according to Eq. (52), the spin zero
hybrids mix with spin 1 quarkonium, and hence, if this
mixing is large, we may find a natural explanation to these
decays. We present our results in Table IV (the case λ ¼
100 MeV is not displayed; it produces a tiny mixing in all
cases). We observed that the case that provides the largest
amount of mixing is the combination VΠ

S ½þ−�with VΣ
S ½þþ�

and λ ¼ 600 MeV. This is the sign combination and the
value of λ that we will take for the rest of the paper. The
spectrum of charmonium and charmonium hybrids is given
in Tables IV–XII, and the one of bottomonium and
bottomonium hybrids is given in Tables XIII–XX. The
general trend (with a few exceptions) is that hybrid states
get heavier whereas quarkonium states get lighter due
the mixing.
Since we have used the leading order potential for both

quarkonium and hybrids, the potentials we missed start at
order 1=mQ. Hence, the error to assign to this calculation for
the hybrids is Λ2

QCD=mQ, since ΛQCD is the next relevant
scale. For a quarkonium, this is not always the case, since the
typical momenta can be larger than ΛQCD. A detailed error
analysis is carried out in the Appendix A. For simplicity, we
will stick to the Λ2

QCD=mQ estimate for quarkonium as well.
Taking ΛQCD ∼ 400 MeV, we obtain a precision of about
110 MeV for charmonium and 33 MeV for bottomonium.
These are the numbers we will have in mind when compar-
ing to experiment and to other approaches.

V. COMPARISON WITH OTHER APPROACHES

In this section, we compare our results with other QCD-
based approaches. For convenience, we will compare our

TABLE IV. Spectrum of charmonium (S ¼ 1) and charmonium hybrids (S ¼ 0): 1−− states. Masses are in GeV. The % columns show
the fraction of the hybrid components for the mass states in the previous column. mc ¼ 1.47 GeV.

VΠ
S ½þ−�, VΣ

S ½þþ� VΠ
S ½þ−�, VΣ

S ½þ−� VΠ
S ½−−�, VΣ

S ½−þ� VΠ
S ½−−�, VΣ

S ½−−�
NLJ λ ¼ 0 % λ ¼ 0.3 % λ ¼ 0.6 % λ ¼ 0.3 % λ ¼ 0.6 % λ ¼ 0.3 % λ ¼ 0.6 % λ ¼ 0.3 % λ ¼ 0.6 %

1s 3.068 0 3.064 0 3.001 4 3.066 0 3.053 0 3.063 0 3.036 2 3.061 1 2.989 6
2s 3.678 0 3.672 1 3.628 14 3.677 1 3.670 4 3.677 0 3.661 4 3.672 1 3.630 7
1d 3.793 0 3.773 4 3.687 12 3.790 1 3.785 2 3.792 0 3.789 0 3.782 1 3.712 7
1ðs=dÞ1 4.011 100 4.016 96 4.014 71 4.012 99 4.004 96 4.014 99 4.025 99 4.016 98 4.040 85
3s 4.131 0 4.127 0 4.107 10 4.128 1 4.130 7 4.130 0 4.125 10 4.128 2 4.103 12
2d 4.210 0 4.203 20 4.180 79 4.209 10 4.207 39 4.209 2 4.205 5 4.204 1 4.172 52
2ðs=dÞ1 4.355 100 4.358 97 4.366 65 4.356 98 4.355 89 4.357 100 4.368 94 4.357 100 4.383 86
4s 4.512 0 4.515 0 4.497 0 4.517 1 4.513 7 4.517 0 4.508 8 4.515 1 4.495 0
3d 4.579 0 4.573 2 4.559 8 4.578 0 4.574 5 4.578 1 4.568 7 4.574 0 4.550 3
3ðs=dÞ1 4.692 100 4.699 98 4.711 83 4.694 99 4.699 93 4.693 100 4.699 97 4.698 99 4.724 90
4ðs=dÞ1 4.718 100 4.730 100 4.785 96 4.719 100 4.718 98 4.720 100 4.728 98 4.728 100 4.779 97
5s 4.865 0 4.864 0 4.848 3 4.865 0 4.865 7 4.865 0 4.867 7 4.864 1 4.846 2
4d 4.916 0 4.913 7 4.903 35 4.915 2 4.915 19 4.915 0 4.912 12 4.913 3 4.894 21
5ðs=dÞ1 5.043 100 5.044 99 5.046 84 5.043 99 5.043 94 5.044 100 5.050 97 5.044 100 5.067 93
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results for the spectrum in the case λ ¼ 0 (no mixing). The
shifts in the spectrum due to mixing are within our
estimated errors.

A. Born-Oppenheimer approximation

In Ref. [4], the lower lying bottomonium hybrid spec-
trum was calculated from the static potentials Πu and Σ−

u
and normalized to the bottomonium spectrum. The mixing
between hybrid states built out of these potentials that
appears at leading order due to the kinetic term of the heavy
quarks was ignored. The masses obtained forH1 (1ðs=dÞ1),
H2 (1p1),H3 (1p0), andH0

1 (2ðs=dÞ1) are between 150 and
300 MeV heavier than ours. This is probably due to the
different choice of the bottom quark mass.
In Ref. [9], the lower lying hybrid spectrum was

calculated as above. However, for charmonium, the ground
state for each potential was fixed to the lattice data of
Ref. [31]. The mixing between hybrid states was also
ignored. If we compare the splittings obtained from Table X
of Ref. [9] with those obtained from our Tables I and II, we
find agreement within 20 MeV, except for the H4-H1 case
for which we obtain a lower value by about 40 MeVand the
H0

3 −H3 case for which we obtain a higher value of about
70 MeV. We have identified the states H1, H0

1, H2, H0
2, H

00
2 ,

H3ð1PÞ, and H4 with 1ðs=dÞ1, 2ðs=dÞ1, 1p1, 1d2, 2p1,
3ðs=dÞ1, and 1ðp=fÞ2 respectively.
Our hybrid spectrum is compatible within errors

with that of Ref. [10] both for charmonium and botto-
monium, except for the bottomonium 1ðs=dÞ1 and 2p0

states, for which we have slightly lower masses. Our
central values tend to be at the lower end of their error
bars. Although the construction of the effective theory for
hybrids is somewhat different and the parametrization of
the potentials is as well, the most relevant difference is
probably the normalization of the spectrum. Indeed, in
Ref. [10], the hybrid spectrum is normalized using the
charm and bottom masses in the renormalon subtraction
(RS) scheme [32], whereas here we normalize it to the
corresponding quarkonium spectrum, which is not calcu-
lated in that reference. We have checked that we reproduce
the results of Ref. [10] with our code if we input their
potentials.3

B. Lattice QCD

In Ref. [33], the spectrum of the lightest exotic charmo-
nium hybrids is calculated in the quenched approximation
for a relativistic charm action in an anisotropic lattice
(as ¼ 0.197 − 0.09 fm, as=at ¼ 2). Their results for the
1−þ, 0þ−, and 2þ− states are between 400 and 700 MeV
higher than ours.

There has been a recent update [34] of earlier results
[31] by the Hadronic Spectrum Collaboration for the
charmonium spectrum including hybrid states. They use
relativistic charm and dynamical light quarks in an
anisotropic lattice with temporal spacing at ∼ 0.034 fm
and spatial spacing as ∼ 0.12 fm. The update basically
consists of taking up and down quark masses smaller
than in the previous calculation (mπ ∼ 240 MeV and
mπ ∼ 400 MeV respectively). The hierarchy of the low-
est lying hybrid multiplets agrees with ours, from lighter
to heavier: 1ðs=dÞ1, 1p1, 1ðp=fÞ2, and 1p0. However,
their numbers are considerably larger than ours: 381,
326, 392, and 151 MeV higher for the spin average of
the 1ðs=dÞ1, 1p1, 1ðp=fÞ2, and 1p0 multiplets respec-
tively. The hierarchy in which quarkonium and hybrid
states arise agrees for the 1þþ (four states) and 1þ− (six
states) quantum numbers but disagrees for the remaining
nonexotic ones.
In Ref. [35], the lower lying charmonium spectrum is

also calculated with four dynamical quarks in a Wilson
twisted mass action. Lattice spacings ranging from
0.0619 fm to 0.0885 fm and pion masses ranging from
225 to 470 MeV are used, and both the continuum and
the chiral extrapolations are carried out. They find a 1−−

state at 3951 MeV that is compatible with our 1ðs=dÞ1 spin
zero hybrid state (4011 MeV). With less significance, they
also find two 2þþ states at about 4460 and 4530 MeV
which are compatible with our 2f quarkonium
(4428 MeV) and 2ðp=fÞ2 spin zero hybrid (4563 MeV)
respectively.
In Ref. [4], the bottomonium hybrid spectrum is calcu-

lated in quenched lattice NRQCD using an anisotropic
lattice (as ∼ 0.11 fm, as=at ¼ 3). They find the lightest
hybrid H1 (1ðs=dÞ1) 1.49(2)(5) GeV above the 1S quarko-
nium; this is about 250 MeV heavier than ours. About
the same difference is also found for H2 (1p1) and H3

(1p0), whereas for H0
1 (2ðs=dÞ1), the difference rises to

470 MeV.
For the bottomonium, there is also a quenched lattice

calculation with relativistic bottom quarks in an anisotropic
lattice (as ∼ 0.04�0.17 fm, as=at ¼ 4, 5) [36]. The masses
for the lightest 2−−, 1−þ, and 2þ− hybrids are displayed,
which turn out to be either lighter (2−−) or heavier (1−þ and
2þ−) than our results, in spite of the large errors (200–
600 MeV).

C. QCD sum rules

In Ref. [37], the hybrid spectrum for charmonium and
bottomonium is calculated.
For charmonium, the quantum numbers of their lightest

hybrid multiplet coincide with ours (1ðs=dÞ1), and the
masses are compatible with ours for the 1−þ and 2−þ states
within errors (between 150 and 230 MeV), but below for
the 0−þ and 1−− states. For spin zero hybrids, they obtain a
2þþ state ð1ðp=fÞ2Þ as the second lighter state, whereas we

3We have also checked that our results are reproduced by the
code of Ref. [10] if our potentials are input. We thank the authors
of that reference for providing their code for the test.
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have a 1þþ state (1p1). The mass of the 2þþ state is,
nevertheless, compatible with ours within the large errors,
but the masses of the 1þþ and 0þþ states are higher. The
masses of the spin 1 hybrids 0þ− and 1þ− are compatible,
again within large errors.
For the bottomonium, they obtain the same hierarchy of

multiplets as in the charmonium. However, the larger errors
make it now compatible with ours, even though the central
values are not. The masses of the lightest multiplet are
considerably lower than ours, but the ones of the remaining
multiplets (1þþ, 0þ−, 1þ−; 2þþ; 0þþ) are compatible within
large errors.

VI. COMPARISON WITH EXPERIMENT

In this section, we compare experimental results with
ours in the case of maximum mixing, that is, with the
results displayed on the sixth column of Table IV and on
the fourth column of Tables VI–XX. As mentioned before,
the shifts in the spectrum due to mixing are not very
important. However, the violations of heavy quark spin
symmetry induced by the mixing are crucial to map our
results to the XYZ states. We omit in the analysis the
neutral states that have been identified as isospin partners of
charged states.

A. Charm

(i) Xð3823Þ [18] is compatible with our 2−− charmo-
nium 1d state (3792 MeV).

(ii) Xð3872Þ [18] is compatible with our 1þþ charmo-
nium 2p states (3967 MeV). Since it sits at the
D0D̄0� threshold, it is expected to have a large
mixing with those states that we have not taken into
account.

(iii) Xð3915Þ and Xð3940Þ [18] are also compatible
with our charmonium 2p states (3968 MeV). Since
they are close to the DsD̄s threshold (3936 MeV),
the 0þ states may have a large mixing with those
states.

(iv) Yð4008Þ [38] is compatible with our 1−− hybrid
1ðs=dÞ1 (H1) state (4004 MeV). It mixes with a
spin 1 charmonium (see column 7 in Table IV and
Fig. 6), which may explain the observed spin
symmetry violating decays.

(v) Xð4140Þ [39] and Xð4160Þ [18] are compatible with
our 1þþ hybrid 1p1 (H2) state (4146 MeV). Since
the quantum numbers of Xð4160Þ have not been
established, it may also correspond to the 1ðp=fÞ2
hybrid or to the scalar 3s or 2d states. The fact that
no decays to charmonium of the 1p1 state are
allowed at leading order is consistent with the fact
that no such decays have been observed so far for
Xð4160Þ, which selects it as our favorite hybrid
candidate for that state. If so, there is no room
for the Xð4140Þ (1þþ) in our spectrum. These

states may be affected by the D�
sD̄s threshold

(4080 MeV).
(vi) Xð4230Þ and Yð4260Þ [18] are compatible with our

1−− charmonium 2d state (4180MeV). It may have a
dominant spin zero hybrid component (see Table IV),
which may help us to understand the recent results
by the BESSIII Collaboration [40]. Indeed, in
Ref. [41], it is claimed that the former Yð4260Þ
peak observed in πþπ−J=ψ invariant mass actually
consists of two resonances Yð4220Þ and Yð4390Þ.
The parameters of the first resonance are com-
patible with the ones of Xð4230Þ. They are also
compatible with the ones of one of the structures
observed in πþπ−hc [42]. The large hybrid
component (see Fig. 7) may explain why it is
also observed in this second channel, which
would be suppressed by spin symmetry other-
wise. It may also be affected by the D1D̄ thresh-
old (4290 MeV).

FIG. 6. The wave function of the charmonium 1−− 1ðs=dÞ1
state.

FIG. 7. The wave function of the charmonium 1−− 2d state.
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(vii) Yð4274Þ [39] is compatible with our 1þþ charmo-
nium 3p state (4368 MeV). It may be affected by the
D�

sD̄�
s threshold (4224 MeV).

(viii) Xð4350Þ [18] is compatible with our spin 1 2ðs=dÞ1
hybrid states (4355MeV) and charmonium 3p states
(4369 MeV).

(ix) Yð4320Þ, Yð4360Þ, and Yð4390Þ [18,41,42] are
compatible with our spin zero 1−− hybrid 2ðs=dÞ1
(H0

1) state (4366 MeV). Spin symmetry would in
principle favor the latter, as it is observed in the
πþπ−hc channel rather than in the πþπ−J=ψ chan-
nel. However, the large mixing with a spin 1
charmonium (see Table IV and Fig. 8) makes the
two first ones also acceptable. The absence of any
other state in this region in Table IV leaves two of
them with no assignment. They may be affected by
the D�

0D̄
� threshold (4407 MeV).

(x) Xð4500Þ [39] is compatible with our 0þþ hybrid 1p0

(H3) state (4566 MeV). However, it mixes very little

with the spin 1 charmonium (see Table VI and
Fig. 9), which does not help us to understand the
observation in the J=ψϕ channel. It may be affected
by the Dð2550ÞD̄� threshold (4557 MeV).

(xi) Yð4630Þ [18] is compatible with our 1−− charmo-
nium 3d state (4559 MeV). It may be affected by the
Ds1D̄�

s thresholds (4572 and 4648 MeV).
(xii) Yð4660Þ [18] is compatible with our spin zero 1−−

hybrid 3ðs=dÞ1 (H00
1) state (4711 MeV). The mixing

with the spin 1 charmonium (see Table IV and
Fig. 10) may explain the observed decays to vector
charmonium. It may be affected by the Ds1D̄�

s and
D�

s2D̄s
� thresholds (4648 and 4685 MeV).

(xiii) Xð4700Þ [39] is compatible with our 0þþ charmo-
nium 4p state (4703 MeV).

The assignments above can be visualized in Fig. 11.

B. Bottom

(i) ϒð10 860Þ [18,43] is compatible with our 1−−

bottomonium 5s state (10 881 MeV). Upon mixing,
it becomes lighter than the spin zero 2ðs=dÞ1 hybrid
nearby (see Table XIII and Fig. 12). Mixing may
also explain the large spin symmetry violating
decays to πþπ−hb [44].

(ii) Ybð10 890Þ [45] is compatible with our spin zero
1−− hybrid 2ðs=dÞ1 state (10 890 MeV). Upon
mixing, it becomes heavier than the 5s bottomonium
nearby (see Table XIII and Fig. 13).

(iii) ϒð11 020Þ [18,43] is about 1σ heavier than our 1−−

bottomonium 4d state (10 942 MeV). It may be
affected by the B1B̄ threshold (11 000 MeV).

VII. DISCUSSION

We have compared our results to other QCD-based
approaches in Sec. V. We find good agreement with

FIG. 8. The wave function of the charmonium 1−− 2ðs=dÞ1
state.

FIG. 9. The wave function of the charmonium 0þþ 1p0 state.

FIG. 10. The wave function of the charmonium 1−− 3ðs=dÞ1
state.
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Born-Oppenheimer approaches that have appeared recently
in the literature [9,10], as expected. However, the agree-
ment with QCD sum rules and lattice QCD calculations is
marginal. The lattice calculations in anisotropic lattices
and unphysical quark masses tend to give a heavier
hybrid spectrum, both in relativistic implementations of
heavy quarks [34,36] as well as in lattice NRQCD [4].
Nevertheless, in Ref. [35], a lattice calculation in which
both the continuum and the chiral extrapolations are carried
out, the three states found that are not identified with
known quarkonia fit well in our spectrum. In particular,

the 1−− state is compatible with the one in our lightest
hybrid multiplet.
It is remarkable that the gross features of the exper-

imental charmonium and bottomonium spectrum, includ-
ing isospin zero XYZ states, can be understood from our
results. The main improvement with respect to previous
works is that, in addition to the Cornell potential for the
quarkonium sector and the Born-Oppenheimer potentials
for the hybrid sector, we include the leading mixing term
between those sectors. The mixing term implies that the
actual physical states are a superposition of spin zero (1)
hybrids and spin 1 (zero) quarkonium. This facilitates the
identification of certain Y states as hybrids, since other-
wise the apparent spin symmetry violating decays were
difficult to understand [10]. We would like to emphasize
that the mixing term we use is essentially derived from
NRQCD, and hence from QCD. Its short and long distance
behaviors are obtained in a model-independent way.
The model dependence comes in through the interpolation
we use. We have chosen the sign combination and a value
of the free parameter such that a large mixing is favored. It
would be very important to have a lattice evaluation
of the mixing potential to validate these choices (or
otherwise). We have produced formulas (28) that can
be easily implemented on the lattice (see for instance
Refs. [29,46]).
There appear to be too many known isospin zero 1−−

charmonium resonances to fit our spectrum in Table IV
(see also Fig. 11). If we assign the Yð4008Þ to the 1ðs=dÞ1
state, then ψð4040Þ and ψð4160Þ naturally fall into the 3s
and 2d states respectively. However, the Xð4230Þ=Yð4220Þ
are also candidates for the 2d state. A possible way out
would be to disregard Yð4008Þ, as it is a very wide
resonance that has only been observed by Belle. Then,
ψð4040Þ would be assigned to the 1ðs=dÞ1 state, ψð4160Þ
to the 3s state, and Xð4230Þ=Yð4220Þ to the 2d state. TheFIG. 12. The wave function of the bottomonium 1−− 5s state.

FIG. 13. The wave function of the bottomonium 1−− 2ðs=dÞ1
state.

FIG. 11. Charmonium spectrum including hybrids. The height
of the boxes corresponds to the error estimated at the end of
Sec. IV C. Blue boxes correspond to a quarkonium, red boxes
correspond to ðs=dÞ1 and ðp=fÞ2 hybrids, cyan boxes corre-
spond to p1 and d2 hybrids, and green boxes correspond to p0

hybrids. The black lines are experimental resonances assigned
according to the discussion in Sec. VI. Solid (dashed) lines are
resonances with a single (multiple) possible assignment(s). The
widths of the boxes are chosen arbitrarily in order to facilitate
identifications.
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fact that the 1ðs=dÞ1 state has about a 30% quarkonium
component according to the seventh column of Table IV
(see also Fig. 6) may explain why it has been labeled as
ψð4040Þ. For the next state, 2ðs=dÞ1, there are three
competing resonances Yð4320Þ, Yð4360Þ, and Yð4390Þ.
This makes us suspect that they could correspond to the
same state. Indeed, the decay widths of Yð4320Þ and
Yð4360Þ are compatible and the one of Yð4390Þ is less than
1σ away. Concerning the masses, Yð4320Þ and Yð4360Þ
are less than 1σ away, but Yð4390Þ is more than 5σ
away, which casts some doubts on the suggested identi-
fication. Leaving this puzzle aside, there would only be
one state to be discovered below the Yð4660Þ, the 3d
around 4560 MeV.
If we assume for the 2ðs=dÞ1 states the mixing displayed

in column 7 of Table IVand the decay width in Table III for
the hybrid component, we obtain

ΓðYð4320=4360=4390Þ → hc þ l:h:Þ ¼ 14ð12Þ MeV;

ð55Þ
where l.h. stands for light hadrons. Analogously, for the
Xð4230Þ=Yð4220Þ state, we have

ΓðXð4230Þ=Yð4220Þ → hc þ l: h:Þ ¼ 17ð15Þ MeV: ð56Þ

Concerning the 1−− bottomonium resonances, all of
them fit in our spectrum in Table XIII. In addition, there
should be three states still to be discovered below the
ϒð10860Þ, the 2d, 1ðs=dÞ1, and 3d around 10 440, 10 690,
and 10 710 MeV respectively.
If we take the mixing in column 5 of Table XIII and

the decay width in Table III for the hybrid component, we
can also estimate the following decay widths for the
bottomonium:

Γðϒð10 860Þ → hb þ l:h:Þ ¼ 3ð1Þ MeV

ΓðYbð10 890Þ → hb þ l:h:Þ ¼ 13ð6Þ MeV: ð57Þ

According to our identifications in Sec. VI, we can infer
the quantum numbers of some XYZ states:

(i) Xð3915Þ should be the χ0c0 (0þþ).
(ii) Xð3940Þ should be the h0c (1þ−).
It is important to keep in mind that there are further

1=mQ corrections to the hybrid spectrum beyond those that
induce mixing between hybrids and quarkonia we have
focused on. In particular, the fine and hyperfine splittings of
hybrids may appear at Oð1=mQÞ rather than at Oð1=m2

QÞ,
as those of the quarkonium. Indeed, the following terms are
compatible with the symmetries of (3),

iϵijkVSðrÞtrðHi†½σk; Hj�Þ; ð58Þ

iϵijkVLðrÞtrðHi†LkHjÞ ð59Þ

(Lk is the angular momentum operator), and may appear at
Oð1=mQÞ in the matching to NRQCD.
Before closing, let us briefly discuss the important

question of how the lattice potentials we use (Fig. 1)
may change in the case nf ¼ 3 (three light quarks). We
know that Σþ

g does not change much, and this is also so for
Πu [47], at least up to moderately large distances. Nothing
is known about Σ−

u , but there is no reason to expect a
different behavior. Two major qualitative features arise,
though. The first one is the appearance of heavy-light
meson pairs, which amount to roughly horizontal lines at
the threshold energies in Fig. 1. These states interact with
the remaining potentials already at leading order and may
in principle produce important distortions with respect to
the nf ¼ 0 case. In practice, we only know how they cross-
talk to the Σþ

g state and turn out to produce a tiny
disturbance to the spectrum, apart from avoiding level
crossing [48]. Hence, we expect the effects of nf ≠ 0 to be
important only when our states are very close to some
heavy-light meson pair threshold. This is the reason why
we quoted the location of nearby thresholds when identi-
fying our hybrid candidates with XYZ states in Sec. VI.
The second one is the appearance of light quark excitations,
in addition to the gluon ones, in the static spectrum of
Fig. 1. They may have different quantum numbers, for
instance nonzero isospin (in this case, they may be relevant
to the experimentally discovered charged Z states). We do
not know anything about those, and as pointed out in
Ref. [49] and more recently emphasized in Refs. [9,50], it
would be extremely important to have lattice QCD eval-
uations of the static energies of light quark excitations.
We suspect that light quark excitations with the same
quantum numbers as the gluonic ones will only pro-
vide small modifications to the hybrid potentials, since
they correspond to higher-dimensional operators. In this
respect, it is significant that tetraquark models also
have difficulties in encompassing the Xð4140Þ in their
spectrum together with Xð4237Þ, Xð4500Þ, and Xð4700Þ
[51]. In fact, the Xð4140Þ structure may be due to a
threshold enhancement according to some authors
[52–54]. This means that tetraquarks with the same
quantum numbers as hybrids will in general be hidden
in the spectrum of the latter.

VIII. CONCLUSIONS

We have calculated the charmonium and bottomonium
hybrid spectrum in a QCD-based approach, including for
the first time the mixing with standard charmonium and
bottomonium states. The latter leads to enhanced spin
symmetry violations, which are instrumental in identifying
a number of XYZ states as hybrid states. Most of the
isospin zero XYZ states fit well in our spectrum, either as
hybrids or as standard quarkonium states. We have also
estimated several decay widths.
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APPENDIX A: QUARKONIUM

A conventional quarkonium, namely, QQ̄ in a color
singlet state, can be described by the Schrödinger equation
using the ground state potential VΣþ

g
ðrÞ,

h ¼ −
∇2

mQ
þ VΣþ

g
ðrÞ: ðA1Þ

We approximate VΣþ
g
ðrÞ by the Cornell potential,

VΣþ
g
ðrÞ ≈ −

kg
r
þ σgrþ EQQ̄

g ; ðA2Þ

where we take

kg ¼ 0.489; σg ¼ 0.187 GeV2; ðA3Þ

which describes lattice data well; see Fig. 2. EQQ̄
g

will be tuned independently for the charmonium
and bottomonium. We write the wave function as SðrÞ ¼
RLðrÞ
r YLMðθ;ϕÞ, which leads to the reduced equation:

�
−

1

mQ

∂2

∂r2 þ
LðLþ 1Þ
mQr2

þ VΣþ
g
ðrÞ
�
RLðrÞ ¼ ERLðrÞ:

ðA4Þ

The different eigenvalues of this equation correspond to the
energy levels of a heavy quarkonium, many of which have
been experimentally confirmed for the charmonium and

bottomonium [18]. We fix EQQ̄
g by making the charmonium

and bottomonium spectrum to best agree with the respec-
tive experimental spin averages. We obtain

Ecc̄
g ¼ −0.242 GeV; Ebb̄

g ¼ −0.228 GeV: ðA5Þ

Table V shows the results in terms ofMQQ̄ ¼ 2mQ þ E for
Q ¼ c, b of Eq. (A4) for the lower nL energy states. It also
shows the expectation value of the momentum, the inverse

radius, the expected size of the higher order corrections,

and our error estimate. Vð1Þ, Vð2Þ
vd (velocity dependent), and

Vð2Þ
vi (velocity independent) depend onΛQCD and r. We take

ΛQCD ¼ 400 MeV and estimate them as follows. If
ΛQCD > 1=hri, we take them as Λ2

QCD, ΛQCDhpi2, and
Λ3
QCD respectively. If ΛQCD < 1=hri, we take them accord-

ing to the weak coupling scalings α2s=hri2, αshpi2=hri, and
αs=hri3 respectively, where αs is the one-loop running
coupling constant evaluated at the scale 1=hri. The total
error is obtained by summing in quadrature these estimates
and the relativistic correction to the kinetic energy dis-
played in the eighth column. We observe that the errors for
the charmonium are rather large and are dominated by the
velocity-dependent potential. We also display the exper-
imental results in the last column.

APPENDIX B: EXTRACTION OF gΛ0 AND gΛ000
FROM LATTICE DATA

gΛ0 and gΛ000 also appear in the 1=m2
Q quarkonium

potentials [26,28]. Following the notation of Ref. [30], we

TABLE V. Masses, average momentum, inverse radii, expected
sizes of higher order contributions (1=mQ potential, 1=m2

Q
velocity-dependent potential, 1=m2

Q velocity-independent poten-
tials, 1=m3

Q kinetic energy), and estimated errors (in MeV) for the
charmonium (upper) and bottomonium (lower). The error is
estimated by summing in quadrature the expected sizes of the
higher order contributions (see the text for details on the latter).
We have taken mc ¼ 1.47 GeV and mb ¼ 4.88 GeV. The ex-
perimental numbers are displayed in the last column.

nL MQQ̄ hpi 1
hri Vð1Þ

mQ

Vð2Þ
vd

m2
Q

Vð2Þ
vi

m2
Q

p4

8m3
Q

ΔMQQ̄ Eexp

1s 3068 738 518 54 71 35 12 96 3068
2s 3678 836 259 109 129 30 19 173 3674
3s 4130 935 186 109 162 30 30 199 4039
4s 4517 1019 149 109 192 30 42 227 4421
5s 4865 1097 127 109 223 30 57 256 ?
1p 3494 753 317 109 105 30 13 155 3525
2p 3968 871 209 109 140 30 23 182 3927
3p 4369 966 162 109 173 30 34 209 ?
4p 4726 1048 135 109 203 30 47 237 ?
5p 5055 1136 119 109 239 30 66 272 ?

1s 9442 1546 1028 29 37 17 6 50 9445
2s 10 009 1408 432 14 22 2 4 26 10 017
3s 10 356 1494 295 33 38 3 5 50 10 355
4s 10 638 1594 232 33 43 3 7 54 10 579
5s 10 885 1692 195 33 48 3 9 59 10 876
1p 9908 1268 531 17 19 3 3 26 9900
2p 10 265 1386 332 33 32 3 4 46 10 260
3p 10 553 1504 252 33 38 3 5 51 ?
4p 10 806 1612 207 33 44 3 7 55 ?
5p 11 035 1727 180 33 50 3 10 61 ?
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have that the long distance behavior of the spin-orbit,
tensor, and spin-spin potentials reads

V 0
2ðrÞ ¼ 2rVð1;1Þ

L2S1
¼ −

2cFg2Λ2Λ0

κr
¼ −

2cFgΛ0

r

V3ðrÞ ¼ 12Vð1;1Þ
S12

¼ 2π3c2Fg
2Λ0002

15κ2r5

V4ðrÞ ¼ 3Vð1;1Þ
S2

¼ π3c2Fg
2Λ0002

30κ2r5
: ðB1Þ

We shall take the tree level value for cF, cF ¼ 1.
For the spin-orbit potential, a simple interpolation of the

expected long and short distance behavior, namely,

V 0
2ðrÞ ¼

A
r2

þ B
r
; ðB2Þ

already produces a good fit to data (R2 ¼ 0.998; see
Fig. 14). We obtain A ¼ 0.181 and B ¼ 0.295 in units
of r0, which translates to jgΛ0j ¼ 0.059 GeV. If we restrict
ourselves to the longer distance points (from seven to three)
and fit the expected long distance behavior only, we obtain
worse fits (R2 ≲ 0.977) with numbers about 40% higher,
which may serve to estimate the error.
For the tensor potential, the following interpolation,

which also has the right short and long distance behaviors,
produces a good fit to data (R2 ¼ 0.996; see Fig. 15):

V3ðrÞ ¼
CþDr
r3 þ r6

: ðB3Þ

We obtain C ¼ 0.191 and D ¼ 1.00 in units of r0, which
translates to jgΛ000j ¼ 0.230 GeV. We have checked that if
we restrict ourselves to the longer distance points (from
seven to three) and fit the expected long distance behavior
only, we obtain numbers compatible with the latter within a

35% error. jgΛ000j may also be obtained from the long
distance behavior of the spin-spin potential. However, we
have not been able to find a good fit to the data of Ref. [30],
neither using simple interpolations between the expected
short and long distance behavior nor to the expected long
distance behavior for the longer distance points (from nine
to three).

APPENDIX C: TENSOR SPHERICAL
HARMONICS

We follow the notation of Ref. [15]. We define

YijLJ
JM ¼

X
ν¼0;�1

CðJ1J ;M − ννÞYiL
JM−νχ

j
ν; ðC1Þ

where YiL
JM are the vector spherical harmonics,

YiL
JM ¼

X
μ¼0;�1

CðL1J;M − μμÞYM−μ
L χiμ; ðC2Þ

where YM
L are the usual spherical harmonics and

χ�1 ¼∓ 1ffiffiffi
2

p

0
B@

1

�i

0

1
CA; χ 0 ¼

0
B@

0

0

1

1
CA: ðC3Þ

CðJ1J2J;M1M2Þ are the Clebsch-Gordan coefficients.

APPENDIX D: SPECTRUM

We display in this Appendix the tables for the full
charmonium and bottomonium spectrum up to J ¼ 2,
which includes hybrids and quarkonia states, except
for the charmonium 1−− case that is displayed in
Table IV.

FIG. 14. V 0
2ðrÞ in units of r−2o against r units of ro, ro ∼ 0.5 fm.

FIG. 15. V3ðrÞ in units of r−3o against r in units of ro,
ro ∼ 0.5 fm.
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TABLE VIII. Same as in Table VI for 2þþ states.

NLJ λ ¼ 0 % λ ¼ 0.6 %

1p 3.494 0 3.424 5
2p 3.968 0 3.937 7
1f 4.047 0 3.981 11
1ðp=fÞ2 4.231 100 4.240 81
3p 4.369 0 4.350 0
2f 4.428 0 4.391 77
2ðp=fÞ2 4.563 100 4.579 53
4p 4.727 0 4.709 3
3f 4.775 0 4.752 11
3ðp=fÞ2 4.886 100 4.909 78
4ðp=fÞ2 4923 100 4.952 94
5p 5.055 0 5.040 4

TABLE IX. Same as in Table VI for 2−− states.

NLJ λ ¼ 0 % λ ¼ 0.6 %

1d 3.793 0 3.792 0
2d 4.210 0 4.209 1
1d2 4.334 100 4.335 100
3d 4.579 0 4.578 0
2d2 4.693 100 4.694 99
4d 4.916 0 4.915 0
3d2 5.036 100 5.037 100

TABLE X. Spectrum of charmonium (S ¼ 0) and charmonium
hybrids (S ¼ 1): 0−þ states. Masses are in GeV. The % columns
show the fraction of the hybrid components for the mass states in
the previous column. The mixing potentials are fixed to VΠ

S ½þ−�
and VΣ

S ½þþ�. mc ¼ 1.47 GeV.

NLJ λ ¼ 0 % λ ¼ 0.6 %

1s 3.068 0 2.913 7
2s 3.678 0 3.591 8
1ðs=dÞ1 4.011 100 4.033 99
3s 4.131 0 4.069 1
2ðs=dÞ1 4.355 100 4.375 92
4s 4.512 0 4.468 7
3ðs=dÞ1 4.692 100 4.719 99
4ðs=dÞ1 4.718 100 4.781 96
5s 4.865 0 4.823 0
5ðs=dÞ1 5.043 100 5.055 96

TABLE XI. Same as in Table X for 1þ− states.

NLJ λ ¼ 0 % λ ¼ 0.6 %

1p 3.494 0 3.333 9
2p 3.968 0 3.901 2
1p1 4145 100 4.146 100
1ðp=fÞ2 4231 100 4.242 99
3p 4.369 0 4.320 1
1p0 4.486 100 4.511 98
2p1 4.511 100 4.526 100
2ðp=fÞ2 4563 100 4.590 95
4p 4.727 0 4.686 8
3p1 4863 100 4.863 100
3ðp=fÞ2 4886 100 4.901 99
2p0 4920 100 4.936 95
4ðp=fÞ2 4923 100 4.959 100
5p 5.055 0 5.020 7

TABLE XII. Same as in Table X for 2−þ states.

NLJ λ ¼ 0 % λ ¼ 0.6 %

1d 3.793 0 3.721 6
1ðs=dÞ1 4.011 100 4.014 75
2d 4.210 0 4.199 80
1d2 4334 100 4.335 100
2ðs=dÞ1 4.355 100 4.353 73
1ðd=gÞ3 4.435 100 4.443 100
3d 4.579 0 4.571 11
3ðs=dÞ1 4.692 100 4.690 97
2d2 4.693 100 4.694 98
4ðs=dÞ1 4.718 100 4.713 96
2ðd=gÞ3 4.763 100 4.774 90
4d 4.916 0 4.911 27
3d2 5.036 100 5.037 95
5ðs=dÞ1 5.043 100 5.084 98

TABLE VII. Same as in Table VI for 1þþ states.

NLJ λ ¼ 0 % λ ¼ 0.6 %

1p 3.494 0 3.492 0
2p 3.968 0 3.967 0
1p1 4.145 100 4.146 100
3p 4.369 0 4.368 0
2p1 4.511 100 4.512 100
4p 4.727 0 4.726 0
3p1 4.863 100 4.863 99
5p 5.055 0 5.055 1

TABLE VI. Spectrum of charmonium (S ¼ 1) and hybrids
(S ¼ 0): 0þþ states. Masses are in GeV. The % columns show the
fraction of the hybrid components for the mass states in the
previous column. The mixing potentials are fixed to VΠ

S ½þ−� and
VΣ
S ½þþ�. mc ¼ 1.47 GeV.

NLJ λ ¼ 0 % λ ¼ 0.6 %

1p 3.494 0 3.396 7
2p 3.968 0 3.925 1
3p 4.369 0 4.338 0
1p0 4.486 100 4.566 98
4p 4.727 0 4.703 9
2p0 4.920 100 4.965 94
5p 5.055 0 5.034 1
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TABLE XIV. Same as in Table XIII for 0þþ states.

NLJ λ ¼ 0 % λ ¼ 0.6 %

1p 9.908 0 9.907 0
2p 10.265 0 10.264 0
3p 10.553 0 10.553 0
4p 10.806 0 10.805 0
1p0 11.011 100 11.013 99

TABLE XV. Same as in Table XIII for 1þþ states.

NLJ λ ¼ 0 % λ ¼ 0.6 %

1p 9.908 0 9.908 0
2p 10.265 0 10.265 0
3p 10.553 0 10.553 0
1p1 10.761 100 10.761 99
1p 10.806 0 10.806 0
2p1 10.970 100 10.970 99
5p 11.034 0 11.035 0

TABLE XVI. Same as in Table XIII for 2þþ states.

NLJ λ ¼ 0 % λ ¼ 0.6 %

1p 9.908 0 9.898 1
2p 10.265 0 10.258 1
1f 10.348 0 10.331 2
3p 10.553 0 10.549 0
2f 10.615 0 10.603 5
4p 10.806 0 10.801 13
1ðp=fÞ2 10.819 100 10.820 91
3f 10.855 0 10.851 32
2ðp=fÞ2 11.005 100 11.009 80

TABLE XVII. Same as in Table XIII for 2−− states.

NLJ λ ¼ 0 % λ ¼ 0.6 %

1d 10.155 0 10.155 0
2d 10.453 0 10.454 0
3d 10.712 0 10.713 0
1d2 10.870 100 10.870 100
4d 10.947 0 10.947 0
2d2 11.074 100 10.074 100

TABLE XVIII. Spectrum of bottomonium (S ¼ 0) and botto-
monium hybrids (S ¼ 1): 0−þ states. Masses are in GeV. The %
columns show the fraction of the hybrid components for the mass
states in the previous column. The mixing potentials are fixed to
VΠ
S ½þ−� and VΣ

S ½þþ�. mb ¼ 4.88 GeV.

NLJ λ ¼ 0 % λ ¼ 0.6 %

1s 9.442 0 9.427 1
2s 10.009 0 9.987 3
3s 10.356 0 10.343 1
4s 10.638 0 10.629 3
1ðs=dÞ1 10.690 100 10.693 99
5s 10.886 0 10.877 16
2ðs=dÞ1 10.885 100 10.890 81
3ðs=dÞ1 11.084 100 11.086 95

TABLE XIII. Spectrum of bottomonium (S ¼ 1) and hybrids
(S ¼ 0): 1−− states. Masses are in GeV. The % columns show the
fraction of the hybrid components for the mass states in the
previous column. The mixing potentials are fixed to VΠ

S ½þ−� and
VΣ
S ½þþ�. mb ¼ 4.88 GeV.

NLJ λ ¼ 0 % λ ¼ 0.6 %

1s 9.442 0 9.441 0
2s 10.009 0 10.000 2
1d 10.155 0 10.133 2
3s 10.356 0 10.352 0
2d 10.454 0 10.440 2
4s 10.638 0 10.635 1
1ðs=dÞ1 10.690 100 10.688 79
3d 10.712 0 10.713 56
2ðs=dÞ1 10.885 100 10.881 17
5s 10.886 0 10.890 75
4d 10.947 0 10.942 11
3ðs=dÞ1 11.084 100 11.086 98

TABLE XIX. Same as in Table XVIII for 1þ− states.

NLJ λ ¼ 0 % λ ¼ 0.6 %

1p 9.908 0 9.886 2
2p 10.265 0 10.249 2
3p 10.553 0 10.543 0
1p1 10.761 100 10.761 100
4p 10.806 0 10.798 1
1ðp=fÞ2 10.819 100 10.820 100
2p1 10.970 100 10.969 100
1p0 11.011 100 11.006 100

TABLE XX. Same as in Table XVIII for 2−þ states.

NLJ λ ¼ 0 % λ ¼ 0.6 %

1d 10.155 0 10.144 2
2d 10.454 0 10.444 3
1ðs=dÞ1 10.690 100 10.685 82
3d 10.712 0 10.717 52
1d2 10.870 100 10.870 100
2ðs=dÞ1 10.885 100 10.886 94
1ðd=gÞ1 10.935 100 10.937 99
4d 10.947 0 10.945 13
2d2 11.074 100 11.074 99
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