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We investigate the photoproduction of theΛð1405Þ≡ Λ� hyperon resonance, i.e., γp → KþΛ�, employing
the effective Lagrangian approach with the t-channel Regge trajectories at tree level. We extensively explore
the effects from the nucleon resonances in the vicinity of the threshold

ffiffiffi
s

p
th ≈ 1900 MeV, i.e., N�ð2000Þ,

N�ð2030Þ, N�ð2055Þ, N�ð2095Þ, and N�ð2100Þ, and observe that they are of great importance to reproduce
the recent CLAS experimental data. Total and differential cross sections are given as numerical results and
compared with the experimental data, in addition to the photon-beam asymmetry. The invariant-mass
distributions for γp → Kþπ0Σ0 via Λ� are also extracted from the two-body process results, showing a
qualitative agreement with the data. We also discuss the constituent-counting rule for the internal structure of
Λ�, resulting in that Λ� appears to be different from a simple three-quark (uds) state.
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I. INTRODUCTION

The structure of exotic hadrons, such as the tetraquarks,
pentaquarks, and meson-baryon molecular states for in-
stance, has been one of the most interesting topics over
decades in terms of the strongly interacting systems, gov-
erned by quantum chromodynamics (QCD). Recent discov-
eries of those exotics can shed light on the newunderstanding
of QCD at low energies. The mesons consisting of four
quarks, i.e., tetraquark state, has been reported by the Belle
collaboration and BESIII collaboration [1–7]. The LHCb
collaboration observed signals for the heavy pentaquark state
Pþ
c as well [8]. The meson-baryon molecular state for

Λð1405Þ≡ Λ�, rather than a simple three-quark (uds)
one, was proposed first even before QCD was established
by Dalitz and Tuan [9,10] and recently its properties have
been investigated via the unitarized chiral dynamics [11–21]
and supported recently by the lattice-QCD (LQCD) simu-
lation by investigating the strange form factor ofΛ� [22]. The
LQCDsimulation also supports themeson-baryonmolecular
nature by investigating the strange form factor ofΛ� [22]. In
addition to the studies of structure for the Λð1405Þ, the
relevant production mechanisms were investigated exten-
sively as well in Refs. [23–26].
In the present work, we would like to investigate the

photoproduction of Λ�, i.e., γp → KþΛ�, employing the
effective Lagrangian approach with the K and K� Regge

trajectories at tree level. We focus on the contributions from
the nucleon resonances near the threshold, such as
N�ð2000; 5=2þÞ and N�ð2100; 1=2þÞ, which have been
reported in the Particle Data Group (PDG) [27]. In addition
to them, a few missing resonances, i.e., N�ð2030; 1=2−Þ,
N�ð2055; 3=2−Þ, and N�ð2095; 3=2−Þ, predicted by the
relativistic SU(6) quark model [28,29], are also taken into
account. The electromagnetic and strong couplings are
determined from the presently available theoretical and
experimental results. Especially, we used the chiral unitary
model (ChUM) for the strong couplings for Λ� [30],
because we do not have much information for gKNΛ� and
gK�NΛ� from experiments. The couplings for the KN�Λ�
vertex are taken from the quark-model calculations [29]. In
order to satisfy the Ward-Takahashi (WT) identity, we
make use of the gauge-invariant prescription for the form
factors in the invariant amplitude. We compute various
physical observables: The total (σγp→KþΛ�) and differential
(dσγp→KþΛ�=d cos θ; dσγp→KþΛ�=dt) cross sections, the
photon-beam asymmetry ðΣγ⃗p→KþΛ� Þ, the invariant mass
plot ðdσγp→Kþπ0Σ0=dMπ0Σ0Þ for Λ�, and so on.
From the numerical results, we observe that the

nucleon-resonance contributions are crucial to reproduce
the experimental data from the CEBAF Large Acceptance
Spectrometer at Jefferson laboratory (CLAS/Jlab) [31]
for the total cross section near the threshold. Among
the resonances, we find that N�ð2000; 5=2þÞ and
N�ð2100; 1=2þÞ dominate the threshold region. As for
the differential cross sections as a function of the outgoing
Kþ angle ðθÞ in the center-of-mass (c.m.) frame, the
nucleon resonances play an important role to produce the
strength of the cross sections below

ffiffiffi
s

p ≡W ≲ 2.2 GeV as
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expected. As the production energy increases, the
conventional nonresonant contributions dominate and
enhance the forward peaking at cos θ ≈ 0, due to the strong
K-exchange contribution.
The t-dependent differential cross sections

ðdσγp→KþΛ�=dtÞ is computed for W ¼ ð2.0 − 4.0Þ GeV,
with the help of the Regge approach, which can extend
a simple low-energy Born approximation into the higher
energy beyond the resonance region [32]. As expected, the
curves are obviously modified by the N� contributions near
threshold. At the same time, the photon-beam asymmetry is
computed as a function of cos θ for different energies and is
found to be in the shape of a distorted sin 2θ according to the
competing K- and K�-Regge contributions.
Assuming that the decay width of Λ� is sufficiently

narrow ðΓΛ� ≈ 50 MeV ≪ Λhadron ≈ 1 GeVÞ and the
interference between the Λ� and other nonstrange
mesons decaying into KK̄ are negligible in the Dalitz
process of γp → Kþπ0Σ0, the differential cross section of
dσγp→Kþπ0Σ0=dMπ0Σ0 can be obtained from a simple for-
mula with ΓΛ�→πΣ and σγp→KþΛ� , which is computed
previously [25]. By doing this, the distribution as a
function of invariant mass Mπ0Σ0 is drawn and compared
with the data, showing a good agreement and supporting
its successful application.
Finally, we investigate the constituent-counting rule

(CCR). The CCR is a method to analyze the internal
structure of the hadrons involved in the 2 → 2 reaction
process by dimensional considerations of the reaction
amplitude in terms of the quark and gluon propagators
at the large angle as well as the high energy. Applying this
to the present reaction process, we observe that the
numerical result, i.e., s7dσ=dt as a function of W, differs
clearly from the three-quark state for Λ�, although it does
not lead to the concrete conclusion that the results support
the five-quark state for Λ�.
The present work is organized as follows: In Sec. II,

theoretical framework is briefly explained. Numerical
results and relevant discussions are given in Sec. III.
The final section is devoted for summary.

II. THEORETICAL FRAMEWORK

In this section, we provide a brief explanation for the
present theoretical framework. Basically, we employ the
tree-level Born approximation with effective Lagrangians
for the interaction vertices and the Regge trajectories for the
pseudoscalar (PS) and vector (V) meson exchanges in the t
channel. In terms of the PS meson-baryon coupling
scheme, the relevant Feynman diagrams for the γp →
KþΛ�ð1405Þ reaction process are drawn in Fig. 1, in which
k1 and p1 stand for the four momenta for the incident
photon and target proton, whereas k2 and p2 for the
outgoing Kþ and recoiled Λ�ð1405Þ, respectively. As for
the t-channel, we consider the K and K� exchanges with

their Regge propagators. By doing this, we can explore
higher energy regions, which cannot be probed by the
simple Born approximation [32]. The nucleon and its
resonance states are taken into account for the baryon-pole
diagrams in the s channel, whereas the hyperons, Λð1116Þ,
Σ0ð1193Þ, and Λð1405Þ, are included for the u channel as
shown in Fig. 1. Although there are other possible hyperon
contributions in the u channel, such as Λð1520Þ and
Λð1670Þ for instance, the magnetic transitions to
Λð1405Þ have not been reported experimentally as well
as theoretically. In addition, the u-channel resonances with
a higher mass do not produce significant structure in the
cross section in the energy region we are interested in.
Hence, we will not take those higher-mass hyperons into
account in the present calculation.
The effective Lagrangians for the EM interaction vertices

read

LγKK ¼ −ieK½K†ð∂μKÞ − ð∂μK†ÞK�Aμ;

LγKK� ¼ gγKK�ϵμναβ∂μAν½ð∂αK�−
β ÞKþ þ K−ð∂αK

�þ
β Þ�;

LγNN ¼ −N̄
�
eNγμ −

eκN
2MN

σμν∂ν

�
AμN;

LγΛ�Λ� ¼ eμΛ�

2MN
Λ̄�σμν∂νAμΛ�;

LγYΛ� ¼ eμΛ�→Yγ

2MN
Ȳγ5σμν∂νAμΛ� þ H:c:; ð1Þ

where Aμ, K, K�, N, and Λ� indicate the fields for the
photon, pseudoscalar kaon, vector kaon, nucleon, and
Λð1405Þ, respectively. Y corresponds to the field for the
ground-state Λ or Σ0. Mh and eh stand for the mass and
electric charge of the hadron h, while e denotes the unit
electric charge. As for the values for the coupling constants,
the charged gcγKK� is calculated from the experimental data
for the decay width ΓðK� → KγÞ, resulting in 0.254 GeV−1

[27]. The anomalous magnetic moment of the proton is
given by κN ¼ 1.79. The transition magnetic moments
between two hyperons are also necessary and given by
μh→h0 . The SU(3) quark model gives μΛ� ¼ 0.44 [33] which
lies within the values predicted from the ChUM: μΛ� ¼
0.2�0.5 [34]. Meanwhile, we obtain μΛ�→ðΛ;Σ0Þγ ¼
ð−0.43; 0.61Þ from an isobar model [35] to match the

(a) (c)(b)

FIG. 1. Relevant tree-level Feynman diagrams for the
γp → KþΛð1405Þ reaction process. p�, Λ, Σ0, and Λ� stand
for the proton resonances, Λð1116Þ, Σ0ð1193Þ, and Λð1405Þ,
respectively.
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K−p atom data [36]. Thus, the output of the radiative decay
widths is given by ΓΛ�→γΛ ¼ ð27� 8Þ keV and ΓΛ�→γΣ0 ¼
ð23� 7Þ keV [35] from the formula

ΓΛ�→γY ¼ ðeμΛ�→γYÞ2k3

4πM2
N

; ð2Þ

derived from the γYΛ� Lagrangian in Eq. (1). Here k is the
magnitude of the three-momentum of the hyperon Y in the
rest frame of Λ�.
The effective Lagrangians for the strong vertices are

written by

LKNY ¼ −igKNYN̄γ5YK þ H:c:;

LKNΛ� ¼ −igKNΛ�N̄Λ�K þ H:c:;

LK�NΛ� ¼ −gK�NΛ�N̄γ5γμΛ�K�μ þ H:c: ð3Þ

Note that the strong coupling gKNðΛ;Σ0Þ is given by
ð−13.4; 4.09Þ from the Nijmegen soft-core potential
(NSC97a) [37]. Because there is no sufficient experimental
information on the strong coupling constants for the excited
Λ hyperons, we resort to theoretical results, using the
chiral-unitary model (ChUM) [30]. Averaging those theo-
retical values for various cases, we determine the strengths
for the couplings for the numerical calculations as
jgKNΛ� j≃ 1.95 and jgK�NΛ� j≃ 1.3. All the values for the
relevant couplings for the numerical calculations are
summarized in Table I.
The invariant-scattering amplitude for the photoproduc-

tion can be written in general by

M ¼ IhūΛ�Mμ
hϵμuN; ð4Þ

where uN and uΛ� designate the Dirac spinors for the
target nucleon and recoiled Λ�, respectively, and ϵμ
denotes the polarization vector of the incident photon.
In the present calculation, the isospin factors are
given by IK ¼ IN ¼ IK� ¼ IΛ ¼ IΣ0 ¼ IΛ� ¼ 1. The effec-
tive Lagrangians of Eqs. (1) and (3) being employed, the
relevant hadronic amplitude (Mμ

h) besides the nucleon-
resonance (N�) contributions can be obtained straightfor-
wardly as follows:

Mμ
K ¼ −2iegKNΛ�

1

t −M2
K
kμ2;

Mμ
N ¼ −iegKNΛ�

qs þMN

s −M2
N

�
γμ þ iκp

2MN
σμνk1ν

�
;

Mμ
K� ¼ gγKK�gK�NΛ�

1

t −M2
K�

ϵμναβγ5γνk1αk2β;

Mμ
Λ;Σ0 ¼

eμΛ�→γðΛ;Σ0Þ
2MN

gKNðΛ;Σ0Þ
u −M2

ðΛ;Σ0Þ
σμνk1νðqu −MðΛ;Σ0ÞÞ;

Mμ
Λ� ¼ eμΛ�

2MN

gKNΛ�

u −M2
Λ�
σμνk1νðqu þMΛ� Þ; ð5Þ

where qs;t;u stand for the off-shell four momenta, defined
by qs ¼ k1 þ p1, qt ¼ k1 − k2, and qu ¼ p2 − k1, and we
also have q2s;t;u ¼ ðs; t; uÞ, which denote the Mandelstam
variables.
Considering the spatial extension of the hadrons, one

needs to take into account the empirical form factors in the
numerical calculations. We introduce a form factor as
follows:

F ¼ FðxÞ ¼
�

Λ4

Λ4 þ ðx −M2Þ2
�
2

: ð6Þ

Here, x and Λ indicate the Mandelstam variables and
hadronic cutoff-mass parameter. Because the naive usage of
the form factors can violate the Ward-Takahashi (WT)
identity, various effective prescriptions to preserve the
identity were suggested in Refs. [38–42]. The prescription
from Ref. [41] being followed, the bare invariant amplitude
is reconstructed with the form factors, satisfying the WT
identity, as follows:

ϵ ·MBorn ¼ ϵ · ½ðMK þMNÞFc þMK�FK� þMΛFΛ

þMΣ0FΣ0 þMΛ�FΛ� �; ð7Þ

where we define a common form factor as

Fc ¼ Ft;K þ Fs;N − Ft;KFs;N; ð8Þ

which fulfills the on-mass-shell condition, i.e., the form
factor becomes unity at q2x ¼ m2

h, and the crossing sym-
metry. It is easy to verify that kγ ·MBorn ¼ k1 ·MBorn ¼ 0,
i.e., satisfying the WT identity, as already shown in the
previous works [23,25].
Now, we are in a position to consider the N� contribu-

tions in the s channel. As shown in the previous work [25],

TABLE I. Relevant EM and strong coupling constants for the numerical calculations.

gcγKK� κN μΛ� μΛ�→γΛ μΛ�→γΣ0 gKNΛ gKNΣ0 jgKNΛ� j jgK�NΛ� j
−0.254=GeV 1.79 [27] 0.44 [33] −0.43 [35,36] 0.61 [35,36] −13.4 [37] 4.09 [37] 1.95 [30] 1.3 [30]
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the nucleon resonance was found to be crucial to reproduce
the experimental data. In the present work, we consider
more resonances in the vicinity of the reaction threshold.
Among the nucleon resonances listed in the Particle Data
Group (PDG) [27], we take into account N�ð2000; 5=2þÞ
and N�ð2100; 1=2þÞ, which are near the reaction
threshold and couple strongly to γN [27] as well as
KΛ� [29] channels. Other resonances, for instance,
N�ð1895; 1=2−Þ, N�ð1900; 3=2þÞ, N�ð1990; 7=2þÞ, and
N�ð2060; 5=2−Þ, are excluded from our consideration,
because their couplings to the KΛ� channel are very small
or even exhibit zero values [29]. Meanwhile, the SU (6)
relativistic-quark model provides us with missing resonan-
ces, such as N�ð2030; 1=2−Þ, N�ð2055; 3=2−Þ, and
N�ð2095; 3=2−Þ [28,29]. Hence, five N� states in total
are taken into account in the present work. For this purpose,
we first define the effective Lagrangians for the EM
transitions for them with respect to their spin and parity
ðjPÞ as follows:

L1=2�
γNN� ¼ eh1

2MN
N̄Γ∓σμν∂νAμN� þH:c:;

L3=2�
γNN� ¼−ie

�
h1

2MN
N̄Γ�

ν −
ih2

ð2MNÞ2
∂νN̄Γ�

�
FμνN�

μþH:c:;

L5=2�
γNN� ¼ e

�
h1

ð2MNÞ2
N̄Γ∓

ν −
ih2

ð2MNÞ3
∂νN̄Γ∓

�
∂ρFμνN�

μρ

þH:c:; ð9Þ

where hJi denotes the EM transition coupling obtained from
the Breit-Wigner helicity amplitudes AJ

i [27]. The explicit
relations between them are given in Refs. [43,44].
Similarly, the effective Lagrangians for the strong inter-
actions read

L1=2�
KΛ�N� ¼ −igKΛ�N�K̄Λ̄�Γ∓N� þ H:c:;

L3=2�
KΛ�N� ¼ gKΛ�N�

MK
∂μK̄Λ̄�Γ�N�

μ þ H:c:;

L5=2�
KΛ�N� ¼ igKΛ�N�

M2
K

∂μ∂νK̄Λ̄�Γ∓N�
μν þ H:c:; ð10Þ

whereN�,N�
μ, andN�

μν denote the spin-1=2,−3=2, and−5=2
nucleon-resonance fields, respectively. To construct the
nucleon resonances, whose spins are greater than 1=2, one
needs a special description, such as the Rarita-Schwinger
(RS) formalism [45,46]. In this formalism, there appear some
theoretical uncertainties. In Refs. [47–50], the authors
explored them by addressing the gauge invariant RS fields,
off-shell effects, causality, etc. Although these subjects are
interesting to study, it must be beyond our scope for the
present research. Therefore, we make use of the simplest
prescription for the RS fields as done in our previous work
[51,52]. Note that we utilized the following notations
depending on the parities of N�s (P ¼ �):

Γ� ¼
�

γ5

I4×4

�
; Γ�

μ ¼
�
γμγ5

γμ

�
: ð11Þ

Using Eqs. (9) and (10), it is straightforward to compute
the invariant amplitudes for the nucleon-resonance contri-
butions with M ¼ IN� ūΛ�MN�uN as in Eq. (4):

M1=2�
N� ¼∓gKΛ�N�

eh1
2MN

Γ∓ðqsþMN� ÞΓ∓
s−M2

N� þ iMN�ΓN�
σμνk1νϵμ;

M3=2�
N� ¼ i

gKΛ�N�

MK

Γ�kμ2
s−M2

N� þ iMN�ΓN�
ΔμνðqsÞ

×

�
eh1
2MN

Γ�
λ ∓ eh2

ð2MNÞ2
Γ�p1λ

�
ðkν1ϵλ−kλ1ϵ

νÞ;

M5=2�
N� ¼ i

gKΛ�N�

M2
K

Γ∓kμ2kν2
s−M2

N� þ iMN�ΓN�
Δρσ

μνðqsÞ

×

�
eh1

ð2MNÞ2
Γ∓
λ � eh2

ð2MNÞ3
Γ∓p1λ

�
k1σðk1ρϵλ−kλ1ϵρÞ;

ð12Þ

where ΓN� stands for the full decay width for N�. The spin-
summation factor for spin-3=2 and spin-5=2 spinors are
assigned by Δμν and Δρσ

μν and their explicit forms given by
[43,44,53]

ΔμνðqÞ ¼ ðqþMN�Þ
�
−gμν þ

1

3
γμγν þ

1

3MN�
ðγμqν − γνqμÞ

þ 2

3M2
N�

qμqν

�
;

Δρσ
μνðqÞ ¼ qþMN� Þ

�
1

2
ðḡρμḡσν þ ḡσμḡ

ρ
νÞ − 1

5
ḡμνḡρσ

−
1

10
ðγ̄μγ̄ρḡσν þ γ̄μγ̄

σ ḡρν þ γ̄νγ̄
ρḡσμ þ γ̄νγ̄

σ ḡρμÞ
�
:

ð13Þ

Here, we have used the following notations for convenience:

ḡμν ¼ gμν −
qμqν
M2

N�
; γ̄μ ¼ γμ −

qμ
M2

N�
q: ð14Þ

The relevant input parameters from the PDG and missing
nucleon resonances are summarized in Table II. The EM
transition (hJi ) and strong coupling gKΛ�N�) constants are
derived from the experimental [27] and theoretical infor-
mation [28,29]. Note that we adopt the central ones among
the values AJ

i andGðlÞ. The details for obtaining the strong
coupling constants, gKΛ�N� , are explained in the Appendix.
Because the phase factors between the invariant amplitudes
for different N�s cannot be determined simply by sym-
metries, such as the gauge and flavor symmetries for
instance, it is natural for them to be considered as free
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parameters to reproduce the data. In general, those ampli-
tudes are represented by

MRes ¼
X
N�

eiψN�MN�FN� ; ð15Þ

where ψN� is a certain phase angle and FN� indicates the
form factor, whose form is the same as FðsÞ of Eq. (6). We
note that, in Refs. [54–56], in order to suppress the
nucleon-resonance contributions in the high-energy
regions, the Gaussian form factors were employed. In
describing the data, we, however, verified that our choice
for the s-channel form factor in Eq. (6) works sufficiently to
reproduce the data as shown in Sec. III. We reach a similar
conclusion when the following Gaussian form factor is
instead used with the same cutoff mass ΛN� ¼ 0.9 GeV:

FGaussðsÞ ¼ exp

�
−
ðs −M2

N� Þ2
Λ4
N�

�
: ð16Þ

Although we would like to reproduce the data in the
relatively low-energy region near the threshold, as done in
the CLAS experiment, it is interesting to explore the
higher-energy region theoretically for future experiments
in the upgraded CLAS/Jlab and other experimental facili-
ties. For this purpose, we employ the t-channel Regge
trajectories for K and K� mesons and follow closely
Ref. [57]. In this Regge approach, the Feynman propa-
gators in Eq. (5) are replaced simply by the Regge ones as

1

t−M2
K
→PRegge

K ¼
�
s
s0

�
αK πα0K
sinðπαKÞ

�
1

e−iπαK

�
1

Γð1þαKÞ
;

1

t−M2
K�
→PRegge

K� ¼
�
s
s0

�
αK�−1 πα0K�

sinðπαK� Þ
�

1

e−iπαK�

�
1

ΓðαK� Þ;

ð17Þ

where the Regge phases can be the constant (1) or the
rotating ðe−iπαK;K� Þ one. The Regge trajectories read [57]

αK ¼ αKðtÞ ¼
0.7

GeV2
ðt −M2

KÞ;

αK� ¼ αK� ðtÞ ¼ 0.83
GeV2

tþ 0.25; ð18Þ

and we define the slope parameter as α0K;K� ≡ ∂αK;K� ðtÞ=∂t.
Conventionally, the energy scale parameter is chosen to be
s0 ¼ 1 GeV2. With this in mind, the bare invariant ampli-
tude of t and s channels in Eq. (7) is modified as

ϵ ·MRegge
t;s ¼ ϵ · ½ðMK þMNÞðt −M2

KÞPRegge
K

þMK� ðt −M2
K�ÞPRegge

K� �; ð19Þ

for the present reaction process.
It is worth mentioning that the three-body (Dalitz)

reaction process, ab → cde, can be explored approxi-
mately in terms of the two-body one, if one assumes the
following: (1) The decay widths for the decaying reso-
nances are sufficiently narrow and (2) the interference
between the different resonances in the Dalitz plot is
negligible. If these conditions are fulfilled, one can write
the differential cross section (invariant-mass plot) for the
Dalitz process γp → Kþπ0Σ0 as follows [25]:

dσγp→Kþπ0Σ0

dMπ0Σ0

≈
2MΛ�Mπ0Σ0

π

σγp→KþΛ�ΓΛ�→π0Σ0

ðM2
π0Σ0−M2

Λ� Þ2þM2
Λ�Γ2

Λ�
;

ð20Þ

where σγp→KþΛ� is the two-body total cross section. Here
are some justifications for the usage of Eq. (20): First, the
decay width of Λ� → πΣ is about 50 MeV, which is much
smaller than the typical energy range ∼500 MeV in the
present analysis. Therefore, condition (1) can be assumed
to be reasonable. Second, in the Dalitz process
γp → Kþπ0Σ0, the Λ� production interferes with the
Kþ� one on the Dalitz plot. Interestingly, in Ref. [58], it
was found experimentally that the interference between the
different resonant productions is almost negligible,
although they focused on the different reactions process,
i.e., γp → KþK−p. Hence, considering these observations,
conditions (1) and (2) can be justified rather safely here,
and we can use Eq. (20) for computing the Dalitz process

TABLE II. The input parameters for the nucleon-resonance contributions. The helicity amplitudes A1=2;3=2 [10−3=
ffiffiffiffiffiffiffiffiffi
GeV

p
] are obtained

from Refs. [27,28] and the decay amplitudes GðlÞ [ ffiffiffiffiffiffiffiffiffiffi
MeV

p
] are extracted from Ref. [29].

A1=2 A3=2 h1 h2 GðlÞ [29] gKΛ�N�

N�ð2000; 5=2þÞ [27] 31� 10 −43� 8 −4.22 3.98 −0.6þ0.6
−1.6 −0.912

N�ð2100; 1=2þÞ [27] 10� 4 � � � −0.045 � � � þ5.2� 0.8 0.785
N�ð2030; 1=2−Þ [28] 20 � � � 0.094 � � � þ1.2þ0.9

−1.1 1.78
N�ð2055; 3=2−Þ [28] 16 0 −0.335 0.419 þ1.2þ0.5

−0.9 −0.467
N�ð2095; 3=2−Þ [28] −9 −14 0.018 −0.134 þ0.7þ0.2

−0.4 −0.228
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with the two-body cross section, which is computed by
Eqs. (5) and (12). In doing this, the absolute value for the
Kþ three momentum is obtained as a function of the
invariant mass Mπ0Σ0 as follows:

jk⃗Kþj ¼
��

sþM2
Kþ −M2

π0Σ0

2W

�2

−M2
Kþ

�1
2

: ð21Þ

Note that jk⃗Kþj ¼ jk⃗Λ� j by construction in the c.m. frame.
As mentioned previously, the internal structure of Λ� has

been one of the most interesting subjects in the non-
perturbative QCD. There have been several approaches to
pin down the genuine structure of the hyperon resonance.
Among various theoretical studies, we discuss the con-
stituent-counting rule (CCR) [59,60]. Basically, in the
CCR, the high-energy and large-angle scattering ampli-
tudes for two-body processes, i.e., ab → cd, are analyzed
by dimensional considerations of the quark and gluon
propagators, resulting in

dσab→cd

dt
∝

1

sn−2
; ð22Þ

wheren is the total number of the constituents of the particles
involved in the scattering process. For instance, if Λ� is
composed of three quarks, the value of n becomes
1γ þ 3N þ 2K þ 3Λ� ¼ 9, whereas n ¼ 11 for the five-quark
system. Note that there are many uncertain theoretical
ingredients, such as the distribution functions for the
involved particles and so on, to apply the CCR to real
problems of Λ� [60]. It is, however, still valuable to test the
relation in Eq. (22) with the present results, in which the
Regge approach can extend the low-energy Born approxi-
mation to certain high energies beyond the resonance region.

III. NUMERICAL RESULTS AND DISCUSSIONS

In this section, we present the numerical results with
corresponding discussions. Note that, in the present work,
the free parameters are the sign of the coupling constants
gKNΛ� and gK�NΛ� , the cutoff mass Λ in Eq. (6), the phase
angle ψN� in Eq. (15), and the Regge phases in Eq. (17).
The cutoff masses are given in common for all the baryons
as ΛΛ;Σ;Λ�;N� ¼ 0.9 GeV. Although the full-decay widths
for the nucleon resonance, which appear in the denominator
of the amplitudes in Eq. (12), are not free parameters as
given in the PDG list [27], we fix it to be ΓN� ¼ 300 MeV
for all the resonances for brevity. We verified that about
�10% deviations in the widths do not make crucial
differences in the qualitative consequences of the present
work. The numerical results are given by using the constant
and rotating Regge phases with the fitted parameters as
listed in Table III to reproduce the CLAS/Jlab data.
Before performing the detailed calculations for repro-

ducing the CLAS/Jlab experimental data, we would like to

examine the effects of the nucleon-resonance contributions
for the Λ� photoproduction in a model-independent man-
ner. Here we choose the constant Regge phase for sim-
plicity. We consider a single resonance near the reaction
threshold with different spin and parity, i.e.
N�ð2100; n=2�Þ for a positive integer n ≤ 5. For simplicity,
we choose ΓN� ¼ 250 MeV and A1=2 ¼ ð3 × 10−2Þ= ffiffiffiffiffiffiffiffiffiffi

GeV
p

for all the resonances. The reasons for those choices are as
follows: (1) In the PDG list, the reported values for ΓN� s
reside in ð100–400Þ MeV with sizable uncertainties.
Hence, the sort of a middle value is chosen. (2) Because
we focus on the vicinity of the threshold, the h2 contribu-
tion ∝ ∂N=MN� turns out to be small. Therefore, we only
consider the h1 contribution and the values of A1=2 are in
the order of 10−2=

ffiffiffiffiffiffiffiffiffiffi
GeV

p
as shown in the PDG list. Thus,

similarly, the middle value is employed. In Fig. 2, six
resonances are taken into account in total, depending on the
spins and parities, and gKN�Λ� is fitted with the total cross
section from the CLAS/Jlab data with the fixed h1 values
via the above A1=2. As a result, the branching ratios of
BRn=2� are given as follows:

BR1=2þ ¼ 1.7 × 10−2; BR1=2− ¼ 0.11;

BR3=2þ ¼ 9.5 × 10−3; BR3=2− ¼ 4.0 × 10−3;

BR5=2þ ¼ 2.1 × 10−2; BR5=2− ¼ 5.9 × 10−3: ð23Þ

As the spin of N� increases, the shapes of the angular
distributions exhibit more fluctuations on their behaviors.
We find that the nucleon resonances with JP ¼ 1=2þ,
3=2þ, and 3=2− more or less describe the CLAS/Jlab data
within reasonable values of branching ratios, where BR ¼
ΓN�→KΛ�=ΓN� and ΓN�→KΛ� is calculated from gKΛ�N� for
each of the cases. But when more than a single resonance is
considered simultaneously, we reach a different conclusion
as we will see soon.
Now, let us show numerical results when employing our

models. In the left panel of Fig. 3, we demonstrate the
results for the total cross section for γp → KþΛ� as a
function of the photon laboratory energy Elab by using the
constant (thick lines) and rotating (thin lines) Regge phases
as given in Table III. The experimental data are taken from
the CLAS/Jlab collaboration [31]. The full result including
the N� (dot-dashed) and non-N� (dashed) contributions is
given in the solid line. It is worth mentioning that the
peaklike bump around Elab ¼ 2 GeV is well reproduced by
the nucleon resonances, whereas the non-N� contribution

TABLE III. Fitted parameter setups the constant and rotating
Regge phases. See Eqs. (15) and (17) for details.

Regge phase ψN� gKNΛ� gK�NΛ�

1 (constant) eiπ=2 1.95 −1.3
e−iπαK;K� (rotating) eiπ 1.95 1.3
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curve decreases rapidly, due to the Regge propagators, as
the energy increases. We also verified that the non-N�
contributions cannot reproduce the bump by changing
form-factor types or their cutoff parameters. Moreover,
by comparing the strengths of the N� and total contribu-
tions, one can conclude that the constructive interference
between the N� and others plays an important role. As a
consequence, within the most conventional tree-level
approach like the present effective model, the nucleon
resonances are crucial to explain the obvious cross-section
enhancement near the threshold region for Λð1405Þ

photoproduction. It is also interesting to see the separate
effects from the different nucleon resonances. As shown
there, after fitting the parameters to reproduce the data, the
two Regge phases do not make obviously qualitative
differences in the cross sections. Hence, in what follows,
wewill only use the constant Regge phase for the numerical
calculations.
In the right panel of Fig. 3, we draw the total cross

sections only from each resonance. It is clearly shown that
N�ð2000Þ and N�ð2100Þ give dominant effects on the cross
section, due to their relatively larger strong and EM
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couplings than other resonances. In contrast, the missing
resonances play only minor roles in producing the
strength. The strong enhancement near the threshold region
was already reported from the Laser Electron Photon
Experiment at Super Proton ring-8 GeV (LEPS/SPring-8)
[61]. The curve shape beyond the resonance region is
reproduced mainly by the t-channel K-exchange contribu-
tion, in addition to the small but finite K�-exchange one.
The numerical results for the angular dependence

dσ=d cos θ are drawn in Fig. 4 for different c.m. energies
W ¼ ð2.0–2.8Þ GeV. In overall, the full results (solid)
show qualitatively good agreement with the data. We also
observe that the forward-scattering enhancement becomes
more obvious as the energy increases, due to the strong
t-channel K exchange. At W ¼ 2.1 GeV, it is found that
the data are reproduced by theN� and non-N� contributions
constructively. This observation agrees well with that
shown in the total cross section. As the energy gets higher,
the N� contribution becomes diminished and almost flat as
expected. At the same time, the small but sizable backward-
scattering enhancement starts appearing gradually beyond
W ¼ 2.3 GeV. We verified that it originates mainly from
the larger couplings in case of Λ and Σ0 exchanges, i.e.,
gKNðΛ;Σ0Þ and μΛ�→ðΛ;Σ0Þ, in the u channel than other
hyperons, as given in Table I.
Note that, quantitatively, in the low-energy region

W ≤ 2.2 GeV, we find sizable disagreement with the data
for very backward angles −1 ≤ cos θ ≤ −0.8. Similar
problems also take place in Refs. [47,48] for KΛ photo-
production where the SU(3) symmetry limits on the Born
coupling constants were considered. Although we antici-
pate that the unknown contributions beyond the present

model setup can resolve it, we will not make further
detailed investigation on this issue in the present work
and would like to leave it for the future. We verified that,
even without our Regge approach, i.e., by using Eq. (7)
rather than Eq. (19), we can obtain similar results for
total and differential cross sections in the range of
Elab ≤ 4.0 GeV. This is expected because our Regge
model interpolates between low and high energy regions
smoothly.
In the left panel of Fig. 5, we draw the numerical

results for the differential cross sections dσ=dt as a
function of −t0 ≡ −ðt − tmaxÞ for different c.m. energies
W ¼ ð2.0–4.0Þ GeV. The curves are computed with the N�
contributions and show a typical behavior of the momen-
tum transfer. The slope is mostly determined by the
dominant K Regge trajectory. The photon-beam asymme-
try, i.e., the analyzing power, is one of the important
physical quantities observed in hadron photoproductions.
We define it as follows:

Σγ⃗p→KþΛ� ¼
dσ
dΩ⊥ − dσ

dΩ∥
dσ
dΩ⊥ þ dσ

dΩ∥
; ð24Þ

where the subscripts ∥ and ⊥ stand for the cases when the
photon polarization vector is parallel and perpendicular to
the reaction plane, respectively. In the case of unnatural
parity exchange (K exchange), the perpendicular term in
Eq. (24) is equal to zero, so Σγ⃗p→KþΛ� ¼ −1, whereas
natural parity exchange (K� exchange) leads Σγ⃗p→KþΛ� to
positive values, since the corresponding perpendicular term
dominates the parallel one. In the right panel of Fig. 5, we
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present the numerical results for Σγ⃗p→KþΛ� in the same
manner with the left panel of Fig. 5 for different c.m.
energies W ¼ ð2.0–2.8Þ GeV. Note that the beam asym-
metry becomes reversed around cos θ ≈ 0, due to the
competing K and K� contributions. The effects of the N�s
turn out to be negligible. It is worth mentioning that the
polarized quantity Σγ⃗p→KþΛ� is very sensitive to the choice
of the Regge phases for the t-channel strange-meson
exchanges, because it is almost dominated by the Regge
contributions. To confirm the effects of the Regge phases in
the polarized physical quantities, one may need more
reliable data to compare with.
In Fig. 6, we draw the invariant-mass distributions

dσγp→Kþπ0Σ0=dMπ0Σ0 as a function of the invariant mass
Mπ0Σ0 for different c.m. energies W ¼ ð2.0–2.8Þ GeV,
using Eq. (20) and the numerical results for the two-body

process, i.e., γp → KþΛ�, given in Fig. 3. The theoretical
curves describe the CLAS data [62] qualitatively well for
all the energies, as expected from Eq. (20) by construction,
due to the appropriate Breit-Wigner distribution and the
strength from the two-body total cross section. From this
observation, we find that the interference between the Λ�
and other vector-meson productions, such as K�, on the
Dalitz plot is practically small as given in Ref. [58]. In
the low-energy region for W ≤ 2.2 GeV, being similar to
the total and differential cross sections as shown in Figs. 3
and 4, the nucleon resonances make considerable contribu-
tions to the invariant-mass distribution as well, as expected.
We also observe that the nucleon resonance contributions
becomes almost negligible beyond W ¼ 2.4 GeV.
Finally, we would like to test the CCR for the present

reaction process. For this purpose, we take θ ¼ π=2 in
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the c.m. frame as done in Refs. [59,60] and the numerical
results are drawn in Fig. 7, where we draw s7dσ=dt as a
function ofW. The solid curve stands for the full result with
the nucleon resonances. Following the CCR, if Λ� consists
of three quarks as usual baryons, the resulting curve
becomes flat (dotted), whereas it decreases with a tendency
∼1=W4 for the five-quark Λ� (dashed) and ∼1=W8 for the
seven-quark Λ� (dot-dashed). Here, we assume that the
resonance region is terminated atW ≈ 2.5 GeV as observed
in the invariant-mass plot in Fig. 6. The curves obviously
exhibit a decreasing behavior with respect to W, and the
slope matches with ∼1=W8, i.e., the seven-quark system for
Λ�. In Ref. [60], the CLAS/Jlab experimental data was
fitted with ½sn−2=fðθÞ�dσ=dt as a function of W, where
fðθÞ denotes a scattering-angle dependent function, and it
showed that n ¼ ð6.5–11.3Þ, depending on energies, indi-
cating that Λ� is not a simple uds-quark state. Although the
seven-quark state looks supported from the numerical
results, it is still difficult to pin down the genuine structure
of Λ� from this observation, because we need to take into
account more realistic information on the structure func-
tions, energy-angular dependences, and so on in the CCR
as well as in our model. Hence, we can conclude that, more
or less,Λ� is possibly distinctive from the simple uds-quark
state, as far as we can reproduce the experimental data
qualitatively well with the conventionally accepted model
as in the present work.

IV. SUMMARY

We have investigated the photoproduction of Λð1405Þ≡
Λ�, i.e., γp → KþΛ�, by employing the effective
Lagrangian with the Reggeized t-channel K and K�
exchanges at tree level. In addition to the ground state
hadrons involved in the reactions process, we took five
nucleon resonances near the reaction threshold into
account. We performed numerical calculations for the
energy and angular dependences of the cross section as
well as the polarization observable, such as the photon
beam asymmetry. The invariant-mass distribution for γp →
Kþπ0Σ0 was extracted from the two-body cross section

with some reasonable assumptions. Finally, the internal
structure of Λ� was explored by the constituent-counting
rule (CCR), which provides the structure information of the
hadrons in a reaction process in terms of the dimensional
analyses of the scattering amplitudes at a large angle and
high energies. Relevant results are summarized as follows:

(i) The nucleon resonances play an important
role to reproduce the recent CLAS experimental
data [31] near the threshold region. Especially, the
so-called PDG resonances, N�ð2000; 5=2þÞ and
N�ð2100; 1=2þÞ, provide considerable contributions
to the total cross section σγp→KþΛ� , due to their
relatively larger strong and EM couplings than other
resonances, as far as we resort to available exper-
imental and theoretical information to determine
the couplings.

(ii) As expected, angular dependence, such as
dσγp→KþΛ�=d cos θ, is affected as well by the nu-
cleon-resonance contributions in the low-energy
region, whereas they get diminished as the
energy increases. In overall, we observe strong
forward-scattering enhancement, due to the
t-channel K exchange. The numerical results for
the dσγp→KþΛ�=dt are also given. We find that those
results are affected by the inclusion of N� resonances
only near the threshold region W ≤ 2.2 GeV.

(iii) Assuming some reasonable conditions, i.e., no
interferences between the hyperon and vector-meson
resonances on the Dalitz plot for instance, we draw
the invariant-mass plot for dσγp→Kþπ0Σ0=dMπ0Σ0 in
terms of the two-body cross section σγp→KþΛ� and
the partial decay width ΓΛ�→πΣ. Qualitatively, the
experimental data of the CLAS collaboration are
reproduced well for the considered energy regions.
From this observation, we find that the interference
between the Λ� and K� productions on the Dalitz
plot must be practically small and it is consistent to
the result of Ref. [58].

(iv) Finally,we examine the internal structure ofΛ� via the
CCR. The calculated curve of s7dσγp→KþΛ�=dt as a
function of the c.m. energy at θ ¼ 90° shows a strong
peaklike structure below W ≈ 2.5 GeV and a rapid
decrease beyond it, due to the nucleon resonances
and the Reggeized t-channel contributions, respec-
tively. Using the most simple parametrization of
the scattering amplitude via the CCR, the slope of
the calculated curve beyond the resonance region
matches roughly with that for n ¼ 13 from the
relation dσ=dt ∝ 1=sn−2, which tells that Λ� is a
seven-quark state.

(v) However, because there are considerable theoretical
uncertainties in this analysis, we can conclude safely
thatΛ� is possibly different from the usual uds-quark
state as reported in Ref. [60], if we take out results
conservatively. Our numerical results for differential
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cross sections match the CLAS data pretty well even
at a large angle ðθ ¼ 90°Þ. Thus we believe that the
results for s7dσ=dt would be reliable to some extent
even in relatively high-energy regions.

We want to mention that the photoproductions of the Λ,
the Σ, and the Σð1385Þ baryons have been already inves-
tigated extensively by using similar approaches in the
literature, i.e., the so-called Regge-plus-resonance frame-
work [54–56,63]. Meanwhile, the electroproduction of Λ�
has its own interest, especially, as the CLAS collaboration
recently has observed the Λ� line shape in Λ� electro-
production [64]. Although the relevant theoretical models
appear in the literature [65], it is worth being studied within
this effective model and related works are in progress. In
summary, the present effective model approach with the
Reggeized t-channel exchanges explains the Λ� photopro-
duction qualitatively well, showing good agreement with the
CLAS data. As discussed above, however, it is still difficult
to determine the genuine internal structure of Λ� within this
simple model. Nonetheless, we have found a signal that Λ�
can be distinctive from usual three-quark baryons. More
realistic studies with sophisticated form factors and Regge
treatments are in progress and will appear elsewhere.
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APPENDIX COUPLING CONSTANTS AND
DECAY AMPLITUDES

From the effective Lagrangians of Eq. (10), the partial
decay width of nucleon resonance N�ðjPÞ into KΛ� can be
calculated as

Γ½N�ð1=2�Þ → KΛ�� ¼ 1

4π

jq⃗j
MN�

g2KΛ�N�ðEΛ� �MΛ�Þ;

Γ½N�ð3=2�Þ → KΛ�� ¼ 1

12π

jq⃗j3
MN�

g2KΛ�N�

M2
K

ðEΛ� ∓ MΛ� Þ;

Γ½N�ð5=2�Þ → KΛ�� ¼ 1

30π

jq⃗j5
MN�

g2KΛ�N�

M4
K

ðEΛ� �MΛ� Þ:

ðA1Þ

Here, the magnitude of the three-momentum and the energy
for the Λ� in the rest frame of the nucleon resonance reads

jq⃗j ¼ 1

2MN�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½M2

N� − ðMΛ� þMKÞ2�½M2
N� − ðMΛ� −MKÞ2�

q
;

EΛ� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

Λ� þ jq⃗j2
q

: ðA2Þ

We need to know how the effective Lagrangians are
related to the decay amplitudes to obtain the coupling
constants. The decay amplitude for N� → KΛ� can be
expressed as follows [43]:

hKðq⃗ÞΛ�ð−q⃗;mfÞj− iHintjN�ð0;mjÞi

¼4πMN�

ffiffiffiffiffiffi
2

jq⃗j

s X
l;ml

	
lml

1

2
mfjjmj



Yl;ml

ðq̂ÞGðlÞ; ðA3Þ

where hlml
1
2
mfjjmji and Yl;ml

ðq̂Þ are the Clebsch-
Gordan coefficient and spherical harmonics, respec-
tively. The relation between the partial wave decay
amplitude GðlÞ and the decay width ΓðN� → KΛ�Þ
can be derived as

ΓðN� → KΛ�Þ ¼
X
l

jGðlÞj2: ðA4Þ

The spin and parity of the nucleon resonance place
constraints on the relative orbital angular momentum l
of the final state.
Let us first consider the case of a jP ¼ 1

2
þ resonance. The

relative orbital angular momentum is constrained by
angular momentum and parity conservation such that
l ¼ 0 is possible, i.e., only s wave is allowed. In a similar
way, for the decays of jP ¼ ð1=2−; 3=2−Þ resonances into
KΛ�, the final state is in the relative p wave, and for the
resonances of jP ¼ ð3=2þ; 5=2þÞ in the relative d wave.
Finally, the jP ¼ 5=2− resonance allowed only f wave.
Keeping this in mind, we can obtain the decay amplitudes
in terms of the coupling constants for the decays of jP ¼
ð1=2�; 3=2�; 5=2�Þ nucleon resonances into the KΛ� final
state as follows:

G

�
1−P
2

�
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jq⃗jðEΛ� �MΛ� Þ

4πMN�

s
gKΛ�N� for N�ð1=2PÞ;

G

�
3þP
2

�
¼−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jq⃗j3ðEΛ� ∓MΛ� Þ

12πMN�

s
gKΛ�N�

MK
for N�ð3=2PÞ;

G

�
5−P
2

�
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jq⃗j5ðEΛ� �MΛ� Þ

30πMN�

s
gKΛ�N�

M2
K

for N�ð5=2PÞ:

ðA5Þ
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