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A hard three-loop correction to parapositronium energy levels of order mα7 is calculated. This
nonlogarithmic contribution is due to the insertions of one-loop photon propagator in the fermion lines in
the diagrams with virtual two-photon annihilation. We obtained ΔE ¼ 0.03297ð2Þðmα7=π3Þ for this
energy shift.
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I. INTRODUCTION

Positronium, like hydrogen and muonium, is a loosely
bound nonrelativistic two-particle system. Two features
make positronium special: masses of the constituents are
equal and the constituents can annihilate. The spectrum of
positronium beyond the leading nonrelativistic approxima-
tion is significantly different from the hydrogen spectrum.
This happens due to contributions of the annihilation
diagrams and because the fine and hyperfine splittings
have the same magnitude. Theoretical research on posi-
tronium started in the second part of the 1940s even before
its experimental discovery [1,2], and was going ever after.
As in other nonrelativistic systems there are two classes of
corrections to energy levels, soft (and ultrasoft) and hard.
Soft corrections originate from a wide interval of virtual
momenta below the electron mass, while only the virtual
momenta of order of the electron mass are responsible for
the hard corrections. Soft corrections are usually logarith-
mically enhanced and in the case of positronium have the
form of a double power series in α and ln α. Hard
corrections can be calculated in the scattering approxima-
tion and in the case of positronium are simple series in
powers of α. Both the soft and hard corrections in
positronium receive contributions from scattering and
annihilation diagrams.
All corrections to hyperfine splitting (HFS) in positro-

nium up to and including single-logarithmic terms of order
mα7 ln α were calculated before the end of the last or on the
brink of the new millennium, see [3–5] and brief reviews in
[6,7]. A new stage in the theory of positroniumwas initiated
with calculation of the single-photon nonlogarithmic cor-
rection of order mα7 in [6]. The ultrasoft contribution
dominates this correction. Other soft and ultrasoft non-
logarithmic corrections of order mα7 remain unknown.

Many hard nonlogarithmic corrections of order mα7

were calculated recently in a rapid succession [7–13].
These corrections are generated both by the annihilation
and nonannihilation diagrams. Hard nonannihilation cor-
rections are generated by seven gauge invariant sets of
diagrams and are similar to the radiative and radiative-
recoil corrections to HFS in muonium of orders α2ðZαÞEF

and α2ðZαÞðm=MÞEF, respectively, see, e.g., [14,15].
Corrections due to six gauge invariant sets of diagrams
in muonium were calculated some time ago [16–20].
Contributions of the same six gauge invariant sets of
diagrams in positronium were obtained in [7,8,11].
These positronium calculations in [8,11] were facilitated
by our previous experience with the respective contribu-
tions in muonium.
Other hard nonlogarithmic corrections in positronium are

generated by the diagrams with two, three, and four virtual
annihilation photons [13]. There is one gauge invariant set
of diagrams with four virtual annihilation photons, and
three gauge invariant sets of diagrams with three virtual
annihilation photons. Corrections due to the diagrams with
four annihilation photons are currently unknown. Hard
nonlogarithmic contributions of all diagrams with three
annihilation photons were obtained in [12].
Hard corrections due to the diagrams with two annihi-

lation photons are generated by seven gauge invariant sets
of diagrams that are similar to the respective seven gauge
invariant sets of nonannihilation diagrams in muonium and
positronium [8,11]. All these diagrams can be obtained by
two-loop radiative insertions in the skeleton diagrams with
two annihilation photons in Fig. 1. Contributions of five of
these sets of diagrams were obtained in [9,10,13]. Two sets
of diagrams are still not calculated. One of them is the set of
diagrams with one-loop polarization insertions in the
radiative photon in Fig. 2 (the diagrams with the crossed
annihilation photon lines are not shown explicitly in this
figure). One more set of nineteen topologically different
diagrams is obtained from the diagrams in Fig. 2 by
deleting the polarization insertion from the radiative photon

*Also at the Petersburg Nuclear Physics Institute, Gatchina,
St.Petersburg 188300, Russia.
eides@pa.uky.edu, eides@thd.pnpi.spb.ru

†shelyuto@vniim.ru

PHYSICAL REVIEW D 96, 011301(R) (2017)

2470-0010=2017=96(1)=011301(5) 011301-1 © 2017 American Physical Society

RAPID COMMUNICATIONS

https://doi.org/10.1103/PhysRevD.96.011301
https://doi.org/10.1103/PhysRevD.96.011301
https://doi.org/10.1103/PhysRevD.96.011301
https://doi.org/10.1103/PhysRevD.96.011301


propagator and adding a second radiative photon insertion
in the same fermion line. Below we calculate hard non-
logarithmic correction of ordermα7 generated by the gauge
invariant set of diagrams in Fig. 2.

II. CONTRIBUTIONS OF INDIVIDUAL DIAGRAMS

A. Skeleton diagrams

The skeleton diagrams with two-photon virtual annihi-
lation in Fig. 1 generate hard corrections that contribute
only to the shift of the parapositronium energy levels.
These corrections were calculated long time ago [21]. We
will briefly review the main features of the skeleton
calculations following the recent discussion in [13].
These calculations will serve as a template for calculations
of the contributions of the diagrams in Fig. 2 below. The
diagrams in Fig. 1 should be calculating in the scattering

approximation and give contributions only to the para-
positronium (spin zero) states with zero orbital momenta.
The external electrons and positrons are on-shell and have
zero spatial momenta. To obtain the contribution to the
energy shift we project the amplitude on the spin zero states
and multiply it by the Coulomb-Schrödinger positronium
wave function at the origin squared. The diagrams in Fig. 1
are both ultraviolet and infrared finite and give identical
contributions to the energy level shift [13]. With account
for all combinatorial factors the energy shift can be written
as an integral over the loop four-momentum kμ ¼ ðk0; kÞ

ΔEs ¼
mα5

π

Z
∞

0

dk
Z

dk0
2πi

fsðk0; kÞ; ð1Þ

where (k ¼ jkj)

fsðk0; kÞ ¼ −
8m2k4

½k20 − k2 þ i0�½ðk0 − 2mÞ2 − k2 þ i0�½ðk0 −mÞ2 − k2 −m2 þ i0�2 : ð2Þ

Theprincipal feature of the annihilation diagrams in Fig. 1
is that they have imaginary part that arises because kin-
ematics allows creation of two real photons. In agreement
with the optical theorem this imaginary part contributes to
the parapositronium decay width. Existence of the imagi-
nary part makes Wick rotation in the integral in Eq. (1)
impossible, in the other case the diagram would be real.
Considering positions of the poles of the propagators in the
box diagramwe see that rotation in the plane of the complex
k0 without crossing one of the poles is impossible. The
proper way to go is to calculate the integral over k0 with
the help of the residues, say in the upper half plane. The
remaining one-dimensional integral over the magnitude k ¼
jkj of the three-dimensional loop momentum inherits a pole
at k ¼ mþ i0 of one of the photon propagators in the box
diagram.Weuse the Sokhotsky’s formula to separate the real
and imaginary parts of the momentum integral, calculate

both the real and imaginary momentum integrals analyti-
cally and reproduce the classic result [21].

ΔEs ¼
mα5

π

�
1

2
ln 2 −

1

2
−
iπ
4

�
: ð3Þ

The pole in the one-dimensional integral survives in the
diagrams with radiative insertions in Fig. 2 but its position
in the general case is shifted. One still can calculate the real
and imaginary parts of the respective integrals analytically
in the same way as in the skeleton case.
Our strategy is first to calculate the contributions of the

diagrams in Fig. 2 without the polarization operator
insertions but with a finite radiative photon mass λ. We
use the Feynman gauge in this calculations. In the limit of
λ → 0 this calculation reproduces a well-known contribu-
tion of order mα6 obtained in [22], and serves as a test of

FIG. 1. Skeleton two-photon annihilation diagrams.

FIG. 2. Diagrams with polarization insertions in the radiative photon.
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our calculations. The integrals for the diagrams with
polarization insertions in Fig. 2 are obtained from the
respective diagrams without polarization insertion by the
substitution λ2 → 4m2=ð1 − v2Þ followed by the integra-
tion over v from zero to one with the weight
ðα=πÞv2ð1 − v2=3Þ=ð1 − v2Þ, see, e.g., [23].

B. Diagrams with two-loop insertions

1. Diagrams with self-energy insertions

We start with calculation of the diagrams with the self-
energy insertions in Fig. 2. The well-known renormalized
self-energy operator has the form (see, e.g., [24], we
restored an exact dependence on the photon mass λ below)

ΣRðp− kÞ ¼ ðmγ0 − k−mÞ2 α

2π

Z
1

0

dx

×
Z

x

0

dy
mh1ðx; yÞ − ðmγ0 − kþmÞh2ðx; yÞ

−k2 þ 2mk0 þ a21 − i0
;

ð4Þ
where m is the electron mass, p ¼ ðm; 0Þ, k ¼ ðk0; kÞ, and

h1ðx; yÞ ¼
1þ x
y

;

h2ðx; yÞ ¼
1 − x
y

�
1 −

2ð1þ xÞy
x2 þ λ2

m2 ð1 − xÞ

�
;

a21ðx; yÞ ¼
m2x2 þ λ2ð1 − xÞ

ð1 − xÞy : ð5Þ

We consider first the self-energy diagrams without
polarization insertions but with a finite photon mass. We
use the projector on spin zero (parapositronium) states (see,
e.g., [13]) to get rid of the spinor structure and taking into
account all combinatorial factors obtain an expression for
the energy shift in the form similar to Eq. (1)

ΔEΣðλÞ¼
mα6

π2

Z
1

0

dx
Z

x

0

dy
Z

∞

0

dk
Z

dk0
2πi

fΣðk0;kÞ; ð6Þ

where

fΣðk0; kÞ ¼ −8m2k4h2ðx; yÞ½k20 − k2 þ i0�−1
× ½ðk0 − 2mÞ2 − k2 þ i0�−1
× ½ðk0 −mÞ2 − k2 −m2 þ i0�−1
× ½k20 − k2 − 2mk0 − a21 þ i0�−1: ð7Þ

Instead of the double fermion pole in the respective
skeleton function fsðk0; kÞ in Eq. (2), the function
fΣðk0; kÞ contains two simple poles. We again close the
contour in the upper half-plane and use residues to calculate
the integral over k0. The real and imaginary parts of
the integral over k are separated with the help of the
Sokhotsky’s formula and calculated analytically. After
integration over the Feynman parameters x, y the integral
at λ → 0 reproduces the infrared divergent contribution [13]
of the one-loop self-energy insertion to the energy shift of
order mα6.
The contribution to the energy shift of the self-energy

diagrams with the vacuum polarization insertions in Fig. 2
requires one more integration

ΔEΣ ¼ α

π

Z
1

0

dv
v2ð1 − v2

3
Þ

1 − v2
ΔEΣðλÞ

jλ¼
ffiffiffiffiffiffi
4m2

1−v2

q : ð8Þ

After numerical calculations we obtain

ΔEΣ ¼ ð−0.028 960 328ð2Þ − 0.003 967 685ð2ÞiπÞmα7

π3
:

ð9Þ

2. Diagrams with vertex insertions

To calculate the contribution of the diagrams with the
vertex insertion in Fig. 2 we use the Feynman gauge
expression for the one-loop vertex with one virtual electron
line and a finite photon mass, see, e.g., [25] and references
therein. This expression is too cumbersome to cite it here.
After some transformations we managed to represent the
contribution of the vertex diagrams without polarization
insertions but with a finite radiative photon mass and with
account of all combinatorial factors in the form

ΔEVðλÞ ¼
mα6

π2
X2
n¼0

Z
1

0

dx
Z

x

0

dy
Z

∞

0

dk

×
Z

dk0
2πi

gnðx; yÞfnðk0; kÞ; ð10Þ

where f0ðk0; kÞ ¼ fsðk0; kÞ, see Eq. (2),

f1ðk0; kÞ ¼
8m2k4

½ðk0 − 2mÞ2 − k2 þ i0�½ðk0 −mÞ2 − k2 −m2 þ i0�2½k20 − k2 − 2mbk0 − a2 þ i0� ;

f2ðk0; kÞ ¼
8m2k4

½k20 − k2 þ i0�½ðk0 −mÞ2 − k2 −m2 þ i0�2½k20 − k2 − 2mbk0 − a2 þ i0� ; ð11Þ
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and
g0ðx; yÞ ¼ 4

�
1 − x −

x2

2

�
1

m2x2 þ λ2ð1 − xÞ þ
2x2

Δm
;

g1ðx; yÞ ¼
2x2

Δm

�
yð1 − yÞ − yð1 − xÞ

2

�
þ 2yð1 − yÞ þ 2ðx − yÞð1 − 2yÞ þ 2ð1 − xÞ2

2
;

g2ðx; yÞ ¼
2x2ð1 − xÞy

2Δm
−
2ð1 − xÞ2

2
;

Δm ¼ yð1 − yÞð2m2bþ a2Þ; a2 ¼ m2x2 þ λ2ð1 − xÞ
yð1 − yÞ ; b ¼ 1 − x

1 − y
: ð12Þ

We have adjusted the expression for the vertex in such way
that only the function f0ðk0; kÞ contains both annihilation
photon poles. As a result, only the terms in the integrand in
Eq. (10) that contain this function generate both the real and
imaginary contributions, the integrals of two other func-
tions f1ðk0; kÞ and f2ðk0; kÞ are real. The momentum
integrals in Eq. (10) are calculated analytically like the
momentum integrals in Eq. (4), and the remaining inte-
gration over the Feynman parameters x, y is done numeri-
cally. At λ → 0 the integral for ΔEVðλÞ reproduces the
infrared divergent contribution [13] of the one-loop vertex
insertion to the energy shift of order mα6.
The contribution to the energy shift of the vertex

diagrams with vacuum polarization in Fig. 2 again requires
one more integration

ΔEV ¼ α

π

Z
1

0

dv
v2ð1 − v2

3
Þ

1 − v2
ΔEVðλÞ

jλ¼
ffiffiffiffiffiffi
4m2

1−v2

q : ð13Þ

After numerical calculations we obtain

ΔEV ¼ ð0.241 501ð2Þ − 0.024 369 716ð2ÞiπÞmα7

π3
: ð14Þ

3. Diagrams with spanning photon

Calculation of the contribution of the diagrams in Fig. 2
with the spanning photon is the most cumbersome part of
this work. It is well known that the respective diagrams
without the one-loop polarization insertions in the photon
propagator contain a linear infrared divergence m=λ. This
divergence is effectively cut off at the characteristic wave
function momenta ∼mα, which indicates that the respective
diagrams contain a contribution of the previous order that
should be subtracted. Insertion of the polarization operator
in the spanning photon eliminates all infrared divergences.
As a result the diagrams in Fig. 2 with the one-loop
polarization insertions in the spanning photon are infrared
finite and admit calculation in the scattering approximation.
Like in the case of the vertex we managed to represent

the integral for the energy shift as a sum of convergent
integrals and calculated the momenta integrals analytically.

The remaining integrals over the Feynman parameters were
done numerically and we obtained

ΔES ¼ ð−0.179 57ð2Þ

− 0.083 498 60ð3ÞiπÞmα7

π3
: ð15Þ

Details of these calculations will be presented elsewhere.

III. SUMMARY OF RESULTS

Collecting the results in Eq. (9), Eq. (14), Eq. (15) we
obtain the total hard contribution to the parapositronium
level shift of ordermα7 generated by the diagrams in Fig. 2.

ΔE ¼ ð0.032 97ð2Þ − 0.111 836 01ð3ÞiπÞmα7

π3
: ð16Þ

The total hard contribution of order mα7 generated by the
six gauge invariant sets of diagrams with two-photon
annihilation is given by the sum of the correction in
Eq. (16) and the results for the other five sets of annihilation
diagrams calculated in [9,10,13]

ΔE ¼ 0.901 67ð2Þmα7

π3
¼ 3.95940 ð8Þ kHz: ð17Þ

Analogous sum of hard contributions to HFS of the six
gauge invariant sets of scattering diagrams was calculated
earlier [7,8,11]

ΔE ¼ −1.2917ð1Þmα7

π3
¼ −5.6720 ð4Þ kHz: ð18Þ

Combining these results with the hard three-photon anni-
hilation contribution to the orthopositronium energy levels
from [12].

ΔE ¼ 2.621 6 ð11Þmα7

π3
¼ 11.512 ð5Þ kHz; ð19Þ

we obtain the hard contribution of order mα7 to HFS in
positronium
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ΔE ¼ 0.428 ð1Þmα7

π3
¼ 1.881 ð5Þ kHz: ð20Þ

This is still not a total hard contribution to HFS of order
mα7. Five gauge invariant sets of diagrams remain
unknown. These are two-photon exchange diagrams with
insertions of two radiative photons in one and the same
fermion line, a similar set of two-photon annihilation
diagrams again with insertions of two radiative photons
in one and the same fermion line, the set of diagrams with
four-photon annihilation, and two sets of nonannihilation
diagrams with recoil photons.

Calculation of these hard contributions as well as of soft
corrections of ordermα7 is the next goal of the positronium
theory.
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