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We study the quantum fermionic billiard defined by the dynamics of a quantized supersymmetric
squashed three-sphere (Bianchi IX cosmological model within D ¼ 4 simple supergravity). The
quantization of the homogeneous gravitino field leads to a 64-dimensional fermionic Hilbert space.
We focus on the 15- and 20-dimensional subspaces (with fermion numbers NF ¼ 2 and NF ¼ 3) where
there exist propagating solutions of the supersymmetry constraints that carry (in the small-wavelength
limit) a chaotic spinorial dynamics generalizing the Belinskii-Khalatnikov-Lifshitz classical “oscillatory”
dynamics. By exactly solving the supersymmetry constraints near each one of the three dominant potential
walls underlying the latter chaotic billiard dynamics, we compute the three operators that describe the
corresponding three potential-wall reflections of the spinorial state describing, in supergravity, the quantum
evolution of the universe. It is remarkably found that the latter, purely dynamically-defined, reflection
operators satisfy generalized Coxeter relations which define a type of spinorial extension of the Weyl group
of the rank-3 hyperbolic Kac-Moody algebra AE3.
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I. INTRODUCTION

One of the challenges of gravitational physics is to
describe the fate of spacetime at spacelike singularities
(such as the cosmological big bang, or big crunches within
black holes). A new avenue for attacking this problem has
been suggested a few years ago via a conjectured corre-
spondence between various supergravity theories and the
dynamics of a spinning massless particle on an infinite-
dimensional Kac-Moody coset space [1–4]. Evidence for
such a supergravity/Kac-Moody link emerged through the
study à la Belinskii-Khalatnikov-Lifshitz (BKL) [5] of the
structure of cosmological singularities in string theory and
supergravity, in spacetime dimensions 4 ≤ D ≤ 11 [6–8].
(For a different approach to such a conjectured super-
gravity/Kac-Moody link see [9,10].) For instance, the well-
known BKL oscillatory behavior [5] of the diagonal
components of a generic, inhomogeneous Einsteinian
metric in D ¼ 4 was found to be equivalent to a billiard
motion within the Weyl chamber of the rank-3 hyperbolic
Kac-Moody algebra AE3 [7]. Similarly, the generic
BKL-like dynamics of the bosonic sector of maximal
supergravity (considered either in D ¼ 11, or, after dimen-
sional reduction, in 4 ≤ D ≤ 10) leads to a chaotic billiard
motion within the Weyl chamber of the rank-10 hyperbolic
Kac-Moody algebra E10 [6]. The hidden role of E10 in the

dynamics of maximal supergravity was confirmed to
higher-approximations (up to the third level) in the gradient
expansion ∂x ≪ ∂T of its bosonic sector [1]. In addition,
the study of the fermionic sector of supergravity theories
has exhibited a related role of Kac-Moody algebras. At
leading order in the gradient expansion of the gravitino
field ψμ, the dynamics of ψμ at each spatial point was found
to be given by parallel transport with respect to a (bosonic-
induced) connection Q taking values within the “compact”
subalgebra of the corresponding bosonic Kac-Moody
algebra: say KðAE3Þ for D ¼ 4 simple supergravity and
KðE10Þ for maximal supergravity [2–4]. This led to the
study of fermionic cosmological billiards [11,12]. (For
definitions, and basic mathematical results on Kac-Moody
algebras see Ref. [13]; see also Ref. [14] for a detailed
study of the specific hyperbolic Kac-Moody algebra AE3 ≡
F that enters 4-dimensional gravity and supergravity.)
The works cited above considered only the terms linear

in the gravitino, and, moreover, treated ψμ as a “classical”
(i.e. Grassman-valued) fermionic field. It is only recently
[15,16] that the full quantum supergravity dynamics of
simple cosmological models has been tackled in a way
which displayed their hidden Kac-Moody structures. (For
previous work on supersymmetric quantum cosmology,
see Refs. [17–24], as well as the books [25,26].)
The work [15,16] studied the quantum supersymmetric

Bianchi IX cosmological model. This model is obtained by
the (consistent) dimensional reduction of the simpleN ¼ 1,
D ¼ 4 supergravity to one (timelike) dimension on a
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triaxially-squashed (SUð2Þ-homogeneous) three-sphere.
This work allowed us to decipher the quantum dynamics
of this supersymmetric (mini-superspace) model. The quan-
tum state jΨðβÞi of this model depends (after a symmetry
reduction) on three continuous bosonic parameters βa,
a ¼ 1, 2, 3 (measuring the triaxial squashing of the three-
sphere), and on sixty-four spinor indices (which describe
the representation space of the anticommutation relations of
the gravitino field displayed below). It was shown that the
structure of the solutions of the supersymmetry (susy)
constraints depended very much on the eigenvalue NF
(going from 0 to 6) of the fermion-number operator:

N̂F ¼ 3þ 1

2
Gab

¯̂Φa
γ1̂ 2̂ 3̂Φ̂b ð1:1Þ

Here, Φ̂a
A (with a spatial vector index a ¼ 1, 2, 3, and with a

Majorana spinor index A ¼ 1, 2, 3, 4 that we generally
suppress) denote the twelve, quantized homogeneousmodes
of the spatial components of the gravitino fieldψμ (written in
a special way that makes more manifest some of their
Kac-Moody properties). They satisfy the anticommutation
relations

Φ̂a
AΦ̂b

B þ Φ̂b
BΦ̂a

A ¼ GabδAB ð1:2Þ
where

Gab ¼ 1

2

0
B@

1 −1 −1
−1 1 −1
−1 −1 1

1
CA ð1:3Þ

defines a contravariant, Lorentzian-signature [ð−;þ;þÞ]
metric in the three-dimensional space spanned by the
bosonic variables βa. (See Ref. [16] for more details on
our notation.)
The quantum state jΨðβÞi must be annihilated by the

susy constraints, i.e.

Ŝð0Þ
A jΨðβÞi ¼ 0; ð1:4Þ

where the structure of the susy constraints is

Ŝð0Þ
A ¼ i

2
Φ̂a

A∂βa þ V̂Aðβ; Φ̂Þ: ð1:5Þ

Here the potential-like term V̂Aðβ; Φ̂Þ is a complicated
operator which is cubic in the gravitino operators Φ̂a

A, and
involves various potential walls that will be discussed below.

As the twelve Φ̂a
A’s satisfy the Clifford-algebra anticom-

mutation law (1.2), and as the Φ̂a
A’s enter the first term of

Ŝð0Þ
A , Eq. (1.5), as coefficients of the partial derivatives ∂βa ,

we can view, for each given value of the index A, the
susy constraint (1.4) as being a Diraclike [iγμ∂xμψðxÞ ¼
V̂ðxÞψðxÞ] equation for the propagation of thewave function

jΨðβÞi in the 3-dimensional Lorentzian β space. However,
as the Majorana-spinor index A in Eqs. (1.4), takes four
values, we see that the state must simultaneously solve four
different Diraclike equations. This represents a huge con-
straint on possible solutions.
The structure of the solution space of these susy con-

straints has been thoroughly analyzed in [16]. It was found
that the structure and generality of the solutions drastically
depend on the fermionic level NF, Eq. (1.1). Here, we shall
study the cosmological dynamics of the solutions at levels1

NF ¼ 2 andNF ¼ 3 that contain two arbitrary real functions
of two variables as free Cauchy data, i.e., that have as much
freedom as the solutions of the usual, purely bosonic Bianchi
IX mini-superspace Wheeler-DeWitt equation. More pre-
cisely, we are interested in quantum solutions which, in
the Wentzel-Kramers-Brillouin (WKB) approximation, can
be viewed as describing the chaotic billiard motion of the
cosmological squashing parameters β1, β2, β3 near a big-
crunch-type singularity. (This chaotic behavior is a quantum,
and spinorial, generalization of the classic BKL oscillatory
behavior of the three Bianchi IX scale factors, a ¼ e−β

1

;
b ¼ e−β

2

; c ¼ e−β
3

. The quantum (scalar) version of the
Bianchi IX chaos was first studied in Ref. [27].) The type of
solution we have in mind, and will study in detail below, is
illustrated in Fig. 1.
As illustrated on Fig. 1, we can view these solutions as

wave packets bouncing between potential walls. In Fig. 1,
these potential walls are drawn as sharp walls located on
some (timelike) hyperplanes in β-space. (Note, however, that
our analysis will not make any sharp-wall approximation, as

FIG. 1. Sketchy representation of the propagation in
3-dimensional, Lorentzian β space of the cosmological quan-
tum supergravity wave function jΨðβÞi. When considered
within our canonical chamber β1 < β2 < β3, this wave function
undergoes successive reflections on the three potential walls
that are present in the supersymmetry constraints (1.4). Two of
the potential walls are singular on the hyperplanes α12ðβÞ ¼ 0
and α23ðβÞ ¼ 0, while the third potential wall grows exponen-
tially when α11ðβÞ becomes negative.

1There are similar solutions at level NF ¼ 4, and in the mirror
part of the NF ¼ 2 level that we shall not consider, which can be
obtained by a simple involution acting on fermionic generators.
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was made, e.g., in Ref. [12]. We will compute the reflection
of the wave function against each exact potential wall; see
below.) In particular, we highlighted the three wall hyper-
planes defined by the equations

α11ðβÞ ¼ 0; α12ðβÞ ¼ 0; α23ðβÞ ¼ 0; ð1:6Þ

corresponding to the following three linear forms in the β’s:

α11ðβÞ≡ 2β1; α12ðβÞ≡ β2 − β1;

α23ðβÞ≡ β3 − β2: ð1:7Þ

The three hyperplane Eqs. (1.6) constitute a conventional
way of describing the fact that the basic equations of the
supersymmetric Bianchi IX model, i.e. the susy constraints
(1.4), contain operatorial, spin-dependent and β-dependent
potentiallike terms that grow when the β’s approach these
hyperplanes. More precisely, as can be seen on the explicit
expressions given in Eqs. (6.1)–(6.4) of [16], the potential-
like contribution V̂Aðβ; Φ̂Þ to the susy constraints operators,
Eq. (1.5), contains the following terms

V̂g
A ¼ 1

2

X
a

e−2β
aðγ5Φ̂aÞA; ð1:8Þ

and

V̂sym
A ¼ −

1

8
coth½β1 − β2�½Ŝ12ðγ1̂ 2̂ðΦ̂1 − Φ̂2ÞÞA

þ ðγ1̂ 2̂ðΦ̂1 − Φ̂2ÞÞAŜ12� þ cyclic123 ð1:9Þ

where

Ŝ12 ¼
1

2
ð ¯̂Φ3

γ0̂ 1̂ 2̂ðΦ̂1 þ Φ̂2Þ þ ¯̂Φ1
γ0̂ 1̂ 2̂Φ̂1

þ ¯̂Φ2
γ0̂ 1̂ 2̂Φ̂2 − ¯̂Φ1

γ0̂ 1̂ 2̂Φ̂2Þ: ð1:10Þ

The operator Ŝ12, together with similarly defined operators
Ŝ23; Ŝ31, are spin-like operators satisfying the usual suð2Þ
commutation relations: ½Ŝ23; Ŝ31� ¼ þiŜ12, etc.
The “gravitational-wall” potential term (1.8) is exponen-

tially small when β1, β2, and β3, are largish and positive.
It starts becoming exponentially large (and confining)
when, on the contrary, either β1, β2, or β3, become negative.
It is in that sense that the three gravitational-wall hyper-
planes α11ðβÞ ¼ 0, α22ðβÞ ¼ 0 and α33ðβÞ ¼ 0 (where
α22 ≡ 2β2 and α33 ≡ 2β3) define (softly confining) poten-
tial walls. The “symmetry-wall” potential (1.9) is similarly
made of three different terms [differing by a (123) cyclic
permutation]. For instance, the term explicitly displayed
in Eq. (1.9), which involves coth½β1 − β2�, is singular on
the symmetry hyperplane α12ðβÞ ¼ 0, and tends towards
a β-independent contribution far from it. [The various

β-independent contributions coming from the asymptotic
�1 values of the various coth αab’s combine with other
β-independent, Φ̂a-cubic terms to define an effective mass
term in the above Diraclike equations. The effect of these
mass-like, Φ̂a-cubic terms will be fully taken into account
in our discussion below.]
It has been shown in [16] that it is enough to consider the

evolution of the universe wave function jΨðβÞi within only
one of the six different chambers defined by considering the
two possible sides associated with the three symmetry-wall
one forms α12ðβÞ, α23ðβÞ, α31ðβÞ (i.e. the two possible signs
for, e.g., β2 − β1). Each such chamber corresponds to some
ordering of the three β’s. Here, we shall work within the
canonical chamber

β1 < β2 < β3: ð1:11Þ

The gravitational wall belonging to this chamber [namely
the term e−2β

1ðγ5Φ̂1ÞA in (1.8)] further confines the evolu-
tion of thewave packet to stay essentially on the positive side
of α11 ¼ 2β1, so that we can think of the wave function
jΨðβÞi as evolving in the (approximate) billiard chamber

0≲ β1 < β2 < β3: ð1:12Þ

It is this (approximate) billiard chamber, within which
α11ðβÞ ≥ 0; α12ðβÞ ≥ 0; α23ðβÞ ≥ 0, which is represented
in Fig. 1.
In the present work, we shall complete the results of

Refs. [15,16] by studying the quantum reflection operators
of the universe wave function jΨðβÞi on the three potential
walls (1.6) constraining its propagation (see Fig. 1). Our
present study will thereby represent the quantum generali-
zation of Ref. [11], which studied similar reflection
operators when treating the gravitino as a classical, i.e.
Grassmann variable. We will study, in turn, the evolution of
jΨðβÞi at the fermionic level NF ¼ 2 (Sec. II) and at the
fermionic level NF ¼ 3 (Sec. III). After the completion of
this purely dynamical problem, we shall show (in Sec. IV)
that our results provide a new evidence for the hidden
role of the hyperbolic Kac-Moody algebra AE3 (and of its
compact subalgebra K½AE3�) in supergravity.

II. QUANTUM FERMIONIC BILLIARD AT
LEVEL NF = 2

The susy constraints, Eqs. (1.4), admit solutions depend-
ing on arbitrary functions at level NF ¼ 2 only in a
6-dimensional subspace of the total 15-dimensional
NF ¼ 2 space, namely (with p, q ¼ 1, 2, 3):

jΨi6;NF¼2 ¼ kpqðβÞ ~bðpþ ~bqÞ− j0i−: ð2:1Þ

Here, the amplitude kpqðβÞ parametrizing these solutions is
symmetric in the two indices p, q ¼ 1, 2, 3, and the two
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triplets of operators ~ba� ¼ ðba�Þ† denote the Hermitian
conjugates of the following combinations of the basic
(Hermitian) gravitino operators Φ̂a

A

baþ ¼ Φ̂a
1 þ iΦ̂a

2; ba− ¼ Φ̂a
3 − iΦ̂a

4: ð2:2Þ

The vacuum state j0i− is the unique state annihilated by
the six fermionic annihilation operators ba�. The total
15-dimensional NF ¼ 2 space is generated by acting on
j0i− with two among the six (anticommuting) creation
operators ~ba�. The generic propagating state (2.1) lives in
the 6-dimensional subspace Hð1;1ÞS spanned by the sym-

metrized products ~bðpþ ~bqÞ− j0i−.
In this section we shall discuss the reflection law of the

NF ¼ 2 spinorial solutions (2.1) against the three different
potential walls bounding the chamber within which these
solutions propagate. We are interested in an asymptotic
regime (large β’s, and small wavelengths) where the
quantum solutions can be approximated (away from the
turning points, i.e. sufficiently away from the potential
walls) by quasiclassical WKB solutions (see Fig. 1). Like in
the usual WKB approximation, we will obtain the reflec-
tion laws against the potential walls by matching the WKB
form (away from the walls) to (exact) solutions valid near
the walls.
Far from all the walls (in our canonical Weyl chamber

0≲ β1 ≤ β2 ≤ β3), the effect of the β-dependent potential
terms is negligible, so that the amplitude kpqðβÞ of the
general WKB-likeNF ¼ 2 spinorial solution can be written
as a superposition of (rescaled) plane waves:

kfar−wallpq ðβÞ ¼ FðβÞ
X

Kpqeiπ
0
aβ

a
: ð2:3Þ

Here, the rescaling factor FðβÞ is generally defined (see
Eq. (8.4) in Ref. [16], here modified by the numerical factor
8−1=8) as

FðβÞ ¼ e
3
4
β0ð8j sinh β12 sinh β23 sinh β31jÞ−1=8; ð2:4Þ

where we introduced the convenient short-hands

β0 ≡ β1 þ β2 þ β3; β12 ≡ β1 − β2; etc: ð2:5Þ

Far from all the walls of the canonical chamber, the
rescaling factor FðβÞ is a (real) exponential of the β’s,
namely

FðβÞ ≈ e
3
4
β0e−

1
8
ðjβ12jþjβ23jþjβ31jÞ ¼ eβ

1þ3
4
β2þ1

2
β3 : ð2:6Þ

As explained in Refs. [15,16], the rescaling factor FðβÞ
is such that the mass-shell condition for the plane wave
factor eiπ

0
aβ

a
takes the simple, special-relativistic-like, form

π02 ¼ −μ2, namely

Gabπ0aπ0b ¼ −μ2NF¼2 ¼ þ 3

8
; ð2:7Þ

where Gab denotes the Lorentzian-signature (inverse)
metric in β-space. Note that the NF ¼ 2 mass-shell is
tachyonic (μ2NF¼2 ¼ − 3

8
, i.e. π0a is a spacelike momentum).

As was discussed in Ref. [16], this tachyonic character
(which holds for all fermionic levels, except NF ¼ 3)
suggests the possibility of a cosmological bounce. In the
present study, we are, however, focusing on an intermediate
asymptotic regime where the wave packet is centered, most
of the time, around coordinates βa that are large compared
to 1, so that many wavelengths separate the successive wall
reflections.
The amplitude Kpq (a “tensor” in β-space) of each plane

wave in Eq. (2.3) was found in Ref. [16] to have (for a given
momentum vector π0a) only one (complex) degree of
freedom, contained in an overall factor, say CNF¼2, i.e.
to be of the form

Kpq ¼ CNF¼2ðπ0pπ0q þ Lk
pqπ

0
k þmpqÞ; ð2:8Þ

where Lk
pq and mpq are some fixed numerical coefficients

(see Eqs. (19.17) and (19.18) in [16], which are reproduced
in Appendix A for the reader’s convenience).
A first way of describing the law of reflection of a plane

wave (2.3) on a potential wall is to compute the trans-
formation between the incident values of the overall
amplitude and of the momentum, say Cin

NF¼2, π0ina , and
their reflected (or outgoing) values, say Cout

NF¼2, π
0out
a . In

order to derive the scattering map Cin
NF¼2 → Cout

NF¼2, π
0in
a →

π0outa we need to go beyond the far-wall approximation, and
study the behavior of a generic wave packet (2.3) near each
type of potential wall.
Anticipating on the results of the computations given in

the following subsections, let us already exhibit the simple
structure of the scattering maps. The transformation of the
momentum π0a upon reflection on a potential wall asso-
ciated with a root αðβÞ is simply given (as expected from
the classical billiard approximation) by specular reflection
[with respect to the β-space geometry defined by the
(contravariant) metric Gab], i.e. by

π0outa ¼ π0ina − 2
π0in · α
α · α

αa: ð2:9Þ

Here, the scalar product between two covariant vectors is
defined by π0 · α≡ Gabπ0aαb. [αa is the covariant normal to
the considered potential wall, which is “located” on the
hypersurface 0 ¼ αðβÞ≡ αaβ

a.]
As for the transformation of the overall scalar amplitude

CNF¼2, it will be found to be encoded in a global

phase, δglobalα (which will depend on the considered type
of potential wall):
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Cout
NF¼2 ¼ eiδ

global
α Cin

NF¼2: ð2:10Þ

A second way of describing the law of reflection of a
plane wave (2.3) on a potential wall α is to compute the
“reflection operator”Rα, acting on the Hilbert space where
the considered quantum spinorial state lives, and trans-
forming the incident state jΨiin into the corresponding
reflected state jΨiout. In the present case, the considered
Hilbert space is the 6-dimensional subspace Hð1;1ÞS of the
15-dimensional NF ¼ 2 level, and the incident state is the
ingoing part of (2.1), i.e. a plane-wave state of the type

FðβÞKpqeiπ
0in
a βa ~bðpþ ~bqÞ− j0i−. The corresponding reflection

operator then acts on Hð1;1ÞS and is such that

jΨiout6;NF¼2 ¼ R6;NF¼2
α jΨiin6;NF¼2: ð2:11Þ

[When considering the action of Rα we strip jΨiin and

jΨiout of their corresponding phase factors eiπ0in=outa βa .] As the
fundamental billiard chamber of the supersymmetric
Bianchi IX model is bounded by three walls, described
by three linear forms in β-space, namely α12ðβÞ ¼ β2 − β1,
α23ðβÞ ¼ β3 − β2 and α11ðβÞ ¼ 2β1, the quantum super-
symmetric Bianchi IX billiard will define (at each fer-
mionic level where there exists propagating states) three
different reflection operators. For instance, at the NF ¼ 2
level, supergravity will define three spinorial reflection
operators

R6;NF¼2
α12 ; R6;NF¼2

α23 ; R6;NF¼2
α11 ; ð2:12Þ

all acting in the same 6-dimensional space Hð1;1ÞS . We shall
compute these (dynamically defined) operators below, and
find that they have a remarkable Kac-Moody meaning.
In order to derive the reflection laws (2.9), (2.10), (2.11),

and, in particular, to compute the values of the global
phases δglobalα , and of the reflection operators, (2.12), we
will use a “one-wall” approximation, i.e. we shall sepa-
rately solve the problems where an asymptotically planar
wave FðβÞKpqeiπ

0
aβ

a
impinges on one of the three possible

walls of our canonical chamber, 0≲ β1 ≤ β2 ≤ β3, i.e. either
on one of the two symmetry walls α12ðβÞ ¼ β2 − β1, or
α23ðβÞ ¼ β3 − β2; or on the gravitationalwallα11ðβÞ ¼ 2β1.
In this one-wall approximation, the spinorial wave function
kpqðβÞ in (2.1) will essentially depend only on one variable
(measuring the orthogonal distance to the wall), which will
make the problem of exactly solving the complicated
supersymmetry constraints (1.4) tractable.

A. Scattering on the symmetry wall α23ðβÞ= β3 − β2
In this subsection we study (in the one-wall approxi-

mation) the reflection of the NF ¼ 2 spinorial state (2.1) on
the symmetry wall α23ðβÞ ¼ β3 − β2. This study is sim-
plified by using an adapted basis in β-space. In doing so, we

shall treat the building blocks entering (2.1) as tensors, with
the indicated variance, in β-space. Namely, each creation
operator ~bp� is considered as a (contravariant) vector,
while the amplitude kpq is viewed as a (symmetric) covariant
2-tensor. Given a basis of 1-forms (i.e., a set of three
independent linear forms in β-space), say α1̂ðβÞ ¼ α1̂pβ

p,

α2̂ðβÞ ¼ α2̂pβ
p, α3̂ðβÞ ¼ α3̂pβ

p, we shall then work with the

corresponding basis (or dual basis) components ~bâ� ≡ αâp ~b
p
�

and kâ b̂ ≡ αpâα
q
b̂
kpq, where we defined αpâα

b̂
p ≡ δb̂â.

It is very useful to use a basis of the type

fα⊥; αu; αvg≡ fαðβÞ; uðβÞ; vðβÞg; ð2:13Þ

where αðβÞ is the reflecting wall form we are considering,
i.e., in the present subsection

αðβÞ≡ α⊥ðβÞ≡ α23ðβÞ ¼ β3 − β2; ð2:14Þ

while uðβÞ, vðβÞ are two one-forms whose corresponding
contravariant vectors2 (with u♯p ≡ Gpqu♯q), are parallel to
the wall hyperplane αðβÞ ¼ 0, i.e., α⊥ðu♯Þ ¼ 0 ¼ α⊥ðv♯Þ.
Geometrically, the (contravariant) vector α♯ is
perpendicular to the wall hyperplane αðβÞ ¼ 0, while the
numerical function β → αðβÞ measures (modulo a factorffiffiffi
2

p
) the orthogonal distance away from the wall hyper-

plane. [The squared norms of the wall forms we shall
consider here are all equal to 2: α · α ¼ Gpqαpαq ¼ 2. This
normalization is adapted to the Kac-Moody interpretation
of the (dominant) wall forms as simple roots of a
Kac-Moody Lie algebra.]
It was further found to be convenient to align the two

basis elements which are parallel to the wall to the two
(intrinsically defined) null directions tangent to the wall.
(The wall hyperplane is timelike in Lorentzian β-space, so
that it intersects the lightcone Gpqβ

pβq ¼ 0 along two
lines.) Specifically, we use

uðβÞ≡ −
�
2β1 þ 1

2
β2 þ 1

2
β3
�
; ð2:15Þ

vðβÞ≡ β2 þ β3: ð2:16Þ

The only nonzero scalar products among the three basis
one-forms fα⊥; αu; αvg≡ fαðβÞ; uðβÞ; vðβÞg are α · α ¼ 2
and u · v ¼ 2, so that the only nonzero components of the
inverse metric Gâ b̂ are

G⊥⊥ ¼ Guv ¼ Gvu ¼ 2: ð2:17Þ

2The triplet of contravariant vectors fα♯; u♯; v♯g should not be
confused with the vectorial basis that is dual to the basis of one-
forms (2.13). As we shall see below the dual basis fα⊥; αu; αvg is
f1
2
α♯; 1

2
v♯; 1

2
u♯g.
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Equivalently, the dual (vectorial) basis fα⊥; αu;αvg ¼
fαp⊥ ∂

∂βp ;α
p
u

∂
∂βp ; α

p
v

∂
∂βpg of fα⊥; αu; αvg is equal to

fα⊥; αu; αvg ¼ f1
2
α♯; 1

2
v♯; 1

2
u♯g, and the nonzero basis

components of the covariant metric Gâ b̂ are

G⊥⊥ ¼ Guv ¼ Gvu ¼
1

2
: ð2:18Þ

When considering the one-wall approximation, the poten-
tial terms V̂Aðβ;ΦÞ entering the susy constraints (1.5),
(1.4), are easily seen to depend on the β’s only through the
single combination αðβÞ. This immediately implies that the
two wall-parallel components πu¼−i ∂∂u, πv ¼ −i ∂

∂v of
themomentumare conserved.Actually, it is better to consider
the parallel components of the shifted momentum operator,
i.e., the differentiation operator acting on the rescaled wave
function FðβÞ−1jΨi, i.e. π0a¼πaþi∂ lnF=∂βa. When con-
sidered possibly near the wall α23, but far from the two other
walls, the scale factor FðβÞ, (2.4), reads (as a function of
α≡ α23, u, v)

Fðα; u; vÞ ≈ e−
1
2
uþ3

8
vð2j sinhαjÞ−1=8: ð2:19Þ

Hence, the part of lnFðα; u; vÞ that depends on u and v is
− 1

2
uþ 3

8
v, and shifts the conserved parallel momenta

according to: π0u ¼ πu − 1
2
i, π0v ¼ πv þ 3

8
i. In keeping with

the type of wavelike solutions (bouncing between potential
walls) we are interested in,we shall henceforth considerwave
packets having real values of the shifted conserved momenta
π0u, π0v (and therefore complex values of πu, and πv).
Putting together the ingredients we just discussed

(adapted coordinates, adapted basis, conserved shifted
parallel momenta), we finally look for solutions of the
susy constraints (1.5), in the one-wall approximation, of the
form

jΨi6;NF¼2 ¼ eðiπ0u−
1
2
Þuþðiπ0vþ3

8
ÞvjF ðαÞi6;NF¼2; ð2:20Þ

where

jF ðαÞi6;NF¼2 ¼ Kâ b̂ðαÞ ~bðâþ ~bb̂Þ− j0i−: ð2:21Þ

Inserting this expression in the (one-wall-approximated)
susy constraints (1.5), (1.4) leads to constraints on
jF ðαÞi6;NF¼2 of the form (with πu ¼ π0u þ i

2
, πv ¼ π0v − 3i

8
)

i
2
Φ̂⊥

A∂αjF ðαÞiþ
�
−
1

2
πuΦ̂u

A−
1

2
πvΦ̂v

Aþ V̂Aðα;ΦÞ
�
jF ðαÞi

¼ 0: ð2:22Þ

We recall that the spinor index A takes four values. For each
value of A ¼ 1, 2, 3, 4, Eq. (2.22) is a Diraclike equation
for the quantum spinor state jF ðαÞi, with Φ⊥

A playing the

role of a gamma matrix controlling the evolution with
respect to α. The anticommutation law (1.2) implies

Φ̂⊥
A Φ̂⊥

B þ Φ̂⊥
B Φ̂⊥

A ¼ δABG⊥⊥Id ¼ 2δABId; ð2:23Þ

so that we see that each matrix Φ̂⊥
A is invertible (with itself

as inverse). Multiplying each one of the four Eqs. (2.22) by
2
i Φ̂

⊥
A yields an overdetermined system of ordinary (matrix)

differential equations in α of the form

∂αjF ðαÞi ¼ ~ΣAjF ðαÞi ðA ¼ 1;…; 4Þ: ð2:24Þ

The unknowns of this system are the six components
Kâ b̂ðαÞ parametrizing the state (2.20), (2.21). Considering
the differences between the Eqs. (2.24), we see that the six
components Kâ b̂ðαÞ are subject to the following system of
linear equations

ð ~Σ1 − ~ΣAÞjF i ¼ 0 ðA ¼ 2; 3; 4Þ: ð2:25Þ

We found that the rank of this linear system3 is equal to 2.
In other words, the six components Kâ b̂ can be expressed
as linear combinations of two of them, chosen for instance
as K⊥⊥ and K⊥v. It is then useful to parametrize the α
dependence of K⊥⊥ and K⊥v in terms of two other
functions FðαÞ, GðαÞ, as follows (we henceforth work
on the half-line α > 0)

K⊥⊥ðαÞ ¼ CFsinh3=8ðαÞFðαÞ;
K⊥vðαÞ ¼ CGsinh3=8ðαÞGðαÞ: ð2:26Þ

By appropriately choosing the ratio CF=CG between the
proportionality constants, we obtain a linear system for the
two functions F and G which reads

∂αF ¼ G; ð2:27Þ

½∂α þ cothðαÞ�G ¼ −
�
1

4
þ π02⊥

�
F: ð2:28Þ

Here, π02⊥ denotes the function of π0u, π0v defined by the far-
wall NF ¼ 2 mass-shell constraint

Gâ b̂π0âπ
0
b̂
¼ 2π02⊥ þ 4π0uπ0v ¼

3

8
: ð2:29Þ

3Equation (2.24) also leads to six more algebraic constraints,
because the operators ~ΣA map the jF i–components partially
outside the subspace to which they belong. However these extra
conditions are found to be consequences of Eqs (2.25); similar
dependences also occur when the same analysis is performed at
level NF ¼ 3, as well as in the other one-gravitational-wall
approximations, at levels NF ¼ 2, or 3.
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The general solution of the differential system (2.27), (2.28),
contains two arbitrary constants, say CP and CQ. The
solution parametrized by CQ involves Q-type Legendre
functions, and is singular (in a non square-integrable way)
on the considered symmetry wall α ¼ 0. [E.g., K⊥vðαÞ ∝
CQsinh3=8ðαÞQ1

ν½coshðαÞ� blows up like O½α−5=8� when
α → 0.] In keeping with the general aim of our work, we
shall only consider here the solution parametrized by CP
which involvesP-type Legendre functions, which vanish on
the symmetry wall.
Here we use Legendre functions defined on the complex

plane cut between z ¼ −1 and z ¼ 1 by analytically
continuing the expression

Pμ
ν ½z� ¼ 1

Γð1 − μÞ
�
zþ 1

z − 1

�
μ=2

2F1

�
−ν; 1þ ν; 1 − μ;

1 − z
2

�
:

ð2:30Þ

F and G involve Legendre functions of order μ ¼ 0 or
μ ¼ 1, and degree ν ¼ − 1

2
þ iπ0⊥. Here, we conventionally

define π0⊥ as the positive solution of the far-wall mass-shell
condition (2.29). More precisely

F ¼ CPP0
−1
2
þiπ0⊥

½coshðαÞ�; ð2:31Þ

G ¼ CPP1
−1
2
þiπ0⊥

½coshðαÞ�: ð2:32Þ

Note that while the definition (2.30) can be used as is
when μ ¼ 0, the case μ ¼ 1 involves a “regularized”
hypergeometric function [where the vanishing pre-factor
1=Γð1 − μÞ is needed to regularize the singular coefficients
1=ð1 − μÞ entering the hypergeometric series].
Finally, the general (square-integrable) solution of the

NF ¼ 2 susy constraints is of the form (2.20), (2.21),
with adapted-basis components Kâ b̂ðαÞ given by (with
ν ¼ − 1

2
þ iπ0⊥)

K⊥⊥ðαÞ ¼ CPK0⊥⊥½π0u; π0v� sinh3=8ðαÞP0
ν½coshðαÞ�; ð2:33Þ

KUVðαÞ ¼ CPK0
UV½π0u; π0v� sinh3=8ðαÞP0

ν½coshðαÞ�; ð2:34Þ

K⊥UðαÞ ¼ CPK0⊥U½π0u; π0v� sinh3=8ðαÞP1
ν½coshðαÞ�: ð2:35Þ

Here, the indices U, V run over the two values u, v
parametrizing the parallel components of the wave func-
tion, and the π0U-dependent (but α-independent) polariza-
tion tensors K0

â b̂
ðπ0UÞ are given by

K0⊥⊥½π0u; π0v� ¼
�
π0u þ

i
4

��
π0v −

i
8

�
; ð2:36Þ

fK0
UV½π0u; π0v�gUV¼uu;uv;vv

¼
�
−
1

2
π02v þ i

7

16
π0v þ i

3

32
π0v −

3

128
;

− π0uπ0v þ
i
2
ðπ0u − π0vÞÞ −

11

32
;

−
1

2
π02u þ i

�
1

4
π0v −

7

8
π0u

�
þ 13

32

�
; ð2:37Þ

fK0⊥U½π0u;π0v�gU¼u;v ¼
��

iπ0vþ
1

8

�
;

�
iπ0u−

3

4

��
: ð2:38Þ

We have checked that the values of the various π0U-
dependent coefficients K0

â b̂
ðπ0UÞ are in agreement with

the general, far-wall plane-wave solution (2.8). To perform
this check, and to finally obtain the scattering laws (2.9),
(2.10), (2.11), we will need to use the far-wall (α → þ∞)
asymptotic expression of the Legendre functions, namely:

Pμ
ν ½coshðαÞ�≈ 1ffiffiffi

π
p

�
Γð1

2
þνÞ

Γð1−μþνÞe
ναþΓð−1

2
−νÞ

Γð−μ−νÞe
−ðνþ1Þα

�
;

α→þ∞: ð2:39Þ

B. Reflection laws on the symmetry wall α23ðβÞ= β3 − β2
Let us now extract from the explicit structure of the one-

wall solution (2.33), (2.34), (2.35) the reflection laws (2.9),
(2.10), (2.11). In the following, we shall conventionally
assume that the wave packets we are considering are
“future-directed” in the sense that the (shifted, far-wall)
contravariant momentum vector π0♯ is directed toward
increasing values of the timelike variable β0¼β1þβ2þβ3.
[Physically, as β0 ¼ − lnðabcÞ, this means that we are
considering a contracting universe, going towards a big-
crunch-like singularity where the volume abc → 0.] With
this convention, and given the fact that the wave packet
evolves in the half-space α ¼ α23 > 0, the ingoing piece of
the asymptotic solution is characterized by having a com-
plex phase factor ∝ e−iπ

0⊥α, while its reflected piece should
have a phase factor∝ eþiπ0⊥α. Here, as above, π0⊥ is defined as
being the positive root of the mass-shell condition (2.29).
In the case of the α23 symmetry wall that interest us here,

we should insert ν ¼ − 1
2
þ iπ0⊥ in the asymptotic expres-

sion (2.39). This yields

P0
−1
2
þiπ0⊥

≃e−
1
2
αffiffiffi
π

p
�

Γð−iπ0⊥Þ
Γð1

2
− iπ0⊥Þ

e−iπ
0⊥αþ Γðþiπ0⊥Þ

Γð1
2
þ iπ0⊥Þ

eþiπ0⊥α
�
;

ð2:40Þ

P1
−1
2
þiπ0⊥

≃e−
1
2
αffiffiffi
π

p
�

Γð−iπ0⊥Þ
Γð−1

2
− iπ0⊥Þ

e−iπ
0⊥αþ Γðþiπ0⊥Þ

Γð−1
2
þ iπ0⊥Þ

eþiπ0⊥α
�
:

ð2:41Þ
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Let us first note that the combination of the exponentially
decaying prefactor e−

1
2
α with the overall factor sinh3=8ðαÞ in

Eqs. (2.33), (2.34), (2.35), and with the real exponential
factor linked to the imaginary additions to π0u, π0v in
Eq. (2.20), reproduces (in the limit α ≫ 1) the real
exponential factor eβ

1þ3
4
β2þ1

2
β3 ¼ e−

1
8
α−1

2
uþ3

8
v present in the

general far-wall solution (2.8). Then, the presence of the
two complex-conjugated phase factors e�iπ0⊥α (in addition
to the conserved phase factors eiðπ0uuþπ0vvÞ) shows that the
reflection law for the shifted momentum reads

π0inâ ¼ ð−π0⊥; π0u; π0vÞ → π0outâ ¼ ðþπ0⊥; π0u; π0vÞ: ð2:42Þ

The rewriting of this adapted-basis reflection law, precisely
yields the specular reflection law (2.9).
In order to extract the global reflection phase-factor

eiδ
global
α , Eq. (2.10), connecting the incident far-wall ampli-

tude to the reflected one, one needs to compare both the
incident and the reflected pieces of the solution Eqs. (2.33),
(2.34), (2.35) to the generic far-wall solution (2.8). When
doing so, one can first factor out the amplitude of, say, the
incident P0

−1
2
þiπ0⊥

-type modes (inK⊥⊥ andKUV). This yields

a π0⊥-dependent factor in the corresponding incident
P1
−1
2
þiπ0⊥

-type modes (in K⊥U) given by

Γð1
2
− iπ0⊥Þ

Γð− 1
2
− iπ0⊥Þ

¼ −
1

2
− iπ0⊥; ð2:43Þ

where we used the basic identity Γðzþ 1Þ ¼ zΓðzÞ.
Combining this additional π0⊥-linear factor (2.43) in K⊥U
with the π0U-linear factors displayed in Eq. (2.38), we found
that all the Kâ b̂ incident amplitudes of Eqs. (2.33), (2.34),
(2.35) nicely agree with the π0a-quadratic dependence of the
generic far-wall amplitude (2.8) derived in our previous
work [16], and recalled in Appendix A. (The same check
holds for the reflected amplitude.)
As an additional result of this asymptotic analysis, one

gets the relation between the overall scalar amplitude
CNF¼2 of a far-wall wave packet and the overall coefficient
CP parametrizing the amplitude of the P-type solution,
namely

C�
NF¼2 ¼ −

CPffiffiffi
π

p
2
11
8

Γð�iπ0⊥Þ
Γð1

2
� iπ0⊥Þ

; ð2:44Þ

where the upper sign on CNF¼2 refers to the outgoing wave
(having α23 · π0 > 0), while the lower sign refers to the
ingoing wave. Taking the ratio between Cþ

NF¼2 and C−
NF¼2

yields the global phase factor

eiδ
global
α23 ¼ Cþ

NF¼2

C−
NF¼2

¼ Γ½þiπ0⊥�Γ½12 − iπ0⊥�
Γ½−iπ0⊥�Γ½12 þ iπ0⊥�

: ð2:45Þ

In the small wavelength (WKB) limit (large values for the
components π0a), this yields, using

Γðzþ aÞ
Γðzþ bÞ ≈ za−b as z → ∞; ð2:46Þ

eiδ
global;WKB
α23 ≈ e−i

π
2: ð2:47Þ

The latter asymptotic value of the global phase is also
easily obtained by considering the K⊥⊥ component of the
NF ¼ 2 solution (which is given, for large values of π0a, by
K⊥⊥ ≈ CNF¼2π

0⊥π0⊥ where the factor π02⊥ does not change
sign upon reflection).
Finally, let us extract from our results above the

reflection operator (in Hilbert space) R6;NF¼2
α mapping

the incident state jΨiin6;NF¼2 to the reflected one. We can
compute this operator by relating the various basis spinor

states ~bðâþ ~bb̂Þ− j0i− making up the one-wall solution (2.21) to
eigenstates of various operators defined in terms of the
basic gravitino operators Φ̂a

A. Let us recall that our previous
work had emphasized that the building blocks of the susy
Hamiltonian operator were some operators quadratic in the
Φ̂a

A’s that generated a representation of the compact
subalgebra K½AE3� of AE3. There were two types of such
operators: the three spin operators Ŝ12, Ŝ23, Ŝ31, associated
with symmetry walls, and three operators Ĵ11, Ĵ22, Ĵ33,
associated with the three dominant gravitational walls
α11 ¼ 2β1, α22 ¼ 2β2, α33 ¼ 2β3. (See Eq. (8.10) in
Ref. [16].) Here, we are considering the reflection by
the symmetry wall α23, so that one might expect that the
corresponding reflection operator R6;NF¼2

α might be
directly related to the corresponding spin operator Ŝ23.
There is, however, a subtlety. Indeed, while the considered
dynamical states jΨi6;NF¼2 live in a 6-dimensional subspace

Hð1;1ÞS of the 15-dimensional NF ¼ 2 level (so thatR6;NF¼2
α

is an endomorphism of Hð1;1ÞS ), the spin operator Ŝ23
happens not to leave invariant Hð1;1ÞS , but to map it to other
sectors within the 15-dimensional NF ¼ 2 state space.
However, if one considers, instead of Ŝ23, its square, namely
Ŝ223, one checks that the latter operator leaves invariant (and
thereby defines an endomorphism of)Hð1;1ÞS . [We recall that
it is indeed the squared spin operator which enters each
symmetry wall αab in the Hamiltonian operator, as per
∼ðŜ2ab − IdÞ=ð4 sinh2ðαabÞÞ.] In addition, we have shown

that the basis of spinor states ~bðâþ ~bb̂Þ− j0i− entering (2.21), and
which were crucial for finding and simplifying the solution
of the susy constraints happen to be eigenstates of Ŝ223. More
precisely, we have shown that four of our basis states are
eigenstates of Ŝ223 with zero eigenvalues,

Ŝ223 ~b
⊥
þ ~b

⊥
− j0i− ¼ 0; Ŝ223 ~b

ðU
þ ~bVÞ− j0i− ¼ 0; ð2:48Þ
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while the other two basis states are eigenstates of Ŝ223 with
eigenvalue equal to 4:

Ŝ223 ~b
ð⊥
þ ~bUÞ

− j0i− ¼ 4~bð⊥þ ~bUÞ
− j0i−: ð2:49Þ

We then note that these eigenvalues of Ŝ223 are correlated to
the Legendre order μ of the corresponding wave function
Kâ b̂ðαÞ by the simple rule

μ ¼ 1

2
jŜ23j6;NF¼2; ð2:50Þ

where we introduced the operator jŜ23j6;NF¼2 defined as

being the (unique) positive square root4 of Ŝ223, considered as
an endomorphism of Hð1;1ÞS .
When comparing the phases of the incident and reflected

pieces in the one-wall solution above, one easily sees that
they only differ by a phase factor, and that the latter phase
factor, say eiδμ only depends on the value of the Legendre
order μ, and can be written as

eiδμ ¼ Γð1
2
− μ − iπ0⊥ÞΓðiπ0⊥Þ

Γð1
2
− μþ iπ0⊥ÞΓð−iπ0⊥Þ

: ð2:51Þ

In view of the strict correlation (2.50), we conclude that the
reflection operator R6;NF¼2

α23 is an operatorial function of
jŜ23j6;NF¼2, which is given by

R6;NF¼2
α23 ¼ Γ½þiπ0⊥�Γ½12 − iπ0⊥ − 1

2
jŜ23j6;NF¼2�

Γ½−iπ0⊥�Γ½12 þ iπ0⊥ − 1
2
jŜ23j6;NF¼2�

: ð2:52Þ

In the small wavelength (or WKB) limit (π0⊥ ≫ 1), we have

½eiδμ �WKB ¼ eiπðμ−1
2
Þ; ð2:53Þ

so that the reflection operator depends only on the spin
operator, namely

R6;NF¼2;WKB
α23 ¼ eþ

iπ
2
ðjŜ23j6;NF¼2−1Þ ¼ eiδ

global
α23 eþ

iπ
2
jŜ23j6;NF¼2 :

ð2:54Þ

In the second form, we have factored out the (WKB limit
of the) global phase factor (2.47) (which corresponds to
the Ŝ223 ¼ 0 eigenvalues). Note that this result can also be
written as

R6;NF¼2;WKB
α23 ¼ e−

iπ
2e−

iπ
2
jŜ23j6;NF¼2 ; ð2:55Þ

because the eigenvalues of jŜ23j6;NF¼2 are 0 and 2.

C. Scattering and reflection laws on the
symmetry wall α12ðβÞ = β2 − β1

We shall be briefer in our discussion of the scattering
of a NF ¼ 2 wave packet (2.1) on the other symmetry
wall of our canonical chamber, i.e., the wall form
α12ðβÞ ¼ β2 − β1. Though there are some differences in
intermediate expressions (because of the dissymetric
role of the two symmetry walls bounding one given billiard
chamber) the final results are obtained by applying the
cyclic permutation ð231Þ → ð123Þ to the previous final
results concerning the scattering on the α23ðβÞ ¼ β3 − β2

wall.
Again, the crucial tool is to work within a basis of one

forms adapted to the considered wall. The previous basis
(2.13), with (2.14), (2.15) is now replaced by

f ~α⊥; ~αu; ~αvg≡ f ~αðβÞ; ~uðβÞ; ~vðβÞg; ð2:56Þ

with

~αðβÞ ¼ β2 − β1; ~uðβÞ≡ −
�
2β3 þ 1

2
β1 þ 1

2
β2
�
;

~vðβÞ≡ ðβ1 þ β2Þ: ð2:57Þ

The metric components in this adapted basis are the same as
the previous ones, Eq. (2.17), so that the far-wall mass-shell
condition reads as before, namely

Gâ b̂π0âπ
0
b̂
¼ 2π02⊥ þ 4π0~uπ

0
~v ¼

3

8
: ð2:58Þ

The state reflecting on the α12 wall is looked for in
the form

jΨi6;NF¼2 ¼ eðiπ
0
~u−

1
4
Þ ~uþðiπ0

~vþ3
4
Þ~vj ~F ðαÞi6;NF¼2; ð2:59Þ

where the real-exponential contributions are slightly modi-
fied [because of the noncylic invariance of the original scale
factor FðβÞ, Eq. (2.4)], and where

j ~F ðαÞi6;NF¼2 ¼ Kâ b̂ðαÞ ~bðâþ ~bb̂Þ− j0i−: ð2:60Þ

Here it is now understood that the basis indices â ¼
ð⊥; u; vÞ must be replaced by their tilded avatars, corre-
sponding to the new basis (2.56), (2.57).
As above, we find Qμ

ν-type and Pμ
ν-type Legendre

solutions, with the order μ related to Ŝ212 via

μ ¼ 1

2
jŜ12j6;NF¼2; ð2:61Þ

so that μ ¼ 0 or 1. The degree ν is again given by
ν ¼ − 1

2
þ iπ0⊥. The Q-type solutions are singular and we

discard them. On the other hand, the P-type solutions are
4By definition, we require this square root to have the same

eigenstates as Ŝ2236;NF¼2.
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regular and are expressed by formulas similar to Eqs. (2.33),
(2.34), (2.35), when using projections on the tilded
basis (2.56).
The final reflection laws are the same, mutatis mutandis,

as before. Namely, the standard specular reflection law
(2.9) (on the new wall α12), and [defining as before π0⊥ as
the positive root of the mass-shell condition (2.58)]

eiδ
global
α12 ¼ Γ½þiπ0⊥�Γ½12 − iπ0⊥�

Γ½−iπ0⊥�Γ½12 þ iπ0⊥�
≈ e−

iπ
2 ð2:62Þ

(where the last approximation corresponds to the WKB
limit) and the ð23Þ → ð12Þ version of the reflection
operator (2.52), which yields, in the WKB limit

R6;NF¼2;WKB
α12 ¼ e−

iπ
2e�

iπ
2
jŜ12j6;NF¼2 : ð2:63Þ

As before, we can indifferently choose here the � sign
because the eigenvalues of jŜ12j6;NF¼2 are, as before,
0 and 2.

D. Scattering on the gravitational wall α11ðβÞ= 2β1
We shall also be brief in discussing the scattering of a

NF¼2 wave packet (2.1) on a gravitational wall.
Gravitational walls correspond to terms in the Hamiltonian
that are proportional to e−α11¼e−2β

1

, e−α22¼e−2β
2

, or
e−α33¼e−2β

3

. The main differences between a gravitational
wall and a symmetry wall are that: (i) a gravitational wall is
softer than a symmetrywall in that it does not becomesingular
on the corresponding wall hyperplane αaa ¼ 0; and (ii) the
operator Ĵ11 coupled (in the Hamiltonian) to the wall factor
e−α11 is quadratic in the gravitino operators Φ̂a

A, while we had
quartic-in-fermions operators, such as Ŝ223, for symmetry
walls (see Eq. (8.11) in Ref. [16]). Similarly to the (sharper)
symmetry wall case, we shall impose the boundary condition
that the wave function exponentially decreases as one
penetrateswithin the consideredgravitationalwall (i.e.,when,
say, α11ðβÞ ¼ 2β1 becomes negative).
As in the symmetry-wall case, we shall solve the susy

constraints in the one-wall approximation. It is again very
useful to introduce an adapted basis of one-forms, namely

gα
â ¼ ðgα⊥; gαu; gαvÞ with

gα
⊥ðβÞ ¼ 2β1; gα

uðβÞ ¼ gu ¼ β1 þ β3;

gα
vðβÞ ¼ gv ¼ β1 þ β2: ð2:64Þ

(Below, we simplify the notation by deleting the pre-
subscript g.) Again, we have chosen a direction normal
to the considered wall, and two null directions parallel to
the wall. The normalization of this co-frame is now slightly
different from before, with

G⊥⊥ ¼ 2; Guv ¼ Gvu ¼ −1; ð2:65Þ

so that the far-wall mass-shell condition reads

2π02⊥ − 2π0uπ0v ¼
3

8
: ð2:66Þ

In the following,we shall define π0⊥ as the positive root of the

latter mass-shell condition, i.e. π0⊥ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π0uπ0v − 1

2
μ2

q
, where

μ2 ¼ − 3
8
is the squared mass at level NF ¼ 2. The dual

(vectorial) basis is equal to fα⊥; αu; αvg ¼ f1
2
α♯;−v♯;−u♯g.

Let us introduce the shorthand notation (here general-
ized, in anticipation of the corresponding NF ¼ 3 discus-
sion, to a mass-shell condition involving a different squared
mass μ2)

Uμ2ðβ; jÞ≡ eð34β2þ1
2
β3Þeiπ0uðβ1þβ3Þþiπ0vðβ1þβ2Þe2β1W−1

2
j;iπ0⊥ ½e−2β

1 �;
ð2:67Þ

where Wκ;μðzÞ denotes the standard Whittaker function.
The solution of the susy constraints near a gravitational

wall (and decaying under the wall) is then of the usual form
[see (2.1)]

jΨi6;NF¼2 ¼ kâ b̂ðβÞ ~bðâþ ~bb̂Þ− j0i−; ð2:68Þ

where the frame indices now refer to the gravitational basis
(2.64), and where the components of the state are given by

kuuðβÞ¼CJ

�
5

4
þ iðπ0uþ2π0vÞ−π02v

�
U−3

8

�
β;−

3

2

�
; ð2:69Þ

kuvðβÞ ¼ CJ 1

4
ð1þ 2iπ0uÞð1þ 2iπ0vÞU−3

8

�
β;−

3

2

�
; ð2:70Þ

kvvðβÞ ¼ CJ 1

4
ð1þ 2iπ0uÞ2U−3

8

�
β;−

3

2

�
; ð2:71Þ

k⊥uðβÞ¼−CJ 1

4
ð3þ2iπ0vÞð1þ4π0uπ0vÞU−3

8

�
β;
1

2

�
; ð2:72Þ

k⊥vðβÞ¼−CJ 1

4
ð1þ2iπ0uÞð1þ4π0uπ0vÞU−3

8

�
β;
1

2

�
; ð2:73Þ

k⊥⊥ðβÞ ¼ −CJð1þ 4π0uπ0vÞ
�
1

2
U−3

8

�
β;−

3

2

�

−
�
1

2
e−2β

1 þ 1

4

�
U−3

8

�
β;
1

2

��
: ð2:74Þ

The last component can be rewritten as

k⊥⊥ðβÞ¼CJ 1

8
ð1þ4π0uπ0vÞð3þ4π0uπ0vÞU−3

8

�
β;
5

2

�
: ð2:75Þ
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The latter form displays the role of the value j ¼ 5
2
in the

second argument of the function Uμ2ðβ; jÞ describing the

behavior of the basis state ~b⊥þ ~b⊥− j0i− (in correspondence
with the fact that the latter state is an eigenstate of the
operator Ĵ11 with the eigenvalue j ¼ 5

2
).

The behavior of the Whittaker function near the origin
e−2β

1

→ 0 yields the far-wall limit of the wave function:

Uμ2 ½β;j� ∼
β1→∞

eðβ1þ3
4
β2þ1

2
β3Þeiðπ0vðβ1þβ2Þþπ0uðβ1þβ3ÞÞ

×

�
Γ½−i2π0⊥�

Γ½ð1þjÞ
2

− iπ0⊥�
e−i2π

0⊥β1 þ Γ½i2π0⊥�
Γ½ð1þjÞ

2
þ iπ0⊥�

ei2π
0⊥β1

�
:

ð2:76Þ

We have checked that the π0⊥-dependence of the successive
ratios between the incident and reflected amplitudes
exhibited in (2.76), which follow from the Euler-gamma
function identity

Γ
�ð1þ jþ2Þ

2
− iπ0⊥

�
¼
�ð1þ jÞ

2
− iπ0⊥

�
Γ
�ð1þ jÞ

2
− iπ0⊥

�
;

ð2:77Þ

agree with the general far-wall solution (2.8), obtained
in Ref. [16].
From Eq. (2.76), we also immediately get the phase

shifts, for each component of the wave function, between
the incident (∝ e−i2π

0⊥β1) and reflected (∝ eþi2π0⊥β1) ampli-
tudes, upon scattering on the α11 ¼ 2β1 gravitational wall:

eiδα11 ðj;π
0⊥Þ ¼ Γ½1þj

2
− iπ0⊥�Γ½i2π0⊥�

Γ½1þj
2
þ iπ0⊥�Γ½−i2π0⊥�

: ð2:78Þ

In the cases of the reflections upon symmetry walls
discussed above, the global phase factor, entering
Eq. (2.10), could be read off from the reflection behavior
of the perpendicular-perpendicular amplitude, k⊥⊥ðβÞ.
The reason for this fact was that, in those cases, the
perpendicular-perpendicular projection of the far-wall
amplitude (2.8), i.e., the quantity K⊥⊥ðπ0aÞ, happened to
be independent of the sign of the (corresponding)
perpendicular component π0⊥ of π0a (which is the only
adapted-basis component of π0a which changes upon reflec-
tion). [The first contribution ∝ π02⊥ in K⊥⊥ðπ0aÞ is always
invariant under the sign flip π0⊥ → −π0⊥, but we are talking
also here about the second contribution ∝ Lk⊥⊥π0k, which is
linear in π0⊥ and could, a priori, change under reflection.
It does not in the case of symmetry-wall reflections because
L⊥⊥⊥ happens to vanish.] By contrast, in the case of reflection
upon the gravitational wall α11, we found that the corre-
sponding coefficient L⊥⊥⊥ does not vanish, so that the

(linear in π0a) contribution∝ Lk⊥⊥π0k changes upon reflection.
On the other hand, we found that all the parallel-parallel
coefficientsL⊥

UV measuring the dependence on�π0⊥ vanish in
the case of the gravitational wall α11. As a consequence,
in that case, the global phase can be read off from the
reflection behavior of the parallel-parallel amplitudes,
kUVðβÞ. The latter amplitudes correspond to the eigenvalue
j ¼ − 3

2
, so that

eiδ
global
α11 ¼ Γ½− 1

4
− iπ0⊥�Γ½i2π0⊥�

Γ½− 1
4
þ iπ0⊥�Γ½−i2π0⊥�

: ð2:79Þ

Contrary to the symmetry-wall cases, the dependence of

the global reflection phase δglobalα11 on π0⊥ does not admit a

limit when π0⊥ → þ∞, rather one has δglobalα11 ∼ π0⊥ ln π0⊥.
This divergence is easily understood classically: because of

the energy conservation law π02⊥ þ ke−2β
1 ¼ π0⊥2

far−wall, a
relativistic particle impinging on a gravitational wall
with incident normal momentum π0⊥far−wall will penetrate
within the wall up to the turning point π0⊥ ¼ 0, i.e. up to the
energy-dependent position 2β1turning ¼ − lnðπ0⊥2

far−wall=kÞ.
The shift β1turning in the effective location of the wall

then leads to an additional (energy-dependent) phase shift
∼ − 2π0⊥far−wallβ

1
turning ∼ 2π0⊥far−wall ln π

0⊥far−wall.
Of more importance for our purpose is the dependence of

the phase factors (2.78) on the second argument j of the
mode function Uμ2ðβ; jÞ, Eq. (2.67). Indeed, we have
shown that our adapted basis was such that each corre-

sponding spinor state ~bðâþ ~bb̂Þ− j0i− was an eigenspinor of the
operator Ĵ11 associated with the α11 gravitational wall.
More precisely, the perpendicular-perpendicular, ⊥⊥, state
has eigenvalue j ¼ 5

2
, the two perpendicular-parallel states,

⊥u, ⊥v have eigenvalues j ¼ 1
2
, and the three parallel-

parallel states uu, uv, vv have eigenvalues − 3
2
. Note that

these values are precisely the j-values entering the corre-
sponding mode functions (2.67). We can therefore reex-
press the result above by saying that the reflection operator,
in Hilbert space, against the α11 gravitational wall is given
by the following operatorial expression

R6;NF¼2
α11 ¼ Γ½1þĴ11

2
− iπ0⊥�Γ½i2π0⊥�

Γ½1þĴ11
2

þ iπ0⊥�Γ½−i2π0⊥�
: ð2:80Þ

In the large momentum (WKB) limit, this yields

R6;NF¼2
α11 ≈ eiδ0ðπ0⊥Þe−iπ2e−iπ2Ĵ11 ; ð2:81Þ

where we defined δ0ðπ0⊥Þ≡ 2π0⊥ lnð4π0⊥=eÞ.
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III. QUANTUM FERMIONIC BILLIARD
AT LEVEL NF = 3

The analysis done in the previous section of the various
reflection laws at the fermionic level NF ¼ 2 can also be
performed at the fermionic level NF ¼ 3. This level
corresponds to a 20-dimensional subspace of the total
spinorial state space. Actually, there is a natural decom-
position of the NF ¼ 3 space into two 10-dimensional
subspaces. The latter two subspaces are mapped onto
each other via the involution ba� → ba∓, ~ba� → ~ba∓, between
the basic fermionic annihilation and creation operators.
Here, we shall work in only one of these equivalent
10-dimensional subspaces.
As found in our previous work the general structure of

the propagating solution of the susy constraints can then be
written as

jΨi10;NF¼3 ¼ fðβÞjηi þ hpqðβÞjBpqi; ð3:1Þ
where

jηi¼ 1

3!
ηklm ~b

k
− ~b

l
− ~b

m
− j0i−; jBpqi¼ 1

2

X
k;l

ηpkl ~b
k
þ ~b

l
þ ~b

q
−j0i−:

ð3:2Þ
Here, ηklm ¼ ffiffiffiffiffiffiffi

−G
p

ϵklm denotes the Levi-Civita tensor in
β-space, and the first index on ηpkl is moved by the
Lorentzian metric Gpq in β-space. The general solution
(3.1) is parametrized by the (pseudo-)scalar f and the
(dualized) tensor hpq. The latter tensor is not symmetric in
its two indices and has, in general, nine independent
components. With the additional degree of freedom
described by the scalar f, this means that the general
NF ¼ 3 solution a priori contains ten independent com-
ponents (as befits its belonging to a 10-dimensional sub-
space of the NF ¼ 3 level).
It was found in Ref. [16] that, far from all the walls, the

general propagating solution at level NF ¼ 3 simplifies
because several irreducible components among the ten
generic ones either vanish or become related to each other.
Specifically, in our canonical chamber both the scalar f,
and the antisymmetric part of the tensor hpq, vanish far
from the walls. In addition, the remaining components,
namely the six components of the symmetric part hðpqÞ of
hpq, can all be polynomially expressed in terms of the
shifted momenta π0a according to a formula of the same type
as for the NF ¼ 2 solution, i.e.

hfar−wallðpqÞ ¼CNF¼3eiπ
0
aβ

a
eϖaβ

aðπ0pπ0qþLk
pqπ

0
kþmpqÞ; ð3:3Þ

where Lk
pq and mpq are some fixed numerical coefficients

(see Eqs. (19.32) and (19.33) in [16], which are reproduced
in Appendix A for the reader’s convenience). [The coef-
ficients Lk

pq and mpq describing the NF ¼ 3 far-wall

solutions are different from their NF ¼ 2 analogs.]
Here the shifted (far-wall) momenta π0a satisfy the
(nontachyonic) mass-shell condition

Gabπ0aπ0b ¼ −μ2NF¼3 ¼ −
1

2
: ð3:4Þ

The real exponential factor eϖaβ
a ¼ eβ

1þ3
4
β2þ1

2
β3 is the far-

wall asymptotic form of the rescaling factor FðβÞ, Eq. (2.4).
We wish to generalize to the NF ¼ 3 level the reflection

laws (2.9), (2.10), (2.11), discussed above for the NF ¼ 2
level. As before, these reflection laws will be obtained by
matching the general far-wall solution (3.3) to three separate
approximate susy solutions, obtained by considering, in
turn, the various one-wall cases where the solution prop-
agates near each one of the three walls of our canonical
chamber, i.e., the symmetric walls α23 or α12, and the
gravitational wall α11. We will again find that the first
reflection law (2.9) is always satisfied, and wewill compute
the values of the other scattering data, namely the NF ¼ 3
global phase factor

Cout
NF¼3 ¼ eiδ

global
α Cin

NF¼3; ð3:5Þ
and the reflection operator acting in the considered
10-dimensional subspace of the NF ¼ 3 level, such that

jΨiout10;NF¼3 ¼ R10;NF¼3
α jΨiin10;NF¼3: ð3:6Þ

As in the NF ¼ 2 case, we found that it is very useful to use
(for each wall) the same wall-adapted basis as above to be
able both to solve the corresponding one-wall susy con-
straints, and to compute the scattering data. When working
in some basis of one forms, sayαâðβÞ ¼ αâpβ

p, we shall write
the general solution (3.1) in the form

jΨi10;NF¼3 ¼ fðβÞjηi þ hâ b̂ðβÞjαâαb̂i; ð3:7Þ

where hâ b̂ ≡ αpâα
q
b̂
hpq are the components of the tensor hpq

in the dual basis (αpâα
â
q ¼ δpq or, equivalently αpâα

b̂
p ¼ δb̂â),

and where we introduced the short-hand notation

jαâαb̂i≡ αâpα
b̂
qjBpqi: ð3:8Þ

[One must also tensorially transform the Levi-Civita tensor,
and the metric.]
In the following subsections, we shall briefly summarize

the main results of our analysis at the NF ¼ 3 level.

A. NF = 3 reflection on the symmetry wall
α23ðβÞ= β3 − β2

We use the same basis of one forms as above, namely
(2.13), with (2.14) and (2.15). One decomposes the wave
functions fðβÞ and hâ b̂ðβÞ entering the general NF ¼ 3
solution (3.7) in the products of the factor
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eðiπ0u−1
2
Þuþðiπ0vþ3

8
Þv; ð3:9Þ

and of functions of α ¼ α23ðβÞ. Here, the conserved shifted
momenta π0u, π0v (which measure the momentum parallel to
the wall plane) must satisfy (when receding far from the
wall) the NF ¼ 3 mass-shell condition (3.4) which explic-
itly yields

2π02⊥ þ 4π0uπ0v ¼ −μ2NF¼3 ¼ −
1

2
: ð3:10Þ

One then writes down theNF ¼ 3 analogs of Eqs. (2.22),
(2.24), and (2.25) (written in terms of adapted-basis
objects). The rank of the latter linear system is again found
to be equal to 2. This means that the ten components of f,
hâ b̂ can be expressed as linear combinations of only two of
them. One also finds that the three antisymmetric compo-
nents of hâ b̂ must separately vanish. We could then express
the seven remaining components, i.e., f; hðâ b̂Þ, in terms

of two functions of α ¼ α23ðβÞ ¼ β3 − β2, say FðαÞ and
GðαÞ. For instance,

h⊥⊥ ∝ sinh
3
8ðαÞGðαÞ; ð3:11Þ

hð⊥uÞ ∝ sinh
3
8ðαÞFðαÞ: ð3:12Þ

The F and G have to satisfy the differential system

∂αF þ 1

4
cothðαÞF þG ¼ 0; ð3:13Þ

∂αGþ 3

4
cothðαÞG −

�
1

16
þ π02⊥

�
F ¼ 0; ð3:14Þ

from which follows

∂2
αF þ cothðαÞ∂αF þ

�
1

4
þ π02⊥ −

1

16 sinh2ðαÞ
�
F ¼ 0:

ð3:15Þ

The general solution of this system is

F ¼ cþP
þ1

4

−1
2
þiπ0⊥

½coshðαÞ� þ c−P
−1
4

−1
2
þiπ0⊥

½coshðαÞ�; ð3:16Þ

G ¼ cþ

�
1

16
þ π02⊥

�
P
−3
4

−1
2
þiπ0⊥

½coshðαÞ� − c−P
þ3

4

−1
2
þiπ0⊥

½coshðαÞ�:

ð3:17Þ

The solution for f and hðâ b̂Þ also involves the combination

Gþ 1
2
cothðαÞF which can be shown to be equal to

Gþ 1

2
cothðαÞF ¼ cþP

þ5
4

−1
2
þiπ0⊥

½coshðαÞ�

− c−

�
9

16
þ π02⊥

�
P
−5
4

−1
2
þiπ0⊥

½coshðαÞ�:

ð3:18Þ

As we see, there is a two-parameter family of solutions:

(i) the cþ family involving P
þ5

4

−1
2
þiπ0⊥

, P
þ1

4

−1
2
þiπ0⊥

and P
−3
4

−1
2
þiπ0⊥

;

and (ii) the c− family involving P
−5
4

−1
2
þiπ0⊥

, P
−1
4

−1
2
þiπ0⊥

and

P
þ3

4

−1
2
þiπ0⊥

. Near the wall (α → 0), the Legendre functions

behave like (we recall that α > 0):

Pμ
νðcosh αÞ ∼ 1

Γð1 − μÞ
�
α

2

�
−μ
: ð3:19Þ

Though the above Legendre functions enter the solution
after being multiplied by sinh

3
8ðαÞ, the cþ family of

solutions will be singular at α ¼ 0 in a non square
integrable way. We therefore exclude it, and retain only
the c− family of solutions. [This family is mildly singular at

α ¼ 0 because of the presence of sinh
3
8ðαÞPþ3

4

−1
2
þiπ0⊥

½coshðαÞ�.
But the latter mode is square integrable.]
Finally, defining (for μ ¼ − 5

4
;− 1

4
;þ 3

4
) the mode

functions

hμðβÞ≡eðiπ0u−
1
2
Þuþðiπ0vþ3

8
Þv sinh

3
8ðαÞPμ

−1
2
þiπ0⊥

½coshðαÞ�; ð3:20Þ

we have been able to write the only regular solution of
the susy constraints near the α23 symmetry wall as a sum of
the type

jΨi10;NF¼3 ¼ C3

X
μ¼−5

4
;−1

4
;þ3

4

Ni
μðπ0u; π0vÞhμðβÞjμ; ii: ð3:21Þ

Here, i is a degeneracy index, which labels, for each value
of μ various states associated with the same value of the
order μ of the corresponding Legendre mode hμðβÞ.
Parallely to the NF ¼ 2 analysis above, there is again a

direct link between the various mode states jμ; ii and the
spinorial operator Ŝ223. Namely, the states jμ; ii span, for
each value of μ (when the degeneracy index i varies), the
eigenspace of ½Ŝ223�10;NF¼3 with eigenvalue ð2μÞ2. More
precisely, we have

½Ŝ223�10;NF¼3jμ; ii ¼ ð2μÞ2jμ; ii for i ¼ 1;…gðμÞ; ð3:22Þ

where the various degeneracies (which sum, as needed, to
ten) are
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g

�
−
5

4

�
¼ 1; g

�
−
1

4

�
¼ 5; g

�
þ 3

4

�
¼ 4:

ð3:23Þ

Let us briefly indicate the structure of the various eigen-
states, and how they are intimately linked to the basis
adapted to the considered wall α⊥ ¼ α23

j − 5

4
i ¼ juvi þ jvui − j⊥⊥i − jηi; ð3:24Þ

j − 1

4
; iii¼1;…;5 ¼ j⊥ui; ju⊥i; j⊥vi; jv⊥i; jηi þ jGi;

ð3:25Þ

j þ 3

4
; iii¼1;…;4 ¼ j⊥⊥i − jηi; juui; jvvi; juvi − jvui;

ð3:26Þ

whereweused the notation (3.8), togetherwith the following
shorthand for the trace state jGi≡GpqjBpqi¼Gâb̂jαâαb̂i¼
1
2
ðj⊥⊥iþ juviþ jvuiÞ.
The possibility of expressing the solution of the susy

constraints near a symmetry wall αS as a combination of
modes of the type (3.20) [involving Legendre functions
Pμ
νðcoshðαÞÞ] can be directly seen when considering the

second-order equation (Hamiltonian constraint) which
must be satisfied as a consequence of the first-order susy
constraints. Indeed, the near-wall form of the Hamiltonian
constraint reads (with π̂a ¼ −i∂=∂βa, and jΨ0ðβÞi ¼
FðβÞ−1jΨðβÞi)

�
Gabπ̂aπ̂b þ μ2NF

þ 1

2

Ŝ2αS − Id

sinh2ðαSÞ
�
jΨ0ðβÞi ¼ 0: ð3:27Þ

Decomposing the solution of this near-symmetry-wall
second-order equation in eigenspinors of the squared spin
operator Ŝ2αS, one finds that the general solution pertaining
to an eigenvalue S2 of Ŝ2αS is expressible in terms of the
Legendre modes (3.20) for

μ ¼ � jSj
2
: ð3:28Þ

As the eigenvalues S2 (with multiplicities) of the squared
spin operators at level NF ¼ 3 are (for all symmetry walls)
ðð5

2
Þ2j1; ð12Þ2j5; ð32Þ2j4Þ, we recover the fact that the Legendre

order μ can take the values � 5
4
;� 1

4
;� 3

4
. However, such an

analysis based on the second-order equation alone cannot
determine which subset of indices μ belong to a given
solution of the first-order susy constraints. Nor can they
determine the subset of indices belonging to a square-
integrable solution, by contrast to a nonsquare-integrable

one. To determine that the one-parameter family of square-
integrable solutions of the susy constraints were associated
with the set μ ¼ f− 5

4
;− 1

4
;þ 3

4
g of indices we had to go

through the more complicated analysis of the susy con-
straints sketched above.
Finally, we can extract from our analysis the scattering

data for the α23 symmetry-wall reflection. The basic fact to
be used is the asymptotic decomposition of the Legendre
function Pμ

ν given in Eq. (2.39) above. To determine the
global phase relating the incident far-wall amplitude CNF¼3

to the reflected one, it is enough (as in the NF ¼ 2 case) to
consider the ⊥⊥ component of the wave amplitude hpq.
[Indeed, we have checked that, for the α23 symmetry-wall
reflection, the NF ¼ 3 coefficient L⊥⊥⊥ measuring the
sensitivity of hfarwall⊥⊥ , Eq. (3.3), to the sign of π0perp vanishes].
We have exhibited in Eq. (3.11), the fact that h⊥⊥ is
proportional to GðαÞ, and therefore (for the square-

integrable solution) to P
þ3

4

−1
2
þiπ0⊥

½coshðαÞ�. This shows that

the global phase factor is the one belonging to the value
μ ¼ þ 3

4
. Using, the general result (2.51), we then get

½eiδglobal �α23 ¼
Γð− 1

4
− iπ0⊥ÞΓðiπ0⊥Þ

Γð− 1
4
þ iπ0⊥ÞΓð−iπ0⊥Þ

: ð3:29Þ

In the WKB limit this yields

½eiδglobal �WKB
α23

¼ ei
π
4: ð3:30Þ

Moreover, the map between the incident spinor state and the
reflected one is obtained by the reflection operator

R10;NF¼3
α23 ¼

Γ½þiπ0⊥�Γ
h
1
2
− iπ0⊥ − 1

2

ffiffiffiffiffiffiffi
Ŝ223

q
10;NF¼3

i

Γ½−iπ0⊥�Γ
h
1
2
þ iπ0⊥ − 1

2

ffiffiffiffiffiffiffi
Ŝ223

q
10;NF¼3

i ; ð3:31Þ

which yields in the WKB limit

R10;NF¼3;WKB
α23 ¼ e−i

π
2ei

π
2

ffiffiffiffiffi
Ŝ223

p
10;NF¼3 : ð3:32Þ

Here,
ffiffiffiffiffiffiffi
Ŝ223

q
10;NF¼3

denotes an operator square root of

Ŝ22310;NF¼3
which is not equal to its positive square root, but

which is defined as

ffiffiffiffiffiffiffi
Ŝ223

q
10;NF¼3

≡ 2μ̂; ð3:33Þ

by which we mean the following square root version of
Eq. (3.22)
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ffiffiffiffiffiffiffi
Ŝ223

q
10;NF¼3

jμ; ii¼ 2μjμ; ii for

2μ¼
�
−
5

2
;−

1

2
;þ3

2

�
and i¼ 1;…gðμÞ:

ð3:34Þ

B. NF = 3 reflection on the symmetry wall
α12ðβÞ= β2 − β1

Concerning the reflection on the second symmetry wall
of our canonical chamber, namely α12ðβÞ ¼ β2 − β1, the
needed computations are very similar to the ones above,
with, however, some significant differences. Though one
would have expected that a simple cyclic permutation
would suffice to translate the results of the α23 wall into
results for the α12 wall, there are some subtleties in
intermediate results, linked to the fact that the explicit
form of the susy constraints is not manifestly cyclically
symmetric. However, the end results are correctly obtained
from a permutation ð231Þ → ð123Þ.
We have already introduced above the basis adapted to

the α12ðβÞ ¼ β2 − β1 symmetry wall, namely Eqs. (2.56),
(2.57). In terms of the frame components of the state (3.7),
there are some simplifications because we found that the
algebraic constraints on the state imply the vanishing not
only (as before) of the antisymmetric components of hâ b̂,
but also the vanishing of the scalar f. This leaves us with
only six propagating components: hðâ b̂Þ. Again the adapted-
frame decomposition of these components is directly linked
with eigenstates of the relevant squared spin operator,
namely ½Ŝ212�10;NF¼3. The good (square-integrable) modes
are again of the form (3.20) with the corresponding μ-
decomposition (3.21) of the solution. However, there is a
difference in the link between each Legendre Pμ

ν mode and
eigenspinors of ½Ŝ212�10;NF¼3, with eigenvalues ð2μÞ2, as in
Eq. (3.22) above. We have now, when considering a full
basis of the 10-dimensional space, even if some coefficient
modes vanish5

jμ ¼ −
5

4
i ¼ j⊥⊥i; ð3:35Þ

jμ ¼ −
1

4
; iii¼1;…;5 ¼ jηi; ju⊥i; j⊥ui; jv⊥i; j⊥vi; ð3:36Þ

j þ 3

4
; iii¼1;…;4 ¼ juui; jvvi; juvi; jvui: ð3:37Þ

Let us only exhibit here, for illustration, the form of the
⊥⊥ mode:

h⊥⊥ ∝ sinh
3
8ðαÞP−5

4

−1
2
þiπ0⊥

½coshðαÞ�: ð3:38Þ

Contrary to the NF ¼ 2 case, hfar wall⊥⊥ is sensitive to the sign
of π0⊥ (i.e., the projected coefficient L⊥⊥⊥ does not vanish).
However, the other projections L⊥

UV of Lk
pq do vanish, so

that the far-wall parallel-parallel components of hpq are
insensitive to the sign of π0⊥. Finally, the global phase factor
for the NF ¼ 3 reflection on the α12 symmetry wall is given
by the behavior of the μ ¼ 3

4
mode, i.e.

½eiδglobal �α12 ¼
Γð− 1

4
− iπ0⊥ÞΓðiπ0⊥Þ

Γð− 1
4
þ iπ0⊥ÞΓð−iπ0⊥Þ

; ð3:39Þ

with WKB limit:

½eiδglobal �WKB
α12

¼ ei
π
4: ð3:40Þ

The corresponding reflection operator reads

R10;NF¼3
α12 ¼

Γ½þiπ0⊥�Γ
�
1
2
− iπ0⊥ − 1

2

ffiffiffiffiffiffiffi
Ŝ212

q
10;NF¼3

�

Γ½−iπ0⊥�Γ
�
1
2
þ iπ0⊥ − 1

2

ffiffiffiffiffiffiffi
Ŝ212

q
10;NF¼3

� ; ð3:41Þ

(where
ffiffiffiffiffiffiffi
Ŝ212

q
10;NF¼3

is again defined as being 2μ̂) which

yields in the WKB limit

R10;NF¼3;WKB
α12 ¼ e−i

π
2ei

π
2

ffiffiffiffiffi
Ŝ212

p
10;NF¼3 : ð3:42Þ

C. Reflection at level NF = 3 on the
gravitational wall α11ðβÞ= 2β1

When considering the reflection on the gravitational wall
α11ðβÞ ¼ 2β1 of a NF ¼ 3 solution we use the same
adapted basis as in our corresponding NF ¼ 2 analysis,
namely (2.64). Instead of the Legendre-like mode functions
(3.20), we will have Whittaker-like mode functions,
Uμ2ðβ; jÞ, as defined in Eq. (2.67). The only difference
is that the squared mass value μ2 labeling these modes must
now be taken to be μ2NF¼3 ¼ þ 1

2
(instead of μ2NF¼2 ¼ − 3

8
).

Actually, the value of μ2 only enters indirectly in the
expression of Uμ2ðβ; jÞ via a modified link between the
shifted parallel momenta π0u, π0v and π0⊥. In the present case,
this explicit link reads: π0⊥ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π0uπ0v − 1

4

q
.

In the case of symmetry walls, we were decomposing
the state jΨi10;NF¼3 into eigenstates of the squared spin
operator Ŝ22310;NF¼3

(labeled by μ with ð2μÞ2 ¼ S2 measuring

the eigenvalues of Ŝ22310;NF¼3
), as in Eq. (3.21). Here, we

shall decompose jΨi10;NF¼3 into eigenstates of the operator

Ĵ11 (with eigenvalues denoted j), according to

5The vanishing of such or such component depends on the
choice of basis. What is important is that we were able to describe
the exact solution of the susy constraints within the ten-dimen-
sional (half) NF ¼ 3 state space.
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jΨi10;NF¼3 ¼ C3

X
j¼−2;0;2

Ni
jðπ0u; π0vÞU1

2
ðβ; jÞjj; ii: ð3:43Þ

At level 3, the eigenvalues j (with their degeneracies
labeled above by i) of ½Ĵ11�10;NF¼3 are ðþ2j2; 0j6;−2j2Þ.
More importantly, the eigenspinors corresponding to these
eigenvalues are directly linked with objects naturally
constructed within our present adapted basis. Namely,
we have [using the notation (3.8), now applied to our
new adapted basis]

jj ¼ 2; iii¼1;2 ¼ ju⊥i; jv⊥i; ð3:44Þ

jj¼ 0; iii¼1;…;6¼ j⊥⊥i; juui; jvvi; juvi; jvui; jηi; ð3:45Þ

jj ¼ −2; iii¼1;2 ¼ j⊥; ui; j⊥; vi: ð3:46Þ

Let us only cite the form of our final result, namely the
expression of all the components hâ b̂ðβÞ (modulo an
overall factor that we omit) of the main NF ¼ 3 polariza-
tion tensor hpq along our adapted basis. [The scalar
polarization f happens to vanish, as well as huv − hvu.]

hu⊥ ¼ −iπ0uU1
2
ðβ;þ2Þ;

hv⊥ ¼ −
iπ0uπ0v

ðπ0u − i=2ÞU1
2
ðβ;þ2Þ;

h⊥u ¼
i
π0v

U1
2
ðβ;−2Þ;

h⊥v ¼
i

ðπ0u − i=2ÞU1
2
ðβ;−2Þ;

h⊥⊥ ¼ 1

2

ð2π0uπ0v − iπ0u − 1=2Þ
π0vðπ0u − i=2Þ U1

2
ðβ; 0Þ;

huu ¼
ðπ0u − i=2Þ

2π0v
U1

2
ðβ; 0Þ;

hvv ¼
π02v þ iðπ0u − π0vÞ þ 1=2

2π0vðπ0u − i=2Þ U1
2
ðβ; 0Þ;

1

2
ðhuv þ hvuÞ ¼

1

2
U1

2
ðβ; 0Þ: ð3:47Þ

Using the asymptotic behaviour of the Whittaker modes
[see Eq. (2.76)], we deduce the reflection laws on the
gravitational wall 2β1 ¼ 0. We checked that (because, for
the present case, L⊥⊥⊥ ¼ 0) the global phase is read off the
h⊥⊥ expression (involving j ¼ 0) and reads

eiδ
global
α11 ¼ Γ½1

2
− iπ0⊥�Γ½i2π0⊥�

Γ½1
2
þ iπ0⊥�Γ½−i2π0⊥�

: ð3:48Þ

As before it is energy-dependent, and has no limit
as π0⊥ → þ∞.

The reflection operator against the α11 gravitational wall
(acting in Hilbert space and transforming the incident state
into the reflected one) is given by the following operatorial
expression

R10;NF¼3
α11 ¼ Γ½1þĴ11

2
− iπ0⊥�Γ½i2π0⊥�

Γ½1þĴ11
2

þ iπ0⊥�Γ½−i2π0⊥�
: ð3:49Þ

In the large momentum (WKB) limit, this yields

R10;NF¼3
α11 ¼ eiδ0ðπ0⊥Þe−iπ2e−iπ2Ĵ11 ; ð3:50Þ

where δ0ðπ0⊥Þ ¼ 2π0⊥ lnð4π0⊥=eÞ. These are formally the
same expressions as at level NF ¼ 2, but, here, Ĵ11 denotes
the endomorphism of the 10-dimensional NF ¼ 3 subspace
in which we are working.
Let us note that the solution (3.47) contains more excited

components than the previous symmetry-wall NF ¼ 3
solutions. In particular, the antisymmetric components
hu⊥ − h⊥u and hv⊥ − h⊥v do not vanish, while they
vanished before. However, using the asymptotic behavior,
Eq. (2.76), of the relevant functions U1

2
ðβ;�2Þ, one finds

that their leading-order asymptotic approximations (as
β1 → þ∞) are exactly proportional to each other:

Uasympt
1
2

ðβ;þ2Þ ¼ −
1

π0uπ0v
Uasympt

1
2

ðβ;−2Þ: ð3:51Þ

Inserting this asymptotic relation in Eqs. (3.47) one
finds that the antisymmetric components hu⊥ − h⊥u and
hv⊥ − h⊥v vanish far from the gravitational wall (in keep-
ing with the far-wall analysis of Ref. [16]).

IV. HIDDEN KAC-MOODY STRUCTURE OF THE
SPINOR REFLECTION OPERATORS

Let us consider the WKB limit of the reflection operators
Rrep

α that map the incident spinor states jΨiin to the
reflected ones jΨiout. These spinor reflection operators
depend both on the considered reflection wall form αðβÞ
and on the representation space, say Vrep, in which lives the
considered incident and reflected quantum states. More
precisely, we derived above two different triplets of such
reflection operators: (i) one triplet associated with the
reflection (on the three potential walls of our canonical
billiard chamber) of the propagating quantum susy states at
level NF ¼ 2, which live in a 6-dimensional representation;
and (ii) a second triplet associated with the reflection (on
the same three bounding walls) of the propagating quantum
susy states at level NF ¼ 3, which live in a 10-dimensional
representation. In the WKB limit [and after factorization of
the classical, energy-dependent part of the gravitational-
wall reflection, δ0ðπ0⊥Þ ¼ 2π0⊥ lnð4π0⊥=eÞ], we found the
following operatorial expressions for these two triplets of
reflection operators:
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R6;NF¼2;WKB
α23 ¼ e−

iπ
2e�

iπ
2
jŜ23j6;NF¼2 ;

R6;NF¼2;WKB
α12 ¼ e−

iπ
2e�

iπ
2
jŜ12j6;NF¼2 ;

R6;NF¼2
α11 ¼ e−i

π
2e−i

π
2
Ĵ11

6;NF¼2

; ð4:1Þ
where we recall that jŜ23j6;NF¼2 and jŜ12j6;NF¼2 were
defined as the positive square roots of the corresponding
squared spin operators Ŝ223, Ŝ

2
12, which are both endomor-

phisms of the 6-dimensional subspaceHð1;1ÞS of theNF ¼ 2

level. The “gravitational” operator Ĵ11 is also an endomor-
phism of Hð1;1ÞS . (See, e.g., the second table in Appendix B
of [16].)
The corresponding results for the reflection operators in

the 10-dimensional subspace of the NF ¼ 3 level where
live the propagating quantum states read:

R10;NF¼3;WKB
α23 ¼ e−i

π
2ei

π
2

ffiffiffiffiffi
Ŝ223

p
10;NF¼3 ;

R10;NF¼3;WKB
α12 ¼ e−i

π
2ei

π
2

ffiffiffiffiffi
Ŝ212

p
10;NF¼3 ;

R10;NF¼3
α11 ¼ e−i

π
2e−i

π
2
Ĵ11

10;NF¼3

: ð4:2Þ
Here, there is a crucial difference in the way the square

roots of the squared-spin operators are defined. We recall
that both squared-spin operators have eigenvalues
ð2μÞ2 ¼ fð5

2
Þ2; ð1

2
Þ2; ð3

2
Þ2g. The square root operatorsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ŝ2ab10;NF¼3

q
are defined as having the eigenvalues 2μ ¼

f− 5
2
;− 1

2
;þ 3

2
g on the corresponding eigenspaces of

Ŝ2ab10;NF¼3. This sign pattern is such that the corresponding,
successive values of the Legendre order μ, namely
f− 5

4
;− 1

4
;þ 3

4
g differ by 1 (so as to correspond to the regular

solution of the first-order susy constraints).
Let us emphasize that the results above for the reflection

operators have resulted from a purely dynamical computa-
tion within supergravity. However, a remarkable fact is that
the end results of these supergravity calculations can be
expressed in terms of mathematical objects having a (hyper-
bolic) Kac-Moodymeaning.More precisely, we are going to
show that the two triplets of spinorial reflection operators
satisfy some relations that are related to a spin-extension of
theWeyl group of the rank-3 hyperbolicKac-Moody algebra
AE3. The notion of spin-extended Weyl group was intro-
duced, within the use of specific representations of the
maximally compact subalgebra K½AE3� of AE3 (and
K½E10� ⊂ E10), in Ref. [11]. More precisely, Ref. [11]
studied the one-wall reflection laws of the classical,
Grassmann-valued gravitino field ψ , in the case where,
near each potential wall (with bosonic potential ∝ e−2αðβÞ),
the coupling of the gravitino is also Toda-like and ∝ e−αðβÞ,
so that the lawof evolution ofψ near each separatewall reads

∂tψ ≈ ie−αðβÞΠαJαψ ; ð4:3Þ

where Πα is a conserved momentum.

Under these assumptions, Ref. [11] found that the trans-
formation linking the incident value of the Grassmann-
valued ψ to its reflected value was given by a classical,
fermionic reflection operator of the form

Rclassical
α ¼ ei

π
2
εαJα ; ð4:4Þ

where εα ¼ � denotes the sign of the momentum Πα.
Here, Jα is a matrix acting on the representation space
defined by a classical homogeneous gravitino. In the case of
Ref. [11], this was (when considering 4-dimensional super-
gravity) a 12-dimensional space in which live the twelve
components of a Majorana (spatial) gravitino ψ i

A, with
i ¼ 1, 2, 3 (spatial index) and A ¼ 1, 2, 3, 4 (Majorana
spinor index). This 12-dimensional representation is (essen-
tially) equivalent to the direct sum of the two (complex-
conjugated) 6-dimensional complex representations that
live at levelsNF ¼ 1 andNF ¼ 5within our 64-dimensional
quantized-gravitino Hilbert space. (In view of the hidden,
but crucial, importance of the existence of such finite-
dimensional representations, we briefly discuss in
Appendix B the structure of some of the low-dimensional
representations of K½AE3�.)
Motivated by these physical findings, a mathematical

definition of spin-extended Weyl groups (for general Kac-
Moody algebras) was then implemented (as part of the
definition of spin-covers of maximal compact Kac-Moody
subgroups of the K½AE3� type) and studied in Ref. [28].
Reference [11] showed that the reflection operators, say

rGi ¼ Rclassical
αi , describing the Grassmanian scattering on

the dominant potential walls (labeled by the index
i ¼ 1;…; rank) of the cosmological supergravity billiards
(both in dimension D ¼ 11 and in D ¼ 4) satisfied some
spinorial generalization of the usual Coxeter relations6

satisfied by the corresponding Weyl-group generators.
(We recall that a basic finding of cosmological billiards
[8] is that the gravity-defined billiard chamber coincides
with the Weyl chamber of some corresponding Kac-Moody
algebra.) The (Grassman-supergravity-based) spin-extended
Weyl group was then defined as the infinite, discrete matrix
group generated by the rGi ’s. [Here, the index i labels the
nodes of the Dynkin diagram, corresponding to the simple
roots of a Kac-Moody algebra, and to the dominant walls of
the supergravity dynamics.] The generalized Coxeter rela-
tions satisfied by the Grassmanian reflection operators rGi
can be written as7

6In the notation of Eqs. (4.5), (4.6) below, the usual Coxeter
relations defining the Weyl group, i.e. the group generated by
geometrical reflections in the simple-root hyperplanes in Cartan
space are: r2i ¼ 1 and the braid relations (4.6).

7Here, following standard mathematical lore [29], we rewrite
the relations written in Ref. [11] in a form that only involves the
multiplicative identity, rather than the “minus identity operator”
used there when dealing with concrete, matrix forms of the rGi ’s.
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r8i ¼ 1; ð4:5Þ

rirjri � � � ¼ rjrirj � � � with mij factors on each side:

ð4:6Þ

Here, i, and j, with i ≠ j (which includes both i < j and
i > j), are labels for the nodes of the Dynkin diagram of the
considered Kac-Moody group. The positive integers mij

entering the “braid relations” (4.6) are defined from the
corresponding values of the nondiagonal elements of the
Cartan matrix aij (which are supposed to be negative
integers, while aii ¼ 2). Namely (see [29])

mij ¼ f2; 3; 4; 6; 0g if

aijaji ¼ f0; 1; 2; 3;≥ 4g ðrespectivelyÞ: ð4:7Þ

In addition to the generalized Coxeter relations, (4.5), (4.6),
Ref. [11] had found that the squared Grassman reflection
operators ðrGi Þ2 had simple properties. Namely, they gen-
erated a finite-dimensional, normal subgroup of the corre-
sponding (Grassman-based) spin-extended Weyl group.
According to the mathematical definition of Ref. [28],

the spin-extended Weyl group of a Kac-Moody algebra
with Dynkin diagram Π is a discrete subgroup of a spin
cover of the maximally compact Kac-Moody subgroup
K½Π� that is generated by elements of order eight (involving
the polar angle π

4
). This mathematically-so-defined spin-

extended Weyl group can also be characterized by gen-
erators and relations. Namely, its (abstract) generators ri
satisfy not only the generalized Coxeter relations above
(4.5), (4.6), but also the following ones:

r−1j r2i rj ¼ r2i r
2nij
j ; ð4:8Þ

where, as above i ≠ j, and where the positive integers nij
are defined from the corresponding values of the non-
diagonal elements of the Cartan matrix aij via

nij ¼ 0 ðrespectively¼ 1Þ if aij is evenðrespectively oddÞ:
ð4:9Þ

The additional (non-Coxeter-like) relations (4.8) are the
same as those that enter the Tits-Kac-Peterson [29] exten-
sion of the Weyl group (generated by elements of order
four: t4i ¼ 1). Their origin is not clear to us, and we shall
see below that the quantum-motivated reflection operators
that have appeared in our dynamical study above, namely
(4.1) and (4.1), satisfy the generalized Coxeter relations
(4.5), (4.6), but satisfy a phase-modified form of the (non-
Coxeter-like) relations (4.8).
The Kac-Moody algebra that (in view of previous works)

we expect to be relevant to our present dynamical study is
AE3, and its Dynkin diagram is

ð4:10Þ

Here, we use the labeling: ð1; 2; 3Þ ¼ ðJ11; S12; S23Þ. The
two arrows and the double line between nodes 1 and 2
mean that a12 ¼ a21 ¼ −2, while the single line between
nodes 2 and 3 mean that a23 ¼ a32 ¼ −1. Finally,
a13 ¼ a31 ¼ 0. As a consequence, the relevant values of
the integers nij and mij to be used in Eqs. (4.5), (4.6), and
(4.8), are

n12 ¼ n21 ¼ 0; m12 ¼ m21 ¼ 0;

n23 ¼ n32 ¼ 1; m23 ¼ m32 ¼ 3;

n13 ¼ n31 ¼ 0; m13 ¼ m31 ¼ 2: ð4:11Þ

The three relations r8i ¼ 1, Eq. (4.5), are satisfied for each
one of our triplets of reflection operators (4.1), (4.2). [This
is clear without calculation because the eigenvalues of all
our reflection operators are eik

π
4 for some integer k.] By

explicit (matrix) calculations, we have verified that the AE3

braid relations (4.6), namely

r2r3r2 ¼ r3r2r3; r1r3 ¼ r3r1 ð4:12Þ

(note that m12 ¼ m21 ¼ 0 so that there are no braid
relations between the nodes J11 and S12) are also satisfied
by our two triplets of reflection operators (4.1), (4.2).
Concerning the non-Coxeterlike relations (4.8), let us

first emphasize that we view them as expressing constraints
on the sub-group generated by the squared operators r2i .
As in Ref. [11], we looked directly at the values taken
(within the two matrix representations that we are consid-
ering) by the squares of our two triplets of generators (4.1),
(4.2). We found that they have extremely simple values;
namely they only differ from the identity matrix by some
simple phase factors, namely

ðR6;NF¼2;WKB
α23 Þ2 ¼ −Id6 ¼ eiπId6;

ðR6;NF¼2;WKB
α12 Þ2 ¼ −Id6 ¼ eiπId6;

ðR6;NF¼2;WKB
α11 Þ2 ¼ e−i

π
2Id6; ð4:13Þ

and

ðR10;NF¼3;WKB
α23 Þ2 ¼ ei

π
2Id10;

ðR10;NF¼3;WKB
α12 Þ2 ¼ ei

π
2Id10;

ðR10;NF¼3;WKB
α11 Þ2 ¼ −Id10 ¼ eiπId10: ð4:14Þ

In both cases the subgroup generated by the squared
reflection operators is central (i.e. commutes with every-
thing else) and isomorphic to the multiplicative group of
order four generated by ei

π
2.
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Finally, in view of the simple results (4.13), (4.14), it is a
simple matter to see whether the non-Coxeterlike relations
(4.8) are satisfied or not. One can easily see that, with the
precise definitions (4.1), (4.1), they are not satisfied as
written. However, they are satisfied modulo the inclusion of
additional phase factors in the relations (4.8). The latter
phase factors can be easily reabsorbed in suitable redefi-
nitions of the basic reflection operators. For instance, if we
had defined, at level NF ¼ 2 (with an arbitrary integer n in
the third line)

R6;NF¼2;WKB;new
α23 ¼ e�

iπ
2
jŜ23j6;NF¼2 ;

R6;NF¼2;WKB;new
α12 ¼ e�

iπ
2
jŜ12j6;NF¼2 ;

R6;NF¼2;new
α11 ¼ ein

π
4e−i

π
2
Ĵ11

6;NF¼2

; ð4:15Þ

and, at level NF ¼ 3,

R10;NF¼3;WKB
α23 ¼ e−3i

π
4ei

π
2

ffiffiffiffiffi
Ŝ223

p
10;NF¼3 ;

R10;NF¼3;WKB
α12 ¼ e−3i

π
4ei

π
2

ffiffiffiffiffi
Ŝ212

p
10;NF¼3 ;

R10;NF¼3
α11 ¼ ein

π
4e−i

π
2
Ĵ11

10;NF¼3

; ð4:16Þ

these two new triplets of operators would satisfy all the
relations (4.5), (4.6), and (4.8). In that case, the corre-
sponding squared operators are simply equal to unity (for
an appropriate choice of n).
Let us also mention in passing that if we define, within

the full sixty-four-dimensional spinorial space which gath-
ers all the fermionic levels (from NF ¼ 0 to NF ¼ 6) the
quantum analogs of the Grassmann-motivated operators
defined in Ref. [11], namely

R64
α23 ¼ e−i

π
2
Ŝ6423 ;

R64
α12 ¼ e−i

π
2
Ŝ6412 ;

R64
α11 ¼ e−i

π
2
Ĵ6411 ; ð4:17Þ

the latter reflection operators satisfy all the relations (4.5),
(4.6), and (4.8).

V. CONCLUSIONS

We solved the susy constraints (1.4) of the supersym-
metric Bianchi IX model in the one-wall approximation,
i.e., taking into account one potential wall at a time. This
allowed us to derive the quantum laws of reflection of
the wave function of the universe jΨðβÞi during its chaotic
evolution near a big crunch singularity, i.e. in the domain
of large (positive) values of the three squashing parameters
β1, β2, β3 (considered in the symmetry chamber
β1 < β2 < β3). Our analysis could limit itself to two
subspaces of the total 64-dimensional fermionic state space
because we had shown in previous work that propagating

states only exist in subspaces of the fermion levels NF ¼ 2,
NF ¼ 3 and NF ¼ 4. In addition, given the symmetry
between the NF ¼ 2 and the NF ¼ 4 levels, and the self-
symmetry of the NF ¼ 3 level, and in view of the special
structure of the propagating states, it was enough to work
(separately) in a 6-dimensional subspace of the NF ¼ 2
level, and in a 10-dimensional half of the NF ¼ 3 level.
Our main results are contained in Eqs. (2.52), (2.80),

(3.31), (3.41), (3.49), and are summarized (in the small-
wavelength limit, which allows one to highlight their
structure) in the reflection operators (4.1), (4.2). We
remarkably found that the latter, purely dynamically-
defined, reflection operators satisfy generalized Coxeter
relations which define a type of spinorial extension of the
Weyl group of the rank-3 hyperbolic Kac-Moody algebra
AE3. More precisely, we found that our dynamical reflec-
tion operators satisfy the generalized Coxeter relations (4.5)
and (4.6) associated with the Dynkin diagram (4.10) of
AE3, and selected in Ref. [11] (in a slightly different form)
as characteristic of a spin-extension of the Weyl group. We
also found that the squares of our dynamical reflection
operators commute with all the reflection operators. In
addition, some phase-modified versions of the reflection
operators, see Eqs. (4.15), (4.16) satisfy the relations (4.8)
that are part of the defining relations of the mathematically-
defined spin-extended Weyl group of Ref. [28]. The fact
that our dynamically-defined spinorial reflection operators
satisfy relations that appear as being partly more general
than those of Ref. [28] [though only modulo some extra
phase factors, Eqs. (4.15), (4.16)] might suggest the need to
define more general spin-covers than those mathematically
constructed in Ref. [28]. Anyway, independently of such an
eventual generalization, let us repeat that our findings
provide a new evidence for the existence of hidden Kac-
Moody structures in supergravity. In particular, our results
have gone beyond previous related evidence forKac-Moody
structures in two directions: (i) we quantized the gravitino
degrees of freedom instead of treating ψμ as a classical,
Grassmann-valued object, and (ii) in our quantum treatment
the symmetrywalls necessarily involved operators quartic in
fermions (through the squared spin operators Ŝ212, Ŝ

2
23), while

the previous (Grassmann) treatment of Ref. [11] had
assumed a linear coupling to the quadratic spin operators.
Let us also note that the link between our present dynamical
reflection operators, Eqs. (4.15), (4.16), and representations
of K½AE3� is more indirect than what was suggested by the
Grassmann-based work of Ref. [11]. In particular, the
6-dimensional subspace in which live theNF ¼ 2 reflection
operators is strictly smaller than the full 15-dimensional
NF ¼ 2 space within which live the operators Ĵ11, Ŝ12, Ŝ23
that carry a representation of K½AE3�. Moreover, the
operators that appear in exponentiated form in
Eqs. (4.15), (4.16), do not define a representation ofK½AE3�.
In view of our results, we can associate with the

evolution of the supergravity state of the universe jΨðβÞi
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(considered at each fermion level) a word in the group
generated by the three reflection operators Eqs. (4.15),
(4.16), i.e., a product of the form � � � rinrin−1 � � � ri2ri1 . The
matrix group generated by such products is infinite.
However, we must recall that our study was assuming a
type of intermediate asymptotic behavior with a sparse
sequence of wall collisions, separated by large enough
distances in β space to be able to treat each collision of the
wave packet as a separated one-wall reflection. Such an
approximation is not expected to maintain itself for an
infinite number of collisions. Indeed, on the one hand, at
level NF ¼ 3 the (shifted) momentum π0a is timelike
(Gabπ0aπ0b ¼ − 1

2
) so that, after a finite number of reflections,

one expects the trajectory of the wave packet to end up in a
direction which does not meet anymore a potential wall. On
the other hand, at levelNF ¼ 2 the (shifted)momentumπ0a is
spacelike (Gabπ0aπ0b ¼ þ 3

8
) so that, after a finite number of

reflections, one expects π0a to tip over, i.e., to migrate from
the upper half [where π01 þ π02 þ π03 > 0, corresponding to
decreasing spatial volume V3 ¼ abc ¼ e−ðβ1þβ2þβ3Þ] of its
(one-sheeted) hyperboloidal mass-shell, to its lower half
(corresponding to increasing spatial volumes). Such a
cosmological bounce (further discussed in Ref. [16]) is
then expected to generate a finite number of reflections
during the reexpansion regime, before driving the wave
function in the (nonbilliard-like) Friedman-type expansion
regime. We leave to future work a discussion of the global
evolution of the quantum state of such a universe, which is
classically expected to bounce back and forth, indefinitely,
between large volumes and small volumes (see Fig. 3 in
Ref. [16], and discussion in Sec. XX there).
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Note added in proof—.The parametrization of the gener-
ators Eqs. (B8) by means of the parameter w (running on
the projective real line) is two-to-one. Indeed, the trans-
formation w0 ¼ ðwþ 4Þ=ð2w − 1Þ leaves invariant the only
w− dependent “squared cosine”

CE;L½αw;α12�≡ ðαaE;Lw α12aÞ2
ðαE;Lw · αwÞðα12 · α12Þ

;

between the three roots, which intrinsically characterize the
configuration of the three generators Eqs. (B8). It is thereby
enough to let w vary over the interval −1 ≤ w ≤ 2. The
characteristic quantity CE;L½αw; α12� can alternatively be
written as the following trace b̄ðwÞ≡ 1

8
Tr½J11ðS212 − S223Þ�.

Along the Euclidean branch, b̄ðwÞ runs over the interval
½0; 3

4
�, while, along the Lorentzian branch, b̄ðwÞ runs

over the two intervals ½3
4
;þ∞½ (when αaLw is spacelike,

i.e. −1 ≤ w < 1
2
) and � −∞; 0½ (when αaLw is timelike, i.e.

1
2
< w ≤ 2).

APPENDIX A: ASYMPTOTIC PLANE-WAVE
SOLUTIONS

We display hereafter the explicit values of the numerical
constants entering the linear (Lk

pqπ
0
k) and constant (mpq)

contributions entering the amplitudes

Kpq ∝ π0pπ0q þ Lk
pqπ

0
k þmpq ðA1Þ

of the NF ¼ 2 and NF ¼ 3 asymptotic plane-wave solu-
tions to which we referred in Eqs. (2.3), (3.3). For each wall
form α⊥, with adapted basis αâ ¼ fα⊥;αu; αvg, the values
of the projected components L⊥

â b̂
that vanish determine the

global reflection phase factor (see text).
(i) Level NF ¼ 2:

Lk
pqπ

0
k ¼ −i

0
BB@

3π01 þ π02 þ π03
3
2
ðπ01 þ π02Þ 1

2
ðπ01 þ 3π03Þ

3
2
ðπ01 þ π02Þ 2π02 þ π03

1
2
ðπ02 þ π03Þ

1
2
ðπ01 þ 3π03Þ 1

2
ðπ02 þ π03Þ π03

1
CCA; mpq ¼ −

1

4

0
B@

13 9 3

9 5 1

3 1 1

1
CA: ðA2Þ

(ii) Level NF ¼ 3:

Lk
pqπ

0
k ¼ i

0
BB@

−π01 þ π02 þ π03 − 1
2
π02 þ π03 − 1

2
ðπ01 − π03Þ

− 1
2
π02 þ π03 −π02 þ π03 − 1

2
π02

− 1
2
ðπ01 − π03Þ − 1

2
π02 −π03

1
CCA; mpq ¼ þ 1

4

0
B@

5 2 1

2 2 0

1 0 −1

1
CA: ðA3Þ
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The above expressions correspond to the canonical billiard
chamber β1 < β2 < β3. See Ref. [16] for a discussion of the
other chambers.

APPENDIX B: ON FINITE-DIMENSIONAL
REPRESENTATIONS OF K½AE3�

The finite-dimensional representations of the “maxi-
mally compact” subalgebra K½AE3� that naturally enter
our supergravity study constitute special ones. We have
investigated more general finite-dimensional representa-
tions of K½AE3�, and briefly report here some of our
findings.
The algebra K½AE3� is defined as the subalgebra of the

hyperbolic Kac–Moody AE3 algebra [13,14] that is fixed
by the Chevalley involution ω. We recall that the latter is
defined by its action on the Kac-Moody generators
ðei; fi; hiÞ: ωðeiÞ ¼ −fi, ωðfiÞ ¼ −ei and ωðhiÞ ¼ −hi;
so that, for any Kac-Moody algebra A, its maximally
compact subalgebra K½A� is generated by the differences
xi ≡ ei − fi. In the case of AE3, with Dynkin diagram
(4.10), this yields the three generators x1, x2, x3, which are
respectively equivalent (modulo a factor i) to the three
generators Ĵ11, Ŝ12, and Ŝ23.
Any three generators Ĵ11, Ŝ12, Ŝ23 satisfying the follow-

ing five relations [30]

ad2
Ŝ23
Ŝ12 ¼ Ŝ12; ad2

Ŝ12
Ŝ23 ¼ Ŝ23; ðB1Þ

ad3
Ŝ12
Ĵ11 ¼ 4adŜ12 Ĵ11; ad3

Ĵ11
Ŝ12 ¼ 4adĴ11 Ŝ12; ðB2Þ

adĴ11 Ŝ23 ¼ 0; ðB3Þ

define a representation ofK½AE3�. As in the text, we use here
Hermitian-type generators, corresponding to −ix1, −ix2,
−ix3 rather than anti-Hermitian-type ones xi ¼ ei − fi, as
generally used in mathematical works.
We are looking for finite-dimensional representations of

the three generators Ĵ11, Ŝ12, Ŝ23 (i.e., three matrices, say
J11, S12, S23), with emphasis on finding low-dimensional
representations. (For a related study (oriented, however,
towards finding high-dimension representations) in the case
of K½E10� see Ref. [31].) Conditions (B1) show that S12 and
S23 may be interpreted as usual suð2Þ generators. Note that
if, given S12 and S23, a matrix J11 satisfies relations (B2),
(B3), so does the matrix −J11. Moreover, the complex
conjugate of any solution triplet of matrices J11, S12, S23
will also be a solution. In addition, if J11, S12, S23 is a
n-dimensional solution, the triplet J11 þ kIdn, S12, S23 is
also a solution for an arbitrary value of k.
One can first look for representations that are irreducible

with respect to suð2Þ, i.e., with S12 and S23 given, modulo
conjugation, by the standard (2jþ 1)-dimensional, spin-j
matrices, say (with m, m0 varying by steps of 1 between −j
and þj)

ðSðjÞ12 Þm;m0 ¼ mδm;m0 ;

ðSðjÞ23 Þm;m0 ¼ 1

2

	 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðj −mÞðjþmþ 1Þ

p
δm−1;m0

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðjþmÞðj −mþ 1Þ

p
δmþ1;m0



: ðB4Þ

The lowest-dimensional case would be the 2-dimensional
spin-1

2
suð2Þ representation. However, we found that, in this

case, the only possible solutions of Eqs. (B2), (B3) for J11
are J11 ∝ Id2. In the present study, we consider such
solutions as being “trivial”.8

The only suð2Þ-irreducible [cf. (B4)] representationswith
nontrivial J11we found (up to j ¼ 13=2) correspond to j¼ 1

and j ¼ 3
2
, i.e., to 3 and 4 dimensional representation spaces.

We conjecture that these are the only such ones.
The lowest-dimensional nontrivial representation of

K½AE3� is 3-dimensional. Its generators are given by
(B4) (for j ¼ 1), together with

Jð�1Þ
11 ¼ �

0
B@

k 0 1

0 kþ 1 0

1 0 k

1
CA; ðB5Þ

whose eigenvalues are �ðkþ 1; kþ 1; k − 1Þ. Here, k,
which corresponds to the shift k Id3 mentioned above, is
arbitrary. One can choose k ¼ − 1

3
if one wishes to normal-

ize the trace of Jð�1Þ
11 to zero.

There is a similar 4-dimensional representation with
generators given by (B4) (for j ¼ 3

2
), together with (modulo

a kId shift)

Jð�3=2Þ
11 ¼ �

0
BBBBBB@

1
2

0 −
ffiffi
3

p
2

0

0 − 1
2

0 −
ffiffi
3

p
2

−
ffiffi
3

p
2

0 − 1
2

0

0 −
ffiffi
3

p
2

0 1
2

1
CCCCCCA
; ðB6Þ

whose eigenvalues are �ð1; 1;−1;−1Þ.
Other kinds of representations exist, in which the spin

generators are not irreducible. Actually, this is the case for
the first-found finite-dimensional representation of K½AE3�,
namely the 6-dimensional representation defined by the
gravitino operators in 3þ 1-dimensional spacetime [11].
More precisely, Ref. [11] dealt with a real 12-dimensional

8We note, however, that the (real) 4-dimensional Dirac-spinor-
type representation of K½AE3� discussed in Eqs. (4.14), (4.17) of
Ref. [11] is equal to a direct sum of two such (complex-
conjugated) 2-dimensional representations with “trivial” J11’s,
and that the tensor product of the “trivial” 2-dimensional
representation, and of the nontrivial 3-dimensional one discussed
next, leads to a nontrivial 6-dimensional representation (see
below).
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representation, based on the transformations of a Majorana
gravitino. However, it can easily be decomposed into two
complex-conjugated 6-dimensional representations, each
one of which is equivalent (modulo a suitable kId6 shift of
J11) to the complex, 6-dimensional representation of
K½AE3� appearing at the NF ¼ 1 level of our total quantum,
64-dimensional space. [The 6-dimensional NF ¼ 1 repre-
sentation we are talking about is the representation spanned
by the six states ~ba�j0i−.] In the latter representation, the
spin operators are the direct sum of irreducible representa-
tions with spins 1

2
and 3

2
[i.e. with eigenvalues of S12 and S23

equal to þ 3
2
;− 3

2
; ðþ 1

2
Þ
2
; ð− 1

2
Þ
2
].

Starting from 6-dimensional spin generators given by
such a direct sum ðj ¼ 1

2
Þ⨁ ðj ¼ 3

2
Þ, we looked for the

most general J11 satisfying the additional relations (B2),
(B3). We found, in the absence of additional requirements,
multiparameter families of solutions. On the other hand, we
can require that a non-degenerate sesquilinear form H be
left invariant by all the generators, i.e.,

J†11H −HJ11 ¼ 0; ðB7Þ

and similar equations with the spin generators. [The relative
minus sign in Eq. (B7) comes from the fact that, in our
conventions, the one-dimensional group generated by J11 is
eiθ11J11 .] The invariance of H under the spin generators
restricts it [in the basis of Eqs. (B4)] to the form
H ¼ pId2 ⊕ qId4, where (in the nondegenerate case) only
the sign of the ratio p=q matters. We then found that
(besides isolated solutions) there exists four different one-
parameter families of such 6-dimensional representations.
Parametrizing the elements of the 6-dimensional represen-
tation space as vector-spinors9 vAa, with A ¼ 1, 2 and
a ¼ 1, 2, 3, the generators S12, S23, J11ðwÞ can be written in
the factorized way10 discussed in Eqs. (3.11) and (4.16) of
Ref. [11], namely,

ðS12ÞAaBb ¼
1

2
ðσ3ÞAB

�
4
αa12α12b
α12 · α12

− δab

�
;

ðS23ÞAaBb ¼
1

2
ðσ1ÞAB

�
4
αa23α23b
α23 · α23

− δab

�
;

ðJE;L11 ðwÞÞAaBb ¼
1

2
ðσ0ÞAB

�
4
αaE;Lw αwb
αE;Lw · αw

− δab

�
: ðB8Þ

Here: σ3 ≡ σz ¼ diagð1;−1Þ and σ1 ≡ σx are the usual
(real) Pauli matrices; σ0 ≡ Id2; α12a and α23a are the same
linear forms as in Eq. (1.7); their contravariant versions αa12,
αa23 are defined by raising the index either by means of Gab

or, equivalently, by means of δab; while the third, gravi-
tational-like linear form αwa is the following one-parameter
deformation of the usual gravitational linear form:
αwðβÞ ¼ αwaβ

a ¼ 2β1 þ wðβ2 þ β3Þ. On the other hand,
the third Eq. (B8) involves, depending on the value E (for
Euclidean) or L (for Lorentzian) of the superscript, two
different contravariant versions of αw, namely, either
αaEw ≡ δabαwb, or, αaLw ≡Gabαwb, where Gab is the
Lorentzian (contravariant) metric defined in Eq. (1.3).
The parameter w runs over the real line (except, in the
Lorentzian case, for the singular value w ¼ 1

2
where

the denominator αLw · αw ≡ αaLw αwa ¼ 2�4w vanishes). The
eigenvalues of JE;L11 ðwÞ depend neither on w nor on the
index E, L, and are equal to ðþ 3

2
Þ
2
, ð− 1

2
Þ
4
. In addition to

the two one-parameter families of 6-dimensional represen-
tations displayed in Eqs. (B8), one can also define two
other families obtained by changing the sign of JE;L11 ðwÞ.
When w ¼ 0 the Lorentzian solution Eq. (B8) is equivalent
to the 6-dimensional representation inherited from
4-dimensional supergravity discussed above (and appear-
ing at NF ¼ 1). On the other hand, when taking w ¼ 0 in
the Euclidean solution Eqs. (B8), one gets (modulo a shift
kId6 and a change in the sign of J11) the 6-dimensional
representation obtained by taking the tensor product of the
“trivial” 2-dimensional representation discussed above
(with J11 ∝ Id2) with the 3-dimensional representation
(B5) (say with k ¼ − 1

3
). Finally, the components (with

respect to the basis vAa) of the invariant sesquilinear forms
H, Eq. (B7), of the representations (B8) are, respectively,
δABδab for the Euclidean case, and δABGab for the
Lorentzian case; Gab denoting the covariant form (i.e.
the matrix inverse) of the contravariant metric (1.3).
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