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Quantum speed limits set an upper bound to the rate at which a quantum system can evolve, and as such
can be used to analyze the scrambling of information. To this end, we consider the survival probability of a
thermofield double state under unitary time evolution which is related to the analytic continuation of the
partition function. We provide an exponential lower bound to the survival probability with a rate governed
by the inverse of the energy fluctuations of the initial state. Further, we elucidate universal features of the
nonexponential behavior at short and long times of evolution that follow from the analytic properties of the
survival probability and its Fourier transform, both for systems with a continuous and for systems with a
discrete energy spectrum. We find the spectral form factor in a number of illustrative models; notably, we
obtain the exact answer in the Gaussian unitary ensemble for any N with excellent agreement with recent
numerical studies. We also discuss the relationship of our findings to models of black hole information loss,
such as the Sachdev-Ye-Kitaev model dual to AdS2, as well as higher-dimensional versions of AdS/CFT.
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I. INTRODUCTION

Closed quantum systems undergo unitary dynamics, yet
generically thermal behavior is observed at late times. This
apparent contradiction is resolved by sharpening the notion
of thermalization. If one considers observables associated
with a subsystem and studies their nonequilibrium dynam-
ics from an initial state that is not invariant under the system
Hamiltonian, then after a thermalization time, the rest of the
system acts effectively as a bath, rendering local observ-
ables thermal. The dynamics associated with interacting
quantum systems leads to a redistribution of the informa-
tion contained in the subsystem over the entire system,
leading to a state with a high degree of entanglement
between the subsystem and the rest. This process is often
referred to as scrambling of information, and it is particu-
larly effective in chaotic systems. In fact, it has recently
been proposed that the chaotic behavior leading to scram-
bling can be characterized by a quantum version of a
Lyapunov exponent,1 which obeys a strict bound [2],
defining quantitatively what we mean by a maximally
chaotic quantum system.
Such a bound is also illuminating in the context of black

hole physics. It has been argued that black holes in
particular are as effective at scrambling as is physically
admissible [3,4], and therefore should saturate the afore-
mentioned bound [2]. The connection to unitary quantum
dynamics is made via the so-called AdS/CFT correspon-
dence, which states that certain gravitational theories are

equivalent to unitary quantum field theories. One can thus
rephrase the conjectures on fast scrambling of black
holes in terms of unitarity constraints on the dynamics
of (closed) quantum systems. A sharp way to formulate
such constraints is by considering the late-time behavior of
correlation functions, for example

GðtÞ ¼ Tr½ρOðtÞOð0Þ�; ð1Þ

where ρ may be a thermal density matrix, ρ ∼ e−βH, or
simply ρ ¼ jEihEj for some high-energy eigenstate.
Despite the fact that black holes have finite Hilbert spaces,
such correlations—or close variants thereof—typically
decay to zero at late times if calculated in the semiclassical
gravity approximation [5]. Unitary quantum dynamics,
however, implies that at late times the discrete nature of
the spectrum forbids a continued decay and instead requires
time averages of correlations to stabilize at∼e−S, where S is
the entropy of the thermal ensemble or simply the dimen-
sion of the associated Hilbert space. A particularly simple
probe of the finiteness of the spectrum under unitary
dynamics is the so-called spectral form factor, essentially
the analytically continued partition function

gðβ; tÞ ¼ jZðβ þ itÞj2 ¼
X
m;n

e−βðEnþEmÞ−itðEn−EmÞ; ð2Þ

where we have assumed that the spectrum is nondegenerate
for simplicity. This function was the object of two recent
studies with an eye on black hole behavior, and in particular
the issue of information loss. Firstly, in the Sachdev-Ye-
Kitaev (SYK) [6,7] quantummechanics, Refs. [8,9] showed

1In fact, this idea goes back to Ref. [1], but it has recently
experienced a renaissance following the work of Ref. [2].
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numerically that the initial decay eventually gives way to
late-time random matrix behavior obeying unitarity
bounds.2 Secondly, in 2D CFT with holographic duals,
Ref. [11] studied the evolution of gðβ; tÞ and estimated the
onset of random matrix behavior.
Unitarity constraints on quantum dynamics can also

come from a different angle, essentially by exploiting a
version of the energy-time uncertainty relation [12,13].
This results in universal bounds on the speed of quantum
evolution, so-called quantum speed limits (QSLs). Such
limits are often conveniently phrased in terms of the
survival probability or fidelity of an initial state jψ0i, to
be defined below. In this paper we exploit the fact that the
spectral form factor is closely related to the survival
probability of the thermofield double state (TDS). We
obtain bounds via QSLs on the early-time dynamics of this
quantity and analyze the early- and late-time dynamics of
the TDS in a number of illustrative models. Consider a
closed quantum system with Hilbert space H. Then one
may define a pure state in the tensor product H⊗2:

jψðβÞi ≔ 1ffiffiffiffiffiffiffiffiffiffi
ZðβÞp X

n

e−βĤ=2jn; ni; ð3Þ

where jn; ni denotes the tensor product of a given eigen-
state jni in one copy with its CPT conjugate state jn̄i in the
other. In this paper, we examine the constraints posed by
QSLs on the survival probability of the TDS. In this case,
because of its close connection to the partition function, we
can express unitarity bounds on the dynamics of the system
in terms of equilibrium thermodynamics.
The paper is organized as follows: After establishing a

relation between the analytic continuation of the partition
function and the survival probability of a thermofield
double state in Sec. II, we elucidate various unitarity
constraints on the time evolution in Sec. III. These include
the long- and short-time asymptotics of the survival
probability, as well as bounds on its decay derived from
quantum speed limits. Section IV covers a selection of
examples of growing complexity, including the harmonic
oscillator and the xp model in AdS2, the rational Calogero-
Sutherland model, and the Gaussian unitary ensemble in
random matrix theory. General features of the survival
probability in AdSdþ1=CFTd are presented in Sec. V,
followed by a summary and discussion in Sec. VI.

II. PARTITION FUNCTION AND SURVIVAL
PROBABILITY OF A THERMOFIELD

DOUBLE STATE

Consider the TDS associated with a canonical state at
inverse temperature β (3). When the dynamics is generated

by a Hamiltonian of the form ĤT ¼ Ĥ ⊗ IR, the time
evolution reads

jψðβ; tÞi ¼ Ûðt; 0ÞjψðβÞi;

¼ 1ffiffiffiffiffiffiffiffiffiffi
ZðβÞp X

n

e−ðβ=2þitÞĤjn; ni: ð4Þ

The survival amplitude is defined as the probability
amplitude for the time-dependent state to be found in
the initial state, i.e., as the overlap

Aðβ; tÞ ¼ hψðβ; 0Þjψðβ; tÞi ¼ 1

ZðβÞ
X
n

e−ðβþitÞEn : ð5Þ

The survival probability then reads

Sðβ; tÞ ¼ jhψðβ; 0Þjψðβ; tÞij2;

¼ 1

ZðβÞ2
X
n;m

e−βðEnþEmÞ−itðEn−EmÞ: ð6Þ

This survival probability is evidently related to the analytic
continuation of the partition function, and thus the spectral
form factor introduced above (2). We thus have

Sðβ; tÞ ¼
����Zðβ þ itÞ

ZðβÞ
����2: ð7Þ

As mentioned in the Introduction, this object has been
proposed before [2,8,11,14–16] as a test of the spectral
properties of black holes and as a measure of information
loss. Our study relies on the fact that the survival proba-
bility is identical to the fidelity F between the initial
quantum state jψð0Þi and the corresponding time-evolving
state jψðtÞi ¼ Ûðt; 0Þjψð0Þi,

Sðβ; tÞ ¼ F ½jψðβ; 0Þi; jψðβ; tÞi�; ð8Þ

where the fidelity F between any two pure states jψi and
jϕi is defined as F ½jψihψ j; jϕihϕj� ¼ jhψ jϕij2 ∈ ½0; 1�. A
similar observation was made in the context of the
boundary-state quench in CFT by Ref. [17]. More gen-
erally, quantum states need not be pure, and given two
density matrices ρ0 and ρt, the fidelity reads F ðρ0; ρτÞ ¼
½Tr ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ρ0
p

ρτ
ffiffiffiffiffi
ρ0

pp �2 [18]. As such, the survival probability is
upper- and lower-bounded as

0 ≤ Sðβ; tÞ ≤ 1: ð9Þ

We will now proceed to derive further properties and
bounds on Sðβ; tÞ that follow from unitary time evolution
in conjunction with certain properties of the spectrum of
states ρðEÞ. We will start by upper-bounding the speed of

2Random matrix behavior has also been studied in a super-
symmetric version of the SYK model [10].
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evolution of the TDS in terms of equilibrium properties of
the system.

III. CONSTRAINTS ON THE TIME EVOLUTION

A. Quantum speed limits on the evolution
of a thermofield state

Quantum speed limits provide an upper bound to the rate
of change of the survival probability, and more generally, to
the fidelity between an initial density matrix ρ0 and its time
evolution ρt. The fidelity is useful for defining a metric
between quantum states in projective Hilbert space, known
as the Bures length:

Lðρ0; ρtÞ ¼ arccosð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F ðρ0; ρtÞ

p
Þ; ð10Þ

which represents the angle swept out during time evolution
as the state evolves from ρ0 to ρt. For unitary processes, two
seminal results constrain the pace at which this happens.
The Mandelstam-Tamm bound estimates the speed of
evolution in terms of the energy dispersion of the initial
state [12,18,19], ΔE2 ¼ TrðρĤ2Þ − TrðρĤÞ2. Its original
derivation relies on the Heisenberg uncertainty relation
[12]. The second seminal result is due to Margolus and
Levitin [20,21], and it provides an upper bound to the speed
of evolution in terms of the difference between the mean
energy and the ground-state energy, E0. Its original
derivation relies on the study of the survival amplitude
AðtÞ ¼ hψð0ÞjψðtÞi. For dynamics generated by time-
independent Hamiltonians, both bounds can be unified
in the expression [22]

t ≥ τQSL ≡ Lmax

�
1

E − E0

;
1

ΔE

�
: ð11Þ

Equation (11) provides a universal lower bound to the
required time of evolution for the survival probability to
decay by a Bures angle L ¼ arccos

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Sðβ; tÞp

.
For a TDS, the mean energy and its fluctuations are given

by

E ¼ hψðβÞjĤjψðβÞi ¼ −
d
dβ

logZðβÞ; ð12Þ

ΔE2 ¼ hψðβÞjĤ2jψðβÞi − hψðβÞjĤjψðβÞi2

¼ d2

dβ2
logZðβÞ; ð13Þ

that is, by the corresponding quantities in the canonical
state at inverse temperature β. Correspondingly, energy
fluctuations can be related to the specific heat of the system,
defined as

cV ¼ kBβ2ΔE2; ð14Þ

in terms of the Boltzmann constant kB.
As was shown by Bhattacharyya [13], the Mandelstam-

Tamm bound can be used to derive a lower bound for the
survival probability by an exponential function. For com-
pleteness, we derive in Appendix A a generalization of
Bhattacharyya’s bound that holds for arbitrary initial states.
For the thermofield double state, this bound reads

Sðβ; tÞ ≥ expð−2ΔEtÞ ð15Þ

and holds for Sðβ; tÞ ≥ 1=2 and t ≥ 0 up to the half-lifetime
th when Sðβ; thÞ ¼ 1=2. As a result, the exponential bound
to the survival probability can be rewritten as

Sðβ; tÞ ≥ exp

�
−2

ffiffiffiffiffi
cV
kB

r
t
β

�
: ð16Þ

This is an important equation, as it provides a strong
connection between the quantum dynamics and equilib-
rium properties. Nonetheless, this bound is restricted to a
short time of evolution comparable to that governing the
short-time asymptotic that we next discuss.

B. Short-time nonexponential decay

Under unitary evolution, the short-time decay of the
survival probability is nonexponential [23]. Exploiting the
power-series expansion of the time-evolution operator,
the short-time asymptotic behavior of the survival proba-
bility reads

Sðβ; tÞ ¼ 1 −
�

t
τZ

�
2

þOðt3Þ; τZ ≡ 1

ΔE
: ð17Þ

Hence, at early times, the energy fluctuations of the
initial unstable state set the speed of evolution in Hilbert
space. The absence of a term linear in time in this expans-
ion is a signature of unitary dynamics. Indeed, the non-
unitary dynamics generated by an effective non-Hermitian
Hamiltonian or induced by the coupling to a bath generally
leads to the appearance of a correction OðtÞ. Yet, we also
note that this short-time behavior relies on the existence of
the second moment of the Hamiltonian, and deviations are
expected whenever energy fluctuations diverge, even under
unitary dynamics. For example, a fractional exponent 3=2
has been reported in the early decay of the survival
probability of sharply localized wave packets undergoing
free evolution [24].
Provided that it exists, as is generally the case, the short-

time asymptotics (17) is consistent with a Gaussian decay
up to Oðt3Þ:
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Sðβ; tÞ ¼ exp

�
−
t2

τ2Z

�
: ð18Þ

Yet, for systems strongly perturbed away from equilibrium,
the validity of this Gaussian decay can extend well beyond
the short-time regime [25].
Using the definition of the specific heat in terms of the

energy fluctuations in a thermal state, one finds the estimate
in Ref. [16] that leads to the identification of the Zeno time

τZ ¼ β

ffiffiffiffiffi
kB
cv

s
: ð19Þ

C. Long-time nonexponential decay

For systems with a continuum spectrum, Fock and
Krylov showed that the survival probability of an arbitrary
initial state vanishes identically at t → ∞ [26]. The theorem
requires the existence of a ground state so that the
Hamiltonian is bounded from below, and it follows from
the analytic properties of the survival probability and its
Fourier transform; see Appendix B.
By contrast, in systems with a discrete spectrum, the

quantum recurrence theorem (QRT) [27,28] states that
there exist approximate revivals, in the sense that according
to various notions of distance in Hilbert space, the time-
dependent state and the initial state become arbitrarily close
for some time of evolution.
As a result, we can anticipate a completely different

long-time behavior depending on whether the spectrum is
continuous or discrete.
In systems with a discrete spectrum, the exact expression

of the survival probability (6) can be rewritten as

Sðβ; tÞ ¼
X
n

p2
n þ

X
n≠m

pnpm cos½ðEn − EmÞt�; ð20Þ

where pn ¼ expð−βEnÞ=Z are the Boltzmann factors
defining the occupation probability in the canonical thermal
density matrix that results from tracing the degrees
of freedom, e.g., of the right mode, ρL ¼ TrR½ψðβ; 0i×
hψðβ; 0Þj� ¼Pnpnjnihnj. The constant term on the right-
hand side of Eq. (20) is given by the purity of the canonical
state

PðρLÞ ¼ Trρ2L ¼
X
n

p2
n ð21Þ

and equals the inverse participation ratio, providing a
measure of the delocalization of the thermal state over
the spectrum of the Hamiltonian. The purity satisfies

1

d
≤ PðρLÞ ≤ 1; ð22Þ

where d ¼ dimH is the dimension of the Hilbert space of
the left mode H; the upper bound is only reached when ρL

is a pure state (i.e., at zero temperature in the absence of
degeneracy of the ground state); and the lower bound
follows from considering the maximally mixed state
associated with the infinite temperature limit, whose von
Neumann entropy is S½ρLðβ → ∞Þ� ¼ log d. In a thermal
state, the purity can be written in terms of the partition
function as

PðρLÞ ¼
X
n

�
e−βEn

ZðβÞ
�

2

¼ Zð2βÞ
ZðβÞ2 : ð23Þ

It is the purity of ρL that determines the long-time average
of the survival probability,

S̄ðβÞ ¼ lim
T→∞

1

T

Z
T

0

Sðβ; tÞ ¼ PðρLÞ: ð24Þ

By contrast, the decay dynamics is manifestly different
when the spectrum is continuous. To study the long-time
asymptotic of the survival probability, we introduce the
density of states

ρðEÞ ¼
X
n

NEδðE − EnÞ; ð25Þ

using the degeneracy NE, and we rewrite the survival
amplitude as

Aðβ; tÞ ¼ 1

Z

Z
∞

E0

dEρðEÞe−βE−iEt: ð26Þ

Following Khalfin [23,29], we note that Aðβ; tÞ is then
the Fourier transform of a function with support on the
half-energy axis, ~ρðEÞ≡ ρðEÞΘðE − E0Þ. Taking the
point of view of the inverse transform, in order for the
spectral density to vanish for energies less than E0,
the Paley-Wiener theorem implies that the integral

Z
R
dt

j log jAðβ; tÞjj
1þ t2

< ∞ ð27Þ

is finite. For this to be true, it has to be the case that

Sðβ; tÞ ≥ Ce−γt
q
; ð28Þ

with C; γ > 0 and q < 1. In other words, the long-time
asymptotics are characterized by a slower than exponen-
tial decay.
The specific form of the long-time decay is set by the

low-energy behavior of the spectral density. Under quite
general conditions, a power-law decay holds, as has been
demonstrated in single-particle [23], few-body [30] and
many-body systems [25,31–33]. Indeed, if ρðEÞ ∼ Ek near
E ¼ E0, the long-time survival probability scales as
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Sðβ; tÞ ∝ ðt2 þ β2Þ−ðkþ1Þ: ð29Þ

Physically, the origin of long-time deviations from
exponential decay can be traced back to the possibility
of state reconstruction under unitary quantum dynamics. To
argue this, let us introduce the projector onto the subspace
spanned by the TDS,

P̂ ¼ jψðβÞihψðβÞj; P̂2 ¼ P̂; ð30Þ

as well as its orthogonal complement Q̂ ¼ 1 − P̂.
Following Ersak [23,34], we insert the resolution of the
identity 1 ¼ P̂þ Q̂ after a time of evolution 0 ≤ τ ≤ t. The
survival amplitude can then be exactly written as

Aðβ; tÞ ¼ Aðβ; t − τÞAðβ; τÞ þMðβ; t; τÞ; ð31Þ

where the last term represents a memory term

Mðβ; t; τÞ ¼ hΨðβ; 0ÞjUðt; τÞQ̂Uðτ; 0ÞjΨðβ; 0Þi; ð32Þ

and Uðt; t0Þ is the unitary time evolution operator. From
Eq. (31), we see that whenever Mðβ; t; τÞ vanishes, Aðβ; tÞ
follows an exponential decay. Furthermore, we can analyze
the contributions of the different terms appearing in this
expression [32,35]. Defining APðβ; tÞ ¼ Aðβ; t − τÞAðβ; τÞ,
the survival probability reads

Sðβ; tÞ ¼ jAPj2 þ jMj2 þ 2Re½A�
PM�: ð33Þ

In systems with a continuous spectrum bounded from
below, the long-time asymptotic behavior of Sðβ; tÞ is
governed by jMj2. As a result, it is therefore associated
with rare events in which the dynamics first leads to “decay
products,” identified with the component Q̂jψðβ; τi, that
subsequently evolve to reconstruct the initial state at time t.
The suppression of the memory term, e.g., via nonunitary
dynamics, leads to exponential behavior, as seen from the
Ersak equation (31).

IV. EXAMPLES

We next focus on several examples, with both discrete
and continuous spectra, to illustrate the salient features of
quantum decay. We proceed in increasing order of com-
plexity, starting with the simplest imaginable case, the
harmonic oscillator. Interestingly, as we show, the same
survival probability is shared by the conformal quantum
mechanics of the 0þ 1 CFT described by the xp model3 in
AdS2. We next illustrate the case of an integrable

Hamiltonian on the example of the Calogero-Sutherland
model. Next, we move on to the dynamics of the survival
probability in random matrix theory, giving the exact
finite-N answer for the case of the Gaussian unitary
ensemble. We end with a discussion of the survival
amplitude in field theories with holographic duals.

A. Quantum harmonic oscillator
and the xp model in AdS2

The one-dimensional harmonic oscillator is a simple but
illustrative example. The spectrum En ¼ ωðnþ 1=2Þ ¼
E0 þ nω is unbounded above (n ¼ 0; 1; 2;…), leading to

Sðβ; tÞ ¼ coshðωβÞ − 1

coshðωβÞ − cosðωtÞ : ð34Þ

As a result, Sðβ; tÞ is an oscillatory function of time with a
single nominal frequency ω. This is a rather special
behavior specific to the TDS of the harmonic oscillator,
due to the form of the probability amplitude in the nth mode
cn ¼ expð−βEn=2Þ=

ffiffiffiffiffiffiffiffiffiffi
ZðβÞp

. The short-time asymptotics
reveal the energy fluctuations

Sðβ; tÞ ¼ 1 −
ω2t2

2½coshðωβÞ − 1� þOðt3Þ: ð35Þ

We also note that in the low-temperature limit, the first two
terms of the expansion vanish and Sðβ; tÞ ¼ Oðβ2Þ. In
particular,

Sðβ; tÞ ¼ −
ω2β2

2½coshðωβÞ − 1� þOðβ3Þ: ð36Þ

We further point out that the state jψðβ; tÞi is nothing but
a two-mode squeezed state, that is generally defined by the
action of the two-mode squeezing operator SLRðζÞ on the
vacuum state [38]

jζLRi ¼ SLRðζÞj0L; 0Ri
¼ expð−ζâ†Lâ†R þ ζ�âRâLÞj0L; 0Ri; ð37Þ

with an arbitrary complex number ζ ¼ r expðiφÞ. In the
Fock basis, the explicit representation reads

jζLRi ¼ sechr
X
n

ð−eiφ tanh rÞnjnL; nRi: ð38Þ

We can rewrite the time-dependent state

jψðβ; tÞi ¼ expð−iE0tÞjζLRðtÞi ð39Þ

with the identification of ζðtÞ via

tanh r ¼ expð−βω=2Þ; φ ¼ ωt: ð40Þ

3This happens despite the fact that the xp model saturates [36]
the chaos bound of Ref. [2]. This should be seen as an illustration
of the fact that any model that shares the conformal symmetry and
its breaking patterns with that of the SYK model will exhibit
maximal chaos in this sense [37].
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The survival probability can then alternatively be expres-
sed as

Sðβ; tÞ ¼ jhζLRð0ÞjζLRðtÞij2; ð41Þ

which explains the appearance of a single frequency in the
explicit expression (34). Clearly, Sðβ; tÞ is a periodic
function of time, Sðβ; tÞ ¼ Sðβ; tþ 2π=ωÞ.
As it turns out, the survival probability of the harmonic

oscillator is shared by the xp model in AdS2 [39]. The
corresponding Hamiltonian reads

H ¼ wðxÞðpþ l2
p=pÞ; ð42Þ

where x and p are the position and momentum of a particle
moving in the real line, lp is a parameter with the
dimension of momentum, and wðxÞ is an arbitrary positive
function. The xp model describes the motion of a relativ-
istic particle moving in a 1þ 1 spacetime whose metric is
determined by wðxÞ. While the Riemann scalar curvature
vanishes identically for the linear potential wðxÞ ¼ x; for
wðxÞ ¼ w0 coshðx=RÞ (with w0 and R being positive
constants), it yields a spacetime with constant negative
curvature R ¼ −2=R2, which corresponds to an anti–de
Sitter spacetime (AdS2), with radius R [39]. The classical
Hamiltonian (42) can be quantized in terms of the follow-
ing normal ordered operator:

Ĥ ¼
ffiffiffiffiffiffiffiffiffiffi
wðxÞ

p
p̂

ffiffiffiffiffiffiffiffiffiffi
wðxÞ

p
þl2

p

ffiffiffiffiffiffiffiffiffiffi
wðxÞ

p
p̂−1

ffiffiffiffiffiffiffiffiffiffi
wðxÞ

p
; ð43Þ

where p̂ ¼ −iℏd=dx and p̂−1 is the pseudo-differential
operator that acts on wave functions as ðp̂−1ψÞðxÞ ¼
− i

ℏ

R
∞
x dyψðyÞ.

The spectrum of Ĥ has positive and negative eigenval-
ues, whose absolute values are given by a harmonic
oscillator spectrum,

En¼ℏω

�
nþκþ1

2

�
; κ¼Rlp

ℏ
; ω¼2w0

R
: ð44Þ

In Ref. [39], it was shown how the symmetry group
SOð2; 1Þ can be realized in the xp − AdS2 model by
building the generators of this group, both in the classical
and in the quantum theory. Namely, the xp model realizes
two infinite-dimensional representations of SOð2; 1Þ cor-
responding to the positive and negative branches of the
spectrum, which are related by complex conjugation. The
group SOð2; 1Þ describes the symmetry of conformal
quantum mechanics (CFT1), as introduced by Ref. [40],
and analyzed in great detail in Ref. [41].
The survival probability in the CFT1 realized by the xp

model then reads as

Sðβ; tÞ ¼
����ZCFT1

ðβ; tÞ
ZCFT1

ðβÞ
����2 ¼ coshðβωÞ − 1

coshðβωÞ − cosðωtÞ ; ð45Þ

i.e., it is precisely given by Eq. (34).

B. Rational Calogero-Sutherland model

The Calogero-Sutherland model (CSM) describes one-
dimensional particles subject to inverse-square interactions.
In the presence of a harmonic potential [42,43], the
Hamiltonian reads

H ¼
XN
i¼1

�
−
1

2

∂2

∂z2i þ
1

2
ω2z2i

�
þ
X
i<j

λðλ − 1Þ
ðzi − zjÞ2

; ð46Þ

where λ is the coupling constant. The CSM is then
equivalent to an ideal gas obeying fractional exclusion
statistics and includes noninteracting bosons and fermions,
as well as more general particles known as geons or
Haldane anyons [44,45]. The rational Calogero model of
N particles shares the spectrum with the two-dimensional
SUðNÞ super Yang-Mills on a cylinder and has been used to
analyze the micro states of four-dimensional eternal black
holes [46–48].
Surprisingly, the only effect of the coupling constant λ in

the spectrum is to renormalize the zero-point energy

E0 ¼
ω

2
N½1þ λðN − 1Þ�: ð47Þ

The survival probability of this system has been studied
under arbitrary modulations in time of the frequency ω
[32]. Here, we are interested in its value for the TDS that
can be directly obtained by analytic continuation of the
partition function. Murthy and Shankar showed a duality
relating the partition function of the CSM to that of
noninteracting bosons and fermions [49]. Using it, it is
possible to derive the explicit partition function in the
canonical ensemble [50], and ultimately, the survival
probability:

Sðβ; tÞ ¼
YN
k¼1

coshðkωβÞ − 1

coshðkωβÞ − cosðkωtÞ : ð48Þ

The result is still surprisingly simple when compared with
the survival probability of an arbitrary coherent super-
position of many-body eigenstates. First, Sðβ; tÞ is inde-
pendent of the coupling constant, whose only effect in the
spectrum is the renormalization of zero-point energy. While
the survival probability of the TDS is independent of E0

and λ, this is no longer the case under more complex
scenarios, e.g., involving quench dynamics [32]. For
N ¼ 1, one naturally recovers the behavior of a single-
harmonic oscillator. For N > 1, Sðβ; tÞ acquires a more
complex modulation with frequencies kω (k ¼ 1;…; N).
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The survival probability is generic for an ideal gas of
bosons, fermions, or geons. Indeed, it brings out the fact
that the CSM spectrum is equivalent to that of N renor-
malized harmonic oscillators, up to the zero-point energy
[42,51,52]. As in the case of the single-harmonic oscillator,
the survival probability is a periodic function of time, with
period 2πN=ω.

C. Random matrix Hamiltonians

1. Survival probability at large N

We now turn our attention to the survival probability
of a TDS when the dynamics is generated by a full
random matrix Hamiltonian. In particular, we consider
Hamiltonians that are described by the Gaussian unitary
ensemble (GUE), i.e., the Dyson β ensemble with β ¼ 2.
In the asymptotic limit for matrices of large rank, the

density of states obeys Wigner’s semicircle law [53]

ρðEÞ ¼ lim
N→∞

�XN
n¼1

δðE − EnÞ
	

GUE

¼ λ

π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
E
λ

�
2

s
ð49Þ

in the interval E ∈ ½−λ; λ�, and ρðEÞ ¼ 0 elsewhere. We
choose the (dimensionless) Wigner radius λ ¼ ffiffiffiffiffiffiffi

2N
p

so that
the normalization condition readsZ

λ

−λ
ρðEÞdE ¼ λ2

2
¼ N: ð50Þ

Explicit evaluation via the integral representation of the
survival amplitude (26) leads to

Aðβ; tÞ ¼ λJ1½λðt − iβÞ�
Zðt − iβÞ ; ð51Þ

Sðβ; tÞ ¼ λ2J1½λðtþ iβÞ�J1½λðt − iβÞ�
Z2ðt2 þ β2Þ ; ð52Þ

where J1ðxÞ is the Bessel function of first kind of first order,
and the partition function reads

Z ¼ Zðβ; 0Þ ¼ λI1ð2βÞ
β

; ð53Þ

with InðxÞ denoting the modified Bessel function of first
kind and order n. The infinite-temperature limit has
recently been reported in Ref. [8], and a closely related
analysis was discussed in Ref. [25], in the study of
thermalization of isolated many-body quantum systems.
The short-time asymptotic behavior of Sðβ; tÞ takes the

form of Eq. (17) with the identification of the Zeno time

λ2

τ2Z
¼ 1 −

3I2ðλβÞ
λβI1ðλβÞ

−
I2ðλβÞ2
I1ðλβÞ2

≤
1

4
; ð54Þ

which is the inverse of the energy variance, showing that
ΔE ≤ λ=2, with the equality holding at infinite temper-
ature. The long-time asymptotic simply reads

Sðβ; tÞ ¼ λ

πZ2

coshð2λβÞ − sinð2λtÞ
t3

þOðt−4Þ: ð55Þ

The full quantum decay of the survival probability as a
function of time is shown in Fig. 1(a). In an early stage, the
decay is parabolic in time and characterized by the energy
fluctuations whose inverse set the Zeno time; see Fig. 1(b).
As the time of evolution goes by, a power-law behavior sets
in and Sðβ; tÞ ∝ t−3. This behavior can be traced back to the
compact support of Wigner’s semicircle law in the light
of the Paley-Wiener theorem. Actually, given that near the
low-energy edge E ¼ −λ, the density of states scales as

FIG. 1. Survival probability of the thermofield double state in the GUE. (a) The exact survival probability of the TDS, displayed as a
function of time for λβ ¼ 0.1, 1, 3, from bottom to top. During its decay, Sðβ; tÞ exhibits oscillations as a function of time, the amplitude
of which diminishes with the temperature. In the low-temperature regime, the decay is approximately monotonic, and governed by a
power law t−3. (b) Energy fluctuations in a TDS as a function of the inverse temperature β. (c) Long-time quantum reconstruction of the
TDS under unitary dynamics. The exact survival probability of the TDS is compared in a logarithmic scale with the probability of the
memory term. At long times of evolution, the memory term accurately reproduces the survival probability, indicating that the exact
evolution is consistent with the decay of the TDS in a classical probabilistic sense at intermediate times and with its subsequent
reconstruction. The dynamics is associated with a GUE random matrix ensemble at large N with a density of states described by the
Wigner semicircle law with λβ ¼ 0.1. The memory term is evaluated at τ ¼ t=2.
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ρðEÞ ∼ ðEþ λÞ1=2, the power-law t−3 follows from
Eq. (29). Yet, at high temperatures, the TDS in Eq. (3)
involves a coherent superposition over many modes, and
during its decay, the survival probability exhibits an
oscillatory behavior superimposed on the power law. As
the temperature is decreased, the amplitude of the oscil-
lation diminishes, and the decay is eventually monotonic.
Figure 1(c) shows that the long-time behavior at arbitrary
temperature is dominated by the memory term, and hence it
is associated with the reconstruction of the TDS from the
decay products. The survival probability is then dominated
by an evolution during which the initial TDS is fully
scrambled at an intermediate time τ in the sense that the
time-evolving state is completely orthogonal to the initial
state,

P̂jψðβ; τÞi ¼ 0; Q̂jψðβ; τÞi ¼ jψðβ; τÞi; ð56Þ

yet the decay products Q̂jψðβ; τÞi subsequently reconstruct
the initial state at the later time t.

2. Exact fidelity at finite N

In fact, we can go much further and analytically evaluate
the fidelity decay in the RMT for any N using the method
of orthogonal polynomials. For previous work on the
spectral form factor at finite N, see Ref. [54]. We want
to compute the exact survival amplitude of a TDS in the
GUE—in other words, the spectral form factor

gðβ; tÞ ¼ hZðνÞZðν�Þi

¼ hZð2βÞi þ
�X

i≠j
e−βðEiþEjÞ−itðEi−EjÞ

	

¼ hZð2βÞi þ
Z

dE1dE2hρð2ÞðE1; E2Þie−νE1−ν�E2 ;

where the last equality defines the GUE averaged two-level
correlation function ρð2ÞðE1; E2Þ. In order to deal with the
integral over the two-level correlation function in Eq. (57),
we express its average hρð2ÞðE1; E2Þi in terms of the

connected two-level correlation function ρð2Þc ðE1; E2Þ as

hρð2Þc ðE1; E2Þi ¼ hρð2ÞðE1; E2Þi − hρðE1ÞihρðE2Þi: ð57Þ

As a result, we identify three terms in the spectral form
factor

gðβ; tÞ ¼ hZð2βÞi þ jhZðβ; tÞij2 þ gcðβ; tÞ; ð58Þ

where gcðβ; tÞ is the double complex Fourier transform of
the connected contribution

gcðβ; tÞ ¼
Z

dE1dE2hρð2Þc ðE1; E2Þie−νE1−ν�E2 : ð59Þ

Let us now compute each of the terms appearing in this
expression. We begin by computing the exact analytically
continued partition function

Zðβ; tÞ ¼
X
n

e−ðβþitÞEn ;

which we rewrite as the integral

Zðβ; tÞ ¼
Z
R
dEe−νE

XN
n¼1

δðE − EnÞ; ð60Þ

where the quantity ν appearing in the exponent is the
analytically continued inverse temperature, ν ¼ β þ it.
This expression still needs to be averaged over the random
matrix ensemble. In fact, it is known [53] that the exact
eigenvalue density averaged over the GUE is given by

hρðEÞi ¼
XN−1

j¼0

φjðEÞ2; ð61Þ

where we introduce the harmonic oscillator eigenfunctions

φjðEÞ ¼
1

ð2jj! ffiffiffi
π

p Þ1=2 e
−E2

2 HjðEÞ: ð62Þ

These play the role of orthonormal polynomials for the
unitary matrix ensemble, in terms of which we will be able
to perform all of the calculations in this section.4 After
some algebra (see Appendix C), we arrive at the compact
expression

hZðβ; tÞi ¼ e
ν2

4L1
N−1

�
−
ν2

2

�
; ð63Þ

which allows us to compute the first two terms in Eq. (58).
We note the similarity with the expectation value of a
circular (BPS) Wilson loop in the N ¼ 4 SYM theory.
In fact, this is no coincidence, as we explain in Sec. IV of
Appendix C. By contrast to Wigner’s semicircle law, the
density of states hρðEÞi (61) no longer has a compact
support on the energy axis and takes nonzero values in the
full real line. As a result, the decay of hZðβ; tÞi is not
restricted to be subexponential, and indeed, following a
power-law regimewith an envelope 1=t3, this term is highly
suppressed, as its long-time asymptotic behavior reads

jhZðβ; tÞij2 ∼ 4N−1

ΓðNÞ2 e
−t2−β2

2 t4ðN−1Þ: ð64Þ

4We have adopted the normalization of Ref. [53], where the
density of states approaches the limiting Wigner distribution as
ρNðEÞ → 1

π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2N − E2

p
.
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To compute the third term in (58), we note that

hρð2Þc ðE1; E2Þi can be expressed conveniently in terms of
normalized Hermite polynomials [53]:

hρð2Þc ðE1; E2Þi ¼ −
�XN−1

j¼0

φjðE1ÞφjðE2Þ
�2

: ð65Þ

We then find that the double complex Fourier transform of
the connected contribution

gcðβ; tÞ ¼
Z

dE1dE2hρð2Þc ðE1; E2Þie−νE1−ν�E2 ð66Þ

can again be evaluated exactly (see Appendix C). The result
can be expressed compactly,

gcðβ; tÞ ¼ e
1
4
ðν2þν̄2Þ XN−1

j;k¼0

�
ν

ν̄

�
k−j
����ψ jk

�
−
ν2

2

�����2; ð67Þ

where the function ψ jkðxÞ is defined in terms of the
confluent hypergometric function 1F1ða;b; xÞ:

ψ jkðxÞ ¼ 1F1ð−j; 1þ k − j; xÞ
Γð1þ k − jÞ ¼ Γðjþ 1Þ

Γðkþ 1ÞL
k−j
j ðxÞ: ð68Þ

Let us remark that this exact expression can be mapped to
the expectation value of two Wilson loops in the Gaussian
matrix model, as shown in Sec. IV of Appendix C.
We now have all the information needed to reconstitute

the exact spectral form factor—or equivalently, the survival
probability—by adding the disconnected component as
well as the Zð2βÞ contribution appearing in Eq. (57) to the
connected form factor (67). The resulting behavior5 of
Sðβ; tÞ is illustrated in Fig. 2. As required, the resulting
curve shows the characteristic dip, ramp, and plateau
behavior with a plateau height

hP ∼ 1=ZðβÞ ∼ 1=N: ð69Þ

Let us now analyze the result for the finite-N spectral
form factor in more detail. Firstly, let us point out that, for
any finite N, the spectral form factor (57) approaches the
purity (23) at late times. This is a consequence of the fact
that, as shown in Appendix C, ρð2ÞðE;E0Þ can be expressed
as a finite sum over (products of) integrals of the type (C2),
which we repeat here for convenience:

Imnðβ; tÞ ¼
Z
R
e−itE−βEφmðEÞφnðEÞ:

These integrals involve the Fourier transform of an L1-
function, and thus tend to zero as t → ∞, by the Riemann-
Lebesgue lemma (see Appendix B for more detail). As a
consequence, the spectral form factor tends to purity at late
times, as claimed above. In fact, this result extends to
the limit N → ∞, where ρð2ÞðE; E0Þ approaches the sine
kernel [53]

ρð2ÞðE;E0Þ ∼
�
sin ð2NðE − E0ÞÞ

2NðE − E0Þ
�
2

;

which again satisfies the conditions of the Riemann-
Lebesgue lemma. Notice that in this limit the purity—
i.e., the plateau height (69)—also goes to zero, so that the
spectral form factor decays strictly to zero at late times.
From the exact expression, we can discern three con-

tributions, each of which is responsible for one of the
characteristic shapes seen in Fig. 2:
(1) Gaussian decay: Initially, gðt; βÞ is dominated by the

disconnected contribution, so that the initial decay is
governed by the behavior of the Laguerre polyno-
mial. We find that the short-time asymptotics takes
the form (17) with the Zeno time

1

τ2Z
¼1

2
þβ2L3

N−3ð−β2

2
ÞþL2

N−2ð−β2

2
Þ

L1
N−1ð−β2

2
Þ

−
β2L2

N−2ð−β2

2
Þ2

L1
N−1ð−β2

2
Þ2

:

(a) (b) (c)

FIG. 2. Exact survival probability in the GUE. (a) Zero-temperature curve for GUE of size N ¼ 105: A period of decay and
approximate revivals with a power-law envelope that scales as 1=t3 terminates at a dip, followed by a linear rise that saturates at a plateau
of order 1=N. (b) Comparison of zero-temperature curves for N ¼ 10 (blue), N ¼ 20 (orange), and N ¼ 30 (green). (c) Comparison of
different curves with N ¼ 35 and temperature β ¼ 0, 0.05, 0.1, 0.2, 0.4, from bottom to top. As the inverse temperature increases, the
initial decay approaches a straight line, while the dip, ramp, and plateau phases remain relatively stable.

5Here we use the annealed GUE averaged decay amplitude—
that is, hSðβ; tÞi ¼ hgðβ; tÞi=hZðβÞi2.
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In contrast with the large-N expression (54), energy
fluctuations ΔE2 ¼ 1=τ2Z do not vanish in the low-
temperature limit, and saturate at a constant value
ΔE2 ¼ 1=2 independent of N.

(2) Power law and dip: The initial Gaussian behavior
gives way to a power-law decay, or at higher
temperature, to a set of oscillations with power-
law envelope

Sðβ; tÞ ∼ 1=t3; ð70Þ

which eventually joins the increasing contribution
coming from the connected piece gcðβ; tÞ at the dip
time td ∼Oð1Þ. The estimate for td follows from
equating the power-law decay 1=t3 coming from the
disconnected part to the approximately linear rise ∼t
coming from the connected part.

(3) Ramp and plateau: The connected contribution to
the spectral form factor gcðβ; tÞ approaches zero
from below and by itself decays completely at late
times. By adding the purity, this leads to an
approximately linear rise at late times until the
plateau value of Zð2βÞ is approached.

Remark on N scaling of dip time.—In Ref. [8], the dip time
at large N was estimated to scale like ~td ∼

ffiffiffiffi
N

p
, while in our

normalization the dip time is alwaysOð1Þ. We now explain
the relationship between the two estimates. If we want to
normalize our density of states in such a way that, as
N → ∞, it approaches the Wigner semicircle supported on
a compact interval ½−λ; λ� with λ ¼ Oð1Þ (for definiteness,
let us take λ ¼ ffiffiffi

2
p

), we find that we need to rescale energy
as

ffiffiffiffi
N

p
~E ¼ E, and correspondingly t ¼ ~t=

ffiffiffiffi
N

p
, and sim-

ilarly for the temperature. The large-N limit is then taken as
N → ∞, keeping ~E and ~β, ~t fixed. This leads to the dip time
estimate

N3=2~t−3d ∼ ~td=
ffiffiffiffi
N

p
→ ~td ∼

ffiffiffiffi
N

p
;

as in Ref. [8]. The rescaled variables are convenient in the
infinite-N analysis, effectively keeping typical energies
~E ∼Oð1Þ, but at finite N, our normalization keeps notation
as uncluttered as possible.

V. SURVIVAL PROBABILITY IN AdSd + 1=CFTd

A further interesting arena where we can say a great deal
about the fidelity decay of the thermofield double state is
holographic duality, or AdS/CFT. As we shall see, the
behavior of gðβ; tÞ in random matrix theory is actually
qualitatively very similar to the holographic case. In the
latter context, the thermofield double state is dual to the
eternal black hole [5], and the decay properties of Sðβ; tÞ
can be interpreted as a diagnostic of information loss and
recovery [8,11]. In this context, it is easiest to think of
Sðβ; tÞ in terms of the analytically continued partition

function (2), which is therefore the partition function of
the eternal black hole.
As in RMT, the time evolution of the spectral form factor

in holography is characterized by three phases. First, we
have a period of Gaussian decay, followed by a power law
(or a power-law envelope), both dominated, roughly speak-
ing, by the dual semiclassical black hole including one-loop
corrections in the bulk. At very late times, this decay is
believed to give way to behavior typically associated with
RMT: on average, we see a linear ramp up to a plateau,
which persists until the latest times. Poincaré recurrences
are not expected until times of order t ∼ ee

S
[14,15]. In

summary, then, the analytic RMT curves in Fig. 2 give a
surprisingly good description of the holographic spectral
form factor as well. For the sake of completeness, let us
give a few more details on the AdS/CFT case as well,
before discussing unitarity bounds in that context.

A. Fidelity decay in AdSd + 1=CFTd

In holography, the leading result for the partition
function, valid at large central charge, which we denote
generically by c, is given by an appropriately regularized
version of the on-shell action of the Euclidean black hole or
whichever other classical saddle dominates in the bulk [55]

ZðβÞ ≈ e−S
saddle
E ðβÞ; ð71Þ

where the ≈ sign indicates the presence of the fluctuation
determinant around the saddle, which we take into account
below. Let us illustrate this with the case of AdS3, where
the leading saddle point is given by the so-called BTZ black
hole, and reads

ZðβÞ ¼ e
π2c
3β ; ð72Þ

where c ¼ 3l
2GN

is the central charge of the dual
CFT2, related to l, the radius of AdS3, in units of the
Planck length as stated. The survival probability in this
approximation is therefore obtained simply by analytic
continuation:

Sðβ; tÞ ¼ e
−2π2c

3β
t2

β2þt2 ∼ 1 −
2π2c
3β3

t2; ðt ≪ βÞ: ð73Þ

We observe, therefore, that the holographic fidelity shows
the nonexponential initial decay (17) with Zeno time

τ2Z ¼ 3β3

2π2c
≔

1

ðΔEÞ2 ; ð74Þ

which is suppressed in 1=c for a large central charge.
Considering in addition the one-loop fluctuation determi-
nant around the saddle [11,56] gives the prefactor
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Sðβ; tÞ ∼ 1

t6
e−

2π2c
3β ðlarge tÞ; ð75Þ

leading to algebraic decay (at late times). A better estimate
of the decay of the spectral form factor in CFT2 is obtained
by including the images under SLð2;ZÞ of the vacuum
character, which results in a 1=t3 power law [11].
This semiclassical analysis is only sensitive to a coarse-

grained density of states where all discreteness has been
smoothed out. The resulting density of states again satisfies
the conditions of the Riemann-Lebesgue lemma (see
Appendix B), and accordingly Sðβ; tÞ decays to zero.
For a system with a finite Hilbert space, this state of affairs
would imply that information has been lost, since the
discreteness of the spectrum forbids such complete decay,
as explained in Sec. III C. The time scales of this can be
estimated as follows [11] (see also Ref. [8] for a conjecture
on the 4D SYM case): One writes the exact quantum
partition function of the dual CFT2 as an expansion in
analytically known Virasoro characters. Then, by assuming
that the latest-time behavior is dominated by randommatrix
theory, one infers—on average—a linear ramp up to an
eventual plateau, as we have shown analytically in previous
sections. By combining the detailed decay with the very
late RMT behavior, one may estimate the “dip” time in a
CFT2 dual to the AdS3 black hole as [11]

tdip ≈ e
π2c
8β ; ð76Þ

which is exponentially large6 in the central charge c.
Similarly, the time after which the linear ramp joins the
plateau is parametrically large in c compared to the
dip time.
Completely analogous behavior is found in the SYK

model [8], believed to be dual to a black hole in AdS2.
We therefore conclude that the RMT computation of the

spectral form factor gives an excellent analytical model of
the behavior in holographic theories, and may therefore
possibly serve as an excellent toy model to describe
information loss and restoration in black hole physics.

B. Bound on fidelity decay

Let us now turn to the bound on the fidelity decay in
terms of energy fluctuations in the thermal ensemble (16).
Let us thus calculate the specific heat of the holographic
dual of the thermofield double state, given, as we argued,
by the eternal black hole [5]. Our interest is mainly in the
black hole with a compact horizon, since this corresponds
to the case with a finite Hilbert space, and thus a discrete
spectrum.

In spacetime dimension d, one finds for the partition
function

logZðβÞ ¼ kdcβðrdþ − rd−2þ l2Þ; ð77Þ

where we work in a scheme which sets the free energy of
AdSdþ1 without a black hole (rþ ¼ 0) to zero. Again, c is
the central charge, and kd is a dimension-dependent
constant, which can be found, for example, in Ref. [57].
The radius of the black hole is set by rþ, which is related to
the inverse temperature β via the relation

β ¼ 4πl2rþ
dr2þ þ ðd − 2Þl2

: ð78Þ

The special case of AdS3 we considered above has d ¼ 2

and rþ ¼ 2πl2

β . This allows us to determine the energy
fluctuations ΔE, which together with Eq. (16) bound the
fidelity decay. We start with the AdS3 case, where we find

Sðβ; tÞ ≥ exp

 
−

ffiffiffiffiffiffiffi
2c
3β3

s
2πt

!
; ð79Þ

in accordance with the value for ΔE appearing in the
holographic Zeno time (74). For the general d-dimensional
case, we find

ΔE2 ¼ 8ðd − 1Þcl2π2kdrdþ
β2ð2πrþ þ ð2 − dÞβÞ ∝ c; ð80Þ

leading to a bound of the form Sðβ; tÞ ≥ exp ð−k0d
ffiffiffi
c

p
tÞ for

a d-dimensional constant k0d which follows upon taking the
square root of Eq. (80).

VI. CONCLUSIONS AND DISCUSSION

In this paper, we have established that the spectral form
factor gðβ; tÞ can be reformulated in terms of a decay
amplitude of a certain pure state, namely the thermofield
double state. The time evolution of gðβ; tÞ is thus mapped to
the decay amplitude, as a function of time, of the fidelity of
the TDS and the associated decay probability Sðβ; tÞ.
Our results fall into two main categories. First, we make

use of quantum-speed-limit- and unitarity-type bounds on
the evolution of the fidelity of the TDS, leading to a bound
on the early-time Gaussian decay, as well as a subexpo-
nential bound for the subsequent decay. The very late-time
behavior has been shown to be governed by the purity of
the TDS and is thus generally nonvanishing in theories with
a discrete spectrum. This is to be contrasted with the
complete decay of the spectral form factor when the
spectrum is continuous. In theories with a discrete spec-
trum, continued decay (perhaps for an intermediate time
scale) should be interpreted as a sign of information loss,

6Note that there may be an Oð1Þ factor multiplying the
exponent, depending on whether one estimates the dip time
due to only the vacuum character (as we did here), or whether one
includes further matter contributions that can decay more slowly.
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and so our results here help to sharpen this discussion, in
particular in the context of holographic duality.
The second main category of results concerns the

behavior of gðβ; tÞ in various models that we control
analytically. In particular, we have shown that the exact
result for the spectral form factor for all times can be
computed in the generalized unitary ensemble of random
matrices using the method of orthogonal polynomials. The
full analytical result not only matches earlier numerical
studies [8], but it is also remarkably similar (at all times) to
the spectral form factor in various holographic models,
such as the SYK model [8], as well as the BTZ black hole
[11]. This contrasts with the case of integrable models, as
demonstrated in Secs. IVA and IV B. Our results in the
GUE should thus serve as an analytical toy model of the
study of information loss and retrieval in black holes. It will
be particularly interesting to study the relation of informa-
tion restoration to nonperturbative corrections with respect
to the large-N approximation [58,59].
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APPENDIX A: BHATTACHARYYA BOUND
FOR ARBITRARY INITIAL STATES

The bound derived in Ref. [13] holds for an initial pure
state that undergoes unitary evolution. The fidelity between
the initial and time-dependent states equals the survi-
val probability, defined as SðtÞ ¼ F ½jψð0Þi; jψðtÞi� ¼
jhψð0ÞjψðtÞij2 ∈ ½0; 1�. In this appendix, we present a
generalization that holds for arbitrary initial states, including
mixed states described by an arbitrary density matrix. It is
convenient to use SðtÞ ¼ F ðρ0; ρtÞ ¼ ½Tr ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ρ0
p

ρt
ffiffiffiffiffi
ρ0

pp �2 to
quantify the notion of distinguishability between the initial
and time-dependent density matrices, ρ0 and ρt. We note the
rate of change of Lðρ0; ρtÞ ¼ cos−1½Tr ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ρ0
p

ρt
ffiffiffiffiffi
ρ0

pp �,

d
dt

Lðρ0; ρtÞ ≤
���� ddtLðρ0; ρtÞ

���� ¼ j _Sj
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1 − SÞSp : ðA1Þ

We further use Uhlmann’s bound [18]

d
dt

Lðρ0; ρtÞ ≤ ΔE ðA2Þ

to find

j _Sj
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1 − SÞSp ≤ ΔE: ðA3Þ

Equation (A3) amounts to

d
dt

arccos
ffiffiffi
S

p
≤ ΔE; ðA4Þ

which upon integration leads to the Mandelstam-Tamm
(MT) quantum speed limit

t ≥ tMT ≡ Lðρ0; ρtÞ
ΔE

; ðA5Þ

first obtained by Uhlmann for mixed states [18]. Thus, for
times 0 ≤ t ≤ π=ð2ΔEÞ,

SðtÞ ≥ cos2ðΔEtÞ: ðA6Þ

We further note that
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1 − SÞSp

≤ S for S ≥ 1=2. Then,
as S ¼ jSj and R j _S=Sjdt ≥ j R _S=Sdtj ¼ j ln Sj ¼ − ln S, it
follows that

SðtÞ ≥ expð−2ΔEtÞ; ðA7Þ

for times t ≥ 0 when SðtÞ ≥ 1=2, until the half-lifetime th
when the fidelity first reaches SðthÞ ¼ 1=2. The lifetime th
can exceed π=ð2ΔEÞ. Equation (A7) is the generalized
Bhattacharyya bound for an arbitrary initial state.

APPENDIX B: COMPLETE DECAY FOR
SYSTEMS WITH CONTINUOUS SPECTRA

Whenever the spectrum of the Hamiltonian generating
the time evolution is continuous, the vanishing survival
probability of a thermofield double state at an infinitely
long time of evolution follows from the analytic properties
of the density of states. To show this, it is convenient to
rewrite the survival probability as a Fourier transform. Let
Ĥ be the driving Hamiltonian for t ≥ 0 with a continuous
spectrum,

ĤjEi ¼ EjEi; E > E0; ðB1Þ
where we assume the existence of a ground-state energy E0,
so that the Hamiltonian is bounded from below. The
resolution of the identity in terms of the scattering states
reads Z

∞

E0

dEjEihEj ¼ 1: ðB2Þ
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Using it, the survival probability can be written as

SðtÞ ¼ jhψð0Þje−iĤtjψð0Þij2 ðB3Þ

¼
����
Z

∞

E0

dEhψð0Þ
����e−iĤtjEihEjψð0Þij

2

ðB4Þ

¼
����
Z

∞

E0

dEρðEÞe−iEt
����2; ðB5Þ

where we have defined the energy distribution of the initial
state as the probability of finding jψð0Þi in one of the
scattering states jEi,

ρðEÞ≡ jhEjψð0Þij2: ðB6Þ

This is a function with support on the domain ½E0;∞Þ. In
order to write the survival probability as a Fourier trans-
form, we further define

~ρðEÞ ¼ ρðEÞΘðE − E0Þ; ðB7Þ

with the full real line as a domain. In terms of it,

SðtÞ ¼
����
Z
R
dE~ρðEÞe−iEt

����2: ðB8Þ

This SðtÞ vanishes at infinity as a consequence of the
Rieman-Lebesgue lemma [26]. This is a useful result in
many studies of quantum dynamics, so let us state it in
detail. We recall the definition of an Lp-function fðzÞ:

∥f∥p ≡
�Z

jfðzÞjpdz
�1

p

< ∞: ðB9Þ

The Riemann-Lebesgue lemma states that if the Lebesgue
integral of a function jfj is finite, then its Fourier transform
vanishes as the conjugate variable tends to infinity. In other
words, let f be an L1-function, then

f̂ðtÞ≡
Z
R
fðzÞe−izt → 0 as t → ∞: ðB10Þ

It is not difficult to show that ~ρðEÞ is an L1-function:

j~ρðEÞj1 ¼
Z
R
dEj~ρðEÞj ðB11Þ

¼
Z

∞

E0

dEhψð0ÞjEihEjψð0Þi ¼ 1; ðB12Þ

whence it follows that SðtÞ → 0 as t → ∞.

APPENDIX C: EXACT SURVIVAL
AMPLITUDE IN GUE

Here we supply the details in the derivation of the
survival probability Sðβ; tÞ in the GUE random matrix
ensemble in Sec. IV C 2 of the main text.

1. Integrals of Hermite polynomials

In what follows, we shall find it necessary to evaluate
integrals of the type

InðνÞ ≔
Z

∞

−∞
dEe−νE−E

2

HnðEÞ; ðC1Þ

InmðνÞ ≔
Z

∞

−∞
dEe−νE−E

2

HnðEÞHmðEÞ ðC2Þ

over one or two Hermite polynomials. To this end, the main
tool we use is the identity

Z
dEe−E

2

HnðEÞfðEÞ ¼
Z

dEe−E
2

DnfðEÞ; ðC3Þ

which follows from the usual definition of the Hermite
polynomials,

e−E
2

HnðEÞ ¼ ð−DÞne−E2

; ðC4Þ

after n integrations by part. Here and below, we use the
notation D ≔ d=dE. The integrands must decay suffi-
ciently fast at infinity in order to justify neglecting the
boundary terms. This is always the case for the integrals of
interest here.
We now use this idea to evaluate the first integral

appearing in Eq. (C1). This reduces to an expression of
the form (C3) for the choice fðEÞ ¼ e−νE. The resulting
Gaussian integral is trivial, with the result

InðνÞ ¼
ffiffiffi
π

p ð−νÞneν2

4 : ðC5Þ

We now proceed to evaluating the second integral, (C2),
appearing above. In this case, one obtains, by successive
integration by parts [or simply by using the identity (C3)
above],

InmðνÞ ¼
Z

dEe−E
2

DnfmðEÞ ðC6Þ

for

fmðEÞ ¼ e−νEHmðEÞ: ðC7Þ

We now notice that we can compute this derivative using
the binomial expansion
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Dnðe−νEHmðEÞÞ ¼
Xn
k¼0

nCkDkðe−νEÞDn−kHm

¼
Xn
k¼0

nCke−νEð−νÞkDn−kHm; ðC8Þ

where nCk is the usual binomial coefficient. Furthermore,
we have

Dn−kHmðEÞ ¼ 2n−k
m!

p!
HpðEÞ; ðC9Þ

with p ¼ mþ k − n, following standard properties of the
Hermite polynomials. We have thus reduced the integral
over two Hermite polynomials into a sum of integrals over
single Hermite polynomials (times coefficients). For these,
we can use our previous result (C5) to find

Inm ¼ ffiffiffi
π

p
e
ν2

4 2nð−νÞm−n
Xn
k¼0

nCkð−νÞ2k
2kðmþ k − nÞ!

¼
ffiffiffi
π

p
2nm!

ðm − nÞ! ð−νÞ
m−n

1F1

�
−n; 1þm − n;−

ν2

2

�
;

ðC10Þ

where 1F1 is a confluent hypergeometric function defined
by the finite power-series expansion in the line above. Let
us note in passing that the diagonal casem ¼ n reduces to a
simple Laguerre polynomial,

Inn ¼
ffiffiffi
π

p
2nn!Ln

�
−
ν2

2

�
: ðC11Þ

Armed with the master integrals, we are now in a
position to compute the spectral form factor quoted in
the bulk of the paper, including the disconnected contri-
butions, which reduce to a product of two (GUE-averaged)
partition functions.

2. Spectral density

Using the exact eigenvalue density ρðEÞ as defined in
Eq. (61), we would like to compute the sum

IðνÞ ¼
XN−1

n¼0

c2n

Z
R
dEe−E

2−νEH2
nðEÞ ðC12Þ

for the coefficients

c2n ¼
1

2nn!
ffiffiffi
π

p : ðC13Þ

From this, the survival amplitude follows as

Aðβ; tÞ ¼ 1

Z
IðνÞ; ðC14Þ

where ν ¼ β þ it and Z ¼ IðνÞjν¼β. It is not hard to
recognize that all coefficients conspire precisely to give
a straight sum over Laguerre polynomials:

IðνÞ ¼ e
ν2

4

XN−1

n¼0

Ln

�
−
ν2

2

�

¼ e
ν2

4L1
N−1

�
−
ν2

2

�
: ðC15Þ

In the last line, we have reexpressed the sum in terms of a
single associated Laguerre polynomial, recovering the
expression in the main body of our paper, Eq. (63). We
now turn to the two-level correlation function.

3. Two-level correlation

In the case of the connected two-level correlation (66),
we start by rewriting the definition (66) together with the
two-level cluster function (65) as

gcðβ; tÞ ¼
XN−1

n;m¼0

c2nc2mInmðνÞImnðν̄Þ; ðC16Þ

which follows from noticing that

�XN−1

n¼0

φnðE1ÞφnðE2Þ
�2

¼
XN−1

m;n¼0

φnðE1ÞφmðE2ÞφmðE1ÞφnðE2Þ; ðC17Þ

so that the integral (66) is factorized as indicated in
Eq. (C16). We then combine the second master integral
(C10) with the coefficients (C13) to arrive at the expression
quoted in the bulk of the paper (67).

4. Map to Wilson loop

It is amusing to note that the computation of the survival
amplitude can be mapped exactly to the computation of a
Wilson loop in the Gaussian matrix model. To be precise,
the partition function satisfies

hZðνÞi ¼ hWCð2gsÞi; ðC18Þ

while the spectral form factor satisfies

hZðνÞZðν̄Þi ¼ hWCð2gsÞWCð2ḡsÞi: ðC19Þ

We shall now prove these relations. Let us start with the
partition function
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Z X
n

hδðE − EnÞiGUEe−νEdE

¼
Z �Z Y

i

dEiΔ2ðEÞ
X
n

δðE − EnÞe−
P

i
E2
i

�
e−νEdE

¼
Z Y

i

dEiΔ2ðEÞe−
P

i
E2
i

X
n

e−νEn; ðC20Þ

where in the last line we have performed the integral over E
with the help of the delta function insertions. We have
written the measure of the GUE in terms of an intergral over
eigenvalues Ei with the Jacobian factor Δ2ðEÞ given by the
Vandermonde determinant

ΔðEÞ ¼
Y
i<j

jEi − Ejj: ðC21Þ

But now we can relate the latter expression to the expect-
ation value of the insertion of a single Wilson loop operator,
given by W ¼ TreM, in a Gaussian matrix model over
Hermitian matrices M. Explicitly,Z Y

i

dEiΔ2ðEÞ
X
n

e−νEne−
P

i
E2
i

¼ 1

ΩM

Z
dMTre−νMe−TrM

2

≔ hWCðνÞi; ðC22Þ

where ΩM is a normalization factor, whose precise
form does not concern us here, and dM indicates the
Haar measure over Hermitian matrices. In order to
connect to the standard presentation of the matrix
model, we should identify the parameter ν formally
with the coupling gs, via

ν2 ¼ 2gs; ðC23Þ

which appears in the standard weight of the Gaussian

matrix model as e−
1

2gs
TrM2

. Having understood the map of
the GUE average of the partition function, it is then a
matter of applying the same sort of manipulations to
show that

hZðνÞZðν̄Þi

¼
Z

dEdE0
�X

n

δðE−EnÞ
X
m

δðE0−EmÞ
	

GUE
e−νE−ν̄E

0

¼ hWCðνÞWCðν̄Þi; ðC24Þ

establishing, as claimed, that the spectral form factor
maps to a correlation function of two Wilson loops.
Here the same formal identification of the gauge
coupling (C23) is again implied.
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