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We review the paradox of low energy excitations of a black hole in anti–de Sitter space (AdS). An
appropriately chosen unitary operator in the boundary theory can create a locally strong excitation near the
black hole horizon, whose global energy is small as a result of the gravitational redshift. The paradox is that
this seems to violate a general rule of statistical mechanics, which states that an operator with energy
parametrically smaller than kT cannot create a significant excitation in a thermal system.When we carefully
examine the position dependence of the boundary unitary operator that produces the excitation and the bulk
observable necessary to detect the anomalously large effect, we find that they do not both fit in a single causal
patch. This follows from a remarkable property of position-space AdS correlators that we establish explicitly
and resolves the paradox in a generic state of the system, since no combination of observers can both create
the excitation and observe its effect. As a special case of our analysis, we show how this resolves the “Born
rule” paradox of Marolf and Polchinski [J. High Energy Phys. 01 (2016) 008] and we verify our solution
using an independent calculation. We then consider boundary states that are finely tuned to display a
spontaneous excitation outside the causal patch of the infalling observer, and we propose a version of
causal patch complementarity in AdS/CFT that resolves the paradox for such states as well.

DOI: 10.1103/PhysRevD.95.126002

I. INTRODUCTION AND SUMMARY OF RESULTS

Does a typical pure state with high enough energy in a
holographic conformal field theory (CFT) correspond to a
classical black hole geometry with a smooth interior? This
question can be made precise as follows. Consider a CFT
with a holographic dual [1], and in such a CFT pick a
typical state jΨi from the set of states with energy much
larger than the central charge of the CFT. A typical state is a
linear combination of energy eigenstates with coefficients
that have a random magnitude and phase. In such a state,
can we map the local field degrees of freedom at a bulk
point xi to some CFT operator ϕðxiÞ? Moreover, if we
compute multilocal correlators in the state jΨi,

hΨjϕðx1Þ…ϕðxnÞjΨi; ð1:1Þ
do these correlators match those that one would obtain by
quantizing a bulk field about the classical black hole
background?
If the points xi are all outside the black hole horizon, then

this question was answered constructively in [2,3], by
finding an explicit set of operators in the CFT, ϕðxiÞ, whose
correlators in a typical state match bulk correlators about a
black hole background. In [4,5], we also proposed a
representation of the black hole interior for typical states
in the CFT. These constructions, taken together, provide
strong evidence that the answer to the question above is
affirmative—typical high energy states of the CFT do
correspond to a smooth black hole solution.
However, a novel feature of the construction of [4,5] was

that operators inside the black hole were state dependent.

This feature was necessary because the authors of [6,7]
pointed out that when some of the points xi were behind the
horizon, it was impossible to find state-independent oper-
ators, ϕðxiÞ, whose correlators matched with the correlators
of a bulk black hole geometry with a smooth interior. The
authors of [6,7] suggested that typical pure states in the
CFT have an exterior geometry that looks exactly like a
classical black hole, but have no interior; state dependence
provides an alternative that preserves a smooth interior.

A. The paradox of low energy excitations

However, state dependence does not automatically
resolve all paradoxes associated with the black hole, and
in [8], Marolf and Polchinski, building on previous work by
Harlow [9], presented one such paradox. They constructed
a unitary operator, UMP, in the boundary theory that rotates
the phases of the modes outside the black hole at a very
small cost in energy. But since this phase rotation breaks
the entanglement between the interior and the exterior, one
might naively believe that when some points xi are behind
the horizon, and others are outside, the correlator (1.1) is
modified sharply.
This is unusual because in a typical state of a general

statistical system, the change in the value of an observable,
Aα, under the action of a unitary excitationU, is bounded by

δhAαi≡ jhΨjU†AαUjΨi − hΨjAαjΨij ≤ 2
ffiffiffiffiffiffiffiffi
βδE

p
σα; ð1:2Þ

where δE is the change in the expectation value of the
Hamiltonian induced by the unitary, and the inequality holds
in the limit where βδE ≪ 1. Here, σα is a measure of the*suvrat@icts.res.in
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fluctuations of the operatorAα.Wewill review and prove this
inequality in Sec. II.
If we takeAα to be the correlator in (1.1) with some points

behind the horizon and the unitary to beUMP then it appears
that this inequality is violated. This is a sign ofwhat is amore
general paradox in AdS/CFT. Consider the bulk dual to the
state UjΨi, where U is some unitary operator, and use the
bulk equations of motion to analyze the geometry in the past
and the future. Then, as a result of the gravitational redshift, it
may happen that even thoughU only injects a small amount
of global energy into theCFT state, the geometry obtained by
the procedure above has a locally large excitation near the
horizon. This is similar to the setup of [10] although one
difference is that we are interested in excitations that inject an
energy βδE ≪ 1, whereas [10] considered excitations where
βδE ∼ 1. Then by considering observables along the world-
line of an infalling observer it might appear that we could
violate (1.2).
This paradox necessarily involves an infalling observer.

Intuitively, this is because an observer, who stays outside
the horizon and tries to detect the strong excitation, has to
go close to the horizon and then return and so cannot
differentiate the excitation from the Unruh effect that he
experiences [11]. More formally, the bulk-boundary map
involves only state-independent operators outside the
horizon so all correlators evaluated purely outside the
horizon, including the boundary correlators considered in
[10], automatically obey the constraints of (1.2).

B. Plan of the resolution

In this paper, we address the paradox for the infalling
observer as follows. First, we consider bulk observables
that are confined to a single causal patch. We did not
impose this restriction in our previous work [4,5,12,13] but
it is a natural restriction because while a theory might
predict some values for observables that do not fit in any
causal patch, these observables cannot actually be mea-
sured by any combination of observers.
In addition, we divide the allowed excitations into two

classes that we deal with separately.
(1) First in Sec. IV, we focus on the class of excitations

that can be produced by deforming the CFT Ham-
iltonian at time t through

H → H þ JðtÞAJ
γ ðtÞ; ð1:3Þ

where AJ
γ ðtÞ is some simple operator on the boun-

dary that is localized at the same time t.1 This class

of excitations is more restrictive than the excitations
previously considered in [4,5,12,13]. In those papers,
while we insisted that the bulk observer could only
perform experiments involving simple operators, we
did not insist that the deformation of the Hamiltonian
be local. For example, we did not previously exclude
excitations of the form H→HþδðtÞR dxAJ

γ ðxÞ×
cosðωxÞ. Such an excitation would involve acting
with the Fourier mode ofAJ

γ . However, physically, an
observer at time t does not have access to boundary
operators at a later (or earlier) time. In fact, it is not
difficult to show that if an observer could act with
excitations from a later time, she could engineer
violations of the second law of thermodynamics.
So we exclude excitations that are nonlocal in time
in Sec. IV.With this restriction, wewill show that bulk
correlators in a causal patch obey (1.2) for arbitrary
excitations produced by sources of the form (1.3).

(2) In Sec. VI, we allow more general excitations where
the Hamiltonian at time t is deformed by operators
that may be localized in the future of t. This returns
us to the class of excitations considered in
[4,5,12,13]. This analysis is closely related to the
situation where the excitation is produced sponta-
neously in the theory, and the observer simply
happens to find herself in a state that is about to
undergo an excitation after some time. However, as
explained above, this larger set of excitations and
states is of limited physical interest: black holes with
spontaneous macroscopic excitations occupy an
exponentially small volume in the Hilbert space,
which contains states that violate the second law of
thermodynamics. Nevertheless, in Sec. VI, we con-
sider this possibility and advance a tentative pro-
posal of “causal patch complementarity” to ensure
that (1.2) is preserved even in this situation.

C. Local sources and unitaries on the
boundary of a causal patch

As explained above, the central thrust of the resolution
advanced in this paper is that when the excitation is
produced by a boundary source dual to local CFToperators,
and when the observable in question is confined to a single
causal patch, we do not observe any violation of (1.2).
However, as we now describe, it is more convenient to
frame this result in terms of unitary excitations on the
boundary of the causal patch that contains the observable.
The correct Heisenberg operators at time t, which we

should use upon adding a term JðtÞAJ
γ ðtÞ to the Hamiltonian,

are given by

ϕJðt; r�;ΩÞ ¼ T̄ fei
R

t

ϑ
JðxÞAγðxÞdxgϕðt; r�;ΩÞ

× T fe−i
R

t

ϑ
JðxÞAγðxÞdxg; ð1:4Þ

1Note that we only turn on sources that are dual to boundary
operators. This does not involve any loss of generality since all
gauge invariant operators in the bulk theory that can be added to
the Hamiltonian are contained in the boundary. Indeed, as we
discuss below, a bulk source would violate local conservation of
energy. Energy can only be thrown in from the boundary and
then, in the bulk, it can only be redistributed subject to the
Wheeler-de Witt constraints.
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where we have separately displayed the time, radial and
spherical coordinates in the local field, and T indicates time
ordering, whereas T̄ indicates anti-time ordering. We have
assumed that the source has no support before a past cutoff ϑ.
This formula follows fromSchwinger’s in-in formalism [14].
The operators (1.4) are somewhat inconvenient to work

with directly. So, rather than working with the deformed
Hamiltonian and the operators (1.4), we instead consider
correlators of operators evolved using the undeformed
Hamiltonian but sandwiched in a state excited by a unitary
of the form

U ¼ exp

�
−i

Z
tC

ϑ
AαðtÞdt

�
: ð1:5Þ

This means that we consider correlators

hΨjU†ϕðx1Þ…ϕðxnÞUjΨi;
where we restrict the Kruskal “UK” coordinate, corre-

sponding to the points xi, to UK < e−
2πtC
β . (We use con-

ventions where UK < 0 outside the horizon, and UK > 0
inside the horizon.) An infalling observer who jumps in at
the time tC cannot reach any value of UK larger than this
limit, even if he travels at the speed of light.
Even though the problem above looks like it is different

from the situation where we have turned on a source in the
boundary, these two situations are closely related when the
bulk observables fit in a single causal patch. We explain
the logic briefly here and direct the reader to Sec. III C 1 for
further details.
It is a simple consequence of bulk causality that when we

turn on a source dual to some local operator on the boundary,
only the part of the source that is in the causal past of a bulk
point can affect the local field operator there. In particular, if
we consider a correlator with insertions in a single causal

patch, and the largestUK value of the insertions is e−
2πtC
β , then

we can just ignore the part of the source that acts after time tC.
This is why the class of observables obtained by

considering correlators in a causal patch in the presence
of an arbitrary simple local source—even one that con-
tinues for a long time in the future—is contained in the
class of observables obtained by considering correlators
sandwiched between a unitary of the form (1.5) and its
adjoint that live on the boundary of the causal patch. The
precise map between observables in the two possible
descriptions is given in Sec. III C 1.
In the discussion below, we will often refer to the case

where the “unitary and the observable both fit in the same
causal patch.” The reader should remember this contains the
case where we turn on arbitrary local sources and examine a
bulk observable that fits in some single causal patch.

D. Some technical details of the resolution

The central technical result that we prove in this paper is
that given a unitary and a product of field operators, all of
which fit in a single causal patch, we have

jhΨjU†ϕðx1Þ…ϕðxnÞUjΨi − hΨjϕðx1Þ…ϕðxnÞjΨij
≤ 2

ffiffiffiffiffiffiffiffi
βδE

p
σ ð1:6Þ

where δE is the energy injected by the unitary U and σ is
precisely the measure of fluctuations in this correlator that
appears in (1.2). This is a very nontrivial and surprising
property of AdS correlation functions, and Sec. IV is
devoted to establishing this result. We reiterate that by
the argument above, (1.6) implies that correlators of the
operators (1.4) restricted to a single causal patch also obey
the constraints of (1.2).
The conclusion, therefore, is as follows: no combination

of observers with finite powers can start with an equilib-
rium state, create an excitation U, and detect a correlator
that violates (1.2). Since typical states of the form jΨi take
up all but an exponentially small volume of the Hilbert
space, and it is very reasonable to restrict to experiments
where we turn on a local source and observe its effect, this
already resolves the paradox in almost all cases of interest.
In the original formulation of the paradox in [8], this

resolution is not evident because both the excitation and the
observable to be measured are framed in frequency space.
The fact that the excitation and the observable do not fit in a
causal patch becomes apparent only when we examine
these operators in position space.

E. A specific example

In Sec. V, we explicitly examine the specific unitaryUMP
and a set of near-horizon correlators through an indepen-
dent calculation that does not rely on the results of Sec. IV.
We consider a position space version of UMP,

UMP ¼ exp

�
i
Z

tC

ϑ
dt1dt2

Z
dΩ1dΩ2Oðt1;Ω1ÞOðt2;Ω2Þ

×Gðt1;Ω1ÞG�ðt2;Ω2Þ
�
;

where Gðt;ΩÞ ∝ eiω0tYlðΩÞ and Oðt;ΩÞ is a single trace
primary operator on the boundary. Nevertheless, we show
that if we restrict correlators in the state UMPjΨi to the
causal patch that contains UMP, which, in particular,
implies that we consider fields localized at points so that

UK < e−
2πtC
β then such correlators do not differ significantly

from correlators in the state jΨi.

F. Some speculations on causal patch complementarity

In Sec. VI, we turn to a general class of excitations where
the state is excited by an operator from the future before the
bulk observer jumps in. Alternately, we can think of the
situation where an observer jumps into a CFT state that is
about to undergo a spontaneous excitation, but hits the
singularity before the light ray from the excitation on the
boundary can reach him.
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Then it seems that, in principle, a superobserver with the
ability to prepare arbitrary states in the CFT could compare
the experience of the infaller in such states to the experience
of the infaller in states where the excitation is absent
altogether and observe a violation of (1.2).
However, the result of Sec. IV lead us to an interesting

idea: it is possible to modify the standard map between bulk
and boundary operators in such a way as to preserve (1.2)
even in such experiments. This is the hypothesis of “causal
patch complementarity.”
Before we explain the mathematical details, a rough

analogy may help to explain this idea. In quantum field
theory, a correlation function that is classically well-defined
requires the additional specification of a cutoff. The idea of
causal patch complementarity is that bulk correlators in
spontaneously excited states require additional data—about
the perspective of the causal patch from which they are
viewed—before they are fixed completely.
The precise proposal is as follows. For a large class of

unitaries U that we describe more precisely in Sec. VI C,
we suggest that the field operators, ϕC, that are appropriate
for an infalling observer in such a state and in a particular
causal patch satisfy

hΨjU†ϕCðx1Þ…ϕCðxnÞUjΨi¼ hΨjUC†ϕðx1Þ…ϕðxnÞUCjΨi;
ð1:7Þ

where on the right-hand side we have the usual field
operators constructed using the standard bulk-boundary
transfer function. The unitary UC is an “attenuated” version
of the unitaryU. It has the property that it is localized on the
intersection of the causal patch with the boundary (which
we term BC) and for any other simple operator AC

α that lives
on BC, we have hΨjUC†AC

αUCjΨi ¼ hΨjU†AC
αUjΨi; so the

unitaries U and UC are indistinguishable using operators
only on BC. We show that the description using the fields ϕC
is consistent within the causal patch C and also that it obeys
(1.2). But it is not the same as the description that would be
used by another observer who stays on the boundary long
enough to see the excitation U. We suggest that these two
descriptions are complementary. Our exploration of this
proposal is not yet complete but we describe it in this paper,
since it seems to point in some very interesting directions.

G. Plan of the Paper

This paper is structured as follows. In Sec. II, we derive
the inequality (1.2) that shows that in a general statistical
system, it is not possible to definitively excite the system
with energy less than kT. Section II follows the ideas of [8]
but is self-contained and may be considered a derivation of
a simple result in statistical mechanics. In Sec. III, we
describe our setup in holography and define our notation
and various concepts that we use later. In Sec. IV, we prove
that causal-patch correlators in anti–de Sitter space (AdS)

obey the constraints of statistical mechanics (1.2).
Section IV is technical, but contains the central results
of this paper. In Sec. V, we turn to a specific example to
elucidate the calculations of Sec. IV. We examine the “Born
rule” paradox of [8] and simply do a direct calculation,
without using the results of Sec. IV, to show that this
paradox disappears if we restrict the excitation and corre-
lators to a single causal patch. Finally, in Sec. VI, we
consider correlators in a causal patch but in a state that is
excited with a unitary outside that patch; we explore the use
of field operators that obey (1.7) to describe physics in a
particular causal patch in this state, and we show that this
ensures that these correlators are also stable, in that they are
close to correlators in a state where the excitation is absent.
We emphasize, once again, that our calculations in

Secs. IV and V are logically independent of the discussion
in Sec. VI. The proof that no violation of (1.2) can be seen
if we perform experiments where we turn on a local source
in an equilibrium state and then perform bulk observations
in a causal patch, which is the setting for any reasonable
experiment, is an independent result that does not rely on
our hypothesis of causal patch complementarity.
The recent literature on the reconstruction of the bulk from

the boundary, and the associated paradoxes, starting with the
work of Mathur [15] and AMPS [6], is rather extensive [16].
We reviewed some of these developments in detail in [12].
The application of causal patches to the information paradox
has also been explored in [17,18], and causal patches are also
relevant in the cosmological context [19].
A summary of the results of Sec. IV, with minimal

technical details, is presented in [20], which the reader may
find helpful.

II. LOW ENERGY EXCITATIONS IN A
THERMAL SYSTEM

In this section, we will derive a bound on the effect of a
low energy excitation in a thermal system. Our discussion
is not specific to AdS/CFT, and this can be taken to be a
simple and general result in statistical mechanics. This
derivation is motivated by the analysis of [8].
We consider a statistical system with a large number of

degrees of freedom. In such a system, we consider the set of
energy eigenstates around some energy, E in the energy
range E� Δ, with Δ ≪ E, and we denote the Hilbert space
spanned by these states by HE. In a generic statistical
system, we expect that the dimension of this space is given
by dimðHEÞ ¼ eS with S ∝ E. We now consider a state jΨi
that we pick using the Haar measure on this Hilbert space.
Then we remind the reader that by using the eigenstate
thermalization hypothesis [21], for any coarse-grained
observable Aα, we have

hΨjAαjΨi ¼
1

ZðβÞTrðe
−βHAαÞ þ O

�
1ffiffiffi
S

p
�
; ð2:1Þ
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where β ¼ ∂S
∂E is the inverse of the effective temperature of

the state and ZðβÞ is the partition function at that temper-
ature. So, for any coarse grained probe, the pure state jΨi is
effectively thermal.
We now consider a low energy excitation of such a

system. By this, we mean a unitary operator U that has the
property that for a generic state jΨi, we have

hΨjU†HUjΨi − hΨjHjΨi ¼ δE: ð2:2Þ
Note that a unitary cannot, on average, decrease the energy
of a typical state and so—leaving aside very special
unitaries that commute with the Hamiltonian—we have
δE > 0. We are interested in the situation where δE ≪ β,
and also δE ≪ Δ; so δE

E ¼ Oð1SÞ.
We can also write (2.2) in the form

U∶ HE → HEþδE;

which just shows that the unitary maps us from the
microcanonical ensemble at energy E into an ensemble
at energy Eþ δE. The map U is an injective map. On the
other hand, it is not surjective because the larger ensemble
has dimension

dimðHEþδEÞ ¼ eSþ
∂S∂EδE ¼ eSþβδE:

The image ofHE under U forms a subspace ofHEþδE, and
we denote the projector onto this subspace by PUE

. Now, let
jΨ0i be a typical state picked using the Haar measure on
HEþδE. We note that

hΨ0jPUE
jΨ0i ¼ 1 − βδEþ OððβδEÞ2Þ;

hΨ0jð1 − PUE
ÞjΨ0i ¼ βδEþ OððβδEÞ2Þ:

For use below, we define

jΨEi ¼ hΨ0jPUE
jΨ0i−12 PUE

jΨ0i;
jΨoi ¼ hΨ0j1 − PUE

jΨ0i−12 ð1 − PUE
ÞjΨ0i;

so that we can decompose

jΨ0i ¼
�
1−

βδE
2

�
jΨEiþðβδEÞ12jΨoiþOððβδEÞ32Þ: ð2:3Þ

We also note that statistically, jΨ0i is very similar to a
typical state picked fromHE. This is because the difference
in the temperature of the two ensembles is given by

δβ ¼ ∂β
∂E δE ¼ −β2

δE
CV

¼ 0þ O
�
1

S

�
; ð2:4Þ

where CV is the specific heat at constant volume, which is
also macroscopic and scales like S. Then, using (2.1) and
(2.4), we see that

hΨ0jAαjΨ0i ¼ hΨjAαjΨi þ O

�
1ffiffiffi
S

p
�
:

This means that the expectation value of a coarse grained
observable in a typical state from the larger ensemble is the
same as the expectation value in the smaller ensemble.
On the other hand, we can also calculate this expectation

value using the decomposition (2.3), which leads to

hΨ0jAαjΨ0i − hΨEjAαjΨEi
¼

ffiffiffiffiffiffiffiffi
βδE

p
ðhΨEjAαjΨoi þ hΨojAαjΨEiÞ þ OðβδEÞ:

Since jΨEi is a state obtained by acting with the unitary on
a typical state ofHE, the absolute value of the left-hand side
can also be replaced by the change in the expectation value
of Aα under the action of the unitary:

δhAαi≡ jhΨjU†AαUjΨi − hΨjAαjΨij:

We can also bound the magnitude of the right-hand side by
noticing that

jhΨEjAαjΨoij2 ¼ hΨEjAαjΨoihΨojA†
αjΨEi

¼ hΨEjAαðjΨoihΨoj þ jΨEihΨEjÞA†
αjΨEi

− jhΨEjAαjΨEij2
≤ hΨEjAαA

†
αjΨEi − jhΨEjAαjΨEij2:

In the intermediate step, we used the fact that jΨEihΨEj þ
jΨoihΨoj is a projector when the two vectors are orthogonal
and that for any projector, P,

hΨEjAαPA
†
αjΨEi ¼ hΨEjAαPPA

†
αjΨEi

¼ jPA†
αjΨEij2 ≤ jA†

αjΨEij2:

We can, of course, derive a similar equality showing that

jhΨEjAαjΨoij2 ≤ hΨojA†
αAαjΨoi − jhΨojAαjΨoij2:

We expect correlators in jΨoi to be thermal and the analysis
above tells us that, to leading order in βδE, correlators in
jΨEi are also thermal.
Putting these results together, we find that

δhAαi ≤ 2
ffiffiffiffiffiffiffiffi
βδE

p
σα; ð2:5Þ

for βδE ≪ 1, where the “deviation” of Aα is defined
through
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σ2α ≡ 1

ZðβÞmin½Trðe−βHA†
αAαÞ;Trðe−βHAαA

†
αÞ�

−
���� 1

ZðβÞTrðe
−βHAαÞ

����2: ð2:6Þ

Therefore, we see that if βδE ≪ 1, the change in the
expectation value of Aα is very small. In other words, in
terms of the expectation value of coarse-grained operators,
the state UjΨi is very similar to the state jΨi for a typical
state jΨi ∈ HE. This result can be stated in the form of a
slogan: it is impossible to definitively excite a thermal
system with energy less than kT.
We emphasize that the result above applies to a typical

state jΨi. Given a specific state jΨi, we can always tailor a
unitary operator, Uψ to excite that particular state so that
Uψ jΨi has very different properties from the original state.
But the same unitary Uψ will not work in other states that
also belong to the space HE.
The result that we have proved here is entirely general

and applies to any statistical system. We will see in the next
few sections how at first sight, it appears that black holes
could violate this bound [8] but that, in fact, these putative
violations are unobservable. In a gravitational context, we
need to be careful about the position dependence of the
unitary excitation U and the observable Aα that could lead
to a violation of (2.5). When we take this into account, we
find that these two never fit into a single causal patch, and
so no observer or collection of observers can detect this
potential violation.

III. HOLOGRAPHIC SETUP
AND CAUSAL PATCHES

We are interested in examining (2.5) in the context of AdS
black holes. In this section, we describe our setup. As far as
possible, we have maintained the conventions used in our
previous papers [4,5,12]. The notion of causal patches,
however, has not appeared previously in our work, and so
we describe them in our context in some detail in Sec. III B.
The proof that AdS correlators, after we account for the
constraints of causality, obey (2.5) is provided in the next
section.

A. Review of conventions

We will consider a CFT with a holographic dual, and in
this dual geometry, we are interested in a large AdS
Schwarzschild black hole. The metric is given by

ds2 ¼ gμνdxμdxν ¼ −fðrÞdt2 þ dr2

fðrÞ þ r2dΩ2; ð3:1Þ

with

fðrÞ ¼ 1 −
cdM
rd−2

þ r2;

with cd ¼ 8ðd − 1Þ−1π2−d
2 Γðd=2Þ, and where M is the mass

of the black hole. It is convenient to go to tortoise
coordinates

dr� ¼
dr
fðrÞ : ð3:2Þ

We set r� → 0 at the boundary, and this leads to r� → −∞
at the horizon. Note that near the boundary, we have r� ¼ 1

r.
Near the horizon, we have fðrÞ → 4π

β ðr − r0Þ, and therefore
in this region, we have r� ∼

β
4π lnðr − r0Þ, where β is the

inverse temperature of the black hole.
To cross the horizon, we move to Kruskal coordinates

defined by

UK ¼−e
2π
β ðr�−tÞ; VK ¼ e

2π
β ðr�þtÞ; outside the horizon:

ð3:3Þ

Once we are behind the horizon, we can introduce a second
Schwarzschild patch using the definitions

UK ¼ e
2π
β ðr�−tÞ; VK ¼ e

2π
β ðr�þtÞ; inside the black hole:

In this paper, we are interested in single-sided black holes,
and in observers who fall into the black hole given by the
metric (3.1) starting around time t ¼ 0 on the boundary.
Therefore, the region of the Penrose diagram deep in the
interior of the black hole, corresponding toUK ≫ 1 is not of
interest to us, since it is not accessible to any such observer.
We are also only concerned with the region where VK > 0.
The black hole metric (3.1) is dual to a state jΨi in the

boundary CFT, with hΨjHjΨi ∝ N2, whereN2 is the central
charge of the CFT and H is the CFT Hamiltonian. This is a
pure state in the CFT, which is not entangled with any other
system. The expectation is that a typical state picked with the
Haar measure on the microcanonical ensemble centered
around an energy much larger than the central charge will
correspond to the AdS-Schwarzschild geometry above.

B. Causal patches

Causal patches will play an important role in this paper.
We define them as follows. Consider a point, PC, on the
singularity. The causal patch is then defined as the set of all
bulk points that are in the causal past of this point. To
picturise this set, consider past directed null rays emanating
from the singularity at all possible angles. This light cone
intersects the boundary of AdS on a sphere, at a time that
we denote by tC. We now extend this region into the past. In
the past, the black hole may have formed through collapse
or through another process, and we are not interested in the
details of the formation. So we cut off the causal patch at a
value of VK ¼ exp½2πϑβ �; this intersects the boundary at a
time ϑ in the past. The intersection of the causal patch with
the boundary is denoted by BC. This extends for a time
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jBCj ¼ tC − ϑ along the boundary. It will be convenient for
the reader to think of ϑ as a large negative number, and we
discuss its magnitude in the next section. We denote the
entire causal patch by C. In an AdS Schwarzschild black
hole, we have a one-parameter family of patches that can all
be labeled by tC.
The physical motivation for considering causal patches is

as follows. Consider the worldlines of an army of observers
who all jump in from the boundary and end their lives on
the singularity at PC. Then the causal patch, as we have
defined it, is the set of all spacetime events that could
influence these observers before their wordlines terminate
on the singularity.
Strictly speaking, as explained in [17], in d > 2,

an observer who enters the horizon at some angular
point Ω can receive signals from all points on the sphere
only when he is exactly at the singularity. However, by
considering the set of all wordlines that end at a point on the
singularity rather than the causal past of a single observer,
we obtain a spherically symmetric patch, which simplifies
the algebra in the calculations that follow. In other contexts,
it may be important to consider the causal patch corre-
sponding to a single observer rather than an army of
observers, but, in our context, this distinction does not
seem to be important.
Figure 1 illustrates our perspective on the causal patch.

The figure on the left shows a causal patch in a black hole
formed from a Datt-Oppenheimer-Snyder type collapse
[22] in AdS. Note that in the left figure, light rays are not 45
deg lines. So the inner boundary of the patch inside the
horizon is a null geodesic but not a straight line. We are

interested in the geometry of the causal patches at late time,
without being concerned about the details of the collapsing
shell. So, it is more convenient to think of an eternal
geometry. Such a geometry can be obtained even in the
single sided case by considering an orbifold of the eternal
black hole geometry. This is shown on the right, where we
also show the early time cutoff ϑ.
For future use, it is also useful to define two additional

geometrical regions. We denote the causal wedge of BC—
all points in the bulk with the property that BC contains
some part of their causal past and also some part of their
causal future—by ∧C. The intersection of the causal patch
with the interior of the black hole is denoted by ∨C. These
regions are shown in Fig. 2.
We pause to emphasize two points. First, it is possible to

consider the causal patch corresponding to the observer
who stays outside the black hole at all times. This causal
patch, which we can call C∞, encompasses the entire region
outside the black hole. Second, note that these distinct
causal patches only appear in a black hole background. In
empty AdS, for example, there is a single causal patch that
encompasses all observers.
As we explained above, a causal patch is specified by a

point on the singularity. Note that the singularity is located at
r ¼ 0, and using (3.2), it is located at a value of r�s, given by

r�s ¼ lim
δ→0þ

�Z
0

r0−δ

dr
fðrÞ −

Z
∞

r0þδ

dr
fðrÞ

�
:

As explained in [23], for d > 2, we have r�s < 0. For d ¼ 2,
we have r�s ¼ 0.
In Kruskal coordinates, the singularity is located at

UKVK ¼ e
4π
β r�s . A point on the singularity can be labeled

by a value of time tsin on the singularity. Corresponding to
this value, we have a causal patch, whose boundaries are

FIG. 1. Two views of a causal patch. On the left, we show a
causal patch in a Datt-Oppenheimer-Snyder collapse in AdS. The
collapsing star is shaded in brown. On the right, we show a causal
patch in an eternal single-sided geometry, and we also show the
early time cutoff at ϑ. In both figures, the patch is demarcated in
blue gray, and the future horizon is shown by a dashed magenta
line.

FIG. 2. The causal wedge, ∧C is shaded in blue outside the
horizon; the intersection of the causal patch with the interior,
denoted by ∨C is shaded pink inside the horizon.
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UK ¼ e
2π
β ðr�s−tsinÞ and VK ¼ e

2π
β ðr�sþtsinÞ. This causal patch

intersects the boundary at the time tC ¼ r�s þ tsin. Since
r�s ≤ 0 as we pointed out above, we see that tsin ≥ tC.

C. CFT definitions and conventions

A central role in our analysis is played by generalized
free fields, which are light operators in the theory whose
correlators factorize. We denote such a field byOðt;ΩÞ. For
example, in the N ¼ 4 SYM theory, both TrðF2Þ and the
stress tensor Tμν are generalized free fields, although in this
paper, to lighten the notation, we will drop the tensor
indices on all such operators. Just as in [24], we consider
angular momentum modes in such fields

OlðtÞ ¼
Z

dΩOðt;ΩÞY�
lðΩÞ; ð3:4Þ

where the integral is over the boundary Sd−1 and YlðΩÞ are
the spherical harmonics. We then consider the polynomial
algebra in these modes

A ¼ span offOl1ðt1Þ;Ol2
ðt2ÞOl3ðt3Þ;…;

Ol4ðt4ÞOl5ðt5Þ � � �OlDm
ðtDm

Þg: ð3:5Þ

Here, we have introduced a cutoffDm in the highest angular
momentum mode that is allowed to appear, with Dm ≪ N.
As we mentioned above, it is also important to place a long
time cutoff on the boundary. This can be done by restricting
the times ti that appear above to lie in ti ∈ ½−jϑj; jϑj�. Here,
ϑ can be taken to be a power of N but not exponentially
large jϑj ≪ eN

2

. As discussed in [12,13], unless we place
such a cutoff on the length of the longest possible time
interval in the CFT, there is no meaningful way to speak of
a dual geometry.
The reader will notice that our notation differs from the

notation of [4,5] in that we have defined the algebra using
operators that are local in time, rather than using operators
of definite frequency. At an abstract level, these two
definitions are equivalent. But our notation reflects one
of the messages of this paper: a position space analysis
often provides insights that may be missed by a purely
frequency-space analysis.
An element of the algebra is denoted by Aα ∈ A. At

times, wewould like to consider an element that is localized
at a given point in time, and we denote this by AαðtÞ. Such
an operator is a polynomial in local operators, all of which
are at the time t. The modes defined in (3.4) are examples of
such operators.
We will also consider nonequilibrium states that are

related to the simple equilibrium state jΨi. These excited
states are of the form

jΨnei ¼ UjΨi;

where U is a unitary formed by exponentiating a Hermitian
element of the algebra localized around some time T.
Sometimes, rather than thinking of the nonequilibrium state
as a state in the original theory, it is convenient to think of it
as being produced by actively deforming the Hamiltonian
on the boundary. This is an elementary point, but since it
may be the source of some confusion, we now explain it in
some detail.

1. Source deformed correlators as correlators in
autonomously excited states

To actively produce a nonequilibrium state, we proceed
as follows. We allow the CFT to thermalize so that it goes
into an equilibrium state jΨi. Then we deform the CFT
Hamiltonian by turning on a source

HJðtÞ ¼ H þ JðtÞAJ
αðtÞ; ð3:6Þ

where AαðtÞ is a some element of the algebra made
out of local operators at time t. H is the original CFT
Hamiltonian. AJ

α are the new Heisenberg operators, and
they are related to the original Heisenberg operators
through

AJ
γ ðtÞ¼ T̄ fei

R
t

ϑ
JðxÞAαðxÞdxgAγðtÞT fe−i

R
t

ϑ
JðxÞAαðxÞdxg; ð3:7Þ

where T (T̄ ) is the (anti)time-ordering symbol, and the
superscript distinguishes these operators from the original
operators. If we consider the expectation value of a single
source-deformed Heisenberg observable localized at a time
T, this is given just by sandwiching the expression above in
a state

hΨjAJ
γ ðTÞjΨi ¼ hΨjT̄ fei

R
T

ϑ
JðxÞAαðxÞdxgAγðTÞ

× T fe−i
R

T

ϑ
JðxÞAαðxÞdxgjΨi:

Therefore, modifying the Hamiltonian through (3.6) func-
tions as if we were evaluating correlators in the non-

equilibrium state jΨnei ¼ T fe−i
R

T

ϑ
JðxÞAαðxÞdxgjψi after the

time T. Before that time, the state is just the ordinary
equilibrium state.
On the other hand, it is also possible to think of jΨnei as

an autonomous state i.e., a state in the theory with the
undeformed Hamiltonian that simply happens to have a
spontaneous excitation around the time T. Note that even in
this picture, at times t ≪ T, the state looks close to
equilibrium. For example, if we think of the boundary
as a fluid, then this is a state where the fluid is initially in
equilibrium, but then the microscopic elements of the fluid
conspire to throw up an excitation around T that again
decays away. An observer on the boundary in such a
state would observe a violation of the second law of
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thermodynamics, but such states are part of the Hilbert
space of the CFT.2

This equivalence between the two descriptions general-
izes to the case where the observable in question is a
product of localized operators in the bulk. As a special case
of (3.7), the bulk fields are deformed to

ϕJðt; r�;ΩÞ ¼ T̄ fei
R

t

ϑ
JðxÞAαðxÞdxgϕðt; r�;ΩÞ

× T fe−i
R

t

ϑ
JðxÞAαðxÞdxg:

But now, note that in the time-ordered unitary that appears
on the right, the later part of the integral that runs from
½tþ r�; t� involves operators that commute with the bulk
field. Since AαðtÞ is localized on the boundary, by bulk
locality, we have ½ϕðt; r�;ΩÞ; AαðxÞ� ¼ 0 if tþ r� <
x < t − r�. We need only the first part of this inequality
since in the expression above, x ≤ t. The adjoint of the part
of the time-ordered unitary that runs from ½tþ r�; t� appears
on the extreme right of the anti-time-ordered unitary.
Therefore,

ϕJðt; r�;ΩÞ ¼ W†ðtþ r�Þϕðt; r�;ΩÞWðtþ r�Þ;

where

Wðtþ r�Þ≡ T fe−i
R

tþr�
ϑ

JðxÞAαðxÞdxg:

But this means that a correlator of the deformed field can be
written as

hΨjϕJðt1; r�1;Ω1Þ…ϕJðtn; r�n;ΩnÞjΨi
¼ hΨjWðt1 þ r�1Þ†ϕðt1; r�1;Ω1ÞWðt1 þ r�1Þ…
×Wðtn þ r�nÞ†ϕðtn; r�n;ΩnÞWðtn þ r�nÞjΨi:

Furthermore, we can massage this correlator so that it
looks precisely of the form (2.5) as follows. Define

U ¼ exp

�
−i

Z
tC

ϑ
AαðtÞdt

�
;

as in (1.5). Then we find that

hΨjϕJðt1; r�1;Ω1Þ…ϕJðtn; r�n;ΩnÞjΨi ¼ hΨjU†AγUjΨi

where

Aγ ¼ exp

�
−i

Z
tC

ϑ
AαðtÞdt

�
Wðt1 þ r�1Þ†ϕðt1; r�1;Ω1Þ

Wðt1 þ r�1Þ…Wðtn þ r�nÞ†ϕðtn; r�n;ΩnÞ

×Wðtn þ r�nÞ exp
�
i
Z

tC

ϑ
AαðtÞdt

�
: ð3:8Þ

Now, we note that ðt; r�;ΩÞ ∈ C ⇒ ðtþ r�; 0;Ω0Þ ∈
C;∀Ω0. Therefore, the operator Aγ is entirely localized in
the causal patch, and U is localized on the boundary of
the patch.
The conclusion is that a correlator with source-

deformed fields can be reduced to a correlator of ordinary
fields with insertions only in C and an excitation on the
boundary of C.
In operational terms, this yields the following protocol to

check (2.5) in the situation where we create an excitation
activelybydeforming theHamiltonian through a local source.
The infalling observer can measure hΨjϕJðt1;r�1;Ω1Þ…
ϕJðtn;r�n;ΩnÞjΨi and compare this excited expectationvalue
with hΨjAγjΨi in the unexcited state, where Aγ is specified
in (3.8).
On physical grounds, it is more natural to think of jΨnei

as being produced by turning on a local source on the
boundary. But, from a technical perspective, it is more
convenient to think of the state as an autonomous state
since then we do not have to worry about the time ordering
in (3.7).
In Sec. IV we will be able to prove that AdS correlators

in a causal patch are stable, in that they obey the constraints
(2.5) of statistical mechanics, in all possible autonomous
states of the form jΨnei where the unitary and the
observables fit in the same causal patch. As we have
explained above, this also implies that these correlators are
stable if an observer or an army of observers on the
boundary turn on a source and subsequently jump into
the bulk and cross the horizon. We reiterate that this applies
to arbitrary sources dual to local boundary operators—even
those that continue to act beyond the causal patch.
No bulk sources While we have considered the effect of

sources dual to local operators on the boundary above, we
emphasize that we do not consider situations where sources
are turned on in the bulk. A bulk source would violate local
energy conservation. So, in a theory of quantum gravity, it
does not make sense to modify the bulk Hamiltonian and
only boundary sources are allowed.
This is a subtle point. If ϕðfÞ is a smeared Hermitian

bulk operator then correlators where local insertions are
sandwiched between bulk unitaries, eiϕðfÞ and e−iϕðfÞ, can
be expanded in a series of Wightman functions. But the
bulk observer can only measure time ordered correlators,
and not arbitrary Wightman functions. So the allowed bulk
observables are

2Note that in switching descriptions from the picture where we
evaluate the expectation value of a source-deformed observable to
the picture where we evaluate the expectation value of the
observable in a spontaneously excited state in the undeformed
theory, the parameter T, which was a property of the observable in
the source-deformed description, now enters into the description
of the state. This should not cause any confusion. The source
itself can continue to act after time T but this part of the source
does not enter into jΨnei.
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hΨnejT ½ϕðt1; r�1;Ω1Þ…ϕðtn; r�n;ΩnÞ�jΨnei
¼ hΨjU†T ½ϕðt1; r�1;Ω1Þ…ϕðtn; r�n;ΩnÞ�UjΨi:

Notice that the unitaries on the left and the right are outside
the time ordering, since they may be produced by sponta-
neous excitations or boundary sources.
We will not need this time ordering in most of this paper

since the precise results that we describe below—such as
the proof of (1.6)—hold for all Wightman functions, and
not just for time-ordered bulk correlators. Nevertheless, the
physical restriction to time-ordered bulk observables is
important to keep in mind to avoid the appearance of
additional paradoxes corresponding to bulk sources and
bulk unitaries.

D. Transfer function

An important role in the program of reconstructing the
bulk from the boundary is played by transfer functions that
map bulk operators to boundary operators. This is reviewed
in detail in [3]. Here, we review the essential formulas and
direct the reader to [3] and references there for further
details.
Outside the horizon (corresponding to U< 0;e

2πϑ
β <V <

e
2π
β tC ), the bulk field can be mapped to boundary operators

via the mapping

ϕðt; r�;ΩÞ ¼
X
l;ω

D0ðω;lÞOω;lζω;lðr�Þe−iωtYlðΩÞ þ H:c:;

ð3:9Þ

whereas for the part of the causal patch inside the horizon

(corresponding to 0 < U < e
2π
β ð2r�s−tCÞ; e

2πϑ
β < V < e

2π
β tC , the

mapping between bulk and boundary operators is given by

ϕðt;r�;ΩÞ¼
X
l;ω

YlðΩÞD0ðω;lÞeζ−ω;lðr�Þ
× ðOω;le2iδω;le−iωtþ eOω;leiωtÞþH:c: ð3:10Þ

We have introduced several pieces of notation above, and
we explain them now. The radial functions ζω;lðr�Þ andeζ−ω;lðr�Þ ensure that the full mode satisfies the wave
equation both inside and outside the horizon. These
functions are chosen to satisfy specific boundary condi-
tions. So, if the bulk field has mass m, then

ð□ −m2Þζω;lðr�Þe−iωtYlðΩÞ ¼ 0;

ζω;lðr�Þ ⟶
r�→−∞

eiωr� þ e2iδω;le−iωr� ;

whereas the mode behind the horizon satisfies

eζ−ω;lðr�Þ ⟶
r�→−∞

e−iωr� ;

and this time the limit r� → −∞ is taken from behind the
horizon.
The phase δω;l and the function D0ðω;lÞ are fixed by

ensuring that ζ is normalizable at the boundary and the
normalizable part has coefficient,

ζω;lðr�Þ⟶
r�→0

1

D0ðω;lÞ ðr�Þ
Δ;

where Δ is the dimension of the operator O. These radial
equations are discussed in some detail in Sec. IV.
Finally, Oω;l are modes of the boundary operators, andeOω;l are the “mirror” operators, which we will review

below. As we pointed out in [5], the modes of the boundary
operators cannot be defined as infinite time Fourier trans-
forms; instead, it is important to define these modes as
Fourier series coefficients corresponding to a compact
region on the boundary.

Oω;l ¼
Z

dΩ
Z jϑj

−jϑj
dtOðt;ΩÞY�

lðΩÞeiωt; ð3:11Þ

where jϑj is the long time cutoff introduced above.
Corresponding to this, we see that ω must be quantized
in units of πn

jϑj. We wish to avoid having this cutoff appear in

all our formulas. To do this, we will use the following
notational tricks. First, it is understood that whenever we
write a sum over ω, we really mean

X
ω

fðωÞ≡ 1

2jϑj
X
n>0

fðnÞ;

where ω ¼ πn
jϑj as above and additionally, the sum over

frequencies runs only over positive frequencies. Second,
when we write a delta function, we mean

δω;ω0 ≡ 2jϑjδnn0 :

The reader will note that we have already tacitly used this
notation in the formulas above.
We now turn to the definition of the operators eO. These

operators were described in [4,5,12], and we refer the
reader to those papers for details. Here, we simply recall
that these operators are defined through a set of linear
equations. Given an equilibrium state, we define the mirror
operators to satisfy

eOω;lAαjΨi ¼ e−
βω
2 AαO

†
ω;ljΨi: ð3:12Þ

This completely specifies the action of the operators on the
subspace HΨ ¼ AjΨi; this is the subspace formed by low
energy excitations of the equilibrium state and is the only
part of the Hilbert space that is relevant for effective field
theory experiments done about the state jΨi.
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IV. PROOF OF THE STABILITY OF AdS
CORRELATORS IN A CAUSAL PATCH

In this section, we will now prove that AdS correlators
obey the inequality (2.5) whenever the excitation U and the
correlation function to be measured fit in a single causal
patch. This automatically implies that in the physically
important setting where we start with an equilibrium state,
and turn on a local source, we do not observe any violation of
(2.5). This is because as we see from (1.4) an operator at any
point in the bulk cannot be affected by any part of the source
that is not in its causal past; therefore it cannot be affected by
any part of the source that is outside its causal patch.3

Since our proof is somewhat technical, we summarize
the main ideas before starting the proof. It is useful to
understand why the inequality is in danger of being
violated in the first place. Bulk operators defined through
(3.9) are simply rewritings of ordinary operators on the
boundary. So they must automatically obey the inequality
(2.5) which applies to any ordinary operator. On the other
hand, the bulk operators defined in (3.10) depend on the
operators eOω;l that are defined through the linear equa-
tions (3.12). We remind the reader that these operators are
state dependent. This means that it is impossible to find a
globally defined operator eOω;l that obeys the Eqs. (3.12)
about all equilibrium states jΨi. The danger is that this state
dependence may cause these operators to behave very
differently in an excited state UjΨi than in a typical
equilibrium state jΨi, even if U is a low energy excitation.
But the modes eOω;l are an auxiliary device for construct-

ing the local field operatorsϕðt; r�;ΩÞ.Whatwewill show in
this section is that when these operators are localized in the
same causal patch as the excitation U, they obey the
inequality (2.5) because the anomalous transformations of
the individual modes cancel among each other.
In more detail, we proceed as follows. Even though the

AdS potential causes backscattering, it is possible to define
a set of right-moving and left-moving modes in AdS. The
right movers are the modes that behave like ϕr ∼ eiωðr�−tÞ
near the horizon, and the left movers are those that behave
like ϕl ∼ e−iωðr�þtÞe2iδω;l near the horizon. As we cross the
horizon, the left movers just continue smoothly from the
region outside the horizon to the region inside the horizon.
But the right movers behind the horizon, eϕr, now contain
the mirror modes rather than the ordinary modes.
The operators eϕr are defined so that in an equilibrium

state, they can be replaced, up to a conjugation by e
βH
2 , with an

ordinary operator bϕ. The calculation that we perform is to

show that the commutator ½bϕðxÞ;ϕðx0Þ� vanishes when x is
placed in∨C—which is the part of the causal patch inside the
horizon—and x0 is placed near the boundary on BC.
(See Fig. 3).
Now, consider two states—an equilibrium state jΨi and

a near-equilibrium state jΨnei¼UCjΨi, where UC is local-
ized on BC. As a consequence of this vanishing commu-
tator, a correlator involving eϕrðxÞ can be replaced—up to

the conjugation by e
βH
2 that leads to an error of only

OðβδEÞ—by a correlator of ordinary operators involving
just bϕðxÞ both in jΨi and jΨnei. If the commutator had not
vanished, this would not have been possible since eϕrðxÞ
commutes with UC and so it can only be substituted by
another operator that also commutes with UC. Now, since
this ordinary operator obeys the inequality (2.5), we see
that the correlator involving eϕrðxÞ also obeys (2.5) as long
as x is within the causal patch.
To compute the commutator, first, we analyze the analytic

properties of the normalizable mode outside the horizon.
This ismost conveniently done by building themode starting
at the boundary and then solving inwards in Sec. IVA. Next,
we define and analyze the analytic properties of the right-
moving component of this mode; this is most conveniently
done by specifying the mode at the horizon and solving
outwards towards the boundary in Sec. IV B. Finally, we
consider the analytic properties of components of the field
behind the horizon in Sec. IV C, which are the same as those
of the right-moving components outside the horizon. In
Sec. IV D, we determine the commutator ½bϕðxÞ;ϕðx0Þ�. A
knowledge of the analytic properties of themode functions is
enough to show the vanishing of the commutator in the
region of interest. In the last section, we put together all this
information to show thatAdScorrelators are stable under low
energy excitations. This means that they obey the inequality

FIG. 3. A boundary excitation at x0 commutes with the right
moving hatted field at x even though x is in the causal future of x0.
The boundaries of the causal patch are in blue. The light cone
from x0 is marked off in brown.

3Note that as mentioned above, if we think in terms of sources,
our proof of the stability of AdS correlators is valid for arbitrary
sources, without any loss of generality. The restriction that the
boundary excitation are limited to the same causal patch as the
bulk points is implemented automatically through bulk causality
when the excitation is created through a deformation of the
boundary Hamiltonian.
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(2.5) and a low energy excitation cannot change the corre-
lator significantly.

A. Analysis from the boundary side

To analyze the AdS wave functions, we will follow the
techniques of [25]. In the context of AdS/CFT, these wave
functions have been discussed in the context of
Schwarzschild-AdS quasinormal modes [26,27]. We
review and rephrase this discussion in the context that
we need.
The Klein-Gordon wave equation is given by

1ffiffiffiffiffiffi−gp ∂μgμν
ffiffiffiffiffiffi
−g

p ∂νϕ −m2ϕ ¼ 0;

where the AdSdþ1 black hole metric is given by (3.1). As
above it is convenient to go to the tortoise coordinates
defined in (3.2). We remind the reader that r� → 0 at the
boundary and r� → −∞ at the horizon.
In these coordinates, we have

ffiffiffiffiffiffi−gp ¼ fðrÞrd−1. We also
have gr�r� ¼ −gtt ¼ 1

fðrÞ. Then the wave equation becomes

1

fðrÞrd−1 ∂r�r
d−1∂r�ϕ −

1

fðrÞ ∂
2
tϕþ 1

r2
□Ωϕ −m2ϕ ¼ 0;

ð4:1Þ

where r is now understood to be a function of r� and□Ω is
the Laplacian on the sphere.
We can separate variables and write an ansatz for the

solution of (4.1) as

ϕω;lðt; r�;ΩÞ ¼ r
1−d
2 χω;lðr�Þe−iωtYlðΩÞ:

Note that

∂r�r
d−1∂r�r

1−d
2 χω;lðr�Þ ¼ r

d−1
2 ∂2

r�χω;lðr�Þþ
1

4
½ðd−3ÞfðrÞ

þ2rf0ðrÞ�ð1−dÞfðrÞrd−5
2 χω;lðr�Þ;

and the differential equation for χω;l now becomes

∂2χω;lðr�Þ
∂r�2 ¼ Vðr�Þχω;lðr�Þ;

where

Vðr�Þ ¼ −
�
ω2 þ ðd − 3Þð1 − dÞ

4

fðrÞ2
r2

−m2fðrÞ

− lðlþ d − 2Þ fðrÞ
r2

þ 1 − d
2

f0ðrÞfðrÞ
r

�
:

Near the boundary, it is also convenient to write this
equation as

∂2χω;lðr�Þ
∂r�2 þ γ2χω;l −

ðm2 þ d2−1
4
Þ

r�2
χω;l ¼ Vbdðr�Þ; ð4:2Þ

where

γ2 ≡ ω2 − lðlþ d − 2ÞÞ −m2 þ ðd − 2Þðd − 1Þ
3

;

and

Vbdðr�Þ ¼ lðlþ d − 2Þ
�
fðrÞ
r2

− 1

�
þ ðd − 3Þðd − 1Þ

4

×

�
f2ðrÞ
r2

−
1

r�2
−
4

3

�
þm2

�
fðrÞ − 1

r�2
−
1

3

�

þ d − 1

2

�
f0ðrÞfðrÞ

r
−

2

r�2
−
2

3

�
:

We see that Vbdðr�Þ is now finite at all values of
r� ∈ ð−∞; 0�, which is the range that we are interested
in, and that near the boundary, Vbdðr�Þ ¼ Oðr�2Þ.
We can solve this equation using Green’s functions both

near the boundary and near the horizon. The starting point
for this is to write a “free” equation near the boundary
(neglecting Vbd),

∂2χ0ω;lðr�Þ
∂r�2 þ γ2χ0ω;lðr�Þ−

ðm2þ d2−1
4
Þ

r�2
χ0ω;lðr�Þ¼ 0: ð4:3Þ

Note that at the boundary, since the potential Vbd → 0, we
have χ0ω;lðr�Þ→r�→0χω;lðr�Þ. Therefore, imposing normal-
izable boundary conditions at the boundary, the only
allowed solution is

χ0ω;lðr�Þ ¼
1

γν
ffiffiffiffiffi
r�

p
Jνðγr�Þ;

with ν ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ d2

4

q
. We have normalized the solution so

that near the boundary, where r� → 1
r → 0, the behavior of

the original field is

ϕω;lðt;r�;ΩÞ¼e−iωtYlðΩÞr1−d2 χω;lðr�Þ →
r�→0

e−iωtYlðΩÞr�d2þν:

We are ultimately interested in the analytic properties of
the mode as we vary ω. From the series expansion of the
Bessel function given above, we see that

1

γν
Jνðγr�Þ ¼

X∞
s¼0

ð−1Þs
Γðsþ 1ÞΓðνþ sþ 1Þ γ

2s

�
r�
2

�
νþ2s

:

In particular, we see that in the expression for χ0ω;lðr�Þ, γ
appears only raised to positive even integer powers.

Therefore we see that χð0Þω;lðr�Þ has no poles or branch cuts
in ω at any finite r� at any finite value of ω.
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We now show that the full solution with the potential Vbd
included also has the same analytic structure in ω. To
construct the solution away from the boundary, we need the
Green’s function for the Eq. (4.2). This can be constructed
as follows. Consider the second solution to the free
equation (4.3). This can be written as γν

ffiffiffiffiffi
r�

p
Yνðγr�Þ. We

can then write the Green’s function as

Gðr0�; r�Þ ¼
π

2

ffiffiffiffiffiffiffiffiffi
r�r0�

p
ðJνðγr�ÞYνðγr0�Þ

− Yνðγr�ÞJνðγr0�ÞÞθðr0� − r�Þ: ð4:4Þ

To examine the analytic properties of Gðr0�; r�Þ in ω, we
note that

YνðxÞ ¼
cosðνπÞJνðxÞ − J−νðxÞ

sin νπ
:

This form is valid for all noninteger ν, and for integer ν, it
should be understood appropriately as a limit taken from
noninteger ν. We see then that a term proportional to
Jνðγr�ÞJνðγr0�Þ cancels between the two terms of (4.4),
leading to a series expansion

Gðr0�; r�Þ ¼
π

ffiffiffiffiffiffiffiffiffi
r�r0�

p
2 sinðνπÞ

X∞
s;t¼0

ð−1Þsþtγ2ðsþtÞðr0�
2
Þ2sþνðr�

2
Þ2t−ν

Γðsþ 1ÞΓðνþ sþ 1ÞΓðtþ 1ÞΓðt − νþ 1Þ − ðr0� ↔ r�Þ; ð4:5Þ

for r0� > r�. The leading nonanalytic term γν cancels in the
product of Jνðγr�Þ and J−νðγr0�Þ and thereafter, only
positive integer powers of γ2 occur. Therefore, we conclude
that (4.4) is also an analytic function of ω with no poles or
branch cuts at finite ω.
Using this Green’s function and the solution χ0ω;l, we can

proceed to construct the full solution. We write

χðnÞω;lðr�Þ ¼
Z

r�

0

χðn−1Þω;l ðr0�ÞGðr0�; r�ÞVbdðr0�Þdr0�; ð4:6Þ

where the range of integration can be restricted to r�
because the Green’s function vanishes beyond that. We then
write the full solution as

χω;lðr�Þ ¼
X∞
n¼0

χðnÞω;lðr�Þ: ð4:7Þ

Now, we note that in (4.6), the integrand is finite at all
values of r0�, and each χðnÞω;lðr�Þ dies off at least as fast as
ðr�Þνþ1

2
þ4n near the boundary. We can prove these facts

together using induction. These properties are clearly true

for the iteration from χð0Þω;l to χ
ð1Þ
ω;lðr�Þ. Now assume that we

have performed the iteration till χðn−1Þω;l ðr�Þ. Then the
Green’s function has a singularity which, at worst, goes
like ðr0�Þ12−ν near the boundary. On the other hand, by

assumption, χðn−1Þω;l dies off like ðr0�Þνþ1
2
þ4ðn−1Þ near the

boundary and, in addition, we can check that
Vbdðr0�Þ→r0�→0ðr0�Þ2. So the integrand scales like ðr0�Þ4n−1
as we approach the boundary. We see that after we do the
integral up to r� and note that the Green’s function has a
leading factor of ðr�Þνþ1

2 in (4.5), we find that χðnÞðr�Þ dies
off like r�νþ

1
2
þ4n, which is what we need.

Second, since we are integrating a finite integrand over a
finite region, we see that the iteration (4.6) produces no
poles at finite ω and finite r�. Therefore, the full solution
(4.7) has no poles or branch cuts at finite ω and finite r�.

1. Transfer function using boundary-side modes

We now describe how these modes can be combined
with the modes of boundary operators to write down a bulk
field. Since the function r

1−d
2 χω;l is normalized to die off

like r−Δ near the boundary, we can immediately write an
expression for the bulk field as

ϕðt; r�;ΩÞ ¼
X
l;ω

Oω;lr
1−d
2 χω;lðr�Þe−iωtYlðΩÞ þ H:c:;

where the boundary modes Oω;l were defined in (3.11).
However, we would like to write the bulk field in terms

of ordinary creation and annihilation operators that have
simple commutators. To do this, we consider the expansion
of the radial mode near the horizon

r
1−d
2 χω;lðr�Þ ⟶

r�→−∞
D0ðω;lÞðeiωr� þ e2iδω;le−iωr� Þ; ð4:8Þ

where the functions D0 and δω;l are defined by the relation
above. We can now alternately define

ζω;lðr�Þ ¼
1

D0ðω;lÞ r
1−d
2 χω;lðr�Þ;

where ζω;lðr�Þ is a sum of plane waves near the horizon.
Using these wave functions, the bulk field can also be
written as

ϕðt; r�;ΩÞ ¼
X
l;ω

aω;lffiffiffiffi
ω

p ζω;lðr�Þe−iωtYlðΩÞ þ H:c:; ð4:9Þ
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where

aω;l ¼ D0ðω;lÞ ffiffiffiffi
ω

p
Oω;l: ð4:10Þ

With a little algebra, it is not difficult to see that (with an
appropriate ω-independent and l-independent normaliza-
tion for the spherical harmonics) ϕ obeys the canonical
commutation relations if the operators aω;l satisfy

½aω;l; a†ω0;l0 � ¼ δω;ω0δl;l0 :

Note that this implies that4

Now we turn to the analyticity properties of ζω;l. At
finite ω, since χω;l has no singularities, the singularities of
ζðω;lÞ can only come from the zeroes of D0ðω;lÞ since.
But these zeroes have a nice physical interpretation. They
correspond to the quasinormal modes of the black hole.
This is becauseD0ðω;lÞ is defined as the coefficient of the
outgoing wave, eiωr� , in (4.8). So, whenD0ðω;lÞ vanishes,
the mode becomes purely ingoing at horizon.
Note that the vanishing of D0ðω;lÞ does not mean that

the entire mode in (4.8) vanishes. The phase factor can be

written as e2iδω;l ¼ D0ð−ω;lÞ
D0ðω;lÞ , and so it has poles correspond-

ing to the complex zeroes of D0ðω;lÞ.
The quasinormal modes have the property that they all

have ImðωÞ < 0. (See [26] for a proof.) Therefore, we see
that ζω;l has poles when ω is in the lower-half plane, and it
is regular in the upper-half plane.
One subtle point has to do with the behavior of D0ðω;lÞ

when ω approaches infinity through the upper-half plane.
In this limit, where jωj ≫ 1, while ImðωÞ > 0, the potential
Vbd becomes irrelevant, and we can read off D0ðω;lÞ from
χ0ω;lðr�Þ, and we see that it approaches a constant and does
not go to 0.

B. Analysis near the horizon

We now consider the bulk modes from a second
perspective starting with the horizon and solving outwards.
This allows us to define what we mean by the “right
moving” modes and analyze their analytic properties.

Near the horizon, it is convenient to write

Vhorðr�Þ ¼ −
�ðd − 3Þð1 − dÞ

4

fðrÞ2
r2

−m2fðrÞ

− lðlþ d − 2Þ fðrÞ
r2

þ 1 − d
2

f0ðrÞfðrÞ
r

�
;

and write the differential equation for the radial mode as

∂ζ�ω;lðr�Þ
∂r�2 þ ω2ζ�ω;lðr�Þ ¼ Vhorðr�Þζ�ω;lðr�Þ; ð4:12Þ

where the superscript � distinguishes the two independent
solutions of this equation.
We now construct ζþω;lðr�Þ, which corresponds to the

right-moving mode. The construction of the left-movers is
similar. In the absence of the potential, the Eq. (4.12) is
solved by

ζþ0
ω;lðr�Þ ¼ eiωr� ;

and ζþω;lðr�Þ is the completion of this solution.
The Green’s function for (4.12) can be written as

Ghorðr0�; r�Þ ¼
1

ω
sinðωðr� − r0�ÞÞθðr� − r0�Þ:

We then again write an iterative solution for this wave
function as

ζþ;ðnÞ
ω;l ðr�Þ ¼

Z
r�

−∞
ζþ;ðn−1Þ
ω;l ðr0�ÞVhorðr0�ÞGhorðr0�; r�Þdr0�;

with the full solution being given by

ζþω;lðr�Þ ¼
X∞
n¼0

ζþ;ðnÞ
ω;l ðr�Þ:

Now, we note that the potential can be expanded as

Vhorðr�Þ ¼
X
m>0

Vme
4πmr�

β : ð4:13Þ

To see this, it is most convenient to switch to the Kruskal
coordinates. The potential only depends on the product
UKVK and not on the ratio VK=UK. Near the horizon, we
can explicitly derive an expansion of the form (4.13). We
now expect this horizon to converge till the nearest pole of
Vhor. The closest poles of Vhor occur at the singularity

where jUKVKj ¼ e
4πr�s

β , and we expect this series expansion
to be valid till this point.
In the region where (4.13) is valid, we can easily

determine the analytic form of ζþ;ðn−1Þ
ω;l ðr�Þ. For example,

ζþ;ð1Þ
ω;l ðr�Þ is simply given by

4This relates a property of the bulk wave function specified in
(4.8) to the commutator of boundary operators in a thermal state;
this is a prediction of AdS/CFT and can be verified in several
cases. (See, for example, Appendix A of [3].)

hΨj½Oω;l;O
†
ω0;l0 �jΨi ¼ 1

ZðβÞTrðe
−βH½Oω;l;O

†
ω0;l0 �Þ

¼ 1

ωjD0ðω;lÞj2 δω;ω0δl;l0 : ð4:11Þ
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ζþ;ð1Þ
ω;l ðr�Þ¼

1

2iω

Z
r�

−∞
dr0�eiωr

0� ðeiωðr�−r0�Þ−eiωðr0�−r�ÞÞVme
4πmr0�

β

¼ eiωr�

2iω

X
m>0

Vme
4πmr�

β

�
β

4πm
−

1

2iωþ 4πm
β

�

¼
X
m

βVme
ðiωþ4πm

β Þr�

4πmð2iωþ 4πm
β Þ :

Thus, we only get poles at ω ¼ 2πim
β for m a positive

integer. We can now easily prove this by induction for allm.

Let us say that we have proved that ζþ;ðnÞ
ω;l ðr�Þ ¼P

Dþ;ðnÞ
m ðω;lÞeðiωþ4πm

β Þr� , where Dþ;ðnÞ
m ðω;lÞ has poles

only for ω¼ 2πim
β . Then we see that

ζþ;ðnþ1Þ
ω;l ðr�Þ¼

X
m;m0

Dþ;ðnÞ
m ðω;lÞ βVm0eðiωþ

4πm
β þ4πm0

β Þr�

4πðmþm0Þð2iωþ 4πðmþm0Þ
β Þ

;

and therefore, it also has poles only for ω ¼ 2πiq
β , where q is

a positive integer.
The conclusion is that the full solution ζþω;lðr�Þ can be

written as

ζþω;lðr�Þ ¼ eiωr�Dþ
ω;lðr�Þ;

where the function Dþ
ω;lðr�Þ has poles only when −iωβ

2π is a
positive integer.
We can obtain another solution ζ−ω;lðr�Þ by repeating the

procedure above, through

ζ−0ω;lðr�Þ ¼ e−iωr� ;

ζ−;ðnÞω;l ðr�Þ ¼
Z

r�

−∞
ζ−;ðn−1Þω;l ðr0�ÞVhorðr0�ÞGhorðr0�; r�Þdr0�;

ζ−ω;lðr�Þ ¼
X∞
n¼0

ζ−;ðnÞω;l ðr�Þ:

This is simply related to the solution above through
ζ−ω;lðr�Þ ¼ ðζþω;lðr�ÞÞ�, and the mode ζ−ω;l only has poles

when iωβ
2π is a positive integer.

Transfer function using horizon modes We can now
write a transfer function using the modes ζ�ω;lðr�Þ above.
They are related quite simply to the mode ζω;lðr�Þ that
we introduced above through5

ζω;lðr�Þ ¼ ζþω;lðr�Þ þ e2iδω;lζ−ω;lðr�Þ:

The field outside the horizon can therefore be written as

ϕðt; r�;ΩÞ ¼ ϕlðr�; t;ΩÞ þ ϕrðr�; t;ΩÞ;
where

ϕrðt; r�;ΩÞ ¼
X
l;ω

aω;lffiffiffiffi
ω

p ζþω;lðr�Þe−iωtYlðΩÞ þ H:c:;

ϕlðt; r�;ΩÞ ¼
X
l;ω

aω;lffiffiffiffi
ω

p e2iδω;lζ−ω;lðr�Þe−iωtYlðΩÞ þ H:c:

ð4:14Þ
We would like to make two important comments. First,

while the factor of e2iδω;l can be fixed by comparing the
solutions above to ζω;lðr�Þ, it can also be fixed, simply by
requiring the normalizability condition

lim
r�→0

½ϕlðt; r�;ΩÞ þ ϕrðt; r�;ΩÞ� ¼ 0:

Second, note that the functions ζþω;lðr�Þ and ζ−ω;lðr�Þ
individually have different analytic properties from
ζω;lðr�Þ. While the analytic properties of ζþω;lðr�Þ will also
important below, the reader should keep in mind that the
analytic properties of the full wave function outside are
controlled by those of ζω;lðr�Þ and not by the compo-
nents ζ�ω;lðr�Þ.

C. Crossing the horizon

Finally, we turn to the construction of the bulk field
behind the horizon.
As we reviewed in detail in [5,12], behind the horizon,

the field again consists of left and right movers. By
continuity, the left movers from outside the horizon cross
over smoothly to the black hole interior. More precisely, we
can write the field as

ϕðt;r�;ΩÞ¼eϕlðr�;t;ΩÞþeϕrðr�;t;ΩÞ; behind thehorizon;

where, the left and right moving elements are

eϕlðt; r�;ΩÞ ¼
X
ω;l

aω;lffiffiffiffi
ω

p e2iδω;le−iωtYlðΩÞeζ−ω;lðr�Þ þ H:c:;

eϕrðt; r�;ΩÞ ¼
X
ω;l

eaω;lffiffiffiffi
ω

p eiωtY�
lðΩÞeζ−ω;lðr�Þ þ H:c:

Note that the operator modes aω;l that appear ineϕlðt; r�;ΩÞ are the same as those that appear outside the
horizon. This is because the left-moving part of the field is
continuous across the horizon. Given the operators defined
in (3.12), these operators are defined through

eaω;l ¼ ðD0ðω;lÞÞ� ffiffiffiffi
ω

p eOω;l:

The eOω;l operators are defined and discussed in detail in
[4,5,12,13].

5The careful reader may note that, in terms of the factors of
eiδω;l , we are using a different convention from [4,5,13]. This is
because we want to normalize the coefficient of the “right-
moving” wave function to 1. As a result, our treatment of the left
and right movers is not symmetric.
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The functions eζ− ¼ ðeζþÞ� that appear in the field above
have the near-horizon expansion from behind the horizon

eζ−ω;lðr�Þ ¼ ðeζþω;lÞ�ðr�Þ →
r�→−∞

e−iωr� :

We can analyze these modes using the same techniques
as the previous section and the same Green’s functions.
This is because the “free wave equation” both in front and
behind the horizon is the same. So, the starting point of the
iteration is just given by the functions e�iωr� and the
Green’s function that is used to construct the full solution is
the same both in front and behind the horizon.
The potential can again be expanded in a series of the form

(4.13). As wementioned above, this is really an expansion in
the variable ðUKVKÞ; the value of UKVK at a point ðt; r�Þ
behind the horizon is simply the negative of its value at a
point with the same Schwarzschild coordinates outside the
horizon. Since Vhor is analytic across UKVK ¼ 0, we can
simply analytically continue the series to find that

Vhorðr�Þ ¼
X
m>0

ð−1ÞmVme
4πmr�

β ; behind the horizon;

ð4:15Þ

where the coefficientsVm are the same as those that appear in
(4.15) but we have an additional factor of ð−1Þm.
From this point, the analysis of the analytic properties ofeζ− and eζþ is exactly the same as in the previous subsection.

The additional factors of ð−1Þm above make no difference
to the analytic properties. So we find that

eζ�ω;lðr�Þ ¼ e�iωr� eD�
ω;lðr�Þ;

where the function eD−
ω;lðr�Þ has poles only when iωβ

2π is a

positive integer and the function eDþ
ω;lðr�Þ only has poles

when −iωβ
2π is a positive integer.

The key property that we will need here is the following.
Consider a correlator involving an insertion of a right
moving part of the field behind the horizon. Then using the
definition of eaω;l and the results above, we find that

hΨjeϕrðt; r�;ΩÞAαjΨi ¼ hΨjAα
eϕrðt; r�;ΩÞjΨi

¼ hΨjAαe−
βH
2 bϕðt; r�;ΩÞeβH

2 jΨi;
ð4:16Þ

where

bϕðt; r�;ΩÞ ¼ X
ω;l

aω;lffiffiffiffi
ω

p eζþω;lðr�Þe−iωtYlðΩÞ þ H:c:

Note that bϕ is made up entirely of ordinary operators. To
derive this we simply used the definition of the mirror
operators in (3.12) to first commute the mirror field through
the ordinary field and then substitute the modes with a

conjugated version of the ordinary modes. Note that
whenever we use the field bϕðt; r�;ΩÞ it is understood that
the coordinates are localized in ∨C.

D. Commutators

We are now in a position to prove an important
intermediate technical result. If UC is a unitary made out
of simple operators localized in BC and ðt1; r�1;Ω1Þ ∈ ∨C
then inside any correlator

UC†bϕðt1; r�1;Ω1ÞUC ¼ bϕðt1; r�1;Ω1Þ:

This can be proved by showing that for any point
ðt2;Ω2Þ ∈ BC, we have

½bϕðt1; r�1;Ω1Þ;Oðt2;Ω2Þ� ¼ 0: ð4:17Þ

To see (4.17), we use the field expansions (4.14) and
(4.9) and the mode commutators to find that the commu-
tator of two field operators can be written as

½bϕðt1; r�1;Ω1Þ; Oðt2;Ω2Þ�
¼ lim

r�2→0
ðr�2Þ−Δ½bϕðt1; r�1;Ω1Þ;ϕðt2; r�2;Ω2Þ�

¼ lim
r�2→0

ðr�2Þ−Δ
X
l;ω

e−iωðt1−t2ÞYlðΩ1Þ

× Y�
lðΩ2Þω−1eζþω;lðr�1Þζω;lðr�2Þ − H:c:

As a consequence of the definitions of ζω;l and eζþω;l, we can
substitute

ζ−ω;lðr�Þ≡ðζω;lðr�ÞÞ�; eζþ−ω;lðr�Þ≡ðζþω;lðr�ÞÞ�: ð4:18Þ

Second, recall that the spherical harmonic can be con-
jugated by reversing some of the angular momentum
quantum numbers, which we denote by Y−lðΩÞ ¼
YlðΩÞ�. We also note that

ζω;−lðr�Þ ¼ ζω;lðr�Þ; eζþω;−lðr�Þ ¼ eζþω;lðr�Þ: ð4:19Þ

Using (4.18) and (4.19) and by converting the sum over ω
to an integral, we obtain an integral that runs over
ω ∈ ð−∞;∞Þ,

½bϕðt1;r�1;Ω1Þ;Oðt2;Ω2Þ�
¼ lim

r�2→0
r�−Δ2

X
l

YlðΩ1ÞY�
lðΩ2Þ

×
Z

dω
ω

eζþω;lðr�1Þζ−ω;lðr�2Þe−iωðt1−t2Þ
¼
X
l

YlðΩ1ÞY�
lðΩ2Þ

Z
dω
ω

e−iωðt1−t2−r�1Þ
eDþ
ω;lðr�Þ

D0ð−ω;lÞ :
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The integral aroundω ¼ 0 should be understood in the sense
of a principal value; alternately, the reader may simply wish
to differentiate with respect to t1 or t2 to make the integrand
regular there. In either case, we can neglect the potential pole
there. Now we recall that eDþ

ω;lðr�Þ has singularities only
when ω is in the upper-half plane. ½D0ðω;lÞ�−1 has poles at
the quasinormal mode frequencies when ω is in the lower-
half plane, and therefore ½D0ð−ω;lÞ�−1, which appears
above has poles only in the upper-half plane.
Moreover, with the points localized so that

ðt1; r�1;Ω1Þ ∈ ∨C and ðt2;Ω2Þ ∈ BC, we also have

t1 − t2 − r�1 ≥ 0:

So the integrand is regular in the lower half ω plane, and we
can complete the contour through that region to prove (4.17).

E. Stability of correlators

We are now in a position to analyze and prove the
stability of position space AdS correlators under perturba-
tions in the causal patch. Consider a correlator involving
the mirror operators in a state that has been excited by a
unitary UC localized in the causal patch and another
insertion of some local operators that we denote by Aα

below. By the definition of the mirror operators, we have

hΨjUC†eϕrðt; r�;ΩÞAαUCjΨi
¼ hΨjUC†Aα

eϕrðt; r�;ΩÞUCjΨi
¼ hΨjUC†AαUCe

−βH
2 bϕðt; r�;ΩÞeβH

2 jΨi: ð4:20Þ

To analyze this correlator, we first note that

e−
βH
2 Ue

βH
2 jΨi ¼ UjΨi þ OðβδEÞ; ð4:21Þ

where δE is the change in the expectation value of the
Hamiltonian under the action ofU that was defined in (2.2).
As the notation indicates, this holds whether or not U is
localized on BC. Although this is an intuitive relation, we
prove this relation in Appendix B.
Since the relation above is an equality on states, using

(2.1), we see that for any coarse grained operator Aγ

Trðe−βHAγUÞ ¼ ZðβÞhΨjAγUjΨi
¼ ZðβÞhΨjAγe

−βH
2 Ue

βH
2 jΨi þ OðβδEÞ

¼ Trðe−βH
2 Aγe

−βH
2 UÞ þ OðβδEÞ;

where we have used the cyclicity of the trace in the last step.
Turning to the correlator in (4.20), and dropping terms of

OðβδEÞ, we see that

ZðβÞhΨjUCAαUC†e−
βH
2 bϕðt; r�;ΩÞeβH

2 jΨi
¼ Trðe−βH

2 UCAαUC†e−
βH
2 bϕðt; r�;ΩÞÞ

¼ Trðe−βHbϕðt; r�;ΩÞe−βH
2 UCAαUC†e

βH
2 Þ

¼ Trðe−βHbϕðt; r�;ΩÞe−βH
2 UCAαe−

βH
2 UC†eβHÞ

¼ Trðe−βH
2 UCAαe−

βH
2 UC†bϕðt; r�;ΩÞÞ

¼ Trðe−βHUCAαe
−βH
2 bϕðt; r�;ΩÞUC†e

βH
2 Þ

¼ Trðe−βHUCAαe−
βH
2 bϕðt; r�;ΩÞeβH

2 UC†Þ:
In this sequence of manipulations, we have repeatedly used
(4.21), the cyclicity of the trace and (4.17). The end result
means that

hΨjUCAα
eϕrðt; r�;ΩÞUC† jΨi

¼ hΨjUCAαe−
βH
2 bϕðt; r�;ΩÞeβH

2 UC† jΨi þ OðβδEÞ:

In particular, the change in the correlator under the
excitation UC† is given by

hΨjUCAα
eϕrðt; r�;ΩÞUC† jΨi − hΨjAα

eϕrðt; r�;ΩÞjΨi
¼ hΨjUCAαe−

βH
2 bϕðt; r�;ΩÞeβH

2 UC† jΨi
− hΨjAαe−

βH
2 bϕðt; r�;ΩÞeβH

2 jΨi þ OðβδEÞ: ð4:22Þ

It is possible to derive a similar relation by moving the
mirror operators to the left and replacing them with a hatted
operator

hΨjUCAα
eϕrðt; r�;ΩÞUC† jΨi − hΨjAα

eϕrðt; r�;ΩÞjΨi
¼ hΨjUCe

βH
2 bϕðt; r�;ΩÞe−βH

2 AαUC† jΨi
− hΨjeβH

2 bϕðt; r�;ΩÞe−βH
2 AαjΨi þ OðβδEÞ: ð4:23Þ

But the right-hand sides of (4.22) and (4.23) represent the
change in ordinary (i.e., state independent) operators. These
obviously obey the constraints of (2.5). We now show using
these constraints that the original correlator involving the
mirrors also obeys these constraints. The last factor we need
to check is the “deviation” that appears in (2.5).
To obtain a finite deviation, we need to smear the

position space operator. We define

bϕðgÞ ¼ Z bϕðt; r�;ΩÞgðt; r�;ΩÞdtdr�dΩ;
bϕ†ðgÞ ¼

Z bϕðt; r�;ΩÞg�ðt; r�;ΩÞdtdr�dΩ;
where g is some function.
If we replace the operator on the right-hand side of (4.22)

with its smeared version, then its deviation is not larger thanbσ1 where
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ðbσ1Þ2 ¼ 1

ZðβÞTrð
bϕ†ðgÞe−βH

2 A†
αAαe

−βH
2 bϕðgÞÞ

−
���� 1

ZðβÞTrðe
−βH

2 Aαe−
βH
2 bϕðgÞÞ����2:

The deviation could be smaller than this due to the other
possible ordering in (2.6).
Similarly, by replacing the operator on the right-hand

side of (4.23) with its smeared version, we see that its
deviation is not larger than bσ2, where

ðbσ2Þ2 ¼ 1

ZðβÞTrð
bϕðgÞe−βH

2 AαA
†
αe−

βH
2 bϕ†ðgÞÞ

−
���� 1

ZðβÞTrðe
−βH

2 Aαe−
βH
2 bϕðgÞÞ����2:

The minimum of bσ1 and bσ2 matches precisely with the
deviation of the operator Aα

eϕrðgÞ. That deviation is given
by minðeσ1;eσ2Þ, where
ðeσ1Þ2 ¼ hΨjeϕ†

rðgÞA†
αAα

eϕrðgÞjΨi − jhΨjAα
eϕrðgÞjΨij2

¼ ðbσ1Þ2;
ðeσ2Þ2 ¼ hΨjAα

eϕrðgÞeϕ†
rðgÞA†

αjΨi − jhΨjAα
eϕrðgÞjΨij2

¼ ðbσ2Þ2:
The relations above follow immediately by applying (4.16).
Now applying (2.5) to the right-hand sides of (4.23) and

(4.22), we see that as βδE → 0, we have

hΨjUCAα
eϕrðt; r�;ΩÞUC† jΨi − hΨjAα

eϕrðt; r�;ΩÞjΨi
≤ 2minðeσ1;eσ2Þ ffiffiffiffiffiffiffiffi

βδE
p

;

which is exactly what we need.
To summarize, the conclusion is as follows. If we

consider correlators and boundary excitations within a
single causal patch, then the correlators involving the tildes
can be converted to correlators of ordinary operators both in
equilibrium and in nonequilibrium states up to errors that
are negligible when the nonequilibrium state has only
slightly higher energy than the equilibrium state. Since
the correlators of ordinary operators clearly obey the
ordinary constraints of statistical mechanics, so do the
correlators of the tildes.
This brings us to the end of our somewhat intricate proof

of the stability of AdS correlators. in the causal patch when
the excitations are also localized on the boundary of the
patch. We have therefore proved that correlators about an
AdS black hole obey (2.5) and the low-energy paradoxes
that one might naively expect go away when we carefully
analyze the constraints from causality.

We remind the reader that as an immediate corollary, if
we start with an equilibrium state and then turn on arbitrary
sources, bulk AdS correlators are stable and (2.5) holds.

V. THE BORN RULE PARADOX
AND ITS RESOLUTION

The calculations of Sec. IVare rather involved. So, as an
example, we now consider a concrete situation where we
can examine a specific low energy excitation and calculate
the response of the black hole geometry. This example
demonstrates the key aspects of the paradox and our
resolution. We will make some simplifications to facilitate
the analysis and make it more accessible than the analysis
of the previous section; the trade-off is that our results will
be less precise.
We will consider the specific paradox described in [8] by

Marolf and Polchinski (MP), who argued as follows. We
see from the relation (3.12) that

hΨjeaω0;l0aω;ljΨi ¼
e−

βω
2

1 − e−βω
δωω0δll0 :

This value of the correlator is a precondition for a smooth
horizon. MP now considered the unitary operator
UMP ¼ eiθN , where N ≈ aω;la

†
ω;l is proportional to the

number operator for a given mode outside the horizon.
Then, ½N;H� ≈ 0, but yet UMP introduces a phase eiθ in the
correlator above because it rotates aω;l but not eaω0;l0 . Thus,
we seem to have a contradiction with (2.5).
MP termed this paradox a violation of “Born rule”

because (2.5) holds only for linear operators. So, MP
suggested that to ensure that generic states have smooth
horizons, the operators (3.12) would have to be signifi-
cantly nonlinear, which would create difficulties for the
quantum mechanical interpretation of the interior. The
other alternative, that MP have advocated in previous
papers, was that generic black hole states in AdS/CFT
do not have an interior at all, or have a firewall, so that the
operators (3.12) are not relevant for generic states.
The results of Sec. IV imply that if we only consider

observables that respect the constraints of bulk causality,
the violations of the “Born rule” should vanish. To see this
directly, we translate the paradox above to position space
by considering a unitary operator

UMP ¼ eiθN ;

N ¼
Z
BC

Oðt1;Ω1ÞOðt2;Ω2ÞGðt1;Ω1Þ

×G�ðt2;Ω2Þdt1dt2dΩ1dΩ2;

where the integral runs only over BC because the excitation
is supported only on the boundary of the causal patch. We
demand that the function G be sharply peaked in frequency
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space; for example, Gðt;ΩÞ ¼ jBCj−12 eiω0tYlðΩÞ, where the
normalization ensures that with θ ¼ Oð1Þ, the unitary
increases the energy only by a small amount. The specific
form of G will not be important below.
In this section, we will check that if we consider near-

horizon correlators of bulk fields, ϕðt; r�;ΩÞ, in the causal
patch, which in particular implies that t − r� > tC, then such
correlators are not affected strongly byUMP and change only
by order

ffiffiffiffiffiffiffiffi
βδE

p
as predicted by (2.5). This result, of course,

already follows from the general analysis of Sec. IV but here
we show it through a simple and direct calculation.
As above, this has two related but distinct implications.

The main result it that starting with an equilibrium state, it is
impossible for any combination of observers to act withUMP
and also observe the strong bulk excitation that would
naively be predicted by examining the frequency-space
effect of this operation. Second, if we consider a state where
the excitationUMP appears spontaneously, and we constrain
the infalling observer’sworldlinewith the requirement that at
least one other observer should be able to detect the excitation
fully on the boundary, and report it to the infalling observer,
we find that the infaller finds no violations of (2.5).
Before proceeding, we wish to point out another sig-

nificant difficulty with the argument of [8]. The excitation
UMP cannot be produced in an active sense by simply
modifying the Hamiltonian on the boundary as shown in
(3.6). The reason for this is that N is a double-trace
excitation on the boundary that is nonlocal in time. So,
“acting” with such an operator would require the observer
at one point of time to have the ability to act with operators
localized at a different point of time. We might imagine that
such an excitation could be produced by coupling the CFT
to an external system. But then such a coupling would
generate entanglement with that system, and not leave the
CFT in a pure state.
Nevertheless, we proceed with UMP in the form above,

since this is the unitary operator considered in [8]. It does
not affect our resolution, the important aspect in the
analysis above is causality—namely that an observer, or
army of observers who interact with the boundary till a time
tC can produce boundary excitations supported on the past
of tC but not those supported on the future of tC.
We define

Fðω;lÞ ¼
Z
BC

Gðt;ΩÞe−iωtYlðΩÞdtdΩ;

Fð−ω;lÞ ¼
Z
BC

Gðt;ΩÞeiωtYlðΩÞdtdΩ:

Note that we have reversed the sign conventions in the
Fourier transform compared to (3.11) to avoid having to
carry some minus signs below. We consider the case where
Gðt;ΩÞ is largely made up of positive frequencies and has
only a negligible negative frequency component. This
means that we approximate

Gðt;ΩÞ ≈
X
l;ω

Fðω;lÞeiωtY�
lðΩÞ;

where the sum runs only over positive frequencies as per
our summation conventions. Conversely, Gðt;ΩÞ� effec-
tively comprises only negative frequencies. Note that since
Gðt;ΩÞ vanishes outside BC, then we cannot make
Fð−ω;lÞ exactly zero since the Fourier transform of a
function with compact support always has both positive
and negative frequencies. But even in that case, we can

make jFð−ω;lÞj
jFðω;lÞj ∼ jBCj−1 for the typical frequencies on which

F has support. This is small enough for our purposes. The
second approximation that we will need below is that
Fðω;lÞ is sharply peaked about some particular frequency
ω0 and dies off rapidly as we move away from ω0. This
ensures that N behaves like a number operator for ω0. We
will denote the spread in Fðω;lÞ by δω.
Within this approximation, we can write

N ¼
X
li;ωi

Oω1;l1O
†
ω2;l2

Fðω1;l1ÞF�ðω2;l2Þ;

where we remind the reader that following our summation
conventions ω1 > 0, ω2 > 0 in the sum above.
First, let us work out the change in the expectation

value of the Hamiltonian. To first order, we are
interested in

½N;H� ¼
X
li;ωi

Fðω1;l1ÞF�ðω2;l2Þð½Oω1;l1 ; H�O†
ω2;l2

þOω1;l1 ½O†
ω2;l2

; H�Þ
¼

X
li;ωi

Fðω1;l1ÞF�ðω2;l2Þðω1 − ω2ÞOω1;l1O
†
ω2;l2

:

In a typical state, by time-translational invariance,

hΨjOω1;l1O
†
ω2;l2

jΨi ¼ Gω1;l1
δω1;ω2

δl1l2 ;

where Gω;l—the two point function of boundary modes—
is defined by the equation above. The expectation value
of the commutator above vanishes because when ω1 ¼ ω2,
the summand vanishes.

hΨj½N;H�jΨi ¼ 0:

To work out the second order term, we need to compute

½N; ½N;H�� ¼
X
ωi;li

Fðω1;l1ÞFðω2;l2Þ�ðω3 − ω4ÞFðω3;l3Þ

× F�ðω4;l4Þ½Oω1;l1O
†
ω2;l2

;Oω3;l3O
†
ω4;l4

�:

The commutator evaluates to
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½Oω1;l1O
†
ω2;l2

;Oω3;l3O
†
ω4;l4

�
¼ Oω1;l1 ½O†

ω2;l2
;Oω3;l3 �O†

ω4;l4

þ ½Oω1;l1
;Oω3;l3 �O†

ω2;l2
O†

ω4;l4

þOω3;l3 ½Oω1;l1 ;O
†
ω4;l4

�O†
ω2;l2

þOω3;l3Oω1;l1 ½O†
ω2;l2

;O†
ω4;l4

�
¼ Cω1;l1

Oω3;l3O
†
ω2;l2

δω1;ω4
δl1;l4

− Cω2;l2Oω1;l1O
†
ω4;l4

δω2;ω3
δl2;l3 ;

where we have used

½Oω1;l1 ;O
†
ω2;l2

�≡ Cω1;l1δω1;ω2
δl1;l2 ;

and all other commutators vanish. The form of Cω;l was
given in (4.11), but the precise expression will not be
important here. We now find that

hΨj½N; ½N;H��jΨi ¼
X
ωi;li

jFðω1;l1Þj2jFðω3;l3Þj2ðω3 − ω1Þ

× ½Cω1;l1Gω3;l3
− Cω3;l3

Gω1;l1 �:

The Kubo-Martin-Schwinger (KMS) relation relates the
expectation value of the commutator and the two point
function through

Trðe−βHOω1;l1O
†
ω2;l2

Þ ¼ TrðO†
ω2;l2

e−βHOω1;l1Þ
¼ eβω2Trðe−βHO†

ω2;l2
Oω1;l1Þ

¼ eβω2Trðe−βHOω1;l1
O†

ω2;l2
Þ

− ZðβÞeβω2Cω1;l1δω1;ω2
:

Therefore,

Gω;l ¼ 1

1 − e−βω
Cω;l:

This allows us to evaluate

hΨjU†
MPHUMPjΨi ¼ hΨjHjΨi − iθhΨj½N;H�jΨi

−
θ2

2
hΨj½N; ½N;H��jΨi þ Oðθ3Þ;

and using the relations above, we see that

δE ¼ hΨjU†
MPHUMPjΨi − hΨjHjΨi

¼
X
ω1;ω3

Cω1;l1Cω3;l3 jFðω1;l1Þj2jFðω3;l3Þj2ðω3 − ω1Þ

×

�
1

1 − e−βω1
−

1

1 − e−βω3

�
;

neglecting terms of Oðθ3Þ and higher.
We see that this change in energy is rather small. In

particular, when FðωÞ is a sharply peaked function, with a
spread in frequencies given by ðδωÞ, we have δE ∝ βðδωÞ2.

As the observable in (2.5), we take the two point function
of the field. In the large-N limit, this is the key observable,
since all local correlators factorize into products of two point
functions. As we explained in the Introduction, and in the
previous section, the only two-point function that could be
potentially problematic has one point behind the horizon and
another point in front of the horizon. This requires entangle-
ment between the degrees of freedom outside and inside,
which the unitary operator above is intended to break.
We will work in the near-horizon region in this section,

since that is where the effect of the unitary is the strongest.
Of course, we emphasize that the proof of stability will
work even without these approximations as we showed in
Sec. IV, and here we take this physically relevant limit only
to simplify the algebra and permit explicit computations.
In the near horizon limit it is convenient to move to

Kruskal coordinates (3.3). Then we see from the previous
section that in the near-horizon limit the mode functions of
Sec. IV simplify greatly and become proportional to

ζþðr�Þe−iωt → jUKj
iβω
2π ; ζ−ðr�Þe−iωt → V

−iβω
2π
K . The physics

in the near-horizon limit becomes effectively two dimen-
sional and sowe consider derivatives of the scalar field to get
smooth correlators. The product of two field operators near
the horizon but on opposite sides, so that their Kruskal UK
coordinates satisfy U1 < 0 and U2 > 0, can be written as

∂U1
ϕðU1; V1;Ω1Þ∂U2

ϕðU2; V2;Ω2Þ

¼ β2

4π2U1U2

X
ωi;li

ðω1ω2Þ12Iω1;ω2;l1;l2 ;

with

Iω1;ω2;l1;l2 ≡aω1;l1eaω2;l2Yl1ðΩ1ÞY�
l2
ðΩ2Þð−U1Þ

iβω1
2π ðU2Þ

−iβω2
2π

þa†ω1;l1
ea†ω2;l2

ð−U1Þ
−iβω1
2π ðU2Þ

iβω2
2π Y�

l1
ðΩ1ÞYl2ðΩ2Þ

þ���:
Here the � � � indicate terms with products like aω;lea†ω0;l0 that
have no expectation value and will not pick up one under the
action of UMP.
Let us examine the change in the value of this correlator

under the rotation above. In principle, this correlator is in
danger of changing significantly because the ordinary
mode gets rotated by UMP, whereas the mirror mode does
not. We need to verify that this effect vanishes within the
causal patch. Notice that

½N; aω1;l1eaω2;l2 � ¼
X
ω3

F�ðω1;l1Þ
−1

D0ðω1;l1Þ� ffiffiffiffiffiffi
ω1

p

× Fðω3;l3ÞOω3;l3
eaω2;l2 ;

½N; a†ω1;l1
ea†ω2;l2

� ¼
X
ω4

Fðω1;l1Þ
1

D0ðω1;l1Þ ffiffiffiffiffiffi
ω1

p

× Fðω4;l4Þ�O†
ω4;l4

ea†ω2;l2
: ð5:1Þ

Here, we have used the commutators that follow from
(4.10)
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½Oω;l; a
†
ω0;l0 � ¼

1

D0ðω;lÞ ffiffiffiffi
ω

p δωω0δll0 :

Moreover, we see that

hΨjOω3;l3eaω2;l2 jΨi¼
1

D0ðω2;l2Þ ffiffiffiffiffiffi
ω2

p e−
βω2
2

1−e−βω2
δω2;ω3

δl2;l3 ;

hΨjO†
ω4;l4

ea†ω2;l2
jΨi¼ 1

D0ðω2;l2Þ� ffiffiffiffiffiffi
ω2

p e−
βω2
2

1−e−βω2
δω2;ω4

δl2;l4 :

Therefore we see that, to first order in θ, the change in the
correlator under the action of UMP is given by

hΨjUMP∂U1
ϕðU1; V1;Ω1Þ∂U2

ϕðU2; V2;Ω2ÞU†
MPjΨi

− hΨj∂U1
ϕðU1; V1;Ω1Þ∂U2

ϕðU2; V2;Ω2ÞjΨi

¼ iβ2θ
4π2U1U2

X
ω1;l1

Y�
l1
ðΩ1Þ

D0ðω1;l1Þ
Fðω1;l1Þð−U1Þ

−iβω1
2π

×
X
ω2;l2

Yl2
ðΩ2Þ

D0ðω2;l2Þ�
F�ðω2;l2ÞðU2Þ

iβω2
2π

e−
βω2
2

1 − e−βω2
− H:c:

The relative minus sign between the term and its Hermitian
conjugate comes from the relative minus sign in the first
and second line of (5.1).
Now, we recall from the previous section that D0ðω;lÞ

has zeroes only for ImðωÞ < 0 corresponding to the
quasinormal frequencies of the black hole and is
also bounded at large positive ImðωÞ. As a result, we
can write

1

D0ðω;lÞ ¼
Z
x>0

dðx;lÞeixωdx;

for some dðx;lÞ. Using this, the first sum, over ω1, above is
easy to deal with.

X
ω1

1

D0ðω1;l1Þ
Fðω1;l1Þð−U1Þ

−iβω1
2π

¼
Z
x>0

dðx;l1Þ
X
ω1

Fðω1;l1Þð−U1Þ−
iβω1
2π eixω1

¼
Z
x>0

dxdΩdðx;l1ÞG
�
x −

β lnð−U1Þ
2π

;Ω
�
Yl1

ðΩÞ:

We see that this term vanishes unless x − β lnð−U1Þ
2π < tC.

Since x > 0, this requires −U1 > e
−2πtC

β ; therefore, point 1
must be in ∧C—the causal wedge of BC. This result, in fact,
follows from a simple extension of the results obtained in
the previous section. Since the fields ϕr have analytic
properties very similar to bϕ, the effect of a unitary localized

on BC vanishes on right movers that are localized between
the causal wedge and the horizon.
The second sum, over ω2, is more interesting. To

understand this sum, recall that we have assumed that
FðωÞ is narrowly peaked about some frequency ω0 with a
spread δω. Now in this sum, we see that since we are in the

near-horizon region so that U2 → 0, the function U
iω2β
2π
2 is

rapidly varying, but on the other hand, we can substitute the
slowly varying e−βω → e−βω0 within the sum while making
an error of only OðβδωÞ. So,

X
ω2

1

D0ðω2;l2Þ�
F�ðω2;l2ÞðU2Þ

iβω2
2π

e−
βω2
2

1− e−βω2

¼ e−βω0

1− e−βω0

Z
x>0

dxdΩ
�
dðx;l2ÞG

�
x−

β

2π
lnðU2Þ;Ω

�

× Yl2ðΩÞ
��

þOðβðδωÞÞ:

But now we see that since the second point is also in the

causal patch, therefore U2 < e−
2πtC
β . Since G has no support

for times larger than tC, the change in the correlator
vanishes up to OðβδωÞ.
This leads us to the central result that we wanted to

demonstrate: an observer in the causal patch cannot access
the deep region where the effect of the unitary operator
UMP is strong if the observer also has time to observer the
excitation on the boundary. An immediate corollary is that
if an observer, or a set of observers, in an equilibrium state,
attempt to act with UMP by turning on a source and then
jump into the bulk, they do not observe any anomalously
large effect.
Wewould like to emphasize that it is not as ifUMP has no

effect on the correlator. As we see above, there is an effect
at order βδω ¼ ffiffiffiffiffiffiffiffi

βδE
p

.6 This is precisely what is expected
from (2.5). So, there is no issue of a “frozen vacuum” [28]:
a low energy unitary on the boundary does have a nonzero
effect on correlators in the causal patch, but this effect is
bounded by the square root of the energy that the unitary
injects into the system.

VI. CAUSAL PATCH COMPLEMENTARITY

In previous sections, we have proved that if one con-
siders observables and excitations within a single causal
patch, the paradoxes associated with low energy states
vanish. As we explained, this has two implications. First, it
implies that, within effective field theory, starting with a

6We remind the reader that in the previous section, we proved
that for arbitrary unitary excitations, which include UMP, that the
coefficient of this Oð ffiffiffiffiffiffiffiffi

βδE
p Þ term is also what is expected for the

change in the correlation function of ordinary operators. But we
will not repeat this calculation in this simplified setting.
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black hole formed from collapse, no observer can excite the
black hole with a local source and then observe such a
paradox. But, more interestingly, our results also apply to
states that are spontaneously excited. In such states, if we
consider a setup where a combination of observers attempts
to both confirm the presence of the excitation on the
boundary and also observe bulk correlators, then the only
bulk correlators accessible to such observers precisely obey
the limit (2.5) derived from statistical mechanics.
In this section—which is exploratory in nature and

somewhat outside the main line of this paper—we again
focus on states that display a spontaneous excitation but the
important new element is that we consider observers who
jump into the black hole and reach the singularity before
the excitation appears on the boundary. More precisely, we
consider states of the form

jΨnei ¼ UðτÞjΨi; ð6:1Þ

where jΨi is a typical equilibrium state andUðτÞ indicates a
unitary that is localized around τ > tC. In the state (6.1), we
now want to consider correlation functions of fields
localized at some set of points ðti; r�i;ΩiÞ ∈ C.
In such states, it is easy to see that the description of

physics in terms of the usual fields ϕ is problematic; the
proof of the stability of correlators of ϕ that we provided in
Sec. IV breaks down since its assumptions are not met in
this situation. In fact, the reader can check, by extending the
calculation in Sec. V, that if τ > tC then the difference,

hΨnejϕðt1; r�1;Ω1Þ…ϕðtn; r�n;ΩnÞjΨnei
− hΨjϕðt1; r�1;Ω1Þ…ϕðtn; r�n;ΩnÞjψi;

may not obey (2.5) with δE ¼ hΨjU†ðτÞHUðτÞjΨi−
hΨjHjΨi ≪ 1

β.
Now, if a superobserver has the ability to prepare

arbitrary states in the CFT and can compare the experience
of the infaller in the state jΨi with the experience of the
infaller in the state UðτÞjΨi, then such a superobserver
would detect that black holes violate the bound (2.5). One
possibility, of course, is to simply ignore this problem since
it requires the superobserver to either have the ability to
prepare the exponentially unlikely states UðτÞjΨi, or else
have the ability to act with UðτÞ before the time τ. Such a
superobserver would also observe a violation of the second
law of thermodynamics, and so we may neglect the
violation of (2.5) as a relatively minor issue.
However, states where the spontaneous excitation is

inside the causal patch are also exponentially unlikely,
but we were able to find a consistent description of physics
in the causal patch in such states. So it is natural to ask
whether we can extend this to states where the excitation is
outside the causal patch.

A. The idea

The idea is as follows. For states of the form (6.1), we
postulate that the correct mapping between the bulk and the
boundary requires us to specify not only the state but also
the causal patch that we wish to examine in the bulk. We
make this precise by describing a new set of bulk
observables ϕC, whose relation to the boundary depends
on the causal patch C. These observables have the virtue
that (2.5) is met in states of the form (6.1) as well. On the
other hand, since these operators ϕC depend on the causal
patch, the price that we pay is that we lose the global picture
of the black hole geometry that could simultaneously
describe all causal patches.
We do not prove, in this paper, that the operators ϕC are

the correct operators for the infalling observer to use, and
therefore, we do not prove that this obstruction in the global
reconstruction of the geometry exists. But, at the end of this
section, we discuss briefly why we might expect such an
obstruction to appear in spontaneously excited states.

B. The proposal

To make the idea above precise, first, we define the
algebra of simple polynomials localized on BC.

AC ¼ span of fOl1ðt1Þ;Ol2ðt2ÞOl3ðt3Þ;…;

Ol4
ðt4ÞOl5ðt5Þ � � �OlDm

ðtDm
Þg; ti ∈ BC:

This is the set of simple polynomials of single trace
operators that are localized on BC. The cutoff Dm is the
same as the cutoff that appeared in (3.5). However, the
important difference between AC and A is that the times ti
that appear above are restricted to lie in BC. The reader will
note that this is very similar to the small algebra AsmallðBÞ
that was defined in [24].
Next, we note that to leading order in 1

N the full algebraA
can be decomposed into two commuting subalgebras,

A ¼ AC ⊗ ĀC; ½AC; ĀC� ¼ 0:

The simplest way to understand the decomposition is
through the bulk geometry. Note that the relation (3.9)
gives us an explicit and 1 − 1mapping of all operators inA
to bulk operators outside the horizon. Now, using the bulk
equations of motion, all bulk operators can be mapped to
the Cauchy slice, ABC, outside the horizon in Fig. 4. The
operators in the segment AB all commute with operators in
AC because AB is spacelike to BC. On the other hand, the
algebra of operators on BC is isomorphic to AC. This gives
us a decomposition of the boundary algebra into two
commuting subalgebras. As emphasized in [24], this
decomposition holds only to leading order in 1

N. So, our
discussion here is only a leading order discussion.
We caution the reader that if we think of elements ofA as

smeared versions of local operators, then the decomposition
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of an operator into an element of AC and ĀC does not
correspond to simply selecting the part of the smearing
function with support onBC. This is because the commutator
of single-trace operators is nonzero even for finite time
separation on the boundary.
For example, consider a single trace operator OðfÞ ¼R
Oðt;ΩÞfðt;ΩÞdtdΩ, where fðt;ΩÞ has support both on

BC and outside BC. Then this operator can be decomposed
into a sum of an element of AC and another element of ĀC

as follows. In Fig. 4, let the coordinates of B be ðtB; r�BÞ. (B
represents an entire Sd−1 sphere.) Consider the time slice tB
that passes through the point B.
Then we can write

OðfÞ ¼
Z

0

r�B
dr�

Z
dΩϕðtB; r�;ΩÞgðr�;ΩÞ

þ
Z

r�B

−∞
dr�

Z
dΩϕðtB; r�;ΩÞgðr�;ΩÞ;

which represents the decomposition of this operator as a
sum of an operator in AC and ĀC, respectively. Here,

gðr�;ΩÞ ¼ −ird−1
�
OðfÞ; ∂ϕ∂t ðtB; r�;ΩÞ

�
;

which follows just from using the canonical commutation
relations for ϕ.
Corresponding to the decomposition of algebras above,

we consider a unitary operator that can be decomposed as

UðτÞ ¼ UC
τ
bVC
τ ;

where UC
τ ∈ AC and bVC ∈ ĀC. We will restrict ourselves to

such unitaries in this section. This does not cover all
unitariesUðτÞ but it provides a broad class and the proposal
below can easily be generalized to other cases. Note that as

we explained above, just because the unitaryUðτÞ is largely
localized outside BC does not mean that UC

τ ¼ 1.
The unitary UC

τ is the “part” of the unitary that is visible
in the causal patch. This is because

hΨjUðτÞ†AC
αUðτÞjΨi ¼ hΨjUC†

τ AC
αUC

τ jΨi; ∀ α:

So for an observer who conducts experiments on BC, before
jumping into the bulk, it appears as if the state has been
excited just with UC

τ .
Now the idea of causal patch complementarity is that in

the causal patch C it is consistent to simply neglect bVC
τ .

More precisely, we suggest that physics in the state jΨnei in
the causal patch C can be described through correlation
functions of operators ϕCðt; r�;ΩÞ that satisfy

hΨnejϕCðt1; r�1;Ω1Þ…ϕCðtn; r�n;ΩnÞjΨnei
¼ hΨjUC†

τ ϕðt1; r�1;Ω1Þ…ϕðtn; r�n;ΩnÞUC
τ jΨi: ð6:2Þ

It is possible to solve (6.2) to obtain the action of ϕC on
states of HΨ. Note that the operators ϕC are now state
dependent even outside the horizon.
If any of the points ðti; r�i;ΩiÞ∉C, then our proposal has

nothing to say about such observables. In such a situation, it
may be possible to shift to a different causal patch C0 so that
all the points fit in that patch and use the field ϕC0 to
describe these correlators. But, it is important to note that it
is impermissible to mix field operators defined with respect
to different causal patches. So, the observables

hΨnejϕCðt1; r�1;Ω1ÞϕC0 ðt2; r�2;Ω2Þ…jΨnei;

where C and C0 are two different causal patches are
meaningless, except in some special cases that we describe
below.
Let us mention some properties of this proposal, which

also serve as basic consistency checks. First, it is evident
that in all equilibrium states, or states with an excitation
only on BC, correlators of ϕC coincide with correlators of ϕ.
We write this as

ϕCðt; r�;ΩÞ≐ϕðt; r�;ΩÞ; in equilibrium states;

where the symbol≐ implies that correlators of ϕC coincide
with correlators of ϕ. Second, we note that even in arbitrary
nonequilibrium states, the two operators coincide in the
causal wedge of BC.

ϕCðt; r�;ΩÞ≐ϕðt; r�;ΩÞ; ðt; r�;ΩÞ ∈∧C :

This is because when the point ðt; r�;ΩÞ is in ∧C, the local
field ϕðt; r�;ΩÞ ∈ AC. So, it automatically commutes withbVC
τ in (6.2).

FIG. 4. The slice ABC gives a Cauchy slice for the entire
geometry. BC provides complete initial data for the causal wedge
∧C. In the large-N limit, operators on AB and BC commute.
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Next, we see that as a trivial consequence of this, ϕC
obeys the correct boundary conditions,

lim
r→∞

r�−ΔϕCðt; r�;ΩÞ≐Oðt;ΩÞ; for ðt;ΩÞ ∈ BC: ð6:3Þ

It is also clear from (6.2) that ϕCðt; r�;ΩÞ also obey the
same equations of motion as ϕðt; r�;ΩÞ.

ð□ −m2ÞϕCðt; r�;ΩÞ≐0: ð6:4Þ
Perturbatively, if we add local interactions or sources in the
action for ϕ then the equation of motion for ϕC will also be
modified appropriately to match the equation of motion
of ϕ.
The other property that is important to note is that the use

of the fields ϕC may preclude a global description of the
geometry in states jΨnei. If we only want to describe the
exterior of the black hole then, as we mentioned in Sec. III,
wemay use the special causal patch C∞ that contains only the
exterior of the black hole. For this causal patch, the algebra
AC coincides with A, and the field ϕC coincides with ϕ.
However no single causal patch accommodates the entire

black hole geometry. In an equilibrium state or in an
equilibrium state deformed with a source, since ϕC≐ϕ, it is
possible to consider correlation functions across different
causal patches. But in a general nonequilibrium state, our
proposal does not extend to correlators that do not fit in a
single causal patch. In sacrificing a global description, we
do not sacrifice any quantity that is observable for a bulk
observer since, by construction, correlators that do not fit in
any single causal patch cannot be measured by any
combination of observers.

C. Stability of causal-patch correlators in
spontaneously excited states

An important result is that if we use the operators
specified by (6.2), we find that causal patch correlators
are stable even in spontaneously excited states of the
form (6.1).
We note that the change in the energy induced by the

unitary UðτÞ in (6.1) is given by

δE ¼ δEC þ δbEC; ð6:5Þ

where

δE ¼ hΨjUðτÞ†HUðτÞjΨi − hΨjHjΨi;
δEC ¼ hΨjUC†

τ HUC
τ jΨi − hΨjHjΨi;

δbEC ¼ hΨjbVC†
τ HbVC

τ jΨi − hΨjHjΨi:

This relation is rather intuitive. The action of unitaries on a
typical state always tends to inject a small positive amount
of energy. The two unitaries acting together above simply
inject energy one after the other. Nevertheless, we check the
relation (6.5) explicitly in Appendix B 1.

But we have already proved in Sec. IV that

hΨjUC†
τ ϕCðt1; r�1;Ω1Þ…ϕCðtn; r�n;ΩnÞUC

τ jΨi
− hΨjϕCðt1; r�1;Ω1Þ…ϕCðtn; r�n;ΩnÞjΨi

¼ hΨjUC†
τ ϕðt1; r�1;Ω1Þ…ϕðtn; r�n;ΩnÞUC

τ jΨi
− hΨjϕðt1; r�1;Ω1Þ…ϕðtn; r�n;ΩnÞjΨi
≤ 2

ffiffiffiffiffiffiffiffiffiffi
βδEC

p
σ;

where σ is the deviation of the product of fields as defined
in (2.6). Here we have used the fact that for correlators in an
equilibrium state involving insertions only in the causal
patch, correlators of ϕC are the same as correlators of ϕ.
But since δEC ≤ δE, we see using (6.2) that we auto-

matically have

hΨjUðτÞ†ϕCðt1; r�1;Ω1Þ…ϕCðtn; r�n;ΩnÞUðτÞjΨi
− hΨjϕCðt1; r�1;Ω1Þ…ϕCðtn; r�n;ΩnÞjΨi
≤ 2

ffiffiffiffiffiffiffiffi
βδE

p
σ: ð6:6Þ

This proves that if we use the fields ϕC then the
inequality (2.5) is satisfied even in spontaneously excited
states, and correlators in the causal patch are stable under
low energy excitations. The result (6.6) is the one of the
main reasons to believe that the operators (6.2) are the right
operators to use in a causal patch.
An example may help to clarify the mechanism by means

of which this stability under low-energy excitations is
achieved. In the state jΨnei, let us consider three causal
patches C; C0; C00, where tC ≪ t0C < τ < t00C.
The description using ϕC00 is appropriate for an observer

who jumps in after the time τ.7 This observer sees the full
unitary UðτÞ but he can only reach a limited “depth” (in
terms of the maximum UK coordinate) inside the black
hole, and so the correlators he measures all obey (2.5). Such
an observer may also naively infer that the observer who
jumped in at time tC had a strong interaction with a high-
energy shock wave.
But the description using the fields ϕC00 is a poor

description for the observer who jumps into the bulk
around tC because C00 contains only a very small part of
his worldline behind the horizon. In the description
provided by the fields ϕC, the state jΨnei is essentially
an equilibrium state, and the observer simply falls through
the horizon without encountering any particles.
The description using ϕC0 is appropriate for an observer

who jumps into the black hole, a little before the excitation
appears on the boundary. This observer sees only part of the
full unitary. So, the description using ϕC0 is slightly out of

7Here we are using the “experience of the observers” as
shorthand to describe the results of correlators computed using
(6.2) for the three causal patches.
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equilibrium, but this observer also does not observe any
strong excitation at the horizon.
Thus, we see that all three descriptions obey (2.5) but for

different reasons. This is similar to the spirit of the original
proposal of black hole complementarity [11,29,30] that
suggested that we should use different descriptions for the
observer who stays outside the black hole and the infalling
observer. Here, we have attempted to sharpen this idea by
specifying the precise local correlation functions that are
appropriate for a specific causal patch.

D. Overlapping patches

We now turn to another aspect of our proposal: a
single spacetime point belongs to multiple causal patches:
Fig. 5 shows the overlap of two causal patches C and C0. Now
if a point belongs to both patches, we may ask: “what is the
correct field to use at such a point? Is it ϕC or ϕC0?”
We remind the reader that this question is not relevant in

equilibrium states or even in nonequilibrium states where
the point ðt; r�;ΩÞ ∈∧C ∩ ∧C0 ; correlators of the fields ϕC
and ϕC0 coincide in such cases because both of them
coincide with ϕ.
But these correlators do differ in a class of states. For

example, if we consider a state that has a spontaneous
excitation on the boundary in between tC and t0C, and also
consider points that are not in the intersection of the causal
wedges ∧C ∩ ∧C0 then the correlators given by the two
fields may differ. Note that this is not a contradiction: even
though notionally both these operators correspond to the
“field”, ϕC and ϕC0 are different operators and can have
different correlators. We say that the operators ϕC and ϕC0

are giving complementary, but internally self-consistent
descriptions of the same physics. So, as long as we
consistently use the description provided by C or consis-
tently use the one provided by C0 both descriptions are valid
about the point P. We emphasize that cross-correlators of
the form hΨnejϕCðt1; r�1;Ω1ÞϕC0 ðt2; r�2;Ω2ÞjΨnei do not
have any physical significance in this situation.

For example, if we act on the state jΨneiwith an additional
unitary so that UobsjΨnei can be interpreted as the state plus
an observer, then our proposal allows us to reconstruct the
bulk geometry including the observer in a causal patch. The
description in terms ofϕC and the description in terms ofϕC0

give internally consistent but complementary descriptions of
the experience of the observer.
What is important for us, is that provided we use each set

of correlators in its respective domain of validity then each
of these descriptions obeys effective field theory because of
(6.4), the right relation with boundary fields because
of (6.3) and the constraints of statistical mechanics because
of (6.6).
The reader may be a little concerned because in empty

AdS, or flat-space quantum field theory, we do not usually
have multiple possible descriptions of bulk physics. The
reason that this ambiguity appears here is as follows.Usually,
in quantum field theory, we proceed with the following tacit
operational understanding. First, we do a set of experiments
to fix the operators that we intend to use. Then in future
experiments, we always tacitly refer back to this calibration.
The contrast of the setting that we are considering with

empty AdS may help clarify this point. In empty AdS, if a
bulk observer observes the boundary for a time band of
length larger than π (in units where the light-crossing time
of AdS is π) and calibrates his fields to satisfy (6.3) then
this completely removes the ambiguity in any of his future
measurements. We can make this precise by recalling the
transfer function in empty AdS.

ϕðt; r;ΩÞ ¼
X
n;l

On;le−ið2nþlþΔÞtYlðΩÞχΩn;lðrÞ þ H:c:;

where χΩn;lðrÞ is a specific hypergeometric function that the
reader can find in Sec. IVof [24]. Now the key point here is
that the modes On;l may be defined entirely in the causal
past of the point ðt; r;ΩÞ through

On;l ¼
Z
I
dt

Z
Sd−1

dd−1ΩOðt;ΩÞeið2nþlþΔÞtY�
lðΩÞ;

where I is any interval of length π that can be placed
entirely in the past of ðt; r;ΩÞ. So, if the bulk observer has
ensured that his field variable obeys (6.3) on the interval I
then this leaves no ambiguity in his future measurements.
On the other hand, the transfer function (3.9) is not

causal. Unlike empty AdS, it cannot be written in a form
that involves boundary modes only in the past. Therefore,
the definition of ϕ in terms of boundary operators is
necessarily teleological and not causal in the presence of
a black hole. And we see from (6.2) that the fields ϕC and ϕ
differ only in their response to future spontaneous excita-
tions. So, at a point in the bulk from a causal perspective,
there is no reason to privilege the description in terms of ϕ
over the description in terms of ϕC of ϕC0 .
Nevertheless, we could still ask: “what will the bulk

observer see subjectively?” This is an imprecise question.
Often, in situations like this, the question of what theFIG. 5. The overlap of two causal patches.
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observer will “see” is answered by simply picking the most
convenient description. For example, consider an observer
who couples himself to a system that is described by N ¼ 4
Yang-Mills theory at large ’t Hooft coupling. Then, one
description, of course, is that the observer turns into some
mixture of strongly coupled glueballs. But usually, we
simply declare that the observer will “perceive himself” as
falling into AdS5. Both these descriptions are correct, but
the description in terms of gravity is more convenient.
This happens in the case of causal patches as well. For

example, consider once again the nonequilibrium state
jΨnei with τ ≫ tC. Then the correlators of ϕC are equilib-
rium correlators. On the other hand, if we consider the
causal patch C0 with t0C ∼ τ then correlators of the field ϕC0

are out of equilibrium since in this patch the effect of the
unitary is easier to see. If we consider a freely falling
observer jumps into the bulk around tC and continues onto
the singularity, then clearly the description in terms of C is
more convenient since it allows us to describe a larger part
of the observer’s worldline and involves an undisturbed
Schwarzschild black hole.
The general question of which description is the “pre-

ferred” one in an arbitrary state goes beyond the scope of
this paper. However, we mention that there is an interesting
sense in which this question may be made well-defined.8

Given a state jΨnei and a point P can we find the causal
patch CP so that the physics described using the fields ϕCP is
as “classical” as possible [31] around P? If so, it may be
useful to declare that the fields ϕCP define the “subjective
experience” of the observer and that this description is the
“preferred description.” However, to explore this question
further requires a quantification of the notion of “more
classical” and a more precise dynamical description of an
observer, and we do not address it in this paper.

VII. CONCLUSION

In this paper, we described and resolved the paradox of
low energy excitations about black holes. The paradox
arises because a robust property of statistical mechanics
appears to be in conflict with properties of the black hole
geometry. Statistical mechanics tells us that low energy
excitations in thermal systems have small effects on
physical observables. This property can be quantified,
and we did so in (2.5). A paradox arises in the black hole
geometry, because a naive analysis suggests that a locally
large distortion of the geometry near the horizon should
raise the Arnowitt-Deser-Misner (ADM) energy by only a
small amount. Another way to understand this is that if we
consider a state that displays an excitation on the boundary
at some time, and backcalculate the geometry in the past,
then this geometry has a blueshifted excitation near the
horizon.

We showed how this paradox was resolved by consid-
erations of causality. To implement this constraint, our
analysis in this paper focused on the properties of AdS
correlators in position space. These correlators provide
insights that are sometimes missed in the usual frequency-
mode analysis of these problems. In our case, we found that if
we consider a correlator where the excitation and insertions
all fit in a single causal patch, then a delicate combination of
factors ensures that this correlator obey the standard con-
straints of statistical mechanics. This is not obvious, a priori,
since the operators inside the black hole are state dependent.
Although we established this by means of a detailed
calculation in Sec. IV, it is not difficult to state the final result.
The most common reason that a black hole state may be

excited at late times is because we start with an equilibrium
state and then turn on a source on the boundary. In such a
situation, the past of the state is just an ordinary equilibrium
state and so the blueshifted excitation that could have
created a problem does not exist.
A far more unlikely but technically more interesting

situation arises if we consider a state that displays a
spontaneous excitation at some point of time. Now we
may consider two observers—one of them jumps into the
black hole at an early time, while the other waits near the
boundary to confirm that there is indeed a late-time
excitation and then jumps into the black hole. The
remarkable fact that we pointed out in this paper is as
follows. If the first observer follows a trajectory that allows
him to meet with the second observer, then he cannot go too
“deep” into the black hole. But, on the other hand, the first
observer can only detect the blueshifted excitation by freely
falling through the horizon for at least some time and
probing the geometry in the interior to some depth. It turns
out the constraint imposed by the fact that he must meet the
second observer precisely prevents him from probing the
black hole deep enough to be able to detect the excitation.
These conclusions already resolve the paradox of low

energy excitations in the vast majority of states. Starting in
an equilibrium state, no combination of observers can
excite the state on the boundary and observe a correlator
that violates (2.5). But, even in spontaneously excited
states, no combination of observers can verify the presence
of the excitation and also observe a bulk correlator that
shows a violation of (2.5).
Spontaneously excited states are exponentially unlikely.

Nevertheless, we may ask what happens in such a state if an
observer simply continues to fall freely through the horizon
without bothering about meeting the second observer who
waits on the boundary to verify the presence of the
excitation. In this situation, the unitary operator that
produces the excitation does not fit into the causal patch
of the first observer. This is the situation that we considered
in Sec. VI. Here we proposed that it is consistent to use a
description where the first observer only sees the part of the
unitary that fits on the boundary of his causal patch and,

8I am grateful to R. Loganayagam for several discussions on
this point.
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therefore, using the results of Sec. IV does not see an
anomalously large effect. This description is not consistent
with the experience of the second observer. But now since
the worldlines of the two observers do not fit into a single
patch, the descriptions that we must use for them are
complementary and do not have to be reconciled.
In a sense, such a notion of complementarity is inbuilt

into AdS/CFTand was used tacitly in [4,5]. This is because,
if we wait for an exponentially long time, every pure state
will eventually see a spontaneous excitation. If we take the
bulk geometry in the presence of this excitation seriously,
then the geometry involves an extraordinarily blueshifted
shock wave that lurks close to the horizon for a very long
time, only to emerge much later, hit the boundary and fall
back into the black hole. Evidently, a more sensible
perspective is simply to put an early and late time cutoff
on the boundary and ignore these excitations that occur
beyond these cutoffs. Our proposal here simply makes this
more precise and generalizes this notion of complemen-
tarity to settings where the spontaneous excitation is just
slightly in the future of the causal patch of interest, rather
than being exponentially far away.
Although we have now proposed a boundary to bulk map

that ensures that a description in terms of fields restricted to a
single causal patch is consistent, how dowe know that these
are the fields that the infalling observer will “observe”? This
is also an open question for the construction of [4,5]. The
mirror operators provide a consistent description of the
interior, but why are they the right operators to use? So, in a
strict sense, the results of this paper should be added to the
results of [4,5] as an existence proof: it is possible to find a
consistent description of the black hole interior that avoids
various potential paradoxes and ensures that the horizon is
smooth in generic states.
To go further, we may need to construct a dynamical

model of the observer and then analyze the full system
including the observer. In a rough sense, the situation here
is analogous to the situation that arises in quantum field
theory in curved spacetime. There it was realized that
particle number was an ambiguous concept. However, by
constructing a dynamical model of a particle detector,
Unruh [32] and DeWitt [33] were able to specify, among
the infinity of possible definitions of particle number,
which definition would be most convenient for an observer
moving along a given trajectory. Here, we are asked to go a
step further and specify which “field variable” would be
most convenient for an infalling observer to use. This is a
very interesting question, and we do not address it in this
paper, although we hope to return to it in future work.
There are various technical questions that should be

amenable to simple analysis. For example, while we have
dealt with pure states here, it would be interesting to
understand situations where the CFT is entangled with
another system. The only potential complication is the
interplay between the superposition of geometries and the

causal structure. However, geometries that have significant
overlap differ only by quantum fluctuations, and so have the
same causal structure; geometries with different causal
structures have an exponentially small overlap and therefore,
behave like a classical statistical mixture. So, it should not be
difficult to extend these results to entangled states in the spirit
of [12].
Next, our analysis is currently only a leading order

analysis, and it would be quite interesting to understand
how it is modified by 1

N corrections. In gravity, these
corrections prevent any notion of microcausality, beyond
leading order, and so it would be interesting to understand
how our analysis here that relies strongly on the light cone
structure of the geometry must be generalized. We hope to
address this question in future work.
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APPENDIX A: MODES IN THE
BTZ BLACK HOLE

Here, we explicitly work out the wave functions in the
BTZ black hole and verify the claims made in Sec. IV.
The metric of the BTZ black hole is just (3.1), at d ¼ 2

ds2 ¼ −ðr2 − r20Þdt2 þ ðr2 − r20Þ−1dr2 þ r2dθ2:

Consider the bulk wave equation ð□ −m2Þϕ ¼ 0, and to be
consistent with the conventions of Sec. IV, we take the
ansatz ϕω;l ¼ r

1−d
2 χω;lðrÞe−iωteilθ. The equation for χ then

becomes

1

r
∂rðr2 − r20Þr∂rr

1−d
2 χω;lðrÞ

þ
�

ω2

r2 − r20
−
l2

r2
−m2

�
r
1−d
2 χω;lðrÞ ¼ 0:
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It is convenient to work directly with r rather than the
tortoise coordinate for the BTZ black hole. Near the
boundary, the radial wave equation is solved by a combi-
nation of hypergeometric functions

r
1−d
2 χω;lðrÞ¼ r−Δr0

Δ−iω
r0

�
1−

r20
r2

�− iω
2r0

×

�
A12F1

�
Δ
2
þ i

l−ω

2r0
;
Δ
2
− i

ðlþωÞ
2r0

;Δ;
r20
r2

�

þA2r20r
2Δ−2

2F1

�
1−

Δ
2
þ i

l−ω

2r0
;

1−
Δ
2
− i

lþω

2r0
;2−Δ;

r20
r2

��
:

By imposing normalizability at the boundary, we see that
A2 ¼ 0. To ensure that the field scales like r−Δ near the

boundary with no other factors, we set A1 ¼ r
iω
r0
−Δ

0 .
Next recall the series expansion of the hypergeometric

function

2F1ða; b; c; xÞ ¼
X∞
n¼0

ðaÞnðbÞn
ðcÞn

xn

n!
;

where ðaÞn ≡ aðaþ 1Þ…ðaþ n − 1Þ. From this expan-
sion, we see that, as claimed, the function χω;l has no poles
at finite values of ω and for r0 < r < ∞.
By using hypergeometric transformations, we can put

the solution in a form appropriate for the near-horizon
expansion. We can rewrite

r
1−d
2 χω;lðrÞ ¼ A1ΓðΔÞr

−iω
r0
0

�
r
r0

�
−il
r0

�ðr2r2
0

− 1Þ iω
2r0Γð− iω

r0
Þ2F1ðΔ2 − i ðl−ωÞ

2r0
; 1 − Δ

2
− i lþω

2r0
; iωr0

þ 1; 1 − r2

r2
0

Þ
Γðilþr0Δ−iω

2r0
ÞΓð− iðlþir0ΔþωÞ

2r0
Þ

þ
ðr2r2

0

− 1Þ−iω2r0Γðiωr0Þ2F1ð1 − Δ
2
− i lþω

2r0
;− Δ

2
− i ðlþωÞ

2r0
; 1 − iω

r0
; 1 − r2

r2
0

Þ
Γð− iðlþir0Δ−ωÞ

2r0
ÞΓðiðl−ir0ΔþωÞ

2r0
Þ

�
:

Recall that in this case, the tortoise coordinate is given
simply by

r� ¼
1

2r0
log

r − r0
rþ r0

:

Therefore, we see that (4.8) holds, and we can write

r
1−d
2 χω;lðr�Þ ⟶

r�→−∞
D0ðω;lÞðeiωr� þ e2iδω;le−iωr� Þ;

with

D0ðω;lÞ¼
�
r
r0

�
−il
r0
2

iω
r0
ΓðΔÞ
rΔ0

Γð− iω
r0
Þ

ΓðΔ
2
− iω

2r0
− il

2r0
ÞΓðΔ

2
− iω

2r0
þ il

2r0
Þ ;

where we have now substituted the value of A1 calculated
above. The phase factors in (4.8) is just

e2iδω;l ¼ D0ð−ωÞ
D0ðωÞ :

As advertised, the function D0 has zeroes when the
gamma functions in the denominator have poles:
−iω
2r0

� il
2r0

þ Δ
2
∈ Z−. Therefore, the zeros are

ω ¼ �l − iΔr0 − 2inr0;

for n a positive integer. Clearly these occur only for
ImðωÞ < 0, and indicate the positions of the quasinormal
modes. The functionD0 is regular in the upper halfω plane;
using Stirling’s approximation, we can check that this is
also true as we approach infinity through the upper-half
plane. And we also see that for ω ∈ R, the phase δ is real.
Finally, defining ζðrÞ ¼ r

1−d
2 χω;lðrÞðD0ðω;lÞÞ−1, we can

write

ζðrÞ ¼ ζþðrÞ þ e2iδω;lζ−ðrÞ;

where

ζþ ¼
�
r
r0

�
−il
r0

�
r − r0
rþ r0

� iω
2r0

2F1

�
Δ
2
− i

ðl − ωÞ
2r0

;

1 −
Δ
2
− i

lþ ω

2r0
;
iω
r0

þ 1; 1 −
r2

r20

�

is the function relevant for the “right moving” wave. This is
again consistent with our analysis in Sec. IV. Using the
expansion of the hypergeometric function, we see that
ζþðrÞ has poles only for ω

r0
¼ βω

2π ∈ iZþ, which is exactly
what we expect. The same function for r < r0 also
describes the interior right moving mode; as expected, this
has the same analytic properties as the right movers outside
the horizon.
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APPENDIX B: LOW ENERGY UNITARIES

In this appendix, we prove (4.21). We note that with

V ¼ e
−βH
2 Ue

βH
2 ,

hΨjV†VjΨi ¼ hΨjeβH
2 U†e−βHUe

βH
2 jΨi

¼ 1

ZðβÞTr
�
e−βHe

βH
2 U†e−βHUe

βH
2

�
¼ 1:

So, we will be done if we can show that

hΨjU†VjΨi ¼ 1 − OðβδEÞ: ðB1Þ

Our strategy is to expand the unitary as

U ¼ eiθ
P

ω
ðAωþA†

ωÞ;

where Aω ∈ A are elements of the algebra with definite
energy so that ½H;Aω� ¼ −ωAω plus possible Oð1NÞ terms
that we neglect. First, let us work out δE under this unitary.
We see that

U†HU ¼ H − iθ
X
ω

ωðAω − A†
ωÞ

−
θ2

2

X
ω0;ω

ω½Aω0 þ A†
ω0 ; Aω − A†

ω� þ Oðθ3Þ:

Taking the expectation value in a typical state, we see that

δE ¼ hΨjU†HUjΨi − hΨjHjΨi ¼ θ2
X
ω

ωCA
ω;

where hΨj½Aω; A
†
ω0 �jΨi≡ CA

ωδωω0 . This appears because in
an equilibrium state only expectation values of operators
with “zero energy” are nonvanishing, and we neglect terms
of order θ3 and higher.
Now we compare this with (B1). We see that

V ¼ e−
βH
2 Ue

βH
2

¼ 1þ iθ
X
ω

ðeβω
2 Aω þ e−

βω
2 A†

ωÞ

−
θ2

2

X
ω;ω0

ðeβω
2 Aω þ e−

βω
2 A†

ωÞðeβω0
2 Aω0 þ e−

βω0
2 A†

ω0 Þ

þ Oðθ3Þ;

while

U† ¼ 1 − iθ
X
ω

ðAω þ A†
ωÞ

−
θ2

2

X
ω;ω0

ðAω þ A†
ωÞðAω0 þ A†

ω0 Þ þ Oðθ3Þ:

Now we see that to first order in θ

hΨjU†VjΨi¼ 1− iθ
X
ω

hΨjðe−βω−1ÞAωþðeβω
2 −1ÞA†

ωjΨi;

the first order term vanishes because the only operators
with a nonzero expectation value are those with ω ¼ 0, but
at that point, the coefficients of these operators in the sum
vanish. Moving to the next term, which is second order in θ,
we see that

hΨjU†VjΨi¼1þθ2
X
ω

½GA
ωðe−

βω
2 −1ÞþðGA

ω−CA
ωÞðe

βω
2 −1Þ�;

where hΨjAωA
†
ω0 jΨi ¼ hΨjA†

ωAω0 jΨi þ CA
ω ≡GA

ωδω;ω0 . We
can use the KMS relations to convert this to a form that is
similar to δE. We note that, first

Trðe−βHA†
ωAωÞ ¼ e−βωTrðe−βHAωA

†
ωÞ;

by using the cyclicity of the trace and the commutator of the
negative frequency operator with the Hamiltonian. Second,
from here we see that

Trðe−βH½Aω; A
†
ω�Þ ¼ ð1 − e−βωÞTrðe−βHAωA

†
ωÞ;

or Cω ¼ ð1 − e−βωÞGω. Therefore,

hΨjU†VjΨi ¼ 1 − θ2
X
ω

ð1 − e−
βω
2 Þ2Gω

¼ 1 − θ2
X
ω

ð1 − e−
βω
2 Þ2

1 − e−βω
Cω:

Noting that ð1 − e−
βω
2 Þ2 < ωð1 − e−βωÞ for ω > 0, we see

that

1 − hΨjU†VjΨi < ðβδEÞ;

where we have used the fact that hΨj½Aω; A
†
ω�jΨi > 0, and

so both terms involve a sum over positive numbers, and the
sum involving the change in energy is larger when
examined term by term.
This proves the result (4.21). Since the result is intuitive

and easy to state, it is possible that we have missed a
simpler argument. However, we briefly mention one
complication that leads us to reject some other seemingly
simple arguments. We see that

U†HU ¼ H þ δH;

where we already know that hΨjδHjΨi ¼ δE, but we do not
have much control over the operator ðδHÞ itself from this
relation. As a result of this, even though the unitaryU raises

the energy by δE, we see that e−
βH
2 Ue

βH
2 ≠ e−

βδE
2 U. We see
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that such a relation cannot hold because unitary U† also
raises the energy, and so the conjugate of this relation is

manifestly untrue e
βH
2 U†e−

βH
2 ≠ e

βδE
2 U†.

This tells us that the fact that δH cannot be substituted by
its expectation value is important. It is to get control over
this operator that we have to examine the expansion of the
unitary in terms of an exponential of components of
definite frequency as we did above.

1. Multiple unitaries

Using the results above, it is also easy to prove the result
(6.5). We expand both unitaries UC

tC and bVC
tC as

UC
τ ¼ eiθ1

P
ω
ðAC

ωþAC†
ω Þ; bVC

τ ¼ eiθ2
P

ðĀC
ωþĀC†

ω Þ:

We now see that

δE ¼ hΨjbVC†
τ UC†

τ HUCbVC† jΨi − hΨjHjΨi
¼ θ21

X
ω;ω0

ωhΨjbVC†
τ ½AC

ω; AC†
ω0 �bVC

τ jΨi

þ θ22
X
ω;ω0

ωhΨjUC†
τ ½ĀC

ω; ĀC†
ω0 �UC

τ jΨi þ Oðθ31Þ þ Oðθ32Þ

¼ δEC þ δĒC:

Here we have just used the fact that UC
τ commutes with

elements of A whereas bVC commutes with elements of Ā.
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