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Corrections to the Bhabha scattering cross section, due to Lorentz violation, at finite temperature are
calculated. The vertex interaction between fermions and photons is modified by introducing the Lorentz
violation, for the Standard Model extension, from CPT odd nonminimal coupling. The finite temperature
corrections are calculated using the thermo field dynamics formalism. The Lorentz violation corrections are
presented for zero to high temperatures.
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I. INTRODUCTION

Lorentz and CPT symmetry have been the foundation of
the Standard Model (SM). The SM allows violation of some
symmetries, such as charge conjugationC, parityP, and time
reversal T. These symmetries are broken separately or
combined. However, the CPT symmetry is preserved.
Although successfully confirmed, the SM is not a funda-
mental theory since gravity is not included. Tiny violations
of Lorentz and CPT symmetries could emerge in models
unifying gravity with quantum physics such as string theory
[1]. Opportunities to experimentally detect these violations
will likely arise at the Planck scale, ∼1019 GeV. The search
for Lorentz violation has been considered for various sub-
fields of physics [2]. The Standard Model extension (SME)
[3,4] contains the Standard Model, General Relativity, and
all possible operators that break Lorentz symmetry. There
are two versions of the SME: (i) a minimal extension which
has operators with dimensions d ≤ 4 and preserves conven-
tional quantization, Hermiticity, gauge invariance, power
counting renormalizability, and positivity of the energy and
(ii) a nonminimal version of the SME associated with
operators of higher dimensions.
The structure of the SME is one way to investigate the

Lorentz violation. Another interesting way is to modify the
interaction vertex between fermions and photons, i.e., a
new nonminimal coupling term added to the covariant
derivative. The nonminimal coupling term may be CPT
odd or CPT even. CPT-odd nonminimal coupling has been
investigated in a different context; for example, the induc-
tion of topological phases on fermion systems has been
evaluated [5,6], the contribution to magnetic moment
generation of massive neutral particles with spin 1=2
and spin 1 has been analyzed [7], corrections to the

hydrogen spectrum have been investigated [8], modifica-
tions to the Aharonov-Bohm-Casher problem have been
examined [9], and corrections for Bhabha and Comptom
scattering cross section have been calculated [10,11]. The
CPT-even nonminimal coupling has some applications,
such as its effect on the cross section of the electron-
positron scattering having been investigated [12], modifi-
cation in the Dirac equation in the nonrelativistic regime
having been analyzed [13], radiative generation of the
CPT-even gauge term of the SME having been constructed
[14], and effects induced on the magnetic and electric
dipole moments having been investigated [15], among
others.
In this paper, Bhabha scattering (eþe− → eþe−) [16] is

considered. It is a process usually used in tests of experi-
ments at high energy accelerators [17–20]. Bhabha scattering
in the context of the nonminimal coupling term at zero
temperature has been analyzed [10,11]. Lorentz symmetry
violation is expected to be small at very high energies, i.e.,
Planck energies (∼1019 GeV). But this is not valid in all
cases. It is likely that Lorentz violation operators with
dimension d > 4 will be relevant in searches involving very
high energies [21]. Although Bhabha scattering, at high
energy in colliders like the Large Electron–Positron Collider
(LEP), are still at zero temperature, there is certainly no
investigation at extremely high energy with nonzero temper-
ature. One possibility is to consider Bhabha scattering at
finite temperature at the surface or interior of a star. It is well
known that the temperature at the center of stars is typically
about ∼2 × 107 Kð∼1.5 KeVÞ while at the surface it is
much less, ∼6 × 103 K (a few eV). Even though these are
small numbers, it is still important to calculate the role of
temperature in Bhabha scattering. These estimates will give
us a reasonable idea of the role of SME at finite temper-
atures. Such a scattering would modify the distribution of
particles. How does the cross section for Bhabha scattering at
a high temperature change? What are the modifications due
to Lorentz violation at high temperature? To understand
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temperature effects in this process, the thermo field dynam-
ics (TFD) formalism is used.
TFD formalism is a thermal quantum field theory [22–

26]. Its basic elements are (i) the doubling of the original
Fock space and (ii) the Bogoliubov transformation. This
doubling consists of Fock space composed of the original S
and a fictitious space ~S (tilde space). The map between the
tilde ~Ai and nontilde Ai operators is defined by the
following tilde (or dual) conjugation rules,

ðAiAjÞ∼ ¼ ~Ai
~Aj; ð ~AiÞ∼ ¼ −ξAi;

ðA†
i Þ∼ ¼ ~Ai

†; ðcAi þ AjÞ∼ ¼ c� ~Ai þ ~Aj; ð1Þ

with ξ ¼ −1 for bosons and ξ ¼ þ1 for fermions. The
physical variables are described by nontilde operators. The
Bogoliubov transformation is a rotation involving these
two spaces. As a consequence, the propagator is written in
two parts: T ¼ 0 and T ≠ 0 components.
This paper is organized as follows. In Sec. II, a brief

introduction to the TFD formalism is presented. In
Sec. III, the nonminimal coupling Lorentz violating is
considered. The S-matrix elements at finite temperature are
calculated. The cross section for Bhabha scattering with
Lorentz violation at finite temperature is determined. The
limit at zero temperature is recovered. In Sec. IV, some
concluding remarks are presented.

II. THERMO FIELD DYNAMICS

TFD is a real time formalism of quantum field theory
at finite temperature. The main feature of TFD is that
the thermal average of any operator A is equal to its
temperature dependent vacuum expectation value, i.e.,
hAi ¼ h0ðβÞjAj0ðβÞi, where j0ðβÞi is a thermal vacuum,
β ¼ 1

kBT
with T being the temperature and kB being the

Boltzmann constant. This affirmation requires doubling
the degrees of freedom in a Hilbert space accompanied
by the temperature dependent Bogoliubov transformation.
This doubling is defined by the tilde ( ∼) conjugation rules,
associating each operator in S to two operators in ST , where
the expanded space is ST ¼ S ⊗ ~S, with S being the
standard Fock space and ~S being the fictitious space.
The thermal vacuum, j0ðβÞi, belongs to the space ST .
For an arbitrary operator A, the standard doublet notation is

Aa ¼
�

A

ξ ~A†

�
: ð2Þ

The Bogoliubov transformation introduces a rotation in
the tilde and nontilde variables, thus introducing thermal
quantities.
For fermions with c†p and cp being creation and

annihilation operators, respectively, Bogoliubov transfor-
mations are

cp ¼ uðβÞcpðβÞ þ vðβÞ~c†pðβÞ; ð3Þ

c†p ¼ uðβÞc†pðβÞ þ vðβÞ~cpðβÞ; ð4Þ

~cp ¼ uðβÞ~cpðβÞ − vðβÞc†pðβÞ; ð5Þ

~c†p ¼ uðβÞ~c†pðβÞ − vðβÞcpðβÞ; ð6Þ

where uðβÞ ¼ cos θðβÞ and vðβÞ ¼ sin θðβÞ. The anticom-
mutation relations for creation and annihilation operators
are similar to those at zero temperature,

fcðk; βÞ; c†ðp; βÞg ¼ δ3ðk − pÞ;
f~cðk; βÞ; ~c†ðp; βÞg ¼ δ3ðk − pÞ; ð7Þ

and other anticommutation relations are null.
For bosons with a†p and ap being creation and

annihilation operators, respectively, the Bogoliubov
transformation are

ap ¼ u0ðβÞapðβÞ þ v0ðβÞ ~a†pðβÞ; ð8Þ

a†p ¼ u0ðβÞa†pðβÞ þ v0ðβÞ ~apðβÞ; ð9Þ

~ap ¼ u0ðβÞ ~apðβÞ þ v0ðβÞa†pðβÞ; ð10Þ

~a†p ¼ u0ðβÞ ~a†pðβÞ þ v0ðβÞapðβÞ; ð11Þ

where u0ðβÞ ¼ cosh θðβÞ and v0ðβÞ ¼ sinh θðβÞ. Algebraic
rules for thermal operators are

½aðk; βÞ; a†ðp; βÞ� ¼ δ3ðk − pÞ;
½ ~aðk; βÞ; ~a†ðp; βÞ� ¼ δ3ðk − pÞ; ð12Þ

and other commutation relations are null.

III. BHABHA SCATTERING

For the SME, there are two types of operators that
break Lorentz symmetry, minimal and nonminimal. A lot
of possibilities have been investigated [21,27,28]. Besides
studies of the structure of the SME, other ideas were
proposed to examine Lorentz-violating operators in this
broad framework. An alternative procedure is to modify
just the SME interaction part via a nonminimal coupling.
The new interaction breaks the Lorentz and CPT
symmetries. This coupling will modify the standard
Lagrangian to

L ¼ −
1

4
FμνFμν þ ψ̄ðiγμDμ −mÞψ −

1

2ξ
ð∂μAμÞ2; ð13Þ

where the covariant derivative includes a nonminimal
coupling term, i.e.,
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Dμ ¼ ∂μ þ ieAμ þ igbν ~Fμν ð14Þ

with e, g, and bμ being the electron charge, a coupling
constant, and a constant 4-vector, respectively. ~Fμν ¼
1
2
ϵμναρFαρ is the dual electromagnetic tensor with ϵ0123 ¼

1 and Fαρ ¼ ∂αAρ − ∂ρAα. There are other possible non-
minimal coupling terms that exhibit Lorentz violation
[28]. In this paper, a Lorentz-violating CPT-odd term is
chosen to study the Bhabha scattering term at finite
temperature. This choice is made since it has been used
in other investigations, for example, topological phases
[29] and other studies [30]. Our purpose is to indicate
details that would be necessary to establish its presence.
This nonminimal coupling leads to the new interaction.
The interaction Lagrangian is given by

LI ¼ −eψ̄γμψAμ − gbνψ̄γμψ∂αAρϵμναρ: ð15Þ

The first term describes the usual QED vertex, and the
second term is a new vertex that implies violation of
Lorentz symmetries due to the 4-vector bν, which spec-
ifies a preferred direction in the space-time. These vertices
are represented as

• → Vμ ¼ −ieγμ ð16Þ

and

× → gVρ ¼ −gbνγμqαϵμναρ; ð17Þ

where qα is the momentum operator. The nonminimal, i.e.,
the derivative coupling, term is used in Eq. (14). The
dispersion relation grows with momentum [31] for this
coupling. Although it grows with the momentum, still at
high energies its contribution remains small relative to the
result with the Lorentz invariant coupling.
Our interest is to calculate the cross section for the

process, e−ðp1Þeþðp2Þ → e−ðp3Þeþðp4Þ, at finite temper-
ature. This process has the Feynman diagrams given
in Fig. 1.
The cross section at finite temperature, taking an average

over the spin of the incoming particles and summing over
the spin of the outgoing particles, is defined as

�
dσ
dΩ

�
β

¼ 1

64π2E2
CM

·
1

4

X
spins

jMðβÞj2; ð18Þ

where ECM is the center-of-mass energy and MðβÞ is the
S-matrix element at finite temperature. Some details about
the cross section for scattering processes have been
considered [31]. Modifications in the propagators due to
the Lorentz-violating terms leave the linear momentum and
the velocity to be misaligned. This leads to a modification
of the cross section. Any possible modifications that will
likely arise in the cross section due to the modifications in

momentum-velocity relation not been considered in
this paper.
The transition amplitude for Bhabha scattering is

calculated as

MðβÞ ¼ hf; βjŜð2Þji; βi; ð19Þ

with Ŝð2Þ, the second order term, of the Ŝ-matrix that is
defined as

Ŝ¼
X∞
n¼0

ð−iÞn
n!

Z
dx1dx2 � � �dxnT ½ĤIðx1ÞĤIðx2Þ � � � ĤIðxnÞ�;

ð20Þ

where T is the time ordering operator and ĤIðxÞ ¼ HIðxÞ −
~HIðxÞ describes the interaction. The thermal states are

ji; βi ¼ c†p1
ðβÞd†p2

ðβÞj0ðβÞi;
jf; βi ¼ c†p3

ðβÞd†p4
ðβÞj0ðβÞi; ð21Þ

with c†pjðβÞ and d†pjðβÞ being creation operators. The
transition amplitude becomes

MðβÞ ¼ ð−iÞ2
2!

Z
d4xd4yhf; βjðLILI − ~LI

~LIÞji; βi

¼ ðM0ðβÞ þMbðβÞ þMbbðβÞÞ
− ð ~M0ðβÞ þ ~MbðβÞ þ ~MbbðβÞÞ; ð22Þ

where the matrix element in conventional QED is

M0ðβÞ ¼ −
e2

2

Z
d4xd4yhf; βjψ̄ðxÞγμψðxÞψ̄ðyÞ

× γνψðyÞAμðxÞAνðyÞji; βi: ð23Þ

The linear and quadratic matrix elements for the Lorentz-
violating interaction are

MbðβÞ ¼ −egbνϵμνσρ
Z

d4xd4yhf; βjψ̄ðxÞγωψðxÞψ̄ðyÞ

× γμψðyÞAωðxÞ∂σAρðyÞji; βi ð24Þ

FIG. 1. Exchange and annihilation diagrams with different
vertices.
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and

MbbðβÞ ¼ −
1

2
g2bνbρϵμνασϵωρδγ

Z
d4xd4yhf; βjψ̄ðxÞγμψðxÞψ̄ðyÞγωψðyÞ∂αAσðxÞ∂δAγðyÞji; βi: ð25Þ

There are similar equations for matrix elements that include tilde operators.
The fermion field is written as

ψðxÞ ¼
Z

dpNp½cpuðpÞe−ipx þ d†pvðpÞeipx�; ð26Þ

where Np is the normalization constant; cp and dp are annihilation operators for electrons and positrons, respectively; and
uðpÞ and vðpÞ are Dirac spinors. The Lorentz invariant transition amplitude becomes

M0ðβÞ ¼ −e2N
Z

d4xd4y
Z

d4pðu2 − v2Þ2½ūðp1Þγμuðp3Þv̄ðp4Þγνvðp2Þe−ixðp1−p3Þeiyðp4−p2Þ

− ūðp2Þγμvðp1Þv̄ðp3Þγνuðp4Þeixðp1þp2Þe−iyðp3þp4Þ�h0ðβÞjTAμðxÞAνðyÞj0ðβÞi; ð27Þ

where Bogoliubov transformations Eqs. (3)–(6) are used. With uðβÞ ¼ cos θðβÞ and vðβÞ ¼ sin θðβÞ, we get

ðu2 − v2Þ2 ¼ tanh2ðβjq0j
2
Þ, where q0 ¼ ω. The photon propagator at finite temperature [23,32] is

h0ðβÞjTAμðxÞAνðyÞj0ðβÞi ¼ i
Z

d4q
ð2πÞ4 e

−iqðx−yÞΔμνðq; βÞ; ð28Þ

with Δ0
μνðqÞ≡ Δμνðq; βÞ ¼ Δð0Þ

μν ðqÞ þ ΔðβÞ
μν ðqÞ, where Δð0Þ

μν ðqÞ and ΔðβÞ
μν ðqÞ are the zero and finite temperature parts,

respectively. Explicitly,

Δð0Þ
μν ðqÞ ¼ ημν

q2

�
1 0

0 −1

�
;

ΔðβÞ
μν ðqÞ ¼ −

2πiδðq2Þ
eβq0 − 1

�
1 eβq0=2

eβq0=2 1

�
ημν: ð29Þ

Then,

M0ðβÞ ¼ −ie2N
Z

d4xd4y
Z

d4p

�
ūðp1Þγμuðp3Þv̄ðp4Þγνvðp2Þe−ixðp1−p3Þeiyðp4−p2ÞIðq1Þ

× Δ0
μνðq1Þtanh2

�
βjðq1Þ0j

2

�
ūðp2Þγμvðp1Þv̄ðp3Þγνuðp4Þeixðp1þp2Þe−iyðp3þp4ÞIðq2Þ

× Δ0
μνðq2Þtanh2

�
βjðq2Þ0j

2

��
; ð30Þ

where IðqlÞ ¼
R d4ql

ð2πÞ4 e
−iqlðx−yÞ with l ¼ 1, 2. Using the definition of the four-dimensional delta function,

Z
d4xd4ye−ixðp1−p3þqlÞe−iyðp2−p4−qlÞ ¼ δ4ðp1 − p3 þ qlÞδ4ðp2 − p4 − qlÞ; ð31Þ

and carrying out the q integral, we get

M0ðβÞ ¼ −ie2
Z

d4p
ð2πÞ4 δ

4ðp1 þ p2 − p3 − p4Þ
�
ūðp1Þγμuðp3Þv̄ðp4Þγνvðp2ÞΔ0

μνðp3 − p1Þ

× tanh2
�
βjðp3 − p1Þ0j

2

�
− ūðp2Þγμvðp1Þv̄ðp3Þγνuðp4ÞΔ0

μνðp1 þ p2Þtanh2
�
βjðp1 þ p2Þ0j

2

��
; ð32Þ
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where N ¼ 1 was used. The remaining delta function expresses overall four-momentum conservation. The final transition
amplitude is written as

M0ðβÞ ¼ −ie2
�
ūðp1Þγμuðp3Þv̄ðp4Þγμvðp2ÞΔ0ðp3 − p1Þtanh2

�
βjðp3 − p1Þ0j

2

�

− ūðp2Þγνvðp1Þv̄ðp3Þγνuðp4ÞΔ0ðp1 þ p2Þtanh2
�
βjðp1 þ p2Þ0j

2

��
; ð33Þ

where

Δ0
μνðqlÞ≡ Δ0ðqlÞημν ð34Þ

with

Δ0ðqlÞ ¼
1

q2l

�
1 0

0 −1

�
−

2πiδðq2l Þ
eβðqlÞ0 − 1

�
1 eβðqlÞ0=2

eβðqlÞ0=2 1

�
: ð35Þ

Considering the center-of-mass frame,

p1 ¼ ðE; p⃗Þ; p2 ¼ ðE;−p⃗Þ;
p3 ¼ ðE; p⃗0Þ and p4 ¼ ðE;−p⃗0Þ; ð36Þ

where jp⃗j2 ¼ jp⃗0j2 ¼ E2, p⃗ · p⃗0 ¼ E2 cos θ, and s ¼ ð2EÞ2 ¼ E2
CM, we get jðp3 − p1Þ0j ¼ jðp1 þ p2Þ0j ¼ ECM; then,

M0ðβÞ ¼ −ie2½ūðp1Þγμuðp3Þv̄ðp4Þγμvðp2ÞΔ0ðp3 − p1Þ − ūðp2Þγνvðp1Þ

× v̄ðp3Þγνuðp4ÞΔ0ðp1 þ p2Þ�tanh2
�
βECM

2

�
: ð37Þ

In a similar way, the linear term in the Lorentz-violating parameter becomes

MbðβÞ ¼ 2egbνϵμνσρ½ðp3 − p1Þσūðp1Þγρuðp3Þv̄ðp4Þγμvðp2ÞΔ0ðp3 − p1Þ

þ ðp1 þ p2Þσūðp2Þγρvðp1Þv̄ðp3Þγμuðp4ÞΔ0ðp1 þ p2Þ�tanh2
�
βECM

2

�
; ð38Þ

and the quadratic term in the Lorentz-violating coefficients is

MbbðβÞ ¼ ig2bνbρησγϵμνασϵωρδγ½qα1qδ1ūðp1Þγμuðp3Þv̄ðp4Þγωvðp2Þ

× Δ0ðp3 − p1Þ − qα2q
δ
2ūðp2Þγμvðp1Þv̄ðp3Þγωuðp4ÞΔ0ðp1 þ p2Þ�tanh2

�
βECM

2

�
; ð39Þ

where q1 ¼ p3 − p1 and q2 ¼ p1 þ p2. The results for the
transition amplitudes obtained in Ref. [10] are recovered in
the limit T → 0, which implies tanh2 ðβECM=2Þ → 1 and
ðeβECM − 1Þ−1 → 0.
The unpolarized cross section is obtained by calculating

jMðβÞj2 ¼ jM0ðβÞ þMbðβÞ þMbbðβÞj2: ð40Þ
This calculation is accomplished using the completeness
relations:

X
uðp1Þūðp1Þ ¼ p1 þm;X
vðp1Þv̄ðp1Þ ¼ p1 −m: ð41Þ

In addition, the relation

v̄ðp2Þγαuðp1Þūðp1Þγαvðp2Þ
¼ tr½γαuðp1Þūðp1Þγαvðp2Þv̄ðp2Þ� ð42Þ

is used. The trace calculations involve the product
of up to eight gamma matrices and the Levi-Cività
symbol. Henceforth, the electron mass is ignored
since all the momenta are large compared to the elec-
tron mass.
Considering bν ¼ ðb0; 0Þ, a timelike 4-vector, the

differential cross section, Eq. (18), at finite tempera-
ture is
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�
dσ
dΩ

�
β

¼
�

e4ðcos 2θ þ 7Þ2
256π2E2

CMðcos θ − 1Þ2

þ b20e
2g2 sin2ðθ

2
Þ

256π2ðcos θ − 1Þ2 ð−65 cos θ þ 6 cos 2θ þ cos 3θ þ 122Þ
�
tanh4

�
βECM

2

�

þ 1

256π2E2
CM

½Π1ðβÞ þ b20Π2ðβÞ� × tanh4
�
βECM

2

�
; ð43Þ

where

Π1ðβÞ ¼
64π2e4E4

ðeβECM − 1Þ2 ½ð11þ 4 cos θ þ cos 2θÞδ2ð−2E2ð1 − cos θÞÞ

þ ð6þ 2 cos 2θÞδ2ð4E2Þ þ 16cos4ðθ=2Þδð−2E2ð1 − cos θÞÞδð4E2Þ�;

Π2ðβÞ ¼
256π2e2g2E6sin2ðθ=2Þ

ðeβECM − 1Þ2 ½ðcos 2θ þ 32sin2ðθ=2Þ þ 15Þδ2ð−2E2ð1 − cos θÞÞ

þ 8cos4ðθ=2Þδð−2E2ð1 − cos θÞÞδð4E2Þ: ð44Þ

The corrections due to the Lorentz violation parameter, b0,
are small. Corrections in higher order in b0 are ignored. The
propagator at finite temperature introduces the product of
delta functions with identical arguments [33–36]. This
problem is avoided by working with the regularized form
of delta functions and their derivatives [37]:

2πiδnðxÞ ¼
�
−

1

xþ iϵ

�
nþ1

−
�
−

1

x − iϵ

�
nþ1

: ð45Þ

This result shows that corrections for electron-positron
scattering due to Lorentz violation are altered at finite
temperature. In addition, at very high temperature, β → 0,
eβECM − 1 → 0; then, the temperature effect is very large.
At zero temperature, Π1ðβÞ;Π2ðβÞ go to zero, and

tanh4ðβECM
2

Þ → 1; then, the cross section becomes

�
dσ
dΩ

�
T¼0

¼ e4ðcos 2θ þ 7Þ2
256π2E2

CMðcos θ − 1Þ2

þ b20e
2g2sin2ðθ

2
Þð−65 cos θ þ 6 cos 2θ þ cos 3θ þ 122Þ

256π2ðcos θ − 1Þ2 :

ð46Þ

The same result was obtained in Ref. [10].

IV. CONCLUSION

Small violations of Lorentz andCPT symmetries emerge
from theories that try to unify SM and general relativity.
The SME provides a general theoretical description of
violations of Lorentz and CPT invariance. An alternative
procedure is to modify just the interaction part using a
nonminimal coupling. In this paper, one, among several,
nonminimal coupling is used. Then, the effect of Lorentz
violation and finite temperature on Bhabha scattering are
investigated. Finite temperature effects are introduced
using the TFD formalism. This gives us a good estimate
of the importance of the Lorentz-violating operators at
finite temperature on the cross section. From our results, we
expect that these operators play a minor role for processes
in the interior of stars. However, if all the minimal and
nonminimal Lorentz-violating operators are considered,
relevant effects may arise for processes at very high
energies, like astrophysical processes. Finally, it is impor-
tant to conclude that the present results give us a reasonable
estimate of the Lorentz-violating operators in the SME at
high temperatures on the Bhabha scattering.
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