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We construct perturbative classical solutions of the Yang-Mills equations coupled to dynamical point
particles carrying color charge. By applying a set of color to kinematics replacement rules first introduced
by Bern, Carrasco and Johansson, these are shown to generate solutions of d-dimensional dilaton gravity,
which we also explicitly construct. Agreement between the gravity result and the gauge theory double copy
implies a correspondence between non-Abelian particles and gravitating sources with dilaton charge. When
the color sources are highly relativistic, dilaton exchange decouples, and the solutions we obtain match
those of pure gravity. We comment on possible implications of our findings to the calculation of
gravitational waveforms in astrophysical black hole collisions, directly from computationally simpler gluon
radiation in Yang-Mills theory.
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I. INTRODUCTION

The many structural similarities between Yang-Mills
theory and general relativity hint at possible relations
between their observables and dynamics. At the perturbative
level, a correspondence between S-matrix elements in gauge
theory and gravity was discovered in recent years by Bern,
Carrasco and Johansson (BCJ) [1]. Their result builds on the
earlier work of [2], which found certain squaring identities
that relate tree-level open and closed string amplitudes. In
particular, theBCJ relations contain as a special case theKLT
identities of [2] in the limit of large string tension, in which
the infinite tower of massive string modes decouples.
The BCJ relations state that once written in a specific

form, Yang-Mills amplitudes, in any spacetime dimension
d, can be mapped onto their gravity counterparts by
applying a simple set of well-defined color-to-kinematics
replacement rules. As in the KLT case, the double copy of
gauge theories with or without matter is not pure general
relativity. Rather, as expected from counting degrees of
freedom, the gravitational theory generally contains other
massless fields in addition to the graviton. For example, in
pure Yang-Mills theory, the double copy is a theory whose
massless states consist of a graviton, a scalar field ϕ
(dilaton), and a two-form gauge field Bμν. The BCJ double
copy has been verified for amplitudes in a wide number of
field theories, containing varying amounts of super-
symmetry, at the multiloop level. In field theory, these
relations have been explicitly derived [3] for n-point tree-
level amplitudes, using modern amplitude techniques.
However, the microscopic origin of these relations, either
in field theory or string theory, is still unknown. See [4] for
a review and more extensive references to the literature.

Aside from their inherent theoretical interest, the
BCJ relations are of practical significance, as they
reduce the computational complexity of perturbative
gravity to the relatively more manageable gauge theory
Feynman rules. It is therefore natural to consider if
similar relations can arise for observables beyond the S
matrix. For example, is it possible to predict the
classical gravitational radiation field generated by a
system of merging black holes from the analogous
solution in gauge theory coupled to color sources?
This would have potential astrophysical applications,
to the calculation of templates for gravitational wave
detectors such as LIGO.1

The existence of nonperturbative double-copy relations
between classical solutions in gauge theory and gravity was
raised first in [7]. The authors proposed a correspondence
between solutions in the Abelian sector [8] of Yang-Mills
theory and Kerr-Schild spacetimes in general relativity. The
gauge theory configurations consist of solutions of the form
Aa
μðxÞ ¼ caχðxÞkμðxÞ up to gauge (with ca constant and kμ

null), for which the Yang-Mills equations become linear.
These solutions have close counterparts in general relativity
consisting of metrics that up to gauge are of the Kerr-Schild
form

gμν ¼ ημν þmχðxÞkμkν: ð1Þ

1An effective field theory of gravitons whose Feynman
diagrams compute gravitational radiation from merging black
holes was first introduced in [5]. The possibility that gravity is the
square of gauge theory, together with on-shell methods, can
be used to simplify gravitational wave calculations was discussed
by [6].
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An important example is the non-Abelian 1=rd−3 Coulomb
field of a point color charge ca, corresponding to the
d-dimensional Schwarzschild metric with massm, which is
indeed in the Kerr-Schild class. Further examples can be
found in [7,9–11]. See [12] for related discussion.
The Kerr-Schild correspondence ca → m of [7] is a

natural extension of the BCJ relations to the nonperturba-
tive regime.2 However, it is unclear how to use this
approach to obtain more generic solutions in gravity which
deviate from the algebraically special Kerr-Schild form. In
this paper, we instead focus on perturbative solutions, and
find evidence that BCJ-type relations exist between
classical solutions of Yang-Mills theory and those in a
gravitational double copy containing scalar and graviton
degrees of freedom. On the Yang-Mills side, the setup
consists of several initially well-separated color charges,
interacting through gluon exchange. These sources are not
treated as fixed. Instead, they evolve self-consistently in the
classical gluon field they themselves generate. We con-
struct the long distance radiation gluon field of this system,
expressed in terms of momentum space integrals. By
applying BCJ-type color-to-kinematics substitutions at
the level of the integrand, these are shown to precisely
match, at leading perturbative order, the asymptotic radi-
ation fields in a theory containing gravity and a massless
scalar (dilaton) coupled to massive point particles.
More explicitly, in Sec. II, we construct the Yang-Mills

radiation field corresponding to a set of color charges
coming in from spatial infinity, in terms of the initial
momenta pμ and initial charges ca transforming in the
adjoint representation of the gauge group. Our calculation
is done in general spacetime dimension d, generalizing
known d ¼ 4 static [15,16], and radiating [17,18] two-
particle solutions of the classical Yang-Mills equations.
Exact classical solutions of classical SUðN → ∞Þ QCD
coupled to color sources were constructed in [19]. Even
though the observables we obtain are classical, they are
related to the quantum mechanical on-shell gluon emission
amplitude sourced by semiclassical non-Abelian particles.
In Sec. III, we consider analogous solutions in the

graviton-dilaton system coupled to massive (nonspinning)
point particles. In addition to computing the asymptotic
radiation gravitational and scalar fields sourced by these
particles, we compute the gravitational analog of the
Wilson line which evolves each particle’s momentum from
initial to late times. We find in Sec. IV a double-copy
relation between these observables and the corresponding
quantities in the classical gauge theory. The specific
relation takes the initial color charges ca and replaces
them by a second copy of the initial momenta pμ, and maps
the Lie algebra structure constants fabc to a second copy of
the kinematic part of the three-gluon Feynman rule (the

four-gluon interaction does not yet show up at the order
in perturbation theory that we consider here). These
substitutions transform the asymptotic gluon field detected
by far away observers to a double-copy radiation amplitude
that encodes emission in both graviton and dilaton
channels.
For the double-copy relations discussed in Sec. IV to

work, it is essential to choose the dilaton couplings to the
point particles in such a way that the asymptotic scalar and
radiation fields have, at the level of the integrand, no
explicit dependence on the dimensionality d. The specific
form of the interactions is motivated by observations made
in [20], and require the point particles to have scalar
coupling strengths proportional to mass. Thus, at least
perturbatively, the correspondence between gauge and
gravity solutions implies that the non-Abelian Coulomb
field of a color charge maps onto a configuration which on
the gravity side has nonvanishing scalar field profile. In the
case of a strictly massless source, or in the limit d → ∞ of
large spacetime dimensions,3 the scalar field configuration
vanishes and the resulting gravitational field is of Kerr-
Schild form, in agreement with the ideas of [7]. However,
away from these limits the perturbative double copy of a
charged non-Abelian particle is not the Schwarzschild
solution and, as we explicitly check in Sec. IVA, the
gravitational field is coordinate inequivalent to Kerr-Schild
form starting at second order in perturbation theory. This
suggests that the duality proposed by [7] may only hold in
certain domains.
More generally, as we discuss in Sec. IV B, for solutions

corresponding to several massless interacting particles, the
dilaton can be consistently decoupled to all orders in
perturbation theory and the double copy reduces to pure
general relativity. This observation may be useful for
computing gravitational wave templates from merging
black holes directly from classical gauge theory, albeit
in a limit in which the sources are highly boosted yet
still within the perturbative regime. We also comment in
Sec. V on the inclusion of worldline spin degrees of
freedom and the related question of the role played by
the two-form gauge field Bμν in the classical double copy,
as well as other open questions raised by the results
presented in this paper.

II. CLASSICAL YANG-MILLS SOLUTIONS

A. Equations of motion and classical observables

We consider solutions of classical Yang-Mills theory in
d-spacetime dimensions coupled to point particle color
charges. By definition, these are objects localized on a
worldline xμðτÞ that carry a color charge degree of freedom

2See [13,14] for examples of nonperturbative double-copy
structure in supersymmetric theories.

3The limit d → ∞ of perturbative quantum gravity was
discussed in Refs. [21,22] and for solutions of classical general
relativity in [23].
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caðτÞ transforming in the adjoint representation of the
gauge group.4 The equations of motion are

DνF
νμ
a ðxÞ ¼ gJμaðxÞ; ð2Þ

where the color current is given by

JμaðxÞ ¼
X
α

Z
dτcaαðτÞvμαðτÞδdðx − xαðτÞÞ: ð3Þ

Here α is a label that distinguishes the different point
masses and vμα ¼ dxμα=dτ is their velocity. Current con-
servation, DμJ

μ
a ¼ 0, gives rise to the parallel transport

equation v ·Dca ¼ 0 for each charge, i.e.

dca

dτ
¼ gfabcvμAb

μðxðτÞÞccðτÞ; ð4Þ

with well-known solution caαðτÞ ¼ Wα
a
bðτÞcbαð−∞Þ in

terms of the adjoint representation Wilson line along the
trajectory xμαðτÞ,

Wα
a
bðτÞ ¼

�
Pexp

�
−ig

Z
τ

−∞
dxμαAμ ·Tadj

��
a

b: ð5Þ

The orbital motion follows from the conservation of total
energy momentum ∂μðTμν

YM þ Tμν
ppÞ ¼ 0, with

Tμν
ppðxÞ ¼

X
α

mα

Z
dτvμαðτÞvναðτÞδdðx − xαðτÞÞ; ð6Þ

which implies that each particle obeys the Lorentz
force law

dpμ

dτ
¼ m

d2xμ

dτ2
¼ gcaFμ

aνvν: ð7Þ

The classical equations of motion Eqs. (4) and (7) were
first obtained in [24] by taking a limit of the Dirac equation.
There are several physically distinct Lagrangian realiza-
tions. For instance, one can take as a specific model the
Lagrangian [25],

Spp ¼ −m
Z

dτ þ
Z

dτψ†iv ·Dψ ; ð8Þ

where ψðτÞ is a variable transforming linearly at xμðτÞ
under the gauge group, and ca ¼ ψ†Taψ . See also [26] for
a different Lagrangian formulation with nonlinearly real-
ized gauge symmetry on the worldline. For the purposes of
this paper, it is sufficient to work directly in terms of

Eqs. (4) and (7), so whatever results we obtain will hold
independently of any particular action formulation.
The main object of interest is the self-consistent classical

field hAa
μiðxÞ generated by a collection of point color

charges that evolve according to the equations of motion
Eqs. (2), (4), and (7). As long as the particles remain well
separated, we can determine hAa

μiðxÞ perturbatively as an
expansion in powers of the gauge coupling g. We find it
convenient to work in the gauge ∂μA

μ
a ¼ 0, in which case

the Yang-Mills equation can be rewritten as [8]

□Aμ
a ¼ g ~Jμa; ð9Þ

where the gauge-dependent current ~Jμa is defined as

~Jμa ¼ Jμa þ fabcAb
νð∂νAμ

c − Fμν
c Þ;

∂μ
~Jμa ¼ 0: ð10Þ

Formally, Eq. (9) can be solved iteratively. Once the
solution at given order in g is found, it is fed back in to
get the field at the next order in perturbation theory.
Equivalently, it is useful to adopt a diagrammatic approach,
where the classical solution hAμiðxÞ to Eq. (9) is calculated
as a sum of Feynman diagrams of the form shown in Fig. 1.
These diagrams are computed using standard momentum
space Feynman rules, with insertions of the (Fourier
transformed) current Eq. (3). At the classical level, in order
to preserve causality, it is necessary to use a retarded, or
“in-in” iϵ prescription for the gluon propagator.5 This is in
contrast to the standard Feynman boundary condition that
must be used to compute S-matrix elements between
asymptotic in/out states. In this paper, it is implicit that
propagators obey retarded boundary conditions, i.e. 1=k2 ¼
1=½ðk0 þ iϵÞ2 − k⃗2�.
Once the classical solution hAμiðxÞ is known to a given

order in perturbation theory, it can be used to compute all
the physical observables of this system. Here, we focus on
observables measured by asymptotic observers at spatial

(a) (b)

FIG. 1. Leading order Feynman diagrams for the perturbative
expansion of ~JμaðkÞ.

4Our conventions are Dμ ¼ ∂μ þ igAa
μTa, ½Ta; Tb� ¼ ifabcTc.

The generators in the adjoint representation are ðTa
adjÞbc ¼

−ifabc.

5This can be justified by interpreting hAμiðxÞ as the tree-level
part of the in-in one-point correlation function hinjAa

μðxÞjini in
quantum field theory coupled to classical particles.
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infinity, r ¼ jx⃗j → ∞, which are directly related to the
momentum space current ~JμaðkÞ ¼

R
ddxeik·x ~JμaðxÞ evalu-

ated for on-shell momentum k2 ¼ 0. For example in d ¼ 4
spacetime dimensions the asymptotic field at r → ∞ and
retarded time t is

lim
r→∞

hAa
μiðxÞ ¼

g
4πr

Z
dω
2π

e−iωt ~JμaðkÞ ð11Þ

with kμ ¼ ðω; k⃗Þ ¼ ωð1; x⃗=rÞ. Similar results exist also in
d dimensions. Thus the on-shell current ~JμaðkÞ directly
measures the flux of energy momentum, color, and angular
momentum radiated out to infinity by the system of point
charges. In particular, the total energy momentum radiated
out to r → ∞ in a fixed polarization channel ϵaμðkÞ is
(
R
k ¼

R
ddk=ð2πÞd)

ΔPμ ¼
Z
k
ð2πÞθðk0Þδðk2ÞjAaðkÞj2kμ; ð12Þ

where we have defined the on-shell radiation amplitude
AaðkÞ ¼ ϵaμðkÞ½g ~JμaðkÞ�jk2¼0

, with the polarization vector
obeying k · ϵaðkÞ ¼ 0, ϵaðkÞ · ϵbðkÞ� ¼ −δab. Similar
expressions hold for other conserved quantities (angular
momentum and color charge).

B. Perturbative solutions

We consider a setup consisting of several particles
α ¼ 1;…; N coming in from infinity at τ → −∞, with
initial data

caαðτ → −∞Þ ¼ caα; ð13Þ

xμαðτ → −∞Þ ¼ bμα þ vματ; ð14Þ

where bμα are spacelike (the impact parameters are
bμαβ ¼ bμα − bμβ) and v2α ¼ 1. As the particles come close
and interact, they scatter and emit classical radiation
encoded in hAμiðxÞ. We assume that the charges always
remain sufficiently far away so that the particles’ trajectory
changes are small and perturbation theory is valid. In this
case, the classical radiation field can be computed formally
in powers of g, in terms of the diagrams shown in Fig. 1.
The precise form of the dimensionless small parameter that
governs this expansion depends on the kinematics, and can
be determined by estimating the dependence of higher
order diagrams not shown in Fig. 1 on the kinematic
variables; e.g., for particles of comparable mass and energy
E≳m, one finds that the expansion parameter is

ϵ ¼ g2
Γðd−3

2
Þ

ð4πÞd−22
cα · cβ
Ebd−3αβ

≪ 1: ð15Þ

Since we construct our solutions only at the level of the
integrand, we do not need to make any assumptions about

the size of the radiation frequency scale ω relative to the
typical impact parameter b. Note that even though the
diagrams in Fig. 1 scale like definite powers of the gauge
coupling, they each contain in general an infinite series of
terms suppressed by powers of ϵ ≪ 1. It should be possible
to construct a classical effective field theory whose
Feynman diagrams scale as definite powers of ϵ and/or
ωb ≪ 1 along the lines of Ref. [5]. However, since in this
paper we are only interested in the leading order radiation
field, we do not find it necessary to introduce manifest
power counting in ϵ ≪ 1. Rather, we truncate Fig: 1ðaÞ ¼
ϵ0 þ ϵ1 þ… and Fig: 1ðbÞ ¼ ϵ1 þ….
At intermediate times, the particle trajectories in physical

and color space are given by

xμαðτÞ ¼ bμα þ vματ þ zμαðτÞ; ð16Þ

caαðτÞ ¼ caα þ c̄aαðτÞ; ð17Þ

where the deflections zμαðτÞ, c̄aðτÞ contain terms of order g2

(i.e. ϵ1) and higher. To compute these deflections, we first
need the classical field at leading order, which is given by
the diagram in Fig. 1(a) with static sources zμ ¼ c̄a ¼ 0. In
Feynman gauge, this is

hAμ
aiðxÞ ¼

X
α

Z
l
−

i
l2

e−il·xð−igÞ
Z

dτcaαv
μ
αeil·ðbαþvατÞ

¼ −g
X
α

Z
l
ð2πÞδðl · vαÞ

e−il·ðx−bαÞ

l2
vμαcaα: ð18Þ

At this order in perturbation theory, the current is
~JaμðkÞ ¼ g

P
αe

ik·bαð2πÞδðk · vαÞvμαcaα, which vanishes on
shell for timelike vμα, since static color charges do not
radiate. Inserting this result into the equations for xμðτÞ and
caðτÞ, we can now obtain the leading order deflections

dc̄aαðτÞ
dτ

¼ −g2
X
β≠α

ðvα · vβÞfabccbβccα
Z
l
ð2πÞδðl · vβÞ

×
eil·ðbαβþvατÞ

l2
; ð19Þ

and

mα
d2zμα
dτ2

¼ −ig2
X
β≠α

ðcα · cβÞ
Z
l
ð2πÞδðl · vβÞ

×
eil·ðbαβþvατÞ

l2
½ðvα · vβÞlμ − ðvα · lÞvμβ�: ð20Þ

In particular, from Eq. (19) we can read off the Wilson line
matrix at order g2,
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½lnWαðτ → ∞Þ�ab ¼ g2
X
β≠α

Z
l
ð2πÞδðl · vαÞð2πÞδðl · vβÞ

eil·bαβ

l2
ðvα · vβÞfabcccβ: ð21Þ

For later comparison to gravity, it is useful to insert a spurious integral over a new momentum variable lα and relabel
l → −lβ,

½lnWαðτ → ∞Þ�ab ¼ g2
X
β≠α

Z
lα;lβ

μα;βðk ¼ 0Þl2
αðvα · vβÞfabcccβ; ð22Þ

where we have introduced the notation

μα;βðkÞ ¼
�
ð2πÞδðvα · lαÞ

eilα·bα

l2
α

��
ð2πÞδðvβ · lβÞ

eilβ ·bβ

l2
β

�
ð2πÞdδdðk − lα − lβÞ: ð23Þ

The momentum integrals appearing in these expressions can be done by standard Schwinger parameter methods, but we do
not need those in what follows.
The order g2 (or ϵ1) correction to the current ~JμaðkÞ field has two contributions. One is from the diagram in Fig. 1(a),

taking into account the order g2 corrections to the equations of motion in Eqs. (19) and (20). This gives rise to the following
contribution to the conserved color current ~JμaðkÞ defined in Eq. (9):

Fig: 1ðaÞjOðg2Þ ¼
X
α

eik·bα
�
−iðk · vαÞcaα

�
zμαðωÞ − k · zα

k · vα
vμα

�
þ c̄aαðωÞvμα

�
ω¼k·vα

; ð24Þ

where zμðωÞ ¼ R
dτeiωτzμðτÞ, c̄aðωÞ ¼ R

dτeiωτc̄aðτÞ are the frequency-space displacements. In this equation and in what
follows, the iϵ prescription 1=k · v ¼ 1=ðk · vþ iϵÞ is implied. Inserting the Fourier transforms into the above expression
then yields

Fig: 1ðaÞjOðg2Þ ¼ g2
X
α;βα≠β

Z
lα;lβ

μα;βðkÞ
�
cα · cβ
mα

l2
α

k · vα
caα

�
−vα · vβ

�
lμ
β −

k · lβ

k · vα
vμα

�
þ k · vαv

μ
β − k · vβv

μ
α

�

þ iðvα · vβÞfabccbαccβ
l2
α

k · vα
vμα

�
: ð25Þ

The second contribution to ~JμaðkÞ is from Fig. 1(b) with static sources,

Fig: 1ðbÞjOðg2Þ ¼ g2
X
α;β
α≠β

Z
lα;lβ

μα;βðkÞifabccbαccβ½2ðk · vβÞvμα − ðvα · vβÞlμ
α�: ð26Þ

Combining we find

~JμaðkÞjOðg2Þ ¼ g2
X
α;β
α≠β

Z
lα;lβ

μα;βðkÞ
�
cα · cβ
mα

l2
α

k · vα
caα

�
−vα · vβ

�
lμ
β −

k · lβ

k · vα
vμα

�
þ k · vαv

μ
β − k · vβv

μ
α

�

þ ifabccbαccβ

�
2ðk · vβÞvμα − ðvα · vβÞlμ

α þ ðvα · vβÞ
l2
α

k · vα
vμα

��
: ð27Þ

A consistency check of this result is that it obeys the Ward identity kμ ~J
μ
aðkÞ ¼ 0 even for off-shell kμ. This requires a

cancellation between diagrams, which is only possible after the leading order solution for the time dependent charge caðτÞ is
inserted into Fig. 1(a).
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III. CLASSICAL SOLUTIONS
IN DILATON GRAVITY

We compare our results obtained above to classical
solutions in d-dimensional gravity coupled to a scalar ϕ
and to dynamical point sources. At the two-derivative level,
the action is S ¼ Sg þ Spp, where the bulk theory is

Sg ¼ −2md−2
Pl

Z
ddx

ffiffiffi
g

p ½R − ðd − 2Þgμν∂μϕ∂νϕ�; ð28Þ

and for a single particle

Spp ¼ −m
Z

dτeϕ ð29Þ

(dτ2 ¼ gμνdxμdxν). We refer to ϕ as the dilaton because of
the form of its couplings to the massive particle. As in
Ref. [20], the presence of the scalar field, as well as its
normalization and choice of interactions with the point
particle, is motivated by the observation that the gauge
theory Feynman rules that we use have no explicit
dependence on the spacetime dimensionality. This is in
contrast to pure general relativity, where even the graviton
propagator depends on d. Thus the double copy of pure
Yang-Mills coupled to charges must contain additional
degrees of freedom beyond those of Einstein gravity in
order to cancel the d-dependence. Note that in the calcu-
lations below, we only need to keep scalar couplings up to
quadratic order, eϕ ¼ 1þ ϕþ 1

2!
ϕ2 þ….

The equations of motion for each particle are

dpμ

dτ
¼ −½Γμ

ρνvρ þ ðvμ∂ν − vν∂μÞϕ�pν; ð30Þ

whose solution is pμðτÞ ¼ Wμ
νðτÞpνð−∞Þ, where the

gravitational analog of the Wilson line6

Wμ
νðτÞ ¼ P exp

�
−
Z

τ
dxρfΓμ

ρν þ ðδρμ∂ν − gρν∂μÞϕg
�
:

ð31Þ

To set up the perturbative expansion, we write the
metric as gμν ¼ ημν þ hμν. The formal solution hhμνi to
the equations of motion can be written in deDonder gauge,
∂νhμν ¼ 1

2
∂μhσσ, as

hhμνiðxÞ ¼
1

2md−2
Pl

Z
k

e−ik·x

k2

�
~TμνðkÞ −

1

d − 2
ημν ~T

σ
σðkÞ

�
;

ð32Þ

where ~TμνðxÞ is a conserved, ∂μ
~Tμν ¼ 0, but coordinate

dependent pseudotensor that includes the energy momen-
tum of the particle sources, the dilaton, and gravity. Distinct
but physically equivalent definitions of ~TμνðxÞ for pure
gravity can be found in textbooks [30,31]. Our definition
is the one used in [5], with ~TμνðxÞ proportional to the
coefficient of the graviton tadpole term in the background
field gauge effective action Γ½h;ϕ� for this theory,

Γ½h;ϕ� ¼ −
1

2

Z
ddx ~TμνðxÞhμνðxÞ þ…: ð33Þ

The quantity ~TμνðkÞ with k2 ¼ 0 then determines the
classical field measured by observers at spatial infinity.
For example, in four dimensions, the dimensionless strain
at retarded time t measured by gravitational wave detectors
placed at r → ∞ is obtained by dotting ~Tij into a
normalized, transverse-traceless polarization tensor ϵijðkÞ,

h�ðt; n⃗Þ ¼
4GN

r

Z
dω
2π

e−iωtϵ�ij�ðkÞ ~TijðkÞ: ð34Þ

This yields the angular pattern of helicity �2 gravitational
waves along direction n⃗ ¼ k⃗=jk⃗j seen by observers far from
the sources. In any number of dimensions, the radiated
energy momentum is

ΔPμ ¼ 1

4md−2
Pl

Z
k
ð2πÞθðk0Þδðk2Þkμjϵ�ρσðkÞ ~TρσðkÞj2: ð35Þ

The full (nonperturbative) equation of motion for the
scalar field is

□ϕðxÞ ¼ −
1

4md−2
Pl ðd − 2Þ

X
α

mα

Z
dταeϕðxÞ

δðx − xαÞffiffiffi
g

p ;

ð36Þ

whose solution we express as

hϕiðxÞ ¼ −
1

2m
ðd−2Þ
2

Pl ðd − 2Þ1=2

Z
k

e−ik·x

k2
AsðkÞ: ð37Þ

For on-shell momentum k2 ¼ 0, AsðkÞ can be interpreted
as the (canonically normalized) semiclassical probability
amplitude for scalar emission by the point sources. From a
strictly classical point of view, AsðkÞ with on-shell kμ

determines the radiation field measured by detectors at
future null infinity.

6The version of the gravitational Wilson line that appears
here is the one given, e.g., in [27,28] (here corresponding to
the affine connection for the conformally rescaled metric
~gμν ¼ e2ϕgμν). In Ref. [29] a different (noncovariant) definition
of the gravitational Wilson loop was found to be related to
perturbative amplitude calculations in N ¼ 8 supergravity.
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A. The leading order radiation fields

We now consider a set of particles α ¼ 1;…; N moving
along trajectories xα ¼ bα þ vατ þ zαðτÞ subject to initial
conditions zαðτ → −∞Þ ¼ 0. As in the Yang-Mills case,
we focus on perturbative solutions, in which case ~TμνðkÞ
and AsðkÞ can be calculated in terms of the Feynman
diagrams in Figs. 2 and 3. We follow the Feynman rule
conventions given in [5]. For example, the graviton
propagator for internal lines is i

md−2
Pl

Pμνρσ=k2, where the

tensor structure is given by

Pμνρσ ¼
1

2

�
ημρηνσ þ ημσηνρ −

2

d − 2
ημνηρσ

�
: ð38Þ

For particles of comparable mass and energy E≳m,
perturbation theory is valid in the kinematic regime

ϵ ¼ Γðd=2 − 3=2Þ
ð4πÞðd−1Þ=2

E
md−2

Pl bd−3αβ

≪ 1: ð39Þ

Even though the Feynman diagrams in Figs. 2 and 3 scale
as definite powers of 1=md−2

Pl , they do not exhibit manifest

(a) (b) (c)

(d)

α α

α

α

β

β

β

k k k

k
�α

�β

FIG. 3. Leading order Feynman diagrams in the perturbative expansion of the scalar emission amplitude AsðkÞ.

(a) (b) (c)

(d) (e)

FIG. 2. Leading order Feynman diagrams in the perturbative expansion of ~TμνðkÞ.
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power counting in ϵ. Explicit ϵ scaling can be achieved by constructing an effective field theory for the large impact
parameter limit, but we do not attempt to do so here. Again, we make no assumptions about the magnitude of the
dimensionless quantity ωb.
At leading order in perturbation theory, the particles travel undeflected, and source static fields that can be calculated

from the diagrams in Figs. 2(a) and 3(a) with zμα ¼ 0. The results are

hhμνiðxÞ ¼
1

2md−2
Pl

X
α

mα

Z
l

e−il·ðx−bαÞ

l2
ð2πÞδðl · vαÞ

�
vαμvαν −

1

d − 2
ημν

�
; ð40Þ

hϕiðxÞ ¼ 1

4md−2
Pl ðd − 2Þ

X
α

mα

Z
l

e−il·ðx−bαÞ

l2
ð2πÞδðl · vαÞ: ð41Þ

Because the sources are static at lowest order, these solutions do not contain radiation. However, they give rise to equations
of motion

d2zμα
dτ2

¼ i
2md−2

Pl

X
β≠α

mβ

Z
l
ð2πÞδðl · vβÞ

eil·ðbαβþvατÞ

l2

�
1

2
ðvα · vβÞ2lμ − ðl · vαÞ

�
ðvα · vβÞvμβ −

vμα
2ðd − 2Þ

��
: ð42Þ

Thus the leading order Wilson line along the path of particle α is given by

½lnWðτ → ∞Þ�μν ¼
i

4md−2
Pl

X
β≠α

mβ

Z
lα;lβ

μα;βð0Þl2
αðvα · vβÞðlμ

αvβν − lανv
μ
βÞ: ð43Þ

Given these results, we can now obtain the leading order radiation amplitude ~TμνðkÞ. First plug in the solution zμα to
Eq. (42) into Fig. 2(a),

Fig: 2ðaÞ ¼
X
α

eik·bαmαð−ik · vαÞ
�
vμαzναðωÞ þ vναz

μ
αðωÞ − vμαvνα

�
k · zαðωÞ
k · vα

þ vα · zαðωÞ
��

ω¼k·vα

; ð44Þ

to obtain

Fig: 2ðaÞ ¼ 1

2md−2
Pl

X
α;β
α≠β

mαmβ

Z
lα;lβ

μα;βðkÞ
l2
α

k · vα

�
1

2
ðvα · vβÞ2

�
vμαlν

β þ vναl
μ
β −

k · lβ

k · vα
vμαvνα

�

þ ðvα · vβÞ
�
1

2
ðvα · vβÞk · vα þ k · vβ

�
vμαvνα − ðvα · vβÞðk · vαÞðvμαvνβ þ vναv

μ
βÞ
�
: ð45Þ

Note that we have dropped terms proportional to δðk · vαÞwhich, either for massive or massless particles, do not contribute
to the radiation field.7 At this order in perturbation theory, we must also compute the diagrams in Figs. 2(b)–2(e) at zero
deflection, whose respective contributions to ~TμνðkÞ are

Fig: 2ðbÞ ¼ −
1

4md−2
Pl

X
α;β
α≠β

mαmβ

Z
lα;lβ

μα;βðkÞ
�
ðvα · vβÞ2 −

1

d − 2

�
l2
αv

μ
αvνα; ð46Þ

Fig: 2ðcÞ ¼ 1

4md−2
Pl

X
α;β
α≠β

mαmβ

Z
lα;lβ

μα;βðkÞ
l2
αv

μ
αvνα

d − 2
; ð47Þ

and

7In the massless case, the argument of the delta function can be nonzero if kμ points along the direction of a particle momentum.
However, because the δðk · vαÞ term is proportional to pμ

αpν
α, dotting the amplitude into an external graviton, or taking a trace to project

onto scalar radiation gives a vanishing result.
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Fig: 2ðdÞ ¼ 1

4md−2
Pl

X
α;β
α≠β

mαmβ

Z
lα;lβ

μα;βðkÞ
��

ðvα · vβÞ2 −
1

d − 2

�
ð2lμ

αlν
α þ lμ

αlν
βÞ

þ ημν
�
vα · vβðk · vαÞðk · vβÞ −

2ðk · vαÞ2
d − 2

−
1

2

�
ðvα · vβÞ2 −

1

d − 2

�
l2
α

�

þ 2

�
k · vα
d − 2

− ðvα · vβÞk · vβ
�
ðvμαlν

α þ vναl
μ
αÞ þ 2k · vβ

d − 2
ðlμ

αvνβ þ lν
αv

μ
βÞ

þ 2

�
ðk · vβÞ2 −

l2
α

d − 2

�
vμαvνα þ fl2

αvα · vβ − k · vαk · vβgðvμαvνβ þ vναv
μ
βÞ
�
: ð48Þ

To get the result in Fig. 2(d), we have used the background field gauge three-graviton interaction vertex, whose explicit form
can be found, e.g., in [5]. The remaining contribution to ~TμνðkÞ at this order in the interactions is

Fig: 2ðeÞ ¼ −
1

4md−2
Pl ðd − 2Þ

X
α;β
α≠β

mαmβ

Z
lα;lβ

μα;βðkÞ
�
lμ
αlν

β −
1

2
ημνlα · lβ

�
: ð49Þ

In all these equations, we have dropped terms that vanish when kμ is on shell, as these do not contribute to the asymptotic
field at r → ∞. However, we have checked that the sum of the diagrams, Figs. 2(a)–2(e), obeys the Ward identity
kμ ~T

μνðkÞ ¼ 0 even for kμ off shell. In order to compare to the analogous Yang-Mills results, we only focus on the
components of ~TμνðkÞ which contribute to the radiation field at infinity. In particular, the canonically normalized graviton
emission amplitude simplifies to

AgðkÞ ¼ −
1

2mðd−2Þ=2
Pl

ϵ�μνðkÞ ~TμνðkÞ ¼ −
ϵ�μνðkÞ

8m3ðd−2Þ=2
Pl

X
α;β
α≠β

mαmβ

Z
lα;lβ

μα;βðkÞ½ðvα · vβÞ2lμ
αlν

α

þ ðvα · vβÞημν
�
1

2
ðvα · vβÞl2

α þ ðk · vαÞðk · vβÞ
�
− 2ðvα · vβÞ

�
ðvα · vβÞ

l2
α

k · vα
þ 2k · vβ

�
lμ
αvνα

− 2ððk · vαÞðk · vβÞ þ ðvα · vβÞl2
αÞvμαvνβþ

�
ðvα · vβÞ

l2
α

ðk · vαÞ2
ððvα · vβÞk · lα þ 2ðk · vαÞðk · vβÞÞ þ 2ðk · vβÞ2

�
vμαvνα

�
;

ð50Þ

where we have only assumed that the polarization tensor obeys the deDonder gauge condition kμϵμνðkÞ ¼ 1
2
kνϵσσðkÞ. Note

in particular that, by construction, all explicit dependence on the spacetime dimensionality cancels in this on-shell quantity.
This would not be true for the nonradiative components of the solution at this order, and it would not be true of the radiation
amplitude in pure gravity [diagrams (a), (b), and (d) in Fig. 2]. This cancellation is what dictates the choice of scalar
interactions, and is going to be important later when we discuss double-copy relations between the Yang-Mills solution and
the result in Eq. (50).
We can use the same methods to calculate the amplitude for dilaton emission from the classical system. Inserting the

solution to Eq. (42) into Fig. 3(a), we obtain the following contribution to AsðkÞ [defined in Eq. (37)],

Fig: 3ðaÞ ¼ −
1

4m3ðd−2Þ=2
Pl ðd − 2Þ1=2

X
α;β
α≠β

mαmβ

Z
lα;lβ

μα;βðkÞ
l2
α

ðk · vαÞ2
ðvα · vβÞ

�
ðk · vαÞðk · vβÞ

−
1

2
ðvα · vβÞðk · lβ þ ðk · vαÞ2Þ

�
; ð51Þ

and working at zero deflection,

Fig: 3ðbÞ ¼ −
1

8m3ðd−2Þ=2
Pl ðd − 2Þ1=2

X
α;β
α≠β

mαmβ

Z
lα;lβ

μα;βðkÞ
�
ðvα · vβÞ2 −

1

d − 2

�
l2
α; ð52Þ
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Fig: 3ðcÞ ¼ −
1

8m3ðd−2Þ=2
Pl ðd − 2Þ1=2

×
X
α;β
α≠β

mαmβ

Z
lα;lβ

μα;βðkÞ
l2
α

d − 2
; ð53Þ

Fig: 3ðdÞ ¼ −
1

4m3ðd−2Þ=2
Pl ðd − 2Þ1=2

×
X
α;β
α≠β

mαmβ

Z
lα;lβ

μα;βðkÞðk · vαÞ2: ð54Þ

In particular, the diagram Fig. 3(c) probes the coefficient of
the quadratic coupling of the scalar to the particles written
in Eq. (29). The sum of these diagrams then gives the scalar
radiation amplitude

AsðkÞ ¼ −
1

8m3ðd−2Þ=2
Pl ðd − 2Þ1=2

X
α;β
α≠β

mαmβ

Z
lα;lβ

μα;βðkÞ

×

�ðvα · vβÞl2
α

ðk · vαÞ2
fðvα · vβÞk · lα þ 2ðk · vαÞ

× ðk · vβÞg þ 2ðk · vαÞ2
�
: ð55Þ

IV. COLOR-KINEMATICS CORRESPONDENCE

We now show that there is a color-kinematics relation
between the perturbative Yang-Mills observables in Sec. II
and the corresponding ones in the scalar-gravity theory
constructed in Sec. III. The possibility of such a corre-
spondence is well motivated by work on scattering ampli-
tudes, going back to the KLT relations and more recently
the BCJ double copy of gauge theory.
As in the BCJ case, the connection between gauge

and gravity observables consists of making certain color-
to-kinematics substitutions. To recover gravity from our
Yang-Mills results, we first replace the initial color
charge of each particle with a second copy of its initial
momentum

ca → pμ: ð56Þ

This substitution is motivated by the structural similarity
between the respective classical equations of motion: in
gauge theory, charge caðτÞ is parallel transported in color
space, while in gravity pμðτÞ also obeys a parallel
transport equation, Eq. (30), generated by the affine
connection associated with the Weyl rescaled metric
~gμν ¼ e2ϕgμν. The replacement Eq. (56) is also similar
to the identification ca → m in the Kerr-Schild double-
copy proposal of [7]. Note that under the replacement in
Eq. (56), the trivial (order ϵ0) gluon field in Eq. (18) does

not map onto the gravitational solution in Eq. (40),
except in the case of highly boosted sources. The fact
that the massless limit double copies in this way is
consistent with observations made in Ref. [32], which
constructed these solutions indirectly, by resumming the
eikonal limit of QCD and using the BCJ relations to
make contact with classical gravity. The special case of
massless sources and their classical double copy is
discussed in more detail below in Sec. IV B.
Even though the (gauge dependent) leading order sol-

utions in Eqs. (18) and (40) are only related for m ¼ 0
particles, we find that gauge-invariant classical observ-
ables, in particular the transverse radiation field at r → ∞,
do obey a double-copy relation even in the more general
case of massive sources. In order to see this relation, we
have to compare the solutions at the next order in
perturbation theory, where radiation first shows up. At this
order in the expansion, it becomes necessary to introduce a
substitution rule for the color structure fabc on the gauge
theory side. In our gauge theory results, every term
containing a factor of fabc can be associated with an
expression involving incoming momenta q1;2;3. As in BCJ,
it is natural to replace the structure constants with a second
copy of the kinematic factor appearing in the three-gluon
Feynman vertex,

ifa1a2a3 → Γν1ν2ν3ðq1; q2; q3Þ

¼ −
1

2
½ην1ν3ðq1 − q3Þν2 þ ην1ν2ðq2 − q1Þν3

þ ην2ν3ðq3 − q2Þν1 �; ð57Þ

with q1 þ q2 þ q3 ¼ 0. Finally, to compare to gravity, we
introduce the replacement rule

g →
1

2md=2−1
Pl

: ð58Þ

Given these rules, we can now determine the gravita-
tional double copy of the emission amplitude AðkÞ ¼
ϵaμðkÞ½g ~JaμðkÞ�. We replace the gluon polarization vector,

ϵaμðkÞ → ϵμðkÞ~ϵνðkÞ; ð59Þ

with independent photon polarizations ϵμðkÞ, ~ϵμðkÞ.
Making these substitutions, the double copy ÂμνðkÞ of
the Yang-Mills amplitude is given by

ϵaμðkÞ½g ~JaμðkÞ� → ϵμðkÞ~ϵνðkÞÂμνðkÞ; ð60Þ

which is only well defined up to terms that vanish when
dotted into the external on-shell polarizations. Using this
gauge freedom, the double-copy amplitude with k2 ¼ 0 can
be taken to be, from Eq. (27),

GOLDBERGER and RIDGWAY PHYSICAL REVIEW D 95, 125010 (2017)

125010-10



ÂμνðkÞ ¼ −
X
α;β
α≠β

mαmβ

8m3ðd−2Þ=2
Pl

Z
lα;lβ

μα;βðkÞ
�ðvα · vβÞl2

α

k · vα
vνα

�
ðvα · vβÞ

�
1

2
ðlβ − lαÞμ −

k · lβ

k · vα
vμα

�
þ ðk · vβÞvμα − ðk · vαÞvμβ

�

þ 1

2
f2ðk · vβÞvνα − 2ðk · vαÞvνβ þ ðvα · vβÞðlβ − lαÞνg

�
2ðk · vβÞvμα − ðvα · vβÞlμ

α þ ðvα · vβÞl2
α

k · vα
vμα

��
: ð61Þ

To obtain this, we have added pure gauge terms propor-
tional to kν whose specific form has been chosen such that,
for on-shell k2 ¼ 0, the Ward identity is obeyed in each
Lorentz index,

kμÂμνðkÞ ¼ kνÂμνðkÞ ¼ 0: ð62Þ

The double-copy amplitude ÂμνðkÞ simultaneously enc-
odes radiation in the graviton and scalar channels. To
extract each process, we decompose the product ϵμ ~ϵν into
irreducible SOðd − 2Þmassless little group representations.
In unitary gauge, with ϵ0ðkÞ ¼ ~ϵ0ðkÞ ¼ 0, the spatial
components decompose as

ϵiðkÞ~ϵjðkÞ ¼ ϵijðkÞ þ aijðkÞ −
ϵðkÞ · ~ϵðkÞ
d − 2

hijðkÞ; ð63Þ

where the scalar is proportional to hijðkÞ ¼ δij − kikj=k⃗
2

and the transverse traceless graviton is

ϵijðkÞ ¼
1

2
ϵiðkÞ~ϵjðkÞ þ

1

2
ϵjðkÞ~ϵiðkÞ þ

ϵðkÞ · ~ϵðkÞ
d − 2

hijðkÞ:
ð64Þ

In principle, there is also the antisymmetric mode
aijðkÞ ¼ ðϵiðkÞ~ϵjðkÞ − ϵjðkÞ~ϵiðkÞÞ=2, associated with the
existence of a two-form gauge field Bμν in the Yang-Mills
double copy. However, by direct calculation it is easy to see
that aijðkÞÂijðkÞ ¼ 0, so that this field is not radiated by
the point sources. We comment further on the role played
by the Bμν field in Sec. V. The double copy ÂμνðkÞ contains
a canonically normalized scalar emission amplitude of the
form

−
hijðkÞÂijðkÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hmnhmnðkÞp ¼ ημνÂμνðkÞ

ðd − 2Þ1=2 ¼ AsðkÞ; ð65Þ

which reproduces the result Eq. (55) obtained in the
gravity theory. In the graviton channel, the double-copy
amplitude is

ϵijðkÞÂijðkÞ ¼ 1

2
ϵμðkÞ~ϵνðkÞ½ÂμνðkÞ þ ÂνμðkÞ�

−
ϵðkÞ · ~ϵðkÞ
d − 2

Âμ
μðkÞ: ð66Þ

For graviton polarization of the form given in Eq. (64),
this expression agrees with the asymptotic radiation field
in Eq. (50),

ϵijðkÞÂijðkÞ ¼ −
1

2mðd−2Þ=2
Pl

ϵμνðkÞ ~TμνðkÞ; ð67Þ

computed directly in perturbative gravity.

A. The double copy of a static point source

Taken at face value, our results in the previous section
imply that the double copy of an isolated color charge is an
object that sources both the graviton and dilaton. We can
use the results in Sec. III to calculate the long distance
gravitational field of this object. This same method was
first used by Duff [33] to calculate the asymptotic four-
dimensional Schwarzschild metric to second order in
powers of rs=r ≪ 1 and in [5] to order ðrs=rÞ3, where
rs is the Schwarzschild radius of the source.
For a single particle with bμ ¼ 0, the leading order field

as an expansion in powers of ðrs=rÞd−3 ≪ 1 can be read off
directly from Eq. (40). In a deDonder coordinate system,
with ημνΓλ

μν ¼ 0,

hμνðxÞ ¼
1

d − 3

�
rs
r

�
d−3

ðημν − ðd − 2ÞvμvνÞ; ð68Þ

with vμ being the source’s velocity. In terms of the spatial
coordinates xμ⊥ ¼ xμ − ðv · xÞvμ, the radial variable is
defined to be r ¼

ffiffiffiffiffiffiffiffiffi
−x2⊥

p
. At this order in perturbation

theory, the solution coincides with the d-dimensional
Schwarzschild metric, and by defining a new radial
coordinate

ρ ¼ r

�
1þ 1

2ðd − 3Þ
�
rs
r

�
d−3

þ…

�
; ð69Þ

the gravitational field of an isolated particle can be put in
the standard Schwarzschild form

ds2 ¼ fðρÞdt2 − gðρÞdρ2 − ρ2dΩ2
d−2; ð70Þ

fðρÞ ¼ 1 −
�
rs
ρ

�
d−3

þ…; ð71Þ
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gðρÞ ¼ 1þ
�
rs
ρ

�
d−3

þ…: ð72Þ

At the next order in the expansion, the backreaction of
the scalar field profile on the metric must be taken into
account. Summing up the energy momentum of the
graviton and ϕ, we find at second order in perturbation
theory8

~TμνðkÞ ¼ m2

8ðd− 2Þmd−2
Pl

ð2πÞδðk · vÞ
Z
l
ð2πÞδðl · vÞ 1

l2

×
1

ðlþ kÞ2
�
2ðd− 2Þlμlν þ ðd− 2Þðlμkν þ lνkμÞ

þ 2ðd− 3Þkμkν − 1

2
ð3d− 10Þk2ημν

þ 2ðd− 4Þk2vμvν
�
: ð73Þ

The correction to the metric can now be extracted from
Eq. (32). In order to calculate hμνðxÞwe first do the integral
over momentum l by standard one-loop Feynman param-
eter methods, and then the Fourier transform over k using
the identity

Z
k
ð2πÞδðk · vÞ e−ik·x

ð−k2Þα

¼ 1

ð4πÞd−12
Γðd=2 − α − 1=2Þ

ΓðαÞ
�
2

r

�
d−2α−1

: ð74Þ

The result is that hð2Þμν ðxÞ, the order ðrs=rÞ2ðd−3Þ correction to
the metric, is given by

hð2Þμν ðxÞ ¼ 1

4

d − 2

ðd − 3Þ2
�
rs
r

�
2ðd−3Þ�

−
2d2 − 13dþ 24

ðd − 2Þðd − 5Þ ημν

þ 2d2 − 16dþ 33

d − 5
vμvν −

3ðd − 3Þ2
d − 5

x⊥μ x⊥ν
r2

�
:

ð75Þ

By redefining the radial coordinate,

ρ2 ¼ r2
�
1þ 1

ðd − 3Þ
�
rs
r

�
d−3

−
2d2 − 13dþ 24

4ðd − 3Þ2ðd − 5Þ
�
rs
r

�
2ðd−3Þ

þ…

�
; ð76Þ

the metric including second order corrections can again be
put in the form given in Eq. (70), where now

fðρÞ ¼ 1 −
�
rs
ρ

�
d−3

þ 0 ·

�
rs
ρ

�
2ðd−3Þ

þ…; ð77Þ

gðρÞ ¼ 1þ
�
rs
ρ

�
d−3

þ
�
1 −

1

4ðd − 3Þ
��

rs
ρ

�
2ðd−3Þ

þ…:

ð78Þ

The second order corrections to gðρÞ include a pure gravity
contribution that does not depend on d, and a scalar
contribution with logarithmic UV divergences in d ¼ 3
dimensions.9 Note that in the large d limit [21–23], the
scalar decouples and we recover the d-dimensional
Schwarzschild solution to second order in perturbation
theory. It is also straightforward to calculate the scalar field
profile. In deDonder coordinates, the result is

ϕðrÞ ¼ 1

2ðd − 3Þ
�
rs
r

�
d−3

þ 0 ·

�
rs
r

�
2ðd−3Þ

þ…; ð79Þ

while in Schwarzschild coordinates

ϕðρÞ ¼ 1

2ðd − 3Þ
�
rs
ρ

�
d−3

þ 1

4ðd − 3Þ
�
rs
ρ

�
2ðd−3Þ

þ…:

ð80Þ

There is a natural connection [7] between certain
solutions of the classical Yang-Mills equations and Kerr-
Schild solutions to the Einstein equations in pure gravity.
According to this correspondence, the exact non-Abelian
Coulomb field of a point color charge corresponds to the
Schwarzschild solution of vacuum general relativity. The
results in Eq. (78) instead indicate that, because of scalar
charge, the double copy of the Coulomb field is neither a
vacuum spacetime nor equivalent to Kerr-Schild by coor-
dinate transformations. To see this latter assertion, note
that the general d-dimensional spherically symmetric Kerr-
Schild metric, gμν¼ημνþχðρÞkμkν, kμ¼ð1;xi=ρÞ, ρ ¼ jx⃗j
can be put [11] in Schwarzschild form

ds2 ¼ ð1þ χðρÞÞdt2 − dρ2

1þ χðρÞ − ρ2dΩ2
d−2 ð81Þ

by a suitable choice of constant time slices. By comparison
with Eqs. (77) and (78) we see that the perturbative double
copy is not of Kerr-Schild form starting at second order in
perturbation theory.
We are forced by this analysis to conclude that in the

one-body sector, Kerr-Schild duality is at odds with the
strictly perturbative approach in this paper, except possibly
in two physically interesting limits. First, in the case of
infinite spacetime dimensions [21–23], it is clear from

8This result can be obtained from the diagrams of Figs. 2(d)
and 2(e) in the case of a single particle.

9Such divergences renormalize the coefficients of nonminimal
interactions between the particle worldline and gμν, ϕ [5].
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Eq. (28) that the scalar field consistently decouples to all
orders in perturbation theory. In this case, the perturbative
double copy of Yang Mills is the d → ∞ limit of pure
general relativity, and our result in Eqs. (77) and (78)
reduces to the Schwarzschild vacuum. The second limit is
that of massless charges, which can be obtained from the
results of this section by taking the ultrarelativistic limit
v0 ¼ γ → ∞. In that limit the linearized result in Eq. (68)
becomes exact to all orders in powers of ðrs=rÞd−3
regardless of the dilaton couplings, and the gravitational
field is the Aichelburg-Sexl shockwave [34], which is one
of the Kerr-Schild solutions considered in [7].

B. Pure gravity and the double copy
for massless particles

In fact, for strictly massless particle sources, the pertur-
bative classical double copy of Yang-Mills theory is pure
Einstein gravity. This is seen most transparently by
introducing into the point particle Lagrangian an auxiliary
“einbein” ηðλÞ whose role is to enforce invariance under
reparametrizations λ → ~λðλÞ of the worldline (see e.g. [35]).
In terms of this new degree of freedom, the action takes
the form

Spp ¼ −
1

2

Z
dλ

�
η−1e2ϕgμν

dxμ

dλ
dxν

dλ
þ ηm2

�
: ð82Þ

Varying the action with respect to η then yields the
constraint

e2ϕgμν
dxμ

dλ
dxν

dλ
¼ m2η2; ð83Þ

which when inserted back into the Lagrangian reproduces
the action −m

R
dτeϕ assumed in Sec. III. In the einbein

formulation, ϕ obeys the equation of motion

□ϕ ¼ −
1

8md−2
Pl ðd − 2Þ

X
α

Z
dλη−1e2ϕðxÞgμν

×
dxμ

dλ
dxν

dλ
δðx − xαÞffiffiffi

g
p : ð84Þ

It is now straightforward to take m ¼ 0, in which
case xμðλÞ obeys the null geodesic equation in the metric
e2ϕgμν, while the constraint Eq. (83) reduces the dilaton
equation to □ϕ ¼ 0. Because null geodesics are preserved
under Weyl rescalings, the dilaton has no effect on the
motion of the particles, and in any case the trivial solution
with constant ϕ satisfies the equations of motion to all
orders in perturbation theory. Thus, if all the particles are
massless, the scalar mode decouples and the double copy of
the gauge theory configuration is automatically a solution
of pure general relativity.

V. DISCUSSION AND OUTLOOK

In this paper we have constructed perturbative classical
solutions of Yang-Mills theory coupled to point charges
and analogous solutions in a theory of a graviton and a
massless scalar field. Our results hold in any number
of spacetime dimensions, and for any number of point
sources. By applying a simple set of BCJ-motivated
replacement rules, encapsulated in Eqs. (56)–(58), we
are able to reproduce the gravitational and scalar fields
detected by far away observers from the corresponding
asymptotic gluon field in classical gauge theory. We have
focused on solutions corresponding to classical unbound
trajectories, but our results can also be easily applied to
obtain solutions with particles in nonrelativistic bound
orbits.
Several remarks are in order. First, given their close

relation to on-shell observables, it is perhaps not com-
pletely unexpected that the asymptotic classical gravity
solutions we construct are related to gauge theory by rules
similar to the BCJ transformations that hold in the case of
the S matrix. However, the double-copy structure of
classical solutions seems to differ in one important way
from the relations for scattering amplitudes. Namely, for
scattering amplitudes, it is essential that matrix elements be
put into explicit BCJ form, as a sum over groupings of
Feynman diagrams whose numerators are related by the
Jacobi identity of the Lie algebra. In our case, the classical
Yang-Mills radiation field is only linear in the structure
constants, and aside from total antisymmetry under index
permutations, algebraic relations obeyed by fabc seem to
not play any role. Going to the next order in perturbation
theory, the classical solutions contain terms that are
quadratic in the structure constants, and it is likely that
the Jacobi identity will be important in generating gravi-
tational field configurations from their gauge theory coun-
terparts. Likewise, at this perturbative order we have to deal
with the four-gluon interaction on the gauge theory side.
Presumably, as in BCJ, this can be handled by “blowing
up” the four-gluon vertex into the product of three-point
interactions, but an explicit calculation is needed.
Despite being both on shell and classical, the observables

considered here are not simply the classical limit of tree-
level scattering in quantum field theory. This is clear due to
the fact that for a fixed number of external particles, there
are only a finite number of tree diagrams contributing to
either the gauge theory or gravity S-matrix element. On the
other hand, even for a small set of initial and final particles,
the classical observables we compute receive corrections
from an infinite set of Feynman diagrams, with an ever-
increasing number of source insertions at higher orders in
an expansion in powers of ϵ ∼ b3−d ≪ 1. As is well known,
for gravitational scattering in the ultrarelativistic limit, it is
possible to resum a subset of the diagrams at each order in
the loop expansion of field theory to recover the classical
limit. See, e.g., Refs. [36,37] for a review and recent
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discussion. In this approach, an all orders resummation of
ladder and cross ladder diagrams [scaling as distinct powers
of the loop expansion parameter ðmPlbÞ2−d ≪ 1] is needed
just to reproduce the trivial ϵ0 solution in Eq. (40). The
eikonal expansion is not as straightforward in the case of
gauge theory; see [38] for a recent effective theory
formulation. Nevertheless, by applying these resummation
methods, Ref. [32] argues that the massless gravitational
shockwave solution can be recovered as the BCJ double
copy of a subset of diagrams for massless scattering in
QCD. It may be feasible to extend this resummation to
recover our radiative solutions at order ϵ1, albeit only in the
special case of massless sources (in d ¼ 4 perturbative
gravity, the subleading terms in the eikonal expansion have
been computed in [39]). However, even if it were possible
in principle to obtain the classical double-copy relations
reported here as a limit of the S-matrix BCJ double copy, it
is obviously more transparent and less cumbersome to
follow the approach pursued in this paper.
It is not surprising that the two-form gauge field Bμν,

which plays a role in both the KLT relations and in the BCJ
double copy of pure gauge theory, has not appeared in our
analysis. This follows from symmetry, as the simplest
interaction between the particle worldline and Bμν that
respects gauge and diffeomorphism invariance is quadratic,
of the form

m
md−2

Pl

Z
dτHμνσHμνσ: ð85Þ

Because the sources cannot couple linearly to Bμν, it can
only appear in loop diagrams. Thus at the classical level,
Bμν exchange does not contribute to the classical fields hμν
or ϕ, nor is there at any order in ℏ a nonvanishing Bμν one-
point function. This situation differs in the case of spinning
particles, in which case there can be a linear interaction

m

md=2−1
Pl

Z
dτSμνvσHμνσ ð86Þ

involving the particle spin SμνðτÞ, which must be treated
as a dynamical variable in its own right (an effective
Lagrangian to spinning compact objects was developed in
[40]). We are currently investigating [41] what sorts of
gravity solutions can arise as double copies of Yang-Mills
solutions with spinning color charges. In this case, we

expect to find that Bμν will appear at the classical level,
since it can be radiated by the source term in Eq. (86),
which in turn may arise as the double copy of the
chromomagnetic dipole interaction

g
Z

dτSμνcaFa
μν ð87Þ

in the gauge theory.
Finally, as discused in Sec. IV, for massless particle

sources, or in the d → ∞ limit [21–23], the effects of scalar
exchange are systematically suppressed. Thus in either of
these limits, the gauge theory solution maps onto a solution
of pure general relativity coupled to point particles. To the
extent that the finite size effects can be ignored, gluon
emission from ultrarelativistic non-Abelian charges double
copies to gravitational radiation by interacting black holes.
Provided that the replacement patterns found in this paper
persist at higher orders in powers of GNE=bd−3 ≪ 1, this
observation paves the way for possible applications of BCJ
double-copy rules to the physics of gravitational wave
sources and LIGO. While it is not clear if there is an
astrophysically significant fraction of perturbative ultra-
relativistic black hole collisions10 that can be detected by
LIGO, the efficient calculation of precision gravitational
wave templates directly from Yang-Mills Feynman rules
could play a role in comparisons between numerical and
perturbative methods, and give insight into template mod-
els. We leave these and other questions raised by our results
for future work.
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