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We use dimensional regularization in pure quantum gravity on a de Sitter background to evaluate the
one-loop expectation value of an invariant operator which gives the local expansion rate. We show that the
renormalization of this nonlocal composite operator can be accomplished using the counterterms of a
simple local theory of gravity plus matter, at least at one-loop order. This renormalization completely
absorbs the one-loop correction, which accords with the prediction that the lowest secular backreaction
should be a two-loop effect.
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I. INTRODUCTION

The quantum gravitational backreaction on accelerated
expansion has a special importance because of its
potential to simultaneously provide a resolution for the
(old) problem of the cosmological constant [1,2] and a
predictive model for primordial inflation [3]. The idea is
easy to sketch. We posit that the bare cosmological
constant is not absurdly small, but rather large and
positive, and that this triggered primordial inflation
[4,5]. Accelerated expansion rips virtual scalars and
gravitons out of the vacuum [6,7]; this is what causes
the primordial power spectra [8,9]. The self-gravitation
of these particles must tend to slow the expansion rate,
and their contribution to the vacuum energy must
grow with time as more and more of them come into
causal contact through the continual increase in the
volume of the past light cone. Λ-driven inflation is based
on the assumption that this effect eventually stops
inflation [5].
Quantum instabilities of de Sitter have been proposed

for decades [10–21]. The difficult part has been to
properly quantify the effect so as to establish its reality.
In 1996 a fixed-gauge computation by Mukhanov et al.
seemed to show secular slowing at one loop in scalar-
driven inflation [22,23]. However, Unruh correctly ques-
tioned the validity of treating the expectation value of the
gauge-fixed metric as one would a classical metric [24].
Although the result persisted in a different gauge [25,26],
the introduction of a truly invariant measure for the local
expansion rate, with the time fixed by the value of the

inflaton [27], revealed the absence of any secular slowing
[28,29]. The apparent effect in a fixed gauge “time” arose
from quantum fluctuations tending to push the inflaton
down its potential a little faster than it would have gone
classically. This is apparent from using different clocks
[30–32], but the inflaton potential suffers no secular
corrections at one-loop order.
True quantum gravitational backreaction is predicted to

occur at two-loop order because inflationary particle
production is a one-loop effect so the quantum gravitational
response to it must occur one loop higher [4,5]. Although
the reasoning is solid, the conclusion is frustrating because
two-loop computations in nontrivial geometries are so
difficult. There seems to be no advantage to working in
scalar-driven inflation; that would only have paid off if the
scalar-metric mixing had permitted a one-loop effect. In the
absence of a reduction in the loop order, the presence of a
scalar inflaton merely complicates the problem through the
evolving background and the more complex propagators
and vertices. The simplest venue is therefore pure gravity
on a de Sitter background, provided a suitable invariant
expansion observable can be constructed. A proposal for
this has been made based on using a nonlocal scalar
functional of the metric in the same way one would
quantify the expansion rate using a scalar inflaton [33].
However, this observable can only be used at two-loop
order if it can be successfully renormalized at one-loop
order. That is the purpose of this paper.
In Sec. II we review how the expansion operator is

defined, and we give its expansion to second order in metric
perturbations about a de Sitter background. Section III
evaluates the expectation value of the observable at one-
loop order using dimensional regularization. Its renormal-
ization is accomplished in Sec. IV. Section V discusses our
results and the prospects for pushing on to two-loop order.
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II. THE EXPANSION OBSERVABLE

The purpose of this section is to precisely define the ex-
pansion operator and give its expansion in powers of the
graviton field [33]. We also present the local gravityþ
matter theory from which it descends. To facilitate the appli-
cation of dimensional regularization we work in D spacetime
dimensions with a single time coordinate −∞< η< 0, a
(D − 1)-dimensional space vector x⃗, and a spacelike metric.
Our nonlocal scalar Φ½g�ðxÞ is constructed to obey the

equation,

□Φ≡ 1ffiffiffiffiffiffi−gp ∂μ½
ffiffiffiffiffiffi
−g

p
gμν∂νΦ� ¼ ðD − 1ÞH; ð1Þ

subject to the initial conditions (at η ¼ ηi ≡ −1=H),

Φðηi; x⃗Þ ¼ 0; −gαβðηi; x⃗Þ∂αΦðηi; x⃗Þ∂βΦðηi; x⃗Þ ¼ 1:

ð2Þ
The important thing about (minus) Φ½g�ðxÞ is that it grows
in the timelike direction, not just for de Sitter but for an
arbitrary metric. Hence its gradient produces a timelike
4-vector. By normalizing this vector and then taking the
divergence we can construct a scalar measure of the local
expansion rate, just as is done with the inflaton in scalar-
driven inflation [29],

H½g�ðxÞ ¼ 1

ðD − 1Þ ffiffiffiffiffiffiffiffiffiffiffiffi
−gðxÞp ∂μ

×

2
64

ffiffiffiffiffiffiffiffiffiffiffiffi
−gðxÞp

gμνðxÞ∂νΦ½g�ðxÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gαβðxÞ∂αΦ½g�ðxÞ∂βΦ½g�ðxÞ

q
3
75: ð3Þ

Expression (3) is a scalar, not an invariant, because the
observation point xμ ¼ ðη; x⃗Þ has not been invariantly
fixed. Recall that doing this was the key step in demon-
strating that there is no one-loop secular backreaction in
scalar-driven inflation [28,29]. Just like the case of scalar-
driven inflation, we use the value of the scalar to invariantly
fix the surface of simultaneity on which the observation is
made. Also like scalar-driven inflation, a homogeneous and
isotropic state provides no reference structure with which
we can fix the spatial coordinates on this surface. So we
only define a metric-dependent time θ½g�ðxÞ by the con-
dition that it makes the full scalar agree with its value on de
Sitter background [gμν ¼ a2ημν, with aðηÞ ¼ −1=Hη],

Φ½g�ðθ½g�ðxÞ; x⃗Þ≡Φ0ðηÞ≡ −
1

H
ln½aðηÞ�: ð4Þ

(Making the full inflaton agree with its background value
was also the time condition for scalar-driven inflation
[28,29].) Evaluating the scalar (3) at this time defines
the expansion observable [33],

H½g�ðxÞ≡H½g�ðθ½g�ðxÞ; x⃗Þ: ð5Þ
We define the graviton field hμνðxÞ as the perturbation of

the conformally rescaled metric about de Sitter back-
ground,

gμνðxÞ≡ a2ðηÞ½ημν þ κhμνðxÞ�≡ a2ðηÞ~gμνðxÞ;
κ2 ≡ 16πG: ð6Þ

We adhere to the usual convention that graviton indices are
raised and lowered with the Lorentz metric, for example,
hμν ≡ ημρηνσhρσ . The Feynman rules are given in terms of
the graviton field [34,35], so we must expand H½g�ðxÞ in
powers of it in order to evaluate its expectation value. It is
useful to also expand the scalar Φ½g�ðxÞ [33],

Φ½g�ðxÞ ¼ Φ0ðηÞ þ κΦ1ðxÞ þ κ2Φ2ðxÞ þ � � � ; ð7Þ

Φ1 ¼
1

DA

�
−ðD − 1ÞHh00 −

h000
2a

þ h0j;j
a

−
h0jj
2a

�
; ð8Þ

where Latin letters from the middle of the alphabet denote
spatial indices, h≡ ημνhμν, a prime stands for differentia-
tion with respect to η and DA ≡ 1

aD ∂μðaD−2ημν∂νÞ. The
expansion observable has a similar expansion [33],

H½g�ðxÞ ¼ H þ κH1ðxÞ þ κ2H2ðxÞ þ � � � ; ð9Þ

H1 ¼
1

2
Hh00 þ

h0ii
2ðD − 1Þaþ ∂i

�
−h0i

ðD − 1Þaþ ∂iΦ1

ðD − 1Þa2
�
:

ð10Þ

The homogeneity and isotropy of our state and our gauge
(see Sec. III A) mean that we must get zero for the expect-
ation value of a total spatial derivative such as the final term
of (10).Wewill therefore not bother about giving such terms
for H2 although they have been worked out [33],

H2 ¼
3

8
Hh00h00 −

1

2
Hh0ih0i þ

½−hijh0ij þ h00;ih0i þ 1
2
h00h0ii − hjj;ih0i�

2ðD − 1Þa

þ ½ðD − 1ÞHah000 þ ð∂2
0 −Ha∂0 −∇2Þhii − 2ð∂0 −HaÞh0i;i þ h00∇2�Φ1

2ðD − 1Þa2

þ
�
Dþ 1

D − 1

�
H∂iΦ1∂iΦ1

2a2
þ ðspatial derivative termsÞ: ð11Þ
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Our expansion observable H½g�ðxÞ is a nonlocal
composite operator functional of the metric, which
makes its renormalization problematic. The normal BPHZ
(Bogoliubov and Parasiuk [36], Hepp [37] and Zimmerman
[38,39]) renormalization technique only suffices to remove
ultraviolet divergences from noncoincident one-particle-
irreducible (1PI) functions. It is known how to perform
additional renormalizations to remove the divergences of
local composite operators [40,41].However, the only nonlocal
composite operator whose renormalization we now under-
stand is the Wilson loop of non-Abelian gauge theory [42].
A way forward may be the observation that our expan-

sion observable can be considered as descending from a
local composite operator in the scalar-metric theory whose
Lagrangian is

L ¼ 1

16πG
½R − ðD − 2ÞΛ� ffiffiffiffiffiffi

−g
p

−
1

2
∂μφ∂νφgμν

ffiffiffiffiffiffi
−g

p

− ðD − 1ÞHφ
ffiffiffiffiffiffi
−g

p
: ð12Þ

Here the full cosmological constant isΛ≡ ðD−1ÞH2þδΛ.
Although the scalarφ obeys the same equation (1) asΦ½g�, it
possesses its own independent initial value data instead of
being completely fixed by the initial conditions (2).
Nonetheless, we conjecture that the composite operator
renormalization of H½g�ðxÞ may be the same as the
composite operator renormalization of the corresponding
operator in (12).Wewill see in Sec. IV that this conjecture is
correct, at least at one-loop order.

III. ONE-LOOP EXPECTATION VALUE

The purpose of this section is to evaluate the expectation
value of H½g�ðxÞ at one-loop order. We begin with the
Feynman rules. Next the one-point contribution is inferred
from previous work and the various two-point contributions
are reduced to convolutions of propagators. These con-
volutions are then reduced to the coincidence limits of
integrated propagators whose evaluation is explained in
Appendixes A–C.

A. Feynman rules

The invariant part of the pure gravitational action can be
expressed in terms of the fields hμν and ~gμν ¼ ημν þ κhμν
defined in expression (6) as [34]

L ¼ 1

16πG
½R − ðD − 2ÞΛ� ffiffiffiffiffiffi

−g
p þ counterterms; ð13Þ

¼ ðsurface termsÞ þ 1

2
ðD− 2ÞHaD−1

ffiffiffiffiffiffi
−~g

p
~gρσ ~gμνhρσ;μhν0

þ aD−2
ffiffiffiffiffiffi
−~g

p
~gαβ ~gρσ ~gμν

�
1

2
hαρ;μhνσ;β −

1

2
hαβ;ρhσμ;ν

þ 1

4
hαβ;ρhμν;σ −

1

4
hαρ;μhβσ;ν

�
þ counterterms: ð14Þ

Because the expansion observable H½g�ðxÞ is gauge invari-
ant it should not matter how we fix the gauge, so we make
the choice which gives the simplest propagator. That choice
is defined by adding the gauge-fixing term [34,35],

LGF ¼ −
1

2
aD−2ημνFμFν;

Fμ ≡ ηρσ
�
hμρ;σ −

1

2
hρσ;μ þ ðD − 2ÞaHhμρδ0σ

�
: ð15Þ

The associated ghost Lagrangian [with antighost field γμðxÞ
and ghost field ϵσðxÞ] is [34]

Lgh ¼ −2aD−2γμ;αηαβηρσ
�
~gρðμ∂βÞ þ

1

2
~gμβ;ρ þHa~gμβδ0ρ

�
ϵσ

þ ðaD−2γμÞ;μηαβηρσ
�
~gρα∂β þ

1

2
~gαβ;ρ þHa~gαβδ0ρ

�
ϵσ;

ð16Þ

where parenthesized indices are symmetrized.
In the gauge (15) both the graviton and ghost propagators

are simple because they consist of sums of known scalar
propagators, each multiplied by an index factor which is
constant in space and time [34,35],

i½μνΔρσ�ðx; x0Þ ¼
X

I¼A;B;C

iΔIðx; x0Þ × ½μνTI
ρσ�; ð17Þ

i½μΔν�ðx;x0Þ ¼ iΔAðx;x0Þ× η̄μν− iΔBðx;x0Þ×δ0μδ
0
ν: ð18Þ

Here ημν is the Lorentz metric and η̄μν ≡ ημν þ δ0μδ
0
ν is its

purely spatial part. The same constant tensors suffice to
give the three index factors of the graviton propagator,

½μνTA
ρσ� ¼ 2η̄μðρη̄σÞν −

2

D − 3
η̄μνη̄ρσ; ð19Þ

½μνTB
ρσ� ¼ −4δ0ðμη̄νÞðρδ

0
σÞ; ð20Þ

½μνTC
ρσ� ¼

2

ðD − 2ÞðD − 3Þ ½ðD − 3Þδ0μδ0ν þ η̄μν�

× ½ðD − 3Þδ0ρδ0σ þ η̄ρσ�: ð21Þ

The three scalar propagators have masses M2
A ¼ 0,

M2
B ¼ ðD − 2ÞH2 and M2

C ¼ 2ðD − 3ÞH2. They are most
easily represented in terms of the de Sitter length function
yðx; x0Þ,

yðx; x0Þ≡H2aðηÞaðη0Þ½∥x⃗ − x⃗0∥2 − ðjη − η0j − iϵÞ2�: ð22Þ

The A-type scalar is well known to break de Sitter
invariance [43,44],

INVARIANT MEASURE OF THE ONE-LOOP QUANTUM … PHYSICAL REVIEW D 95, 125008 (2017)

125008-3



iΔA ¼ HD−2

ð4πÞD2
�
ΓðD

2
Þ

D
2
− 1

�
4

y

�D
2
−1

þ ΓðD
2
þ 1Þ

D
2
− 2

�
4

y

�D
2
−2

−
ΓðD − 1Þ
ΓðD

2
Þ

�
π cot

�
π
D
2

�
− lnðaa0Þ

�

þ
X∞
n¼1

�
1

n
ΓðnþD − 1Þ
Γðnþ D

2
Þ

�
y
4

�
n
−

1

n − D
2
þ 2

Γðnþ D
2
þ 1Þ

Γðnþ 2Þ
�
y
4

�
n−D

2
þ2
��

: ð23Þ

On the other hand, the B-type and C-type propagators are de Sitter invariant functions of yðx; x0Þ,

iΔB ¼ HD−2

ð4πÞD2
�
ΓðD

2
Þ

D
2
− 1

�
4

y

�D
2
−1

þ
X∞
n¼0

�
Γðnþ D

2
Þ

Γðnþ 2Þ
�
y
4

�
n−D

2
þ2

−
ΓðnþD − 2Þ
Γðnþ D

2
Þ

�
y
4

�
n
��

; ð24Þ

iΔC ¼ HD−2

ð4πÞD2
�
ΓðD

2
Þ

D
2
− 1

�
4

y

�D
2
−1

−
X∞
n¼0

��
n −

D
2
þ 3

�
Γðnþ D

2
− 1Þ

Γðnþ 2Þ
�
y
4

�
n−D

2
þ2

− ðnþ 1ÞΓðnþD − 3Þ
Γðnþ D

2
Þ

�
y
4

�
n
��

: ð25Þ

Although the infinite summations may appear daunting,
each of the scalar propagators takes a simple form for D ¼
4 dimensions,

D ¼ 4 ⇒ iΔA ¼ H2

4π2

�
1

y
−
1

2
ln

�
y

4aa0

��
;

iΔB ¼ iΔC ¼ H2

4π2y
: ð26Þ

This means we only need the sums when there is a
divergence, and then only a few of the lowest values of
n are required.
We close by giving a unified treatment of differential

operators and propagators on a de Sitter background. The
inverse of the massless scalar d’Alembertian DA has
already appeared in expression (8) for Φ1ðxÞ,

DA ≡ 1

aD
∂μ½aD−2ημν∂ν� ¼

1

a2
½∂2 − ðD − 2ÞHa∂0�: ð27Þ

We denote a general massive scalar kinetic operator with a
subscript ν,

Dν ≡DA þ ðν2 − ν2AÞH2; νA ≡
�
D − 1

2

�
: ð28Þ

The various propagators are obtained by acting the inverse
differential operators on a delta function,

iΔνðx; x0Þ ¼
1

Dν
½iδDðx − x0Þ� ¼ 1

D0
ν
½iδDðx − x0Þ�: ð29Þ

In addition to propagators we also require some integrated
propagators whose evaluation is explained in Appendix C,

Iαβðx; x0Þ≡ 1

Dα
½iΔβðx; x0Þ�;

Iαβγðx; x0Þ≡ 1

Dα

1

D0
γ
f½iΔβðx; x0Þ�; ð30Þ

Jαβðx; x0Þ≡ 1

Dα

�
iΔβðx; x0Þ

aðηÞ
�
;

Jαβγðx; x0Þ≡ 1

Dα

1

D0
γ

�
iΔβðx; x0Þ
aðηÞaðη0Þ

�
; ð31Þ

Kαβγðx; x0Þ≡ 1

Dα

1

D0
γ

�
iΔβðx; x0Þ
aðη0Þ

�
: ð32Þ

For the special case where the index corresponds to a
particularly useful propagator we have found it convenient
to employ an alternate, alphabetical representation accord-
ing to the scheme,

νB ≡ νA − 1; νC ≡ νA − 2; νD ≡ νA − 3: ð33Þ

The last case, νD, corresponds to a scalar of mass M2
D ¼

3ðD − 4ÞH2 which does not appear in the graviton or ghost
propagators. It nonetheless occurs in our reductions of the
two-point contributions (see Sec. III C) when using iden-
tities of Appendix B to reflect a time derivative from one
side of a C-type propagator to the other,

½∂ 0
0 þ 2Ha0�iΔCðx; x0Þ ¼ −½∂0 þ ðD − 4ÞHa�iΔDðx; x0Þ:

ð34Þ

B. One-point contributions

Figure 1 shows the diagrams which contribute to the one-
loop expectation value of κH1ðxÞ. The first two diagrams
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display the primitive contribution while the third diagram
gives the contribution from the cosmological counterterm.
The primitive diagrams have been evaluated previously
using dimensional regularization and in the same gauge
(15) that we employ. The result implies1

hΩjκH1ðxÞjΩi ¼
2H

D − 2

1

DC

�
−K þ 1

2
ðD − 2ÞδΛ

�

þ 2∂0

ðD − 2ÞðD − 3Þa
�
1

DC
−
D − 2

DA

�

×

�
−K þ 1

2
ðD − 2ÞδΛ

�
; ð35Þ

where the constant K is [45]

K ¼ κ2HD

ð4πÞD2
ΓðD − 1Þ
ΓðD

2
Þ

�
1

D − 3
−
1

2
ðD − 2ÞðDþ 1Þ

þ 1

8
ðD − 4ÞðD − 1Þ

�
: ð36Þ

The correct renormalization condition for δΛ seems to be to
make the trace of the graviton 1PI one-point function
vanish on the initial value surface. Otherwise, the constant
we call “H” does not represent the initial expansion rate. If
this condition is adopted then expression (35) vanishes,

δΛ ¼ 2K
D − 2

⇒ hΩjκH1ðxÞjΩi ¼ 0: ð37Þ

Condition (37) provides for the simplest development of
perturbation theory; however, it is worth examining what
would happen if a different renormalization condition were
adopted. In this case the expectation value of the graviton
field would not vanish at one-loop order, and its spatial
components would suffer secular growth in our gauge.
Both the failure to vanish and the secular growth follow
from having declined to make the parameter H in the
background metric agree with the true (initial) expansion

rate which we might write as H þ δH. To see this, suppose
we change (37) to

−K þ 1

2
ðD − 2ÞδΛ ¼ ðD − 2ÞðD − 1ÞHδH: ð38Þ

Then the two nonzero terms of expression (35) become

2H
D − 2

1

DC
½ðD − 2ÞðD − 1ÞHδH� ¼ −

�
D − 1

D − 3

�
δH; ð39Þ

−
2a−1∂0

D − 3

1

DA
½ðD − 2ÞðD − 1ÞHδH� ¼ 2

�
D − 2

D − 3

�
δH:

ð40Þ

The sum of (39) and (40) gives precisely δH, which makes
for a nice check on the consistency of our expansion
observable. Of course most researchers would at this stage
absorb δH into H so as to make condition (37) pertain.
Persistingwith a nonzero value of δHwould be likeworking
in flat space QED (quantum electrodynamics) with the
parameter m failing to stand for the actual electron mass.

C. Two-point contributions

The simple diagrammatic structure of the one-loop two-
point contributions which is shown in Fig. 2 conceals the
enormous complexity of our observable. One can see from
expression (11) that H2 contains three distinct classes of
terms: those with both graviton fields at the point xμ, those
with onegraviton at xμ and the other acted uponby a factor of
1
DA
, and those with both gravitons acted upon by (different)

factors of 1
DA
. In each case we substitute expression (17) and

then perform the indicated tensor contractions and differen-
tiations. However, factors of 1

DA
require special treatment to

reflect all the derivatives outside the inverse differential
operators. We will explicitly work out a sample reduction
from each of the three classes, and then give the full result for
that class.
To illustrate the reduction of the first class we have

selected the third term on the first line of expression (11).
Multiplying by the factor of κ2 which all parts of H2 carry
gives

FIG. 1. Diagrammatic representation of hΩjκH1ðxÞjΩi.
Graviton lines are wavy and ghost lines are straight.

FIG. 2. Diagrammatic representation of hΩjκ2H2ðxÞjΩi.
Graviton lines are wavy and ghost lines are straight.

1The inverses of DA and DC act on constants with the
homogeneous solutions (a0 and a1−D for DA and a−2 and
a3−D for DC) chosen so that expression (35) is constant,

1

DA
C ¼ −

C lnðaÞ
ðD − 1ÞH2

;
1

DC
C ¼ −

C
2ðD − 3ÞH2

:
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Ω




 − κ2hijðxÞh0ijðxÞ

2ðD − 1Þa




Ω

�
¼ −

κ2

2ðD − 1Þa lim
x0→x

��
δiiδjj þ δijδij −

2

D − 3
δijδij

�
∂ 0
0iΔAðx; x0Þ

þ 2

ðD − 3ÞðD − 2Þ δijδij∂
0
0iΔCðx; x0Þ

�
; ð41Þ

¼ −
κ2

2a
lim
x0→x

��
D −

2

D − 3

�
∂ 0
0iΔAðx; x0Þ þ

2

ðD − 3ÞðD − 2Þ ∂
0
0iΔCðx; x0Þ

�
; ð42Þ

¼ −
κ2

2

�
D −

2

D − 3

�
HD−2

ð4πÞD2
ΓðD − 1Þ
ΓðD

2
Þ H ¼ −

κ2H3

8π2
þOðD − 4Þ: ð43Þ

The full result for this class of terms is

hΩj½κ2H2ðxÞ�hhjΩi ¼
κ2HD−1

ð4πÞD2
ΓðD − 2Þ
ΓðD

2
Þ

�
3

4

1

D − 2
−
1

2
ðD − 1Þ − 1

2
ðD − 2Þ

�
D −

2

D − 3

��

→ −
25

8
×
κ2H3

16π2
þOðD − 4Þ: ð44Þ

The second class consists of one local hμνðxÞ and the
other inside a first order correction of the scalar (8). For
example, consider the second term on the second line of
expression (11) with the last of the four terms of Φ1ðxÞ,

κ2

2ðD − 1Þa2 × ð∂2
0 −Ha∂0 −∇2ÞhiiðxÞ ×

1

DA

�
−
h0jjðxÞ
2a

�
:

ð45Þ

We write the expectation value of any such term as the
coincidence limit of 1

DA
acting on a differentiated

propagator. Then we employ the reflection identities
of Appendix B to move derivatives outside the factor of
1
DA
, and the result is expressed in terms of the integrated

scalar propagators (30)–(31). For expression (45) the
reduction is

hΩjExpð45ÞjΩi ¼ −κ2 lim
x0→x

ð∂2
0 −Ha∂0 −∇2Þ
4ðD − 1Þa2

1

D0
A

�
1

a0
∂ 0
0i½iiΔjj�ðx; x0Þ

�
; ð46Þ

¼ κ2 lim
x0→x

ð∂2
0 −Ha∂0 −∇2Þ
ðD − 3Þa2

1

D0
A

�∂ 0
0iΔAðx; x0Þ

a0
−
�
D − 1

D − 2

� ∂ 0
0iΔCðx; x0Þ

2a0

�
; ð47Þ

¼ κ2 lim
x0→x

ð∂2
0 −Ha∂0 −∇2Þ
ðD − 3Þa2

1

D0
A

�
−½∂0 þ ðD − 2ÞHa� iΔBðx; x0Þ

a0

þ
�
D − 1

D − 2

�
HiΔCðx; x0Þ þ

1

2

�
D − 1

D − 2

�
½∂0 þ ðD − 4ÞHa� iΔDðx; x0Þ

a0

�
; ð48Þ

¼ κ2 lim
x0→x

ð∂2
0 −Ha∂0 −∇2Þ
ðD − 3Þa2

�
−½∂0 þ ðD − 2ÞHa�JABðx0; xÞ

þ
�
D − 1

D − 2

�
HIACðx0; xÞ þ

1

2

�
D − 1

D − 2

�
½∂0 þ ðD − 4ÞHa�JADðx0; xÞ

�
: ð49Þ

Using Appendix C the full result for this class of terms is
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hΩj½κ2H2ðxÞ�hΦ1
jΩi¼ κ2

a2
lim
x0→x

��
∂2
0þðD−4ÞHa∂0−

2∇2

D−1

��
−
ðD2−6Dþ7Þ
ðD−2ÞðD−3ÞHIACðx0;xÞþ ½∂0þðD−4ÞHa�JADðx

0;xÞ
D−3

�

−
�ð∂2

0−Ha∂0−∇2Þ½∂0þðD−2ÞHa�
D−3

þ∇2ð∂0−HaÞ
D−1

�
JABðx0;xÞ

�

→
κ2HD−1

ð4πÞD2
ΓðD−1Þ
ΓðD

2
Þ

�
−132193

5005

D−4
þOððD−4Þ0Þ

�
: ð50Þ

The final class of terms consists of a graviton from one factor of Φ1ðxÞ multiplied by a graviton from another factor
of Φ1ðxÞ. As an example, consider the case where it is the second graviton of expression (8) which is contributed by
each Φ1ðxÞ,

�
Dþ 1

D − 1

�
κ2H
2a2

∂i

DA

�
−
h000ðxÞ
2a

�
×

∂i

DA

�
−
h000ðxÞ
2a

�
: ð51Þ

The reduction of expression (51) proceeds similarly to that of (45),

hΩjExpð51ÞjΩi ¼ ðDþ 1ÞðD − 3Þ
ðD − 1ÞðD − 2Þ

κ2H
4a2

lim
x0→x

∂i

DA

∂i
0

D0
A

�∂0∂0
0iΔCðx; x0Þ
aa0

�
; ð52Þ

¼ −
ðDþ 1ÞðD − 3Þ
ðD − 1ÞðD − 2Þ

κ2H
4a2

lim
x0→x

∇2

DAD0
A

�
ð∂0 þHaÞð∂ 0

0 þHa0Þ iΔCðx; x0Þ
aa0

�
; ð53Þ

¼ −
ðDþ 1ÞðD − 3Þ
ðD − 1ÞðD − 2Þ

κ2H
4a2

lim
x0→x

f2H½∂ 0
0 þ ðD − 2ÞHa0�∇2KACBðx; x0Þ

þ ½∂0 þ ðD − 2ÞHa�½∂ 0
0 þ ðD − 2ÞHa0�∇2JBCBðx; x0Þ þH2∇2IACAðx; x0Þg: ð54Þ

With Appendix C we find that the full result for this class of terms is

hΩj½κ2H2ðxÞ�Φ1Φ1
jΩi ¼

�
Dþ 1

D − 1

�
κ2H
2a2

lim
x0→x

∇2

��
D − 1

D − 3

�
H2IAAAðx; x0Þ − 2

ðD2 − 3Dþ 1Þ2
ðD − 3ÞðD − 2ÞH

2IACAðx; x0Þ

−∇2JABAðx; x0Þ þ ½∂0 þ ðD − 2ÞHa�½∂ 0
0 þ ðD − 2ÞHa0�

×

��
D − 1

D − 3

�
JBABðx; x0Þ − 2

�
D − 2

D − 3

�
JBCBðx; x0Þ

�

þH½∂ 0
0 þ ðD − 2ÞHa0�

�
2

�
D − 1

D − 3

�
KAABðx; x0Þ − 4

�
D2 − 3Dþ 1

D − 3

�
KACBðx; x0Þ

��

→
κ2HD−1

ð4πÞD2
ΓðD − 1Þ
ΓðD

2
Þ

�
− 2669

288

D − 4
þOððD − 4Þ0Þ

�
: ð55Þ

Combining the results of expressions (44), (50) and (55)
gives the full one-loop result,

hΩjκ2H2ðxÞjΩi

¼ κ2HD−1

ð4πÞD2
ΓðD − 1Þ
ΓðD

2
Þ

�
− 3·853·60293

32·13!!

D − 4
þOððD − 4Þ0Þ

�
:

ð56Þ
The divergent part of expression (56) is what chiefly
concerns us but we take note of the fact that the finite
part is also independent of time.

IV. RENORMALIZATION

The expansion observable H½g�ðxÞ is a nonlocal
composite operator whose divergences are not automati-
cally absorbed by the BPHZ renormalization of noncoin-
cident 1PI functions. Indeed, we saw in Sec. III B that the
natural renormalization condition for the cosmological
counterterm δΛ is to cancel the initial value of the trace
of the graviton 1PI one-point function. Because the
graviton 1PI one-point function is a pure trace [45] this
renormalization condition has the effect of completely
canceling the one-point contributions of Sec. III B, leaving
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the two-point contributions of Sec. III C unaffected.
From expression (56) we see that these terms diverge at
one-loop order.
It should be noted that no other BPHZ renormalizations

can affect the expectation value of H½g�ðxÞ at one-loop
order. Renormalizing R and R2 is degenerate with Λ for a
de Sitter background at this order, and the Weyl-squared
term makes no contribution at all for a de Sitter background
at this order. The additional divergences of expression (56)
derive from the fact that H½g�ðxÞ is a composite operator,
and they require composite operator renormalization.
Because HðxÞ goes like an inverse length, and the loop
counting parameter κ2 goes like a length squared, we
require operators of dimension length−3 (times κ2) which
can mix with H½g�ðxÞ. Had we been dealing with a local
composite operator the list of candidates would be short,
but the number of nonlocal candidates is infinite.
We propose that the conundrum should be resolved by

limiting candidates to those which are local in the scalar þ
gravity theory (12) from whichH½g�ðxÞ descends. With this
conjecture there are just two candidate mixing operators of
the required dimension,2

O1½g�ðxÞ≡ κ2Rðθ½g�ðxÞ; x⃗Þ ×H½g�ðxÞ;
O2½g�ðxÞ≡ κ2H3½g�ðxÞ; ð57Þ

where we recall that θ½g�ðxÞ defines the surface of simul-
taneity on which the scalar Φ½g� takes its background value
(4). Both operators are proportional to κ2H3 for de Sitter, so
either can be used to completely cancel the one-loop
correction (56) to the expectation value of H½g�ðxÞ. That
is, we think of the renormalized expansion operator as

H½g� þ δH½g� ¼ H½g� þ μD−4ðα1O1½g� þ α2O2½g�Þ
þ higher loops; ð58Þ

where α1 and α2 are functions of D.
It remains to discuss two issues, the first of which is the

finite part of the expectation value of (58) at one-loop order.
We must choose the coefficients α1 and α2 to cancel the
divergent part, but it might be that the finite part remains
nonzero and represents an interesting prediction of quantum
gravity. This is not so for three reasons. First, there is no
unambiguous definition of “the finite part” of the primitive
expectation value (56). For example, had the multiplicative
factors of ð4πÞ−D

2 and ΓðD − 1Þ=ΓðD
2
Þ been evaluated at

D ¼ 4, what we call the finite part would change. Second,
the finite parts of α1 and α2 are equally ambiguous for the
same reason. Finally, the point of H½g�ðxÞ þ δH½g�ðxÞ is to
measure the spacetime expansion rate. If a completely
arbitrary choice makes this rate fail to agree with H, even

on the initial value surface, and after we have made the
graviton one-point function vanish (at one-loop order), then
we have failed to properly define H½g�ðxÞ þ δH½g�ðxÞ. We
must make its initial expectation value agree withH, just as
we must make what we call “the physical electron mass”
agree with its observed value. The legitimate prediction of
quantum gravity is how the expectation value ofH½g�ðxÞ þ
δH½g�ðxÞ changes with time. Because the result (56) of the
primitive one-loop diagrams is constant, as are the mixing
operators (57), there is no change at one-loop order. We do
not expect that to remain true at two-loop order, but this is
contingent on the primitive two-loop contributions showing
secular growth.
The second issue is how to renormalizeH½g�ðxÞ on more

general backgrounds than de Sitter. One must first under-
stand thatH½g�ðxÞ was defined to apply for a homogeneous
and isotropic background. One can see this from the fact
that the spatial position has not been invariantly fixed [33].
Had the initial state possessed spatial structure this could
have—and would have—been used to modify H½g�ðxÞ so
as to invariantly fix the spatial position.
For pure gravity with a positive cosmological constant,

de Sitter is the unique homogeneous and isotropic solution.
However, it is simple to add a scalar whose background
evolution supports a more general Friedmann-Robertson-
Walker (FRW) homogeneous and isotropic background.
The propagators and vertices for this theory are known
[26,46] and the computation we have just completed
could be repeated for a general HðtÞ≡ a0=a2. Because
ultraviolet divergences are local,we can be confident that the
result would be divergences proportional to two terms:
HðtÞ _HðtÞ andH3ðtÞ. As it happens, the two one-loopmixing
operators (57) span this two-dimensional space of possible
divergences,

O1½FRW�ðxÞ ¼ κ2½2ðD − 1ÞH _H þDðD − 1ÞH3�;
O2½FRW�ðxÞ ¼ κ2H3: ð59Þ

It therefore seems inevitable that we can not only renorm-
alize the one-loop expectationvalue ofH½g�ðxÞ on a de Sitter
background but also on an arbitrary homogeneous and
isotropic background.

V. CONCLUSIONS

Our task has been to give an invariant quantification of
the prediction that there is no one-loop backreaction in pure
quantum gravity on de Sitter background [4,5]. In Sec. II
we reviewed the nonlocal invariantH½g�ðxÞ which has been
proposed to quantify the inflationary backreaction [33]. In
Sec. III we computed the one-loop expectation value of
H½g�ðxÞ, obtaining (35) for the contributions from that part
ofH½g�ðxÞ which is linear in the graviton field, and (56) for
the contributions from the part of H½g�ðxÞ which is
quadratic in the graviton field.

2We have omitted _H½g�ðxÞ from the list (57) because it
vanishes on a de Sitter background.
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Section IV dealt with the crucial issue of renormaliza-
tion. The natural renormalization condition for the cosmo-
logical counterterm δΛ is to entirely cancel the trace of the
1PI one-point function, which makes the one-point con-
tribution (35) vanish. That leaves the divergent two-point
contribution (56) uncontrolled. These composite operator
divergences require composite operator renormalization.
We identified two candidate operators (57) which could be
used to entirely cancel the two-point contribution (56), at
one-loop order and on a de Sitter background (and probably
other homogeneous and isotropic backgrounds). We have
therefore confirmed the prediction that there is no back-
reaction at one-loop order, and we have a plausible
conjecture for controlling ultraviolet divergences at any
order and on general expanding spacetime backgrounds.
These are solid accomplishments which place the exten-

sion to two-loop order within reach. It is at this order that
one expects secular backreaction, which cannot be
absorbed by renormalization. Some of the additional work
required for this project is mechanical:

(i) Extend the expansion (9)–(11) ofH½g�ðxÞ to include
terms with three and four powers of the gravi-
ton field;

(ii) Redo the old two-loop computation of the 1PI one-
point function [47] using dimensional regularization;

(iii) Reduce the two-loop two-point contributions to either
a single four-point vertex with three propagators or
two three-point vertices with four propagators;

(iv) Reduce the two-loop three-point contributions to a
single three-point vertex with three propagators; and

(v) Reduce the two-loop four-point contributions to four
propagators.

Less mechanical is the task of including perturbative
corrections to the initial state wave function [48]. It all
seems doable now, although the labor involved is certainly
daunting.
Before closing we should comment on the possibility

that the conjecture of Sec. IV might represent a new insight
on how to renormalize nonlocal, composite operators. This
has great significance for quantum gravity because the only
gauge invariant operators in that theory are nonlocal. Recall
that the problem with nonlocal composite operators is

limiting the list of other operators with which they can mix.
Our conjecture deals with the class of nonlocal composite
operators that descend from a larger parent theory in which
they are local, just as our expansion observable H½g�ðxÞ
becomes local in the scalar þ gravity theory (12). We
propose that the list of mixing operators be restricted to
those which are local in the parent theory. The only other
nonlocal composite operator whose renormalization is cur-
rently understood is the Wilson loop of non-Abelian gauge
theory. They are multiplicatively renormalized [42], and that
can indeed be viewed as a coupling constant renormalization
in a parent theory which consists of a non-Abelian charged
particleþ Yang-Mills. It would be interesting to see if a
similar result pertains for the quantumgravitational analogue
whose puzzling ultraviolet divergences are not currently
understood [49].
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Note added in the proof—.A recent study has partially
confirmed this conjecture [50].

APPENDIX A: GENERAL SCALAR
PROPAGATOR

Recall the general scalar kinetic operator Dν which was
defined in expression (28). The spatial plane wave mode
functions for Dν are

uνðη; kÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

π

4HaD−1

r
Hð1Þ

ν ð−kηÞ: ðA1Þ

Up to a possible infrared cutoff the associated propagator is

iΔνðx; x0Þ ¼
Z

dD−1k
ð2πÞD−1 e

ik⃗·ðx⃗−x⃗0Þfθðη − η0Þuνðη; kÞu�νðη0; kÞ þ θðη0 − ηÞu�νðη; kÞuνðη0; kÞg; ðA2Þ

Except for a handful of de Sitter breaking terms (for which see Sec. III of [51]) the result is

iΔνðx; x0Þ ¼
HD−2

ð4πÞD2
�
Γ
�
D
2
− 1

��
4

y

�D
2
−1

−
ΓðD

2
ÞΓð1 − D

2
Þ

Γð1
2
þ νÞΓð1

2
− νÞ

X∞
n¼0

×

�
Γð3

2
þ νþ nÞΓð3

2
− νþ nÞ

Γð3 − D
2
þ nÞðnþ 1Þ!

�
y
4

�
n−D

2
þ2

−
ΓðνA þ νþ nÞΓðνA − νþ nÞ

ΓðD
2
þ nÞn!

�
y
4

�
n
��

: ðA3Þ

The special case of ν ¼ νA − N has great importance for us:
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iΔνA−Nðx; x0Þ ¼
HD−2

ð4πÞD2
�
Γ
�
D
2
− 1

��
4

y

�D
2
−1

þ ð−1ÞN
X∞
n¼0

�
Γðn − N þD − 1ÞΓðnþ NÞ

Γðnþ D
2
Þn!

�
y
4

�
n

−
Γðn − N þ D

2
þ 1ÞΓðnþ N − D

2
þ 2Þ

Γðn − D
2
þ 3Þðnþ 1Þ!

�
y
4

�
n−D

2
þ2
��

: ðA4Þ

Because all our results can be reduced to coincidence limits
of differentiated propagators it is worth pointing out that the
potential ultraviolet divergences in expression (A4) derive
from the gamma function Γðn − N þD − 1Þ which multi-
plies the factor of yn. Because yðx; x0Þ vanishes at coinci-
dence, nonzero results can only come from low powers of
y. For certain integrated propagators such as IACAðx; x0Þ and
IAAAðx; x0Þ in expression (55) there can also be ultraviolet
divergences from differentiating the multiplicative factor of
1=Γð1

2
− νÞ in expression (A3).

APPENDIX B: REFLECTION IDENTITIES

In flat space background all components of the graviton
and ghost propagators are the same, and all depend only
on the Lorentz invariant difference of the two points,
ημνðx − x0Þμðx − x0Þν. It is therefore straightforward to
reflect derivatives from one coordinate of a propagator to
the other, and from one side of an inverse differential
operator to the other,

Flat space ⇒ ∂μiΔðx; x0Þ ¼ −∂ 0
μiΔðx; x0Þ;

∂μ
1

∂2
¼ 1

∂2
∂μ: ðB1Þ

Expressions (17)–(18) and (23)–(25) show that things are
considerably more complicated on a de Sitter background.
However, it is still possible to reflect derivatives by extend-
ing some older relations [52].
All propagators and inverse differential operators involve

integrals of the function (and its conjugate),

fνðη; η0;Δx⃗Þ≡ uνðη; kÞu�νðη; kÞeik⃗·ðx⃗−x⃗0Þ: ðB2Þ

Using the Bessel function recursion relation J0νðzÞ �
ν
z JνðzÞ ¼ �Jν∓1ðzÞ we can reflect derivatives from one
argument to the other,

∂ifνðη; η0;Δx⃗Þ ¼ −∂ 0
ifνðη; η0;Δx⃗Þ; ðB3Þ

½∂0 þ ðνA − νÞHa�fνðη; η0;Δx⃗Þ
¼ −½∂ 0

0 þ ðνA þ ν − 1ÞHa0�fν−1ðη; η0;Δx⃗Þ; ðB4Þ

½∂0 þ ðνA þ νÞHa�fνðη; η0;Δx⃗Þ
¼ −½∂ 0

0 þ ðνA − ν − 1ÞHa0�fνþ1ðη; η0;Δx⃗Þ: ðB5Þ

Applying these identities to the propagator implies

∂iiΔνðx; x0Þ ¼ −∂ 0
iiΔνðx; x0Þ; ðB6Þ

½∂0 þ ðνA − νÞHa�iΔνðx; x0Þ
¼ −½∂0

0 þ ðνA þ ν − 1ÞHa0�iΔν−1ðx; x0Þ; ðB7Þ

½∂0 þ ðνA þ νÞHa�iΔνðx; x0Þ
¼ −½∂ 0

0 þ ðνA − ν − 1ÞHa0�iΔνþ1ðx; x0Þ: ðB8Þ

The analogous relations for inverse differential operators
are

1

Dν
∂i ¼ ∂i

1

Dν
; ðB9Þ

1

Dν
½∂0 − ðνA − νÞHa� ¼ ½∂0 þ ðνA þ ν − 1ÞHa� 1

Dν−1
;

ðB10Þ
1

Dν
½∂0 − ðνA þ νÞHa� ¼ ½∂0 þ ðνA − ν − 1ÞHa� 1

Dνþ1

:

ðB11Þ

APPENDIX C: INTEGRATED PROPAGATORS

The integrated propagators Iαβ and Iαβγ of expression
(30) are symmetric,

Iαβðx; x0Þ ¼ Iβαðx; x0Þ;
Iαβγðx; x0Þ ¼ Iβαγðx; x0Þ ¼ Iαγβðx; x0Þ: ðC1Þ

They can also be generalized to any number of integrations,

Iαβ���ψωðx; x0Þ ¼
1

Dα

1

Dβ
� � � 1

Dψ
iΔωðx; x0Þ: ðC2Þ

By counting inverse derivatives one can easily infer the
leading behavior of these integrated propagators near
coincidence,

Iα1���αnðx; x0Þ ∼ Δx2n−4 lnðΔx2Þ;
Δx2 ≡ ημνðx − x0Þμðx − x0Þν: ðC3Þ
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So the integrated propagators ∇2IAAAðx; x0Þ and
∇2IACAðx; x0Þ in expression (55) are only logarithmically
divergent at coincidence.
The (nþ 1)th integrated propagator can be written

simply in terms of differences of the nth integrated
propagators [51],

Iαβðx; x0Þ ¼
iΔαðx; x0Þ − iΔβðx; x0Þ

ðβ2 − α2ÞH2
; ðC4Þ

Iαβγðx; x0Þ ¼
Iαγðx; x0Þ − Iβγðx; x0Þ

ðβ2 − α2ÞH2
; ðC5Þ

and so on. It follows that the coincidence limits of derivatives
of integrated propagators which are given in expressions
(50) and (55) are really coincidence limits of differences
of differentiated propagators. In dimensional regularization
these coincidence limits come entirely from the first
few yn terms. For example, the contributions from IAC ¼
−ðiΔA − iΔCÞ=½2ðD − 3ÞH2� in expression (50) derive from
just the de Sitter breaking factor of lnðaa0Þ and the y1 terms
of the two propagators (23) and (25),

Ha∂0IACjx0¼x ¼
−HD−4

2ðD − 3Þð4πÞD2
ΓðD − 1Þ
ΓðD

2
Þ f1þ 0g ×H2a2;

ðC6Þ

∂2
0IACjx0¼x ¼

−HD−4

2ðD − 3Þð4πÞD2
ΓðD − 1Þ
ΓðD

2
Þ

×
�
1 −

�
D − 3

D − 2

��
×H2a2; ðC7Þ

∇2IACjx0¼x ¼
−HD−4

2ðD − 3Þð4πÞD2
ΓðD − 1Þ
ΓðD

2
Þ

×

�
0þ ðD − 1ÞðD − 3Þ

D − 2

�
×H2a2: ðC8Þ

Repeated subscripts, such as those in IACA and IAAA of
expression (55), follow from expressions (C4)–(C5) by
differentiation with respect to the subscript,

Iααðx; x0Þ ¼ −
1

2αH2

∂iΔνðx; x0Þ
∂ν






ν¼α

; ðC9Þ

Iααβðx;x0Þ¼−
Iαβðx;x0Þ

ðβ2−α2ÞH2
−

1

2αðβ2−α2ÞH4

∂iΔνðx;x0Þ
∂ν






ν¼α

;

ðC10Þ

Iαααðx; x0Þ ¼
Iααðx; x0Þ
4α2H2

þ 1

8α2H4

∂2iΔνðx; x0Þ
∂ν2






ν¼α

: ðC11Þ

All the triple subscript integrated propagators in expression
(55) involve ∇2

a2 . This has the effect of eliminating the purely
time-dependent, de Sitter breaking terms. In view of
relations (C10)–(C11) the result we need is

∇2

a2
iΔνðx; x0Þjx0¼x ¼

HD−2

ð4πÞD2
ΓðD

2
ÞΓð1 − D

2
Þ

Γð1
2
þ νÞΓð1

2
− νÞ

×
ΓðνA þ νþ 1ÞΓðνA − νþ 1Þ

ΓðD
2
þ 1Þ

×
1

2
ðD − 1ÞH2: ðC12Þ

Differentiating expression (C12) with respect to ν and
setting ν ¼ νA gives

∇2

a2
∂iΔν

∂ν





x0¼x
ν¼νA

¼ HD

ð4πÞD2
ðD − 1ÞΓðDÞ

DΓðD
2
Þ

�
ψðDÞ − ψð1Þ − ψ

�
D
2

�
þ ψ

�
1 −

D
2

��
; ðC13Þ

∇2

a2
∂2iΔν

∂ν2





x0¼x
ν¼νA

¼ HD

ð4πÞD2
ðD − 1ÞΓðDÞ

ΓðDD
2
Þ

�
ψ 0ðDÞ þ ψ 0ð1Þ − ψ 0

�
D
2

�
− ψ 0

�
1 −

D
2

�

þ
�
ψðDÞ − ψð1Þ − ψ

�
D
2

�
þ ψ

�
1 −

D
2

��
2
�
: ðC14Þ

Retaining the full D dependence becomes extremely tedious so we report only the divergent contributions,

∇2

a2
∂iΔν

∂ν





x0¼x
ν¼νA

¼ HD

ð4πÞD2
ðΓðD − 1Þ

ΓðD
2
Þ

� 9
2

D − 4
þOððD − 4Þ0Þ

�
; ðC15Þ

∇2

a2
∂2iΔν

∂ν2





x0¼x
ν¼νA

¼ HD

ð4πÞD2
ðΓðD − 1Þ

ΓðD
2
Þ

� 33
2

D − 4
þOððD − 4Þ0Þ

�
: ðC16Þ
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Employing relations (C15)–(C16) and expressions (C10)–(C11) gives

∇2

a2
IACAðx; x0Þjx0¼x ¼

HD−4

ð4πÞD2
ðΓðD − 1Þ

ΓðD
2
Þ

� 3
4

D − 4
þOððD − 4Þ0Þ

�
; ðC17Þ

∇2

a2
IAAAðx; x0Þjx0¼x ¼

HD−4

ð4πÞD2
ðΓðD − 1Þ

ΓðD
2
Þ

� 3
4

D − 4
þOððD − 4Þ0Þ

�
; ðC18Þ

The inverse factors of a and a0 in the integrated propagators of expressions (31)–(32) require additional labor. By
inserting unity in the form 1 ¼ Dα × 1

Dα
, partially integrating, and then using the reflection identities of Appendix B we can

expand Jμνðx; x0Þ in terms of ever more highly integrated propagators,

Jμνðx; x0Þ ¼
X∞
K¼0

K!ð−2HÞK½∂0 þ ðνA þ μ − 1ÞHa� � � � ½∂0 þ ðνA þ μ − KÞHa�
�
Iνμ−1���μ−2K−1ðx; x0Þ

aKþ1

�
; ðC19Þ

¼
X∞
K¼0

K!ð−2HÞK½∂ 0
0 þ ðνA þ ν − 1ÞHa0� � � � ½∂ 0

0 þ ðνA þ ν − KÞHa0�
�
Iμν−1���ν−2K−1ðx; x0Þ

a0Kþ1

�
: ðC20Þ

Because either argument can be chosen for the expansion it is possible to avoid repeated indices in the expansions for JAD
and JAB, for example,

JADðx0; xÞ ¼
IAE
a

− 2H½∂0 þ ðD − 5ÞHa� IAEG
a2

þ 8H2½∂0 þ ðD − 5ÞHa�½∂0 þ ðD − 6ÞHa� IAEGI
a3

− 48H3½∂0 þ ðD − 5ÞHa�½∂0 þ ðD − 6ÞHa�½∂0 þ ðD − 7ÞHa� IAEGIK
a4

þ � � � ðC21Þ

The integrated propagators JADðx0; xÞ and JABðx0; xÞ appear in expression (50) with certain external derivatives,

1

a2

�
∂2
0 þ ðD − 4ÞHa∂0 −

2∇2

D − 1

��
∂0 þ ðD − 4ÞHa

�
JADðx0; xÞ
D − 3






x0¼x

; ðC22Þ

−
1

a2

�½∂2
0 −Ha∂0 −∇2�½∂0 þ ðD − 2ÞHa�

D − 3
þ∇2ð∂0 −HaÞ

D − 1

�
JABðx0; xÞjx0¼x: ðC23Þ

In view of relation (C3) the only possible divergences can arise for K ≤ 3. Because the various integrated propagators Iα���β
involve differences of propagators (A4), the result for (C22)–(C23) derives from applying the appropriate external
derivatives to expressions of the form,

K!ð−2HÞK
H2K−2 ½∂0 þ ðD − 2 − NÞHa� � � � ½∂0 þ ðD − 2 − N − KÞHa�

�
y
4

�
n
: ðC24Þ

Table I gives the results of doing this for the few values of K and n which are required. These factors are then multiplied by
the ratios of gamma functions from (A4) for each value of n and N (N ¼ 3 for JAD and N ¼ 1 for JAB), and finally divided
by the numerical factors implied by expressions (C4)–(C5). Putting everything together gives

ðC22Þ ¼ HD−1

ð4πÞD2
ΓðD − 1Þ
ΓðD

2
Þ

� 15227
780

D − 4
þOððD − 4ÞÞ

�
; ðC25Þ

ðC23Þ ¼ HD−1

ð4πÞD2
ΓðD − 1Þ
ΓðD

2
Þ

�
− 42443

924

D − 4
þOððD − 4ÞÞ

�
: ðC26Þ
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Because the IAC contributions (C6)–(C8) are all finite, the
divergent part of (50) comes from adding (C25) to (C26)
and multiplying by κ2.
Doubly integrated propagators with inverse factors of a

and a0 require a separate treatment. One first writes them as
a single inverse differential operator acting on a singly
integrated propagator; then the singly integrated propagator
is expanded according to expressions (C4) or (C19)–(C20).
For example, consider KACBðx; x0Þ from expression (55),

KACBðx;x0Þ

¼ 1

D0
B

�
IACðx;x0Þ

a0

�
¼JBCðx0;xÞ−JBAðx0;xÞ

2ðD−3ÞH2
; ðC27Þ

¼ 1

2ðD − 3ÞH2

�
IBD
a

− 2H

�
∂0 þ ðD − 4ÞHa

�
IBDF

a2

þ � � � − ICA
a0

þ 2H½∂0
0 þ ðD − 3ÞHa0� ICEA

a02
−…

�
:

ðC28Þ

Because KACBðx; x0Þ is only differentiated three times in
expression (55), we do not need to go any higher than the
terms shown in (C28). The three J integrals in expression
(55) are differentiated four times so they must be expanded
to one higher order. Our final results for the J and K
integrals in expression (55) are

lim
x0¼x

∇2

a2
½∂ 0

0 þ ðD − 2ÞHa0�HKAABðx; x0Þ

¼ HD−2

ð4πÞD2
ΓðD − 1Þ
ΓðD

2
Þ

� 7
4

D − 4
þOððD − 4ÞÞ

�
; ðC29Þ

lim
x0¼x

∇2

a2
½∂ 0

0 þ ðD − 2ÞHa0�HKACBðx; x0Þ

¼ HD−2

ð4πÞD2
ΓðD − 1Þ
ΓðD

2
Þ

� 3
320

D − 4
þOððD − 4ÞÞ

�
; ðC30Þ

lim
x0¼x

∇4

a2
JABAðx; x0Þ

¼ HD−2

ð4πÞD2
ΓðD − 1Þ
ΓðD

2
Þ

� 145
16

D − 4
þOððD − 4ÞÞ

�
; ðC31Þ

lim
x0¼x

∇2

a2
½∂0 þ ðD − 2ÞHa�½∂0

0 þ ðD − 2ÞHa0�JBABðx; x0Þ

¼ HD−2

ð4πÞD2
ΓðD − 1Þ
ΓðD

2
Þ

� 51
16

D − 4
þOððD − 4ÞÞ

�
; ðC32Þ

lim
x0¼x

∇2

a2
½∂0 þ ðD − 2ÞHa�½∂ 0

0 þ ðD − 2ÞHa0�JBCBðx; x0Þ

¼ HD−2

ð4πÞD2
ΓðD − 1Þ
ΓðD

2
Þ

� 163
120

D − 4
þOððD − 4ÞÞ

�
: ðC33Þ
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