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We consider the conversion of an electric field into photons as a secondary probe of the dynamical
Schwinger process. In spatially homogeneous electric fields, quantum fluctuations of electron-positron
(eþe−) pairs are lifted on the mass shell leaving asymptotically a small finite pair density. The eþe−

dynamics, in turn, couples to the quantized photon field and drives its on-shell mode occupation. The
spectral properties of the emerging asymptotic photons accompanying the Schwinger process are
calculated in lowest-order perturbation theory. Soft photons in the optical range are produced amass in
the subcritical region, thus providing a promising discovery avenue, e.g. for laser parameters of the
Extreme Light Initiative (ELI-NP) to be put in operation soon.
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I. INTRODUCTION

The Schwinger process refers to lifting virtual pair
fluctuations on the mass shell by a suitable external field.
Considering electron-positron (eþe−) pairs, Schwinger [1]
evaluated, within the quantum electrodynamics (QED)
approach, the decay of the vacuum under the impact of an
electric background field, thus formalizing the pioneering
investigations of Sauter [2]. The history of this interesting
branch of strong-field physics and its modern developments
are reviewed in [3], where alsomany relevant citations can be
found. By now, a multitude of scenarios has been explored,
where such a pair (or, generically, particle) creation mecha-
nism is of utmost importance. Examples include Hawking
radiation [4,5], Unruh radiation [6], cosmological particle
production [7] and hadron production from chromoelectric
flux tubes [8]. Focusing on the electromagnetic—that is
QED—sector of the standard model of particle physics,
much hope is placed on the rapidly evolving technology of
ultra-high-intense laser facilities [9] to achieve in the future
electric field strengths sufficiently large to get a direct
experimental access to eþe− pairs “created from vacuum.”
Various field models have been considered which could
provide a route towards a detection of such pairs, among
them the superposition of differently shaped laser fields
[10–15]. Since the plain Schwinger process yield in a
spatially homogeneous electric field is ∝ expð−πEc=E0Þ
with Ec ¼ m2=e ¼ 1.3 × 1016 V=cm (for electrons and
positrons with mass m and charges ∓ e in natural units),
the presently attainable fields E0 ≪ Ec can yield only
exceedingly small numbers [16] due to the small tunneling
probability. Spatial inhomogeneities further diminish the pair
abundancies [17], up to a critical suppression [18]. One
option is, therefore, to elucidate whether secondary probes
are suitable to identify thepair creation. This is themotivation
of the present paper: We consider real photon production
accompanying the pair creation process. Similar to the
McLerran-Toimela formula [19], which is widely used for

evaluating the photon emissivity of the thermalized quark-
gluon plasma, we restrict ourselves to the leading-order e2

yield at asymptotically large times where a clear particle-
antiparticle definition is applicable. (To emphasize the
asymptotic character of the calculated photon spectrum,
we consider here the time-limited action of the background
field.) Clearly, the eþe− fluctuation dynamics regarding the
out-state is distinctively different from a plasma dynamics,
even when accounting for thermal off-equilibrium effects
[20]. Despite this, but similar to a (nearly) thermalized
plasma, our system facilitates the emission of real photons
of all wavelengths,with details dependingon the background
field dynamics.
A different, in some sense opposite (similar to the

relation of Breit-Wheeler pair production and Schwinger
pair production), approach is followed in [21]: Photon
production is considered as scattering off the vacuum as a
consequence of the interaction of several, e.g. three,
incoming real photon beams with a vacuum loop. The
impact of the frequency composition of the newly created
photons is markedly different and to be contrasted with our
continuous spectral distribution emerging off the spatially
extended system. The process considered in [21] refers to
an exclusive 1-photon out-state, while we have in mind the
inclusive 1-photon spectrum due to the above-mentioned—
very restricted—analogy to a plasmalike system.
The analogy to a radiating plasma system has been

utilized, e.g. in [22], as evidenced by a kinetic theory
formula for 2 → 2 processes with on-shell particles and the
folding of two distribution functions by the eþe− → 2γ
cross section. Another approach is pursued in [23], where
recollisions of once produced eþe− lead to hard photons,
again via the eþe− → 2γ cross section. This is to be
contrasted with [24], where the evolution of the photon
correlation function is considered, formulated as leading
order in the BBKGY hierachy, which—after employing
some truncation and diagonalization—results in a kinetic
equation similar to that in the eþe− sector. The authors of
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[24] find a soft photon spectrum inversely proportional to
the photon frequency and proportional to total eþe−
number, quite different from our result presented below,
which predicts a large number of photons in the optical
regime, thus overcoming the unfavorably small number
of residual (and, hence, hardly measurable) eþe− pairs at
present and near-future laser installations.
Our paper is organized as follows. In Sec. II, we present a

formula for calculating the photon spectrum which arises,
in first-order perturbation theory, as a consequence of
Schwinger pair production. Based on such an approach
to the time-integrated final-stage photon yield (the “after-
glow”), we provide in Sec. III numerical evaluations for the
Sauter pulse and a periodic pulse modulated by a time-
limited envelope as important examples of field configu-
rations, which have been also employed formerly in
studying the plain Schwinger pair production. Here, we
exemplify furthermore that the superposition of external
fields with different time scales can result in order-of-
magnitude amplifications of the emergent photon yield,
similarly to the dynamically assisted Schwinger process.
Our summary can be found in Sec. IV. This main body of
the paper uncovers the phenomenological aspects of our
approach, up to an estimate of an ELI-NP-related predic-
tion. All formal aspects of our approach are relegated to the
appendices. Appendix A spells out in detail the foundations
of our photon spectrum formula by exploiting suitable
transits between the Heisenberg picture and interaction
picture to arrive at a solution to the photon wave equation
and its relation to the fermion dynamics. Appendix B
discusses the soft-photon spectrum and recalls the
Bogoliubov transformation which is needed to make
relevant formulas for fermion dynamics explicitly.

II. A FORMULA FOR THE PHOTON SPECTRUM

The impact of an external electric field on the quantum
vacuum consists of inducing a vacuum current which in
turn is a source of real-photon fluctuations. In the QED
sector, the remainder of the vacuum current is a finite—and
in general nontrivial—eþe− pair distribution, referring to
the Schwinger process. We calculate the spectrum of
emerging photons by solving the quantized Maxwell wave
equation in first-order perturbation theory as

fγðkÞ ¼
e2

ð2πÞ6
1

2ω

Z
d3p

X
λ;r;s

jϵμλðkÞCrsμðp; kÞj2; ð1Þ

Crsμðp; kÞ ¼ lim
ε→0

Z
∞

−∞
dtfεðtÞ

× v̄rðt;−pÞγμusðt; p − kÞe−iωt ð2Þ
highlighting the time-asymptotic photon yield and valid for
a spatially homogeneous system. The photons propagate on
the light cone, i.e. the frequency ω and wave three-vector k
are related by ω2 − k2 ¼ 0 and their polarization four-
vector ϵλ is orthogonal to the wave four-vector; λ ¼ 1, 2
counts the polarization states. fε ¼ e−εjtj is an adiabatic

switch-on/switch-off function of the external field, and v̄r
and ur are the time-dependent Dirac wave functions in that
field. The details of formal operations to arrive at (1) and (2)
are spelled out in Appendix A. Equations (1) and (2) allow,
for the first time, a systematic study of the photon emission
accompanying the Schwinger process. For instance, one can
show (see Appendix B) that the soft photons are insensitive
to details of the transient Fermion dynamics encoded in ur
and vr; instead, they reflect essentially the difference of
the in- and out-vacua. In contrast, the hard photons do
resolve the actual background field dynamics, albeit in a
time-integrated manner. Here, we meet severe interferences
of the various contributions to the time integral in (2).
In lacking analytical expressions for ω ≫ m, we resort to
numerical solutions pointing to an exponential shape.

III. NUMERICAL RESULTS

A. Sauter pulse

TheSauter pulsewith electric fieldEðtÞ ¼ E0= cosh2ðt=τÞ
and potential AðtÞ ¼ E0τð1þ tanhðt=τÞÞ is an often used
external field model which has an analytical solution of the
time evolution of the eþe− pair density Neþe−ðtÞ [12]; for
τ > 50=m, it recovers the seminal Schwinger result. Even if
only Neþe−ðt → �∞Þ has a sensible interpretation in terms
of in and out asymptotic particle and antiparticle states, a
curious fact is that the mode occupation in an adiabatic basis
displays Neþe−ðt ≈ 0Þ⋙Neþe−ðt → ∞Þ for deep-subcritical
fields E0 ≪ Ec [25,26]. Our main result (1,2) does not allow
us to address such an issue. Instead, we exhibit in Fig. 1 an
example of an asymptotic photon spectrum for parametersE0

FIG. 1. Asymptotic phase-space distributionfγðkÞ displayed as a
function of k⊥ at k∥ ¼ 0 for the Sauter pulse with E0 ¼ 0.2Ec and
τ ¼ 2=m. Solid blue curve: full result; dashed red curve: contri-
bution from the asymptotic time integral in (2) with Aasy ∝
ðR−tm

−∞ þ R
∞
tm
Þdt; dotted green curve: contribution from the inter-

mediate time integral Aint ∝
R tm
−tm dt; dash-dotted cyan curve: the

interference term of Aasy and Aint; Aasy;int are insensitive to
variations of thematching time around tm ¼ 20τ. The inset exhibits
the contour plot of the phase-space distribution fγðk⊥; k∥Þ.
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and τ in the subcritical region, E0 < Ec, τ > 1=m. The
individual contributions ðR −tm

−∞ þ R∞
tm
Þdt and R tm

−tm dt to the
coefficient (2) are separately displayed as a function of k⊥
(the component of k perpendicular to E ¼ ð0; 0; EðtÞÞ) at
k∥ ¼ 0 (the component of k parallel to E; the full k⊥ − k∥
distribution is exhibited in the inset as a contour plot). Clearly
visible are (i) the 1=ω3 shape of the soft-photon distribution
and (ii) the onset of the exponential decline of hard photons.
In the optical-UV range, e.g. ω ∼ 10−5m, we see a large
phase-space occupancy of fγ ¼ 105. (In the spirit of the
infrared catastrophe, the number of unobservably soft
photons diverges logarithmically, while the energy emitted
per unit volume remains finite.)
Figure 2 exhibits the photon numbers at ω ¼ 10−5m

normalized to the residual eþe− pair number at p ¼ 0.
Remarkably, with respect to an experimental verification,
the soft-photon numbers exceed by far the residual
pair numbers1 in the displayed patch of parameter space,
e.g. fγðω ¼ 10−5mÞ=feþe−ðp ¼ 0Þ ¼ 3.2 × 108 at E0 ¼
0.2Ec and mτ ¼ 2. (Due to the ω−3 scaling of fγ for
ω < 0.1m, one can deduce from Fig. 2 the distribution of
other soft-photon frequencies.) While encouraging a detec-
tion of the Schwinger process by a secondary probe, we see
a monotonous reduction of the soft photon number relative
to the pair number upon decreasing values of E0, when

keeping the dynamical time scale τ fixed. However,
extrapolating results of Fig. 2 to the regime of the nuclear
physics pillar of the Extreme Light Initiative (ELI-NP) [28],
E0 ¼ 10−3Ec, τ ¼ 5 × 105=m [14], the ratio fγðω ¼
10−5mÞ=feþe−ðp ¼ 0Þ becomes favorably 104 since both
E0 and τ are diminished. The employed values of E0 and τ
are deduced from the two-10 PW laser configuration
as core of ELI-NP which is, according to the delivery plan
(cf. [28]), envisaged to become operational in 2018.
To extrapolate we exploit the apparent relation log fγ ¼
a logE0=Ec þ b logmτ þ c valid for small Keldysh param-
eters γ ≪ 1. Therefore, real photons in the optical range,
together with their nearly isentropic radiation pattern (see
inset of Fig. 1) are identified as promising signature of the
Schwinger effect. Their yield can be enhanced further by
multiscale field configurations.

B. Superposition of fields with different time scales

The superposition of a strong, slowly varying field with
a weaker, fast-varying field is known to yield a residual
pair number which can considerably exceed the residual
pair number of each field alone—this is the dynamically
assisted Schwinger effect [29] or assisted dynamical
Schwinger effect [15]. Reference [17] states, in more
general terms, that an increasing timelike inhomogeneity
of a background field enhances the pair production.
Figure 3 unravels an analog effect for the photons when
considering the field model,

EðtÞ ¼ E1=cosh2ðt=τÞ þ E2=cosh2ðNt=τÞ: ð3Þ

FIG. 2. Contour plot of the asymptotic photon phase-space
occupancy fγðk⊥ ¼ ω; k∥ ¼ 0Þ for ω ¼ 10−5m normalized to
the asymptotic eþe− phase-space occupancy feþe− ¼ d6Neþe−=
d3xd3p at p ¼ 0 for the Sauter pulse. The diagonal dashed lines
display loci of constant Keldysh parameters γ ¼ Ec

E0

1
mτ. In the

tunneling regime, γ < 1.

FIG. 3. Asymptotic photon phase-space occupancy fγðkÞ as a
function of k⊥ at k∥ ¼ 0 for the superposition [2] of Sauter pulses
(dashed curves) and an oscillating field according to (4) (solid
curves) with an envelope KðtÞ according to [14] (flat-top interval
50 · 2π · τ and (de)ramping time(s) 5 · 2π · τ). Parameters are
E1 ¼ 0.1Ec, τ ¼ 2=m and (i) E2 ¼ 0 (lower blue curves) and
(ii) E2 ¼ 0.05Ec and N ¼ 4 (upper red curves). Note the
exponential shape for hard photons with ω > 0.5m created in
the Sauter pulse.

1Reference [27] provides an important example of particles in
an intense external field which emit also multiple photons—even
hard ones.
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Being aware of the rather schematic character of the Sauter
pulses employed above, we include here a field model
which may be realized in the antinodes of pairwise
counterpropagating linearly polarized (laser) photon beams
resulting in a purely electric background field EðtÞ with
potential AðtÞ when ignoring the magnetic field compo-
nents and the spatial inhomogeneity outside the antinodes.
To be specific, our field model is

EðtÞ ¼ KðtÞfE1 sinðt=τÞ þ E2 sinðNt=τÞg; ð4Þ

where KðtÞ is a C∞ smooth envelope function in [14].
In both cases, the Sauter pulse [2] and the model (4), the
increased temporal inhomogeneity amplifies significantly
(about 4 orders of magnitude in Fig. 3) the resulting
asymptotic photon number. Whether other suitable field
combinations enhance additionally the discovery potential
of the Schwinger effect by a secondary probe needs more
realistic modeling, including the back reaction. Similar to
the Sauter pulse (cf. inset in Fig. 1) the emission is nearly
isotropic, thus providing favorable observation conditions
perpendicular to the background field(s) and their generat-
ing (laser) beams.

IV. SUMMARY

We consider, in leading order, the photon emission
accompanying the process of shaking real electron-positron
pairs off the vacuum by the time-limited action of an external
(spatially homogeneous) electric field. In contrast to photon
emission at all wavelengths off a plasma at nonzero temper-
ature (may it be an electron-positron plasma or a quark-gluon
plasma),where rates are accessible invarious formalisms, the
nonperturbative character of pair creation due to the dynami-
cal Schwinger process restricts us to the consideration of the
final state occupancies, both of eþe−-pairs and photons.
Nevertheless, the found photon spectra uncover all wave-
lengths too. Soft photons in the optical regime are produced
amass and their abundancies can even exceed the abundancy
of eþe− pairs in the subcritical region. Such a feature
provides a promising signal of the Schwinger process and
overcomes the unfavorably small number of residual eþe−
pairs. The nonlinear amplification of the final photon yield
by the superposition of two fields with different scales is for
photons similar to the known effect in the residual pair sector,
thus further enhancing the discovery potential of the secon-
dary photon probe which should be exploited at ELI-NP.
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APPENDIX A: THE PHOTON SPECTRUM

The differential spectrum of single photons with
momenta k summed over polarizations λ at time instant
t is defined by

d3Nγðt; kÞ
d3k

¼ 1

ð2πÞ3
X
λ

h0ja†λ;Hðt; kÞaλ;Hðt; kÞj0i ðA1Þ

where a†λ;H=aλ;H are corresponding creation/annihilation
operators in the Heisenberg picture (H); in the interaction
picture (I)2 the photon field operator Aμ

I ðt; xÞ obeys the
general decomposition

Aμ
I ðt;xÞ¼

Z
d3kffiffiffiffiffiffi

2ω
p ð2πÞ3

×
X
λ

½aλðkÞεμλðkÞe−ikxþa†λðkÞεμλ�ðkÞeikx� ðA2Þ

with k2 ¼ ω2 − k2 ¼ 0 and ϵμλðkÞkμ ¼ 0, pointing to on-
shell photons propagating on the light cone with two
transverse polarizations (μ is a Lorentz index). The vacuum
definition employed in (A1) reads aλðkÞj0i ¼ 0 with
respect to the photons; the photons, in turn, are sourced
by a Dirac current operator driving the photon dynamics
according to the wave equation,

∂2Aμ
Hðt; xÞ ¼ ejμHðt; xÞ; ðA3Þ

with gauge conditions A0
H ¼ 0, ∇ · AH ¼ 0 which are

equivalent to ϵ0λðkÞ ¼ 0 and ϵλðkÞ · k ¼ 0. Equation (A3)
is solved by a suitable unitary operator Uintðt; t0Þ via
AHðt; xÞ ¼ U†

intðt; t0ÞAIðt; xÞUintðt; t0Þ and jμHðt; xÞ ¼
U†

intðt; t0ÞjμI ðxÞUintðt; t0Þ, where the current operator jμI is
constrained to jμI ðt; xÞ ≕ Ψ̄Iðt; xÞγμΨIðt; xÞ∶. The notation
∶ � � � ∶ stands for normal ordering with respect to the vacuum
j0i and the operators cr and dr introduced below in (A4).
This constraint omits the vacuum expectation value of
Ψ̄Iγ

μΨI, which is nonzero in a background field and creates
a c-number component of AH which counteracts to the
externally applied background field A. We neglect that
backreaction (see e.g. [30]) since we are interested here in
the quantum part of the radiation field, which is henceforth
dealt with in the probe limit.
The needed Dirac wave operator can be decomposed in

the interaction picture as

2For the reader’s convenience, we recall the transformation of
operators O between the various pictures. The Heisenberg picture
(H) follows from (i) the Schrödinger picture (S) by OHðtÞ ¼
U†ðt; t0ÞOSðt0ÞUðt; t0Þ or from (ii) the interaction picture (I) by
OHðtÞ¼U†

intðt;t0ÞOIðtÞUintðt;t0Þ, and (I) from (iii) (S) byOIðtÞ ¼
U†

0ðt; t0ÞOSðt0ÞU0ðt; t0Þ; (iii) causes aλ;Iðt;kÞ¼U†
0ðt;t0ÞaλðkÞ×

e−iωt0U0ðt;t0Þ¼aλðkÞe−iωt and (ii) causes aλ;Hðt; kÞ ¼
U†

intðt; t0Þaλ;Iðt; kÞUintðt; t0Þ ¼ U†
intðt; t0ÞaλðkÞe−iωtUintðt; t0Þ.
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ΨIðt; xÞ ¼
Z

d3p
ð2πÞ3

X
r

½crðpÞurðt; p; xÞ þ d†rðpÞvrðt; p; xÞ�

ðA4Þ
which extends the vacuum definition by crj0i ¼ drj0i ¼ 0;
cr and d†r carry the operator character and ur and vr, the
bispinor structure.
In the interaction picture, the fermion dynamics obeys

the Dirac equation

fiγμð∂μ þ ieAμÞ þmgΨIðt; xÞ ¼ 0: ðA5Þ
We assume our purely electric background field Aμ

to be spatially homogenous, but time dependent, which
allows us to split off the x dependence of the wave
functions by replacing urðt; p; xÞ → urðt; pÞeipx and
vrðt; p; xÞ → vrðt; pÞe−ipx in (A4) with

fiγ0∂t − γðp − eAðtÞÞ −mgurðt; pÞ ¼ 0 ðA50Þ

(same for vrðt;−pÞ) and initial conditions urðt→−∞;pÞ∝
urðpÞe−i

ffiffiffiffiffiffiffiffiffiffi
m2þp2

p
t and vrðt → ∞; pÞ ∝ vrðpÞei

ffiffiffiffiffiffiffiffiffiffi
m2þp2

p
t.

With these ingredients we evaluate (A1) by employing
aλ;Hðt; kÞ ¼ U†

intðt; t0Þaλ;Iðt; kÞUintðt; t0Þ with Dyson’s
series

Uintðt; t0Þ ¼ T exp

�
−i

Z
t

t0

dt0fεðt0ÞHint;Iðt0Þ
�

≅ 1 − i
Z

t

t0

dt0fεðt0ÞHint;Iðt0Þ þ Oðe2Þ; ðA6Þ

where T means the time-ordering operation and fεðtÞ ¼
e−εjtj is used to adiabatically turn the interaction on and off.
At the end of our calculation, we let ε → 0. We restrict
ourselves to the leading-order nontrivial term of (A6) and
utilize3

Hint;IðtÞ ¼ e
Z

d3xAμ
I ðt; xÞjI;μðt; xÞ: ðA7Þ

This yields for aλ;H up to order Oðe3Þ

aλ;Hðt; kÞ ¼
�
1þ i

Z
t

t0

dt0Hint;Iðt0Þ
�
aλ;Iðt; kÞ

�
1 − i

Z
t

t0

dt0Hint;Iðt0Þ
�

¼
�
aλðkÞ þ i

Z
t

t0

dt0
Z

d3x∶Ψ̄Iðt0; xÞ½eγμAμ
I ðt0; xÞ; aλðkÞ�ΨIðt0; xÞ∶

�
e−iωt

¼
�
aλðkÞ − i

eε�μλ ðkÞffiffiffiffiffiffi
2ω

p
Z

t

t0

dt0
Z

d3x∶Ψ̄Iðt0; xÞγμΨIðt0; xÞ∶eikx0
�
e−iωt: ðA8Þ

Insertion into (A1) lets us arrive at

d3NγðtÞ
d3k

¼ e2

ð2πÞ6
1

2ω

X
λ

εμλðkÞε�νλ ðkÞ
Z

t

t0

dt1

Z
t

t0

dt2

Z
d3x1

Z
d3x2fεðt1Þfεðt2Þ

× h0j∶Ψ̄Iðt1; x1ÞγμΨIðt1; x1Þ∶∶Ψ̄Iðt2; x2ÞγνΨIðt2; x2Þ∶j0ie−ikðx1−x2Þ

¼ e2

ð2πÞ6
1

2ω

X
λ;r;s

εμλðkÞε�νλ ðkÞ
Z

d3x
Z

d3p
ð2πÞ3

Z
t

t0

dt1v̄rðt1;−pÞγμusðt1; p − kÞfεðt1Þe−iωt1

×
Z

t

t0

dt2ūsðt2; p − kÞγμvrðt2;−pÞfεðt2Þe−iωt2 : ðA9Þ

Note that d3Nγðt ¼ t0Þ=d3k ¼ 0. We define the dimension-
less photon phase-space occupation number fγðkÞ ¼
d6Nγðt → ∞; kÞ=d3xd3k and get the basic equations (1)
and (2). We emphasize again that (1) and (2) are indepen-
dent of a special “driver” of the dynamics of urðtÞ and
vrðtÞ, e.g. omitting in the Dirac equation the external field

A and allowing instead for a dynamical effective massmðtÞ,
steered by the coupling to another background, one
recovers the results of [31], albeit noted here in a different
form.

APPENDIX B: SOFT PHOTONS

To study the soft photon limit one may split the time
integral in Eq. (2) in the main text according toR∞
−∞ dt ¼ R−tm

−∞ dtþ R tm
−tm dtþ

R∞
tm
dt, where tm stands for

3We note the relations HI ¼ H0;I þHint;I with H0;I ¼R
d3xfΨ̄I ½γð−i∇ − eAþm�ΨI þ 1

2
½ _A2

I þ ð∇ ×AIÞ2�g.
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a matching scale with the meaning that the background
field A induces a noticeable dynamics of the fermion field
only within −tm…tm, that is _Aðt ≤ tmÞ ¼ _Aðt ≥ tmÞ ¼ 0.
We set Aðt ≤ tmÞ ¼ 0 and Aðt ≥ tmÞ ¼ A∞ and elaborate
limω→0Crsμ. Employing

urðt ≤ −tm; pÞ ¼ e−iΩðpÞðtþtmÞurðpÞ;
vrðt ≤ −tm;−pÞ ¼ eiΩðpÞðtþtmÞvrð−pÞ;

urðt ≥ tm; pÞ ¼ αðtm; pÞe−iΘðtm;pÞe−iΩðP∞Þðt−tmÞurðP∞Þ
þ βðtm; pÞeiΘðtm;pÞeiΩðP∞Þðt−tmÞvrð−P∞Þ;

vrðt ≥ tm;−pÞ ¼ −β�ðtm; pÞe−iΘðtm;pÞe−iΩðP∞Þðt−tmÞurðP∞Þ
þ α�ðtm; pÞeiΘðtm;pÞeiΩðP∞Þðt−tmÞvrð−P∞Þ

ðB1Þ

with ΩðpÞ2 ¼ m2 þ p2, Θðt; pÞ ¼ R
t
−tm dt

0Ωðp − eAðt0ÞÞ
and P∞ ¼ p − eA∞ from a Bogoliubov transformation
(see below) results in the leading-order term

lim
ω→0

Crsμðp; kÞ ¼ −iαðtm; pÞβðtm; pÞ
�
v̄rð−P∞Þγμvsð−P∞Þ

ωþ P∞k
ΩðP∞Þ

þ ūrðP∞ÞγμusðP∞Þ
ω − P∞k

ΩðP∞Þ

�
þOðω0Þ: ðB2Þ

The relation (B2) shows that limω→0C ∝ 1=ω for a nonzero
Bogoliubov coefficient βðtm; pÞ, while limω→0C (labels and
index suppressed) remains finite for βðtm; pÞ ¼ 0 due to the
Oðω0Þ term. As a consequence, in the former case
fγ ∝ 1=ω3, while in the latter case fγ ∝ 1=ω: βðtm; pÞ ≠
0 implies an asymptotic pair density Neþe− ∝ jβj2, that is a
specific soft photon spectrum accompanying a nonzero
residual pair number. In the terminology of [31], these
contributions refer to bremsstrahlung terms. We emphasize
here the mere use of well-defined in- and out-states and
employ, correspondingly, a time-limited action of the
background field.
In deriving (B1) and (B2), we use the Bogoliubov

transformation to solve the Dirac equation. Introducing
the Hamiltonian hðpÞ ¼ γ0ðpγ þmÞ in first quantization
and the canonical momentum PðtÞ ¼ p − eAðtÞ the gov-
erning equations for ur and vr read

fi∂t − hðPðtÞÞgurðt; pÞ ¼ 0;

fi∂t − hðPðtÞÞgvrðt;−pÞ ¼ 0; ðB3Þ

urð−tm; pÞ ¼ urðpÞ; vrð−tm;−pÞ ¼ vrð−pÞ: ðB4Þ

We chose our initial condition at t ¼ −tm. Since A points
along the z-direction, AðtÞ ¼ AðtÞez, we use an ansatz for
urðpÞ and vrð−pÞ

urðpÞ ¼
ΩðpÞ þ hðpÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ΩðpÞðΩðpÞ − pzÞ
p Rr;

vrð−pÞ ¼
−ΩðpÞ þ hðpÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ΩðpÞðΩðpÞ þ pzÞ

p Rr; ðB5Þ

where Rr denote two spinors (r ¼ 1, 2) that are eigenvec-
tors of γ0γ3 with the eigenvalue −1. With this ansatz, ur and
vr are orthogonal and have the following convenient
properties,

hðpÞurðpÞ ¼ ΩðpÞurðpÞ;
hðpÞvrð−pÞ ¼ −ΩðpÞvrð−pÞ; ðB6Þ

∂turðPðtÞÞ ¼
eEðtÞϵ⊥
2ΩðPðtÞÞ2 vrð−PðtÞÞ;

∂tvrð−PðtÞÞ ¼ −
eEðtÞϵ⊥
2ΩðPðtÞÞ2 urðPðtÞÞ; ðB7Þ

with EðtÞ¼− _AðtÞ the electric field and ϵ⊥¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2þp2

xþp2
y

q
the transverse energy. With these base spinors, the full
solutions urðt; pÞ and vrðt;−pÞ are sought in the form

urðt;pÞ ¼ αðt;pÞe−iΘðt;pÞurðPðtÞÞþ βðt;pÞeiΘðt;pÞvrð−PðtÞÞ;
ðB8Þ

vrðt;−pÞ ¼ −β�ðt; pÞe−iΘðt;pÞurðPðtÞÞ
þ α�ðt; pÞeiΘðt;pÞvrð−PðtÞÞ; ðB9Þ

which directly lead to (B1). Plugging (B8), together with
(B6) and (B7), into (B3) leads to the following coupled
equations for α and β (the ansatz (B9) leads to the same
equations):

_αðt; pÞ ¼ eEðtÞϵ⊥
2ΩðPðtÞÞ2 e

2iΘðt;pÞβðt; pÞ; ðB10Þ

_βðt; pÞ ¼ −
eEðtÞϵ⊥
2ΩðPðtÞÞ2 e

−2iΘðt;pÞαðt; pÞ; ðB11Þ

which are solved numerically. The initial conditions (B4)
translate to αðt ¼ −tm; pÞ ¼ 1 and βðt ¼ −tm; pÞ ¼ 0. The
meaning of α and β comes from Neþe−ðt → ∞; pÞ ¼
2jβðt → ∞; pÞj2, i.e. β determines directly the number of
pairs created by the electric background field.
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