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We investigate critical N-component scalar field theories and the spontaneous breaking of scale
invariance in three dimensions using functional renormalization. Global and local renormalization group
flows are solved analytically in the infinite N limit to establish the exact phase diagram of the theory
including theWilson-Fisher fixed point and a line of asymptotically safe UV fixed points. We also study the
Bardeen-Moshe-Bander phenomenon of spontaneously broken scale invariance and the stability of the
vacuum for general regularization. Our findings clarify a long-standing puzzle about the apparent
unboundedness of the effective potential. Implications for other theories are indicated.
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I. INTRODUCTION

Fixed points of the renormalization group play a funda-
mental role in quantum field theory and statistical physics
[1]. Low-energy and infrared fixed points naturally control
the long-distance and low-momentum behavior of theories
and are often associated with continuous phase transitions
[2]. Ultraviolet (UV) fixed points serve as a definition
of quantum field theory, such as in asymptotic freedom
[3,4] or in asymptotic safety [5–8]. UV fixed points also
ensure that the renormalization group evolution of cou-
plings remains finite even at highest energies. By their
very definition, fixed points imply that dimensionless
couplings become independent of energy or length scale.
Consequently, physical correlation functions become scale
invariant, solely characterized by universal dimensionless
numbers such as critical indices. An intriguing scenario
arises in settings where quantum scale invariance at an
interacting fixed point is broken spontaneously, leading to a
theory whose mass scale is not determined by the funda-
mental parameters of the theory. It has also been speculated
that this type of mechanism may offer a scenario for the
origin of the Higgs as a “light dilaton” in certain extensions
of the Standard Model [9,10].
Spontaneously broken scale invariance at an interacting

fixed point has first been observed by Bardeen, Moshe, and
Bander (BMB) [11,12] in strongly coupled OðNÞ sym-
metric ðϕ2Þ3d¼3 scalar field theories and in the limit of
infinitely many fields N. At weak coupling, aspects of
symmetry breaking have been investigated for this model in
[13], including 1=N corrections [14] [15]. The long-
distance behavior and stability of the ground state have
also been studied [16,17]. Moreover, perturbative renorm-
alization group equations predict an interacting UV fixed
point [18], and the role of composite operators ∼ϕ2 has also
been investigated in view of vacuum stability [19]. Using
variational methods, however, it emerged that perturbative

fixed points are unreliable [11]. Rather, the phase diagram
displays a line of fixed points whose tricritical endpoint
features the spontaneous breaking of scale invariance.
Thereby a mass scale arises through dimensional trans-
mutation from the exactly marginal sextic scalar coupling
[12]. It has also been observed that 1=N corrections spoil
the effect [20]. The model appears to have a viable ground
state despite of the BMB effective potential being
unbounded from below [21]. Further aspects of the
“BMB phenomenon” were analyzed in [22,23] including
extensions with global supersymmetry [24], multicritical
models [25], and critical scaling [26]. More recent inves-
tigations have dealt with the phase diagram of Wess-
Zumino models [27,28], models with Chern-Simons gauge
fields [29], the phenomenon of “walking” [30], and the fate
of light dilatons under 1=N corrections [31].
In this paper, we are concerned with interacting fixed

points from the viewpoint of the nonperturbative renorm-
alization group (RG) [32]. The virtue of Wilson’s setup is
that it provides us with exact equations for running
couplings and N-point functions following the successive
integrating-out of momentum modes from a path integral
representation of the theory. Various incarnations of “func-
tional renormalization” are available [33–37] which, in
combination with systematic approximations [38–44], give
access to the relevant physics including at strong coupling.
Recent applications of the methodology include models of
particle physics [45–47], purely fermionic models [48],
quantum gravity [49–54], and models in fractal or higher
dimensions [55–60] The primary focus of this work will be
on ðϕ2Þ3d¼3 scalar field theories in the limit of infinite N
[61,62]. Our interest in this model is twofold: First, the
theory offers a rich spectrum of phenomena ranging from
interacting ultraviolet fixed points with asymptotic safety to
strongly interacting Wilson-Fisher fixed points, phase tran-
sitions, and dimensional transmutation, and interaction-
induced spontaneous breaking of scale invariance [63].
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Second, the model can be solved analytically and offers
important insights into the inner working of quantum field
theory. Additionally, benefitting from recent findings in
[64,65], we thus provide a complete analytical solution of
the theory covering all of its fixed points and for all RG
scales k. Global and local renormalization group flows are
solved analytically in terms of themicroscopic parameters of
the theory to establish the full phase diagram and universal
scaling exponents. We also investigate the spontaneously
broken scale invariance and the generation of mass from the
viewpoint of functional renormalization for general regu-
larization, and explain how the mechanism is triggered
through interaction-induced nonanalyticities of the effective
potential in the small field region. Our findings resolve a
long-standing puzzle by showing that the previously
observed unboundedness of the effective potential is an
artifact of a sharp momentum cutoff rather than a feature of
the physical theory. Whenever necessary, we also analyze
the scheme (in-)dependence of results.
The paper is organized as follows. In Sec. II, we

introduce the renormalization group together with local
and global flows and their exact solutions. In Sec. III, we
investigate fixed points, scaling exponents, and the phase
diagram. In Sec. IV, we explain how scale invariance is
broken spontaneously, also showing that the mechanism is
universal. We summarize in Sec. V.

II. RENORMALIZATION GROUP

In this section, we introduce our conventions and
notation, the main equations for the theory at hand, as
well as their local and global solutions.

A. Functional renormalization

Renormalization group studies of 3d scalar field theories
including at strong coupling have a long history [66]. We
are interested in the path integral quantization of quantum
field theory a la Wilson whereby fluctuations are integrated
out with the help of a momentum scale parameter k [32–
35,37,67]. Concretely, we consider Euclidean scalar field
theories with partition function,

Zk½J� ¼
Z

Dφ expð−S½φ� − ΔSk½φ� − φ · JÞ; ð2:1Þ

where S denotes the classical action and J an external
current. The Wilsonian cutoff term at momentum scale k is
given explicitly as

ΔSk½φ� ¼
1

2

Z
ddq
ð2πÞd φð−qÞRkðq2ÞφðqÞ: ð2:2Þ

The function Rk obeys the limits Rkðq2 → 0Þ > 0 for
q2=k2 → 0 and Rkðq2Þ → 0 for k2=q2 → 0 to guarantee
that it acts as an infrared (IR) momentum cutoff [36,37,68].

Moreover, the Wilsonian partition function (2.1) falls back
onto the full physical theory in the limit where the cutoff
is removed ðk → 0Þ. From (2.1) the “flowing” effective
action Γk follows via a Legendre transformation Γk½ϕ� ¼
supJð− lnZk½J�þϕ ·JÞþΔSk½ϕ�, where ϕ ¼ hφiJ denotes
the expectation value of the quantum field. The renorm-
alization group scale-dependence of Γk is given by an exact
functional identity [34] (see also [35,67]) as

∂tΓk ¼
1

2
Tr

1

Γð2Þ
k þ Rk

∂tRk: ð2:3Þ

It expresses the change with renormalization group scale
for the effective action Γk in terms of an operator trace over
the full propagator multiplied with the scale derivative of
the cutoff itself. We have also introduced the logarithmic
flow parameter t ¼ lnðk=ΛÞ, sometimes referred to as the
“RG-time.” The presence of the momentum cutoff ensures
that the flow is finite both in the UV and in the IR. As
such, the flow (2.3) interpolates between a microscopic
(classical) theory ðk → ∞Þ and the full quantum effective
action Γ ðk → 0Þ,

lim
k→0

Γk ¼ Γ: ð2:4Þ

A few comments are in order. At weak coupling, iterative
solutions of the flow (2.3) generate the conventional
perturbative loop expansion [69,70]. It has also been
established that the exact RG flow (2.3) relates to the
well-known Wilson-Polchinski flow [33] by means of a
Legendre transformation. The right-hand side of the flow
(2.3) is local in field and momentum space: For small
momenta, the operator trace is suppressed owing to the
momentum cutoff Rk within the propagator. For large
momenta, it is suppressed by the insertion ∂tRk, while for
large fields the suppression arises through the field-
dependent propagator itself. This structure implies that
the change of Γk at momentum scale k is local and
governed by fluctuations with momenta of the order of
k [71]. Locality is lost in the limit where the momentum
cutoff Rkðq2Þ becomes a momentum-independent mass
term whereby the flow (2.3) reduces to the well-known
Callan-Symanzik equation [39].1 Optimized choices for the
regulator term [36,37,44] allow for analytic flows and an
improved convergence of systematic approximations [71].
In the sequel, we are interested inOðNÞ symmetric scalar

field theory in d Euclidean dimensions to leading order in
the derivative expansion, with the effective action

Γk ¼
Z

ddx

�
1

2
ð∂ϕÞ2 þUkðϕaϕaÞ

�
: ð2:5Þ

1In the Callan-Symanzik limit, the RG flow is no longer UV
finite and requires additional UV regularization [72].
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Here, Uk denotes the dimensionful potential which
depends on the OðNÞ invariant terms of the theory, namely
ρ̄≡ 1

2
ϕaϕ

a. The limit N → ∞ represents the universality
class of the ideal Bose gas [73]. In this limit, the anomalous
dimension of the field vanishes identically as the wave
function does not get renormalized. Moreover, provided
the interaction Lagrangian solely depends on the invariant
ϕaϕ

a—as is the case for the models investigated below—
the local potential approximation (2.5) becomes both exact
[74], and exactly soluble [74–76]. The reason for this is that
derivative-type interactions are not switched on along the
flow (2.3) at infinite N. Their absence at any one scale k0
(say, at the level of the microscopic action) implies their
absence at all scales k. In other words, the functional flow
(2.3) is closed for actions of the form (2.5), which
guarantees that the full effective action is given by (2.5)
exactly, for all k, and irrespective of the regularization.2

Below, we take advantage of these facts for our analysis and
conclusions. A discussion of 1=N corrections is deferred
until Sec. IV E.
By inserting the effective action from (2.5) into (2.3), and

also introducing dimensionless variables,

uðρÞ ¼ U=kd

ρ ¼ 1

2
ϕ2k2−d; ð2:6Þ

one finds the flow equation for the dimensionless potential

∂tu ¼ −duþ ðd − 2Þρu0 þ ðN − 1ÞI½u0� þ I½u0 þ 2ρu00�
ð2:7Þ

in d Euclidean dimensions. The first two terms arise due to
the canonical dimension of the potential and of the fields,
whereas the third and fourth term arise due to the fluctua-
tions of the N − 1 Goldstone modes and the radial mode,
respectively. The functions I½x� encode the details of the
Wilsonian momentum cutoff. They relate to the loop
integral in (2.3) and are given explicitly by

I½x� ¼ k−d
Z

ddq
∂tRkðq2Þ

q2 þ Rk þ xk2
: ð2:8Þ

In the present calculation, we are mostly using the
optimized regulator,

Rkðq2Þ ¼ ðk2 − q2Þθðk2 − q2Þ; ð2:9Þ

following [36,37,78]. Then the integral (2.8) in (2.7) can be
evaluated analytically, leading to

I½x� ¼ A
1þ x

: ð2:10Þ

The numerical factor A ¼ 2=ðdLdÞ arises from the angular
integration over loop momenta, and Ld ¼ ð4πÞd=2Γðd=2Þ
denotes the d-dimensional loop factor [64]. We have A−1 ¼
3
2
L3 with L3 ¼ 4π2 in d ¼ 3 dimensions. At a fixed point

solution, universal scaling exponents are independent of the
numerical constant A. In the limit of infinite N, the flow
equation simplifies and we find

∂tu0 ¼ −2u0 þ ðd − 2Þρu00 − u00

ð1þ u0Þ2 ð2:11Þ

for the flow of the first derivative of the potential. Notice
that we have rescaled the field and the potential as u →
u=A0 and ρ → ρ=A0 with A0 ¼ N · A to remove the loop
factor and the matter multiplicity from the equations. The
benefit of this is that couplings are now measured in units
of the appropriate loop factors following the rationale of
naive dimensional analysis [79].

B. Local flows and exactly marginal coupling

We now discuss the main features of the large-N limit in
the light of the underlying RG equations both locally, and
globally. Expanding the flow equation (2.11) in terms
of the polynomial couplings at the potential minimum
u ¼ P

nλnðρ − κÞn=n! where κðtÞ is the running minimum
with u0ðκÞ ¼ 0. Using also λ≡ λ2, τ≡ λ3, and writing
βX ≡ dX=dt, we find

βκ ¼ 1 − κ; ð2:12Þ

βλ ¼ −λð1 − 2λÞ; ð2:13Þ

βτ ¼ −6λðλ2 − τÞ ð2:14Þ

for the perturbatively relevant and marginal couplings. The
local flows can be solved recursively for the fixed points of
all higher couplings leading to explicit expressions for
all λn (n > 3) in terms of the values for κ, λ and τ [64].
We stress that the β-functions are nonperturbative, and
exact. Two aspects determine the fixed point structure at
infinite N. First, the flow of the potential minimum κ
factorizes from the remaining couplings. Hence, tuning κ to
its critical value,

κ� ¼ κcr ¼ 1; ð2:15Þ

invariably leads to a fixed-point solution. Its RG flow is UV
attractive, implying that κ is an IR relevant operator.
Second, the quartic scalar coupling equally decouples from
the system. Its RG flow (2.13) is independent of all other
couplings, and displays two fixed points

2Conversely, in the presence of derivative interactions, the
local potential approximation ceases to be exact and the effective
action ceases to be exactly soluble, see [77] for an explicit
example in 3d OðNÞ symmetric models.
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λ� ¼ 0; or λ� ¼
1

2
: ð2:16Þ

The first one is UVattractive, implying that it corresponds,
together with (2.15), to a tricritical FP with two IR relevant
couplings. The second one is IR attractive in λ, and
corresponds to the Wilson-Fisher fixed point. Finally, the
sextic coupling τ is classically marginal in three dimen-
sions. Interestingly, for a vanishing quartic coupling, it
becomes exactly marginal; see (2.14). Its fixed points are

τ� ¼ τ; or τ� ¼
1

4
: ð2:17Þ

The exact nonrenormalization of the sextic interaction
explains why its value, τ, can be used to parametrize
scaling solutions, provided that the quartic coupling
vanishes,

ðλ�; τ�Þ ¼ ð0; τÞ: ð2:18Þ

For λ� ≠ 0, the subsystem of (2.13) and (2.14) is closed
and displays an exact nonperturbative and IR attractive
fixed point,

ðλ�; τ�Þ ¼
�
1

2
;
1

4

�
: ð2:19Þ

The analytical solutions for the flow equations of the
couplings read as follows:

κðtÞ ¼ 1þ cκe−t; ð2:20Þ

λðtÞ ¼ 1

2þ cλet
; ð2:21Þ

τðtÞ ¼ 2þ cτe3t

ð2þ cλetÞ3
: ð2:22Þ

The integration constants are determined by the initial
values κΛ; λΛ and τΛ∶

cκ ¼ −1þ κΛ; ð2:23Þ

cλ ¼ −2þ 1=λΛ; ð2:24Þ

cτ ¼ −2þ τΛ=λ3Λ: ð2:25Þ

As a final comment, it is interesting to have a look into the
flow for the dimensionless mass term at fixed field ρ ¼ 1

representing the VEV, m2 ≡ u0ðρ ¼ 1Þ, whose exact flow
equation reads

βm2 ¼ −2m2 þ λ −
λ

ð1þm2Þ2 : ð2:26Þ

We notice that m2� ¼ 0 is always a fixed point, irrespective
of the value of the quartic λ.3 Together with (2.13) we
observe that both the mass and the quartic scalar self
coupling remain unrenormalized, nonperturbatively, as
soon as ðκ; m2; λÞ ¼ ð1; 0; 0Þ. This is in complete accord
with earlier observations by Pisarski based on perturbation
theory [18]. We postpone a discussion of the phase
diagram in Fig. 5 until Sec. III I below.

C. Global flows and analytical solutions

We now turn to a global characterization of the RG flow
diagram. The partial differential equation (2.11) can be
solved analytically by the methods of characteristics [64],
see also [75,76]. For u0 ≥ 0, the explicit solution reads

ρ − 1ffiffiffiffi
u0

p − Fðu0Þ ¼ Gðu0e2tÞ; ð2:27Þ

with

Fðu0Þ ¼ 1

2

ffiffiffiffi
u0

p

1þ u0
þ 3

2
arctan

ffiffiffiffi
u0

p
: ð2:28Þ

The function Fðu0Þ is bounded from above, 0 ≤ F ≤ 3
4
π for

u0 ≥ 0, with Fð0Þ ¼ 0. The function GðxÞ is fixed by the
boundary condition u0ΛðρÞ at k ¼ Λ as

GðxÞ ¼ ρΛðxÞ − 1ffiffiffi
x

p − FðxÞ; ð2:29Þ

with ρΛðu0ΛðρÞÞ ¼ ρ. For u0 ≤ 0, the solution becomes

ρ − 1ffiffiffiffiffiffiffi
−u0

p − F̄ðu0Þ ¼ Ḡðu0e2tÞ; ð2:30Þ

where

F̄ðu0Þ ¼ −
1

2

ffiffiffiffiffiffiffi
−u0

p

1þ u0
þ 3

4
ln
1 −

ffiffiffiffiffiffiffi
−u0

p

1þ ffiffiffiffiffiffiffi
−u0

p ð2:31Þ

with appropriately modified boundary condition (2.29).
The function F̄ðu0Þ is unbounded from below, −∞ ≤ F ≤ 0

for −1 ≤ u0 ≤ 0, with F̄ð0Þ ¼ 0. The branches (2.27) and
(2.30) and the functions (2.28) and (2.31) are related by
analytical continuation in u0, using the relation

1

i
arctan ix ¼ 1

2
ln

�
1þ x
1 − x

�
:

3At the Wilson-Fisher fixed point (2.19), the apparent mass
fixed pointsm2

�;� ¼ 1
8
ð� ffiffiffiffiffi

17
p

− 7Þ < 0 of (2.26) are spurious and
do not extend to proper fixed points of Γk for all fields.
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together with the substitution
ffiffiffiffi
u0

p
→ i

ffiffiffiffiffiffiffi
−u0

p
once u0

changes sign.

III. FIXED POINTS AND UNIVERSALITY

Fixed points are the scale-independent solutions of the
RG flow. In this section, we analyze the global fixed-point
solutions for the effective potential in three dimensions.

A. Exact fixed points

Fixed points of (2.11) correspond to solutions (2.27)
and (2.30) where the rhs’s are independent of the RG
scale t. By definition, they obey

0 ¼ −2u0 þ ρu00 −
u00

ð1þ u0Þ2 : ð3:1Þ

From the fixed-point equation (3.1), we deduce that all
extrema or saddle points of the effective potential are all
located at

ðρ; u0Þ ¼ ð1; 0Þ; ð3:2Þ

corresponding to the fixed point of the VEV (2.15) detected
within the local expansion. We also find that all continu-
ously connected integral curves ρðu0Þ can be classified in
terms of a real parameter c. We chose the free real
parameter c to be given by

���� ρ − 1ffiffiffiffi
u0

p − Fðu0Þ
���� ¼ c: ð3:3Þ

The regions with negative u0 are defined for c ≤ 0 via

���� ρ − 1ffiffiffiffiffiffiffi
−u0

p − F̄ðu0Þ
���� ¼ −c: ð3:4Þ

Hence, all possible fixed-point solutions are characterized
by a real parameter c, which fixes each and every point on
the integral curve ρðu0Þ via (3.3) or (3.4). As we will see in
more detail below, the absolute values in (3.3) and (3.4)
arise to ensure that solutions are analytical around (3.2). For
illustration, Fig. 1 shows a contour plot of all fixed-point
solutions (3.3) and (3.4), color-coded by the value for the
free parameter c.

B. Wilson-Fisher fixed point

We now discuss the set of solutions in more detail. The
limit jcj → ∞ for either of the solutions (3.3) and (3.4)
implies that u0 vanishes identically, for all fields. This
corresponds to the trivial Gaussian fixed point of the theory,
given by the vertical middle line in Fig. 1.
For c ¼ 0, the fixed-point solutions (3.3) and (3.4) are

nontrivial, and, as we will argue, correspond to the seminal
Wilson-Fisher fixed point. We have

ρ ¼ 1þHðu0Þ; ð3:5Þ

where the function HðxÞ is given by

HðxÞ≡ ffiffiffi
x

p
FðxÞ ¼ ffiffiffiffiffiffi

−x
p

F̄ðxÞ: ð3:6Þ

Notice that both solutions (3.3) and (3.4) coincide due to
(3.6). A few properties ofH are worth mentioning. It has an
analytical expansion for small arguments,

HðxÞ ¼ 2x − x2 þ 4

5
x3 þOðx4Þ: ð3:7Þ

For asymptotically large arguments x ≫ 1, we find

HðxÞ ¼ cP
ffiffiffi
x

p
− 1þ 1

5x2
þOðx−3Þ: ð3:8Þ

Here, we have introduced the parameter

cP ¼ 3

4
π: ð3:9Þ

For negative arguments 0 < 1þ x ≪ 1, HðxÞ displays a
simple pole

FIG. 1. Fixed-point solutions ρðu0Þ for all fields ρ and all
potentials u0, color-coded by the free parameter c. Thin lines
correspond to fixed c and are included to guide the eye, thick
lines correspond to distinguished values for c including the
Wilson-Fisher fixed point (white line, c ¼ 0), the BMB fixed
point (gray, jcj ¼ cP), see (3.9), and the Gaussian fixed point
(black, jcj ¼ ∞). Axes are rescaled as ρ → ρ

1þjρj and u
0 → u0

2þu0 for

better display.
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HðxÞ ¼ −
1

2

1

1þ x
þ 1 − 3 ln 2

2
þOð1þ xÞ: ð3:10Þ

Consequently, using (3.7) in the vicinity of the minimum
(3.2), we find that the solution (3.5) becomes

u0 ¼ 1

2
ðρ − 1Þ þ subleading; ð3:11Þ

where the subleading terms are higher-order powers in
(ρ − 1). Therefore the quartic scalar self-coupling reads
λ≡ u00jρ¼1 ¼ 1

2
at the potential minimum. Comparing with

(2.16) we may conclude that the fixed point solution (3.5)
must correspond to the Wilson-Fisher fixed point, and we
denote (3.5) as ρ ¼ ρWFðu0Þ. Notice that ρWFðu0Þ and the
inverse function u0WFðρÞ are monotonous function of u0 and
ρ, respectively. Also, u0WFðρÞ changes sign exactly once, as
can also be seen from Figs. 1, 2. For asymptotically large
fields, using (3.8), we have that

ffiffiffiffi
u0

p
¼ cP · ρþ subleading; ð3:12Þ

showing that the asymptotic behavior of H, (3.9), deter-
mines the asymptotic growth of u0 with ρ.

C. Tricritical fixed points

Now we are in a position to discuss solutions with c ≠ 0.
From Figs. 1 and 2, we observe that integral curves may
become multivalued unlike in the Wilson-Fisher case.4

Starting with (3.3) for c > 0, the definition (3.3) can be
resolved for ρ ¼ ρðu0Þ leading to two branches. If

ρ ≥ 1þHðu0Þ; ð3:13Þ

then the branch is given by ρ ¼ ρþðu0Þ with

ρþ ¼ 1þHðu0Þ þ c
ffiffiffiffi
u0

p
: ð3:14Þ

We recall that H ≥ 0 in this regime. Conversely, if

ρ ≤ 1þHðu0Þ ð3:15Þ

then the branch reads ρ ¼ ρ−ðu0Þ with

ρ− ¼ 1þHðu0Þ − c
ffiffiffiffi
u0

p
: ð3:16Þ

We conclude that the two branches for the field values ρ ¼
ρ� follow from that of the Wilson-Fisher solution for
positive u0 by a simple shift by c

ffiffiffiffi
u0

p
into either direction,

ρ ¼ ρWFðu0Þ � c
ffiffiffiffi
u0

p
: ð3:17Þ

Both branches (3.17) are continuously connected at
(3.2). In fact, the values of the polynomial couplings in
the vicinity of (3.2) can be computed from either side,
(3.14) and (3.16), and must agree. We find

u0 ¼ 1

c2
ðρ − 1Þ2;

u00 ¼ 2

c2
ðρ − 1Þ;

u000 ¼ 2

c2
; ð3:18Þ

and similarly to higher order, modulo higher-order correc-
tions in (ρ − 1). The key point here is that the value of the
sextic (and higher) interactions only depend on c2, but not
on the sign of c. This pattern guarantees that all higher
couplings at (3.2) are the same for (3.14) and (3.16),
ensuring that the solution isC∞ at (3.2). Furthermore, while
u0 vanishes by definition at (3.2), we also find that the
quartic interaction λ is strictly vanishing at the minimum.
This is the behavior already found in (2.16). Hence, two
couplings, the VEVand the quartic coupling, must be fine-
tuned for this fixed point, which makes this a tricritical
fixed point. Comparing with (2.17), we may link the free
parameter c with the exactly marginal sextic coupling τ,
finding

FIG. 2. Shown are all fixed-point solutions u0ðρÞ of 3d OðNÞ
symmetric ðϕ2Þ3d¼3 theories at infinite N. Full lines indicate
physically viable solutions. Dotted and dashed lines indicate
solutions with turning points in the regime with positive and
negative u0, respectively. Special curves highlight the Wilson
Fisher (WF), the Bardeen-Moshe-Bander (BMB), the Gaussian,
and the convexity fixed point.

4We refer to these as “tricritical” fixed points because they
require the fine-tuning of two parameters (e.g., the mass and the
quartic). Conventional “critical” fixed points have a single
relevant parameter (e.g., the mass).
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τ ¼ 2

c2
: ð3:19Þ

Notice that the sextic coupling τ is independent of the sign
of c. Next we consider the large-field asymptotics of
the solution. For either of the branches (3.14) and (3.16),
we find

ffiffiffiffi
u0

p
¼ ρ

cP � c
: ð3:20Þ

The significance of this result is that the large u0 asymp-
totics is controlled by cP � c. For the branch (3.14), the
coefficient is always positive for all c ≥ 0. For the branch
(3.16) however, the coefficient changes sign at c ¼ cP. For
c > cP, the coefficient is negative and, consequently, (3.20)
describes the limit ρ → −∞. For c < cP, the coefficient
remains positive and (3.20) becomes a large-field limit
ρ → ∞, similar to the result for (3.14) except for the
proportionality factor. Hence the fixed point solution
behaves qualitatively different depending on whether c is
larger or smaller than (3.9). Examples for fixed point
solutions with c > cP and c < cP are shown in Figs. 3
and 4, respectively.

D. Landau-type singularity

Around the VEV (3.2), the branch (3.16) corresponds to
fields ρ < 1. To connect this branch with fields ρ ≫ 1 for
c < cP, the integral curve must display at least one turning
point, see Fig. 4. At a turning point dρðu0Þ=du0 ¼ 0, and the
quartic coupling u00ðρsÞ blows-up of at some point ρs in
field space. We obtain the location of turning points by

rearranging (3.1) for u00. Assuming that u0s ¼ u0ðρsÞ ≠ 0 at
the turning point, we find

ρs ¼
1

ð1þ u0sÞ2
: ð3:21Þ

First we would like to know for which values of the
parameter c there is a turning point for the u0 ≥ 0 branch. It
trivially follows from (3.21) that ρs ∈ ð0; 1�. To figure out
the exact values of the parameter c ¼ cs for which a turning
point at (3.21) is achieved, we can insert (3.21) into (3.16)
to find

cs ¼
1ffiffiffiffiffi
u0s

p
�
u0s

u0s þ 2

ð1þ u0sÞ2
þHðu0sÞ

�
: ð3:22Þ

This expression is monotonous in u0s, with u0s within ½0;∞Þ,
see (3.21). The expression is also bounded

lim
us→∞

cs ¼ cP; ð3:23Þ

thus confirming that for any value of c ∈ ð0; cP� the
coupling u00 runs into a Landau-type pole at finite positive
field. Landau-type singularities have previously been
observed in the supersymmetric OðNÞ theories [27,28],
and for Wilson-Fisher fixed points in the complex field
plane [64].

FIG. 3. Shown is a weak coupling fixed point with c > cP
(thick blue line), together with the Wilson-Fisher fixed
point where c ¼ 0. Notice that the two branches ρ� of the
weak coupling fixed point follow from the Wilson Fisher fixed
point by a simple shift with Δ ¼ c

ffiffiffiffi
u0

p
, see (3.5), (3.17), where

c ¼ cP þ 1
5
.

FIG. 4. Shown is a strong coupling fixed point for 0 < c < cP
(full and dashed blue lines) together the Wilson-Fisher fixed point
with cWF ¼ 0 (full red line). Both branches ρ� of the strong
coupling fixed point follow from the Wilson Fisher solution with
positive u0 by a shift with c

ffiffiffiffi
u0

p
, with c ¼ cP − 1

5
, see (3.17).

Notice that the strong coupling fixed point has become double-
valued (indicated by the full vs the dashed line), characterized by
a turning point and a Landau-type singularity in its quartic self-
interaction at ρ ¼ ρs.
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E. Fixed points with unbounded potentials

We now repeat this analysis for the solutions (3.4) with
c < 0 and u0 < 0. As we are going to show in detail below,
these correspond to solutions with negative sextic coupling
and to globally unstable effective potentials.
Solving (3.4) for ρ ¼ ρðu0Þ leads, again, to two branches.

Notice that H ≤ 0 in this regime. If ρ ≥ 1þHðu0Þ the
solution reads ρ ¼ ρþðu0Þ with

ρþ ¼ 1þHðu0Þ þ c
ffiffiffiffiffiffiffi
−u0

p
: ð3:24Þ

Conversely, if ρ ≤ 1þHðu0Þ then the solution is given by
ρ ¼ ρ−ðu0Þ with

ρ− ¼ 1þHðu0Þ − c
ffiffiffiffiffiffiffi
−u0

p
: ð3:25Þ

The two branches for the field values ρ ¼ ρ� follow from
the Wilson-Fisher solution for negative u0 by a simple shift
about c

ffiffiffiffiffiffiffi
−u0

p
into either direction,

ρ ¼ ρWFðu0Þ � c
ffiffiffiffiffiffiffi
−u0

p
: ð3:26Þ

Both branches are continuously connected at (3.2). Using
(3.24) and (3.25), the polynomial couplings now read

u0 ¼ −
1

c2
ðρ − 1Þ2;

u00 ¼ −
2

c2
ðρ − 1Þ;

u000 ¼ −
2

c2
; ð3:27Þ

and similarly to higher order. Comparing with (2.17), we
may introduce the sextic coupling

τ ¼ −
2

c2
: ð3:28Þ

There are two points worth noting. First, the left- and right-
sided field derivatives at the potential minimum give
exactly the same results, to all orders, establishing that
the solutions (3.4) are indeed C∞. Second, we find that the
sextic coupling has the opposite sign to (3.18). Therefore,
the solutions (3.3) and (3.4) cover the entire range of
exactly marginal sextic couplings.
For the same reason, it is not possible to analytically

connect branches with positive u0 to those with negative u0
for any finite, nonzero c. Although the first two couplings
would trivially agree, from the sextic coupling onwards we
would observe discontinuities. In other words, for c ≠ 0, a
fixed-point solution which has a specific sign for u0 at some
field value cannot change its sign along the entire inte-
gral curve.
For negative u0, the fixed point solution may display a

turning point (3.21). It is located at ρs ∈ ð1;∞Þ for
u0s ∈ ð0;−1Þ. In our conventions, a turning point at

u0s < 0 and with ρs given by (3.21) corresponds to the
parameter c ¼ cs, with

cs ¼ −
1ffiffiffiffiffiffiffiffi
−u0s

p
����u0s u0s þ 2

ð1þ u0sÞ2
þHðu0sÞ

����: ð3:29Þ

We notice that cs ¼ 0 for u0s → 0. In the opposite limit
where u0s → −1, (3.29) states that cs → −∞, and ρs → ∞.
This exhausts all possible values for c in (3.4). Hence, for
each and every finite coupling c < 0, the solution (3.4)
displays a turning point at positive fields. In particular,
solutions cannot be extended to arbitrarily large fields
ρ > 0. For this reason, we conclude that none of these
solutions are physically viable, globally. This is in marked
contrast to solutions with positive u0. The only solution
which would extend over all fields is the limit 1=c → 0−.
This limit is responsible for the approach towards convexity
of the effective potential in a phase with spontaneous
symmetry breaking. Some fixed point solutions in either
regime are displayed in Fig. 2. A summary of distinct
scaling solutions is given in Table I.

F. Line of ultraviolet fixed points

We may summarize our findings as follows (see Table I).
The tricritical fixed point solutions of 3d scalar field
theories in the infinite N limit are characterized by a
vanishing mass term m2 ¼ 0, a vanishing quartic coupling
λ ¼ 0 and an exactly marginal sextic coupling τ in the
vicinity of the minimum (3.2). For positive sextic coupling
τ ¼ 2

c2, we find several qualitatively different regimes: In
the weak coupling regime where

cP < c and τ <
2

c2P
; ð3:30Þ

the fixed point solution is single valued and well defined for
all fields. The scaling solution always displays a local

TABLE I. Domains of validity for the fixed point solutions
(3.14) and (3.16) with u0 ≥ 0. At weak and critical coupling, the
junction of ρþ with ρ− provides a global fixed point solution
ρðu0Þ. At strong coupling, two independent global solutions exist
for all fields ρ ≥ ρs; see Figs. 3 and 4 for weakly and strongly
coupled examples, respectively.

Weak
coupling

Critical
coupling

Strong
coupling

Range of field values ðc > cPÞ ðc ¼ cPÞ ð0 ≤ c < cPÞ
1 ≤ ρ ≤ ∞ ρþ ρþ ρþ
ρ ≤ 1 ρ−
0 ≤ ρ < 1 ρ−
0 < ρs ≤ ρ < 1 ρ−ðu0 < u0sÞ
ρs ≤ ρ ≤ ∞ ρ−ðu0 > u0sÞ
# of solutions 1 1 2
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extremum u0 ¼ 0. This regime includes the free Gaussian
fixed point in the limit

jcj → ∞ and τ → 0; ð3:31Þ

consistent with (3.30). The latter entails that all higher-
order couplings vanish identically at the Gaussian fixed
point. Inasmuch as the Gaussian corresponds to a free UV
fixed point, the fixed points with (3.30) correspond to a line
of interacting, asymptotically safe, ultraviolet fixed points.
In the strong coupling regime,

c < cP and τ >
2

c2P
; ð3:32Þ

the theory develops a Landau-type singularity in
du0=dρjρs at some finite field value in the physical regime.
Furthermore, for fields with 0 < ρ < ρs the effective
potential is not defined. Strictly speaking the fixed point
solution does not exists for all fields. It is conceivable that
the theory develops bound states, or ground states different
from constant fields, as tacitly assumed here. Interestingly,
at strong coupling the theory also displays two independent
scaling solutions corresponding to the same parameter
value c < cP. Only one of them displays a local minimum,
and only for that one the parameter c is related to the
exactly marginal sextic coupling τ. This type of degeneracy
of solutions at strong coupling has been noticed previously
in the context of the supersymmetric OðNÞ theory [27,28].
An interesting special case is provided by the borderline
between strong and weak coupling, which we refer to as the
critical coupling,

c ¼ cP and τ ¼ τP ≡ 2

c2P
: ð3:33Þ

Here, the effective potential becomes nonanalytic at ρ ¼ 0
and displays the Bardeen-Moshe-Bander phenomenon. We
return to this in more detail in Sec. IV. It is worth noticing
that the appearance of the critical coupling strength (3.33)
is not directly visible from within the local expansion. In
fact, the local expansion would find a fixed point even in
the strong coupling regime, but more work is required to
notice that these reach a singularity in the quartic coupling
for sufficiently small fields. This is reminiscent of earlier
fixed point studies within perturbation theory [18].
Finally, we observe that the Wilson-Fisher fixed point of

3d scalar field theories in the infiniteN limit corresponds to
the parameter value

c ¼ 0: ð3:34Þ

It corresponds to an isolated fixed point which is not
continuously connected to the tricritical line of UV fixed
points. In view of (3.32), the theory with (3.34) would

corresponds to the strong-coupling regime where the sextic
coupling takes a value of order unity. In addition, the
Wilson-Fisher fixed point differs from the line of tricritical
fixed points in that the quartic self-coupling is nonvanish-
ing, equally taking a value of order unity (2.16).
No viable fixed point solutions are found for the branch

with negative sextic coupling where u0 stays negative for all
fields. The corresponding potentials are unbounded, and do
not exist beyond a critical field value, irrespective of the
coupling strength.

G. Scaling exponents from local flows

Scaling exponents describe how the physical observables
behave close to a continuous phase transition. Within
functional renormalization, they have been computed up
to fourth order within the derivative expansion using local
and global flows including error estimates [44]. While
exponents depend on the RG scheme within fixed approx-
imations [80], they come out RG scheme independent at
infinite N, e.g., [26,44,74,77,81].
Universal scaling exponents can be extracted from the

RG equations in many ways. If we use a the polynomial
approximation u ¼ P

nλnðρ − κÞn=n! (which is definitely
well justified close to the minimum) we can get the critical
exponents from the linearized beta functions evaluated at
the fixed points. In fact, we need to solve the eigenvalue
equation for the stability matrix

BvI ¼ −θIvI; ð3:35Þ

where Bmn ≡ ∂βm=∂λnjλ¼λ� denotes the stability matrix, vI

its eigenvectors, and θI the corresponding eigenvalues. In
critical phenomena, the exponent ν denotes the divergence
of the correlation length m̄ ∝ jT − Tcjν with temperature T.
Tc denotes the “critical temperature” whose role is taken
here by the critical VEV. Then ν is given by ν ¼ −1=θ,
where θ denotes the most negative eigenvalue amongst the
eigenvalues of B.
The relevant and marginal scaling exponents are encoded

in the local flows (2.12), (2.13) and (2.14). Notice that the
system (2.12)–(2.14) does not contain the mass term
explicitly. At the Gaussian fixed point, it would thus
display the eigenvalues f−1;−1; 0g corresponding to
minus the canonical mass dimension of the couplings. In
order to detect Gaussian exponents we replace the running
of the VEV κ (2.12) by the running of the mass term m2 at
fixed field ρ ¼ 1 whose exact flow equation has been given
in (2.26). The flows (2.13), (2.14), and (2.26) now display
the canonical eigenvalues f−2;−1; 0g as expected for the
Gaussian fixed point. The corresponding index ν takes its
mean field value ν ¼ 1

2
. This eigenvalue pattern with θn ¼

n − 2 for n ≥ 0 persists to higher order in a polynomial
expansion.
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Next we consider the tricritical fixed points, with
ðκ ¼ 1; λ ¼ 0; τ ¼ 2=c2Þ for finite c ≠ 0.The fixed point
solution where c is an arbitrary parameter has been defined
above. Calculation of the eigenvalues from (2.13), (2.14),
and (2.26) gives us canonical eigenvalues

θI ∈ f−2;−1; 0;…g: ð3:36Þ

This pattern persists to higher order in a polynomial
expansion. Two aspects are worth noticing. First, the theory
displays classical (Gaussian) exponents, yet the fixed point
is interacting and non-Gaussian. Second, the local deriva-
tion of exponents is unable to differentiate the regimes of
strong and weak coupling. Locally, these scaling exponents
are found for all sextic coupling. From the global analysis
of the flow, however, we may conclude that the result is
only valid in the region c > cP (i.e., for weak coupling).
Finally, turning to the Wilson-Fisher fixed point, we find
the following eigenvalues in a local polynomial expansion,

θI ∈ f−1; 1; 3;…g: ð3:37Þ

The sole negative eigenvalue implies ν ¼ 1.

H. Scaling exponents from global flows

In the infinite-N limit of the OðNÞ symmetric model, the
critical exponents and the global linear eigenperturbations
can be calculated exactly without resorting to a polynomial
approximation [26–28]. To that end, we consider small
perturbations around the full solution of the flow (2.3) in
the vicinity of the fixed point

u0ðt; ρÞ ¼ u0�ðρÞ þ δu0ðt; ρÞ: ð3:38Þ

After linearization of the flow for δu one finds

∂tδu0 ¼ 2
u0�
u00�

�
∂ρ −

ð
ffiffiffiffiffi
u0�

p
· u00�Þ0ffiffiffiffiffi

u0�
p

· u00�

�
δu0: ð3:39Þ

Eigenperturbations with eigenvalue θ obey

∂tδu0 ¼ θδu0; ð3:40Þ

and (3.39) with (3.40) can be solved by separation of
variables. We write δu0ðρ; tÞ ¼ TðtÞRðρÞ to find

ðlnTÞ0 ¼ θ; ð3:41Þ

ðlnRÞ0 ¼ 1

2
θðln u0�Þ0 þ

1

2
ðln u0�ðu00�Þ2Þ0: ð3:42Þ

These are integrated to give

TðtÞ ∝ eθt; ð3:43Þ

RðρÞ ∝ u00�ðu0�Þ12ð1þθÞ: ð3:44Þ

We conclude that eigenperturbations are given by

δu0 ¼ Ceθtðu0�Þ12ð1þθÞu00� ð3:45Þ

to linear order, where C is an unspecified normalization
constant.
We now discuss the quantization of eigenvalues θ. The

allowed set of values for the exponent θ is determined by
imposing analyticity conditions for the eigenperturbations.
We begin with the scaling exponents for the Wilson-Fisher
fixed point. From (3.11) we infer that u0� is linear in (ρ − 1)
around the minimum and u00� a constant, and hence

δu0 ∝ eθtðρ − 1Þ12ð1þθÞ: ð3:46Þ

For asymptotically large fields, eigenperturbations scale as

δu0 ∝ eθtρð2þθÞ: ð3:47Þ

Requiring that eigenperturbations are analytical functions
of the field ρ in the vicinity of the potential minimum
imposes that the power 1

2
ð1þ θÞ takes positive integer

values, thus

θ ¼ −1; 1; 3; 5; 7 � � � ð3:48Þ

in agreement with (3.37). Notice that both the small and the
large field asymptotic behavior are integer powers of
the field.
For the tricritical fixed points, we have established in

(3.18) that u0� is quadratic around the minimum, while u00� is
linear. One may therefore rewrite the rhs of (3.45) in terms
of

ffiffiffiffiffiffi
u�0

p
which is linear in the field around the minimum

and whose first derivative becomes a constant. This leads to

δu0 ¼ Ceθtð
ffiffiffiffiffiffi
u�0

p
Þ2þθð

ffiffiffiffiffiffi
u�0

p
Þ0 ð3:49Þ

Comparing (3.49) with (3.45), we conclude that imposing
analyticity conditions now requires θ þ 2 to be a positive
integer,

θ ¼ −2;−1; 0; 1; 2; 3;…; ð3:50Þ

in agreement with (3.36). Close to the minimum, eigen-
perturbations scale as

δu0 ∝ eθtðρ − 1Þθþ2: ð3:51Þ

while for asymptotically large fields the behavior is given
by (3.47). As an aside, the result (3.51) shows that the
theory displays an interacting UV fixed point with exact
Gaussian exponents. This is an exact example for the
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general behavior of scaling exponents conjectured in [53],
according to which operators with increasing mass dimen-
sion become increasingly irrelevant at interacting fixed
points. Near-Gaussian exponents at UV fixed points have
recently been observed in certain models of 4d quantum
gravity [54].
As a final comment, we note that the eigenperturbations

for the potential δu follow from our results (3.45) and
(3.49) by direct integration with respect to ρ. We find

δu ¼ C0eθtð
ffiffiffiffiffi
u0�

p
Þ3þθ ð3:52Þ

for the cases where c ≠ 0, and

δu ¼ C0eθtðu0�Þ12ð3þθÞ ð3:53Þ

for c ¼ 0. In either case, we note the appearance of a new
eigenvalue θ ¼ −3 corresponding to shifts in the zero point
energy. However, in the absence of (quantum) gravity, this
eigenvalue is irrelevant despite its negative value because
the vacuum energy does not influence the location of the
fixed point.

I. Phase diagram and asymptotic safety

On the level of the global phase diagram for the ðϕ2Þ3d¼3

theory at infinite N, our results are summarized in Fig. 5. It
shows the RG flows in the plane of the quartic and sextic
couplings ðλ; τÞ defined at the local minimum of the
effective potential, and on the hypersurface with κ ¼ κ�.
The tricritical line of asymptotically safe UV fixed points
(full blue line), as well as the Gaussian (G) and the Wilson-
Fisher (WF) fixed points are indicated. The endpoint of the
tricritical line corresponds to the BMB fixed point, whose
study is detailed Sec. IV. The dashed blue line indicates
strongly-coupled fixed points without a global potential
where either τ > τP or τ < 0. Arrows indicate the flow
towards the IR, and the separatrices connecting the BMB
and the Gaussian fixed point with the WF one are high-
lighted as well (thick red lines). In the ðλ; τÞ plane, the WF
fixed point takes the role of an IR attractor. Trajectories are
emanating from the UV-line (λ ¼ 0), along which the sextic
coupling is exactly marginal. The flow of the vacuum
expectation value, (2.12), has decoupled from all other
couplings. It adds an IR unstable direction to the entire
phase diagram including the Wilson-Fisher fixed point.
Away from the critical hypersurface of strictly massless
theories ðκ ≠ κ�Þ the flow is driven via first or second-order
phase transitions towards the symmetric phase ðκ̄ ¼ 0Þ and
the symmetry broken phase ðκ̄ > 0Þ in the IR.
The line of tricritical fixed points corresponds to exact

interacting UV fixed points. All trajectories emanating
from it can be viewed as well-defined UV-complete micro-
scopic theories. In this light, for all tricritical fixed points
with 0 ≤ τ ≤ τP the theory is asymptotically safe in the
spirit of Weinberg’s asymptotic safety conjecture [5]. Exact

asymptotic safety arises as a consequence of an exactly
marginal coupling τ, allowing a continuous interpolation
between asymptotic freedom at the Gaussian UV fixed
point for τ → 0 to asymptotic safety along the line of
interacting UV fixed points for 0 < τ ≤ τP.

5

J. Discussion

We have provided a complete analysis of fixed points for
the OðNÞ-symmetric scalar theories in the large-N limit.
A central role is played by the scalar sextic coupling, which
becomes exactly marginal provided quartic interactions are
absent. In this regime the theory also displays two relevant
couplings given by the VEV and the quartic interactions.
For weak positive sextic coupling, the theory displays
unique and well-behaved asymptotically safe UV fixed
points and classical scaling exponents. For strong positive
sextic coupling, the fixed point bifurcates into two sol-
utions both of which exist for large, but no longer for small
fields. For both of these, the unavailability of an effective

FIG. 5. Shown is the exact phase diagram of ðϕ2Þ3d¼3-theory at
infinite N within the plane of the quartic and sextic coupling
ðλ; τÞ. Arrows indicate the flow towards the IR. The tricritical line
of fixed points (full blue line), as well as the Gaussian, the
Wilson-Fisher (WF), and the Bardeen-Moshe-Bander (BMB)
fixed points are indicated (black dots). Trajectories are emanating
from the UV-line (λ ¼ 0). The separatrices connecting the BMB
and the Gaussian FPs with the WF FP are shown in red. The WF
fixed point takes the role of an IR attractor. The flow of the
vacuum expectation value (2.12) (not shown) adds an IR unstable
direction to the phase diagram; all higher-order polynomial
interactions are IR stable. The full (dashed) blue line segment
relates to models with (without) well-defined fixed point potential
for all (dimensionless) fields (see main text).

5Exact asymptotic safety and vacuum stability has also been
established in four dimensional theories (without gravity), see
[7,8,82], and [83] for recent applications in particle physics.
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potential for small fields is signalled by an integrable
Landau-type singularity in the quartic interactions. In this
regime the ground state is no longer well described by
constant fields. Interestingly though, both at weak and
strong sextic coupling, the theory displays classical scaling
with ν ¼ 1

2
despite of the fact that the theory is interacting.

For negative sextic coupling, whether large or small, no
global fixed point is found. Although a local solution exists
for small fields, the would-be fixed points terminate
through a Landau-type singularity and the effective poten-
tial ceases to exist. Furthermore, the effective potential is
unbounded as u0 < 0 in its domain of validity. We conclude
that physically admissible fixed points do not exist for
negative sextic coupling.
Nonclassical scaling with ν ¼ 1 is found at the unique

Wilson-Fisher fixed point, where the quartic coupling is
nonvanishing.6 While the classical and nonclassical scal-
ing exponents arise correctly from both the local and the
global RG flows, the qualitative difference between weak
and strong coupling including the existence of an end-
point of the line of critical points and the nonavailability
of an effective potential for small fields, only became
visible through the study of the global RG flows. The
local RG flows, based on a polynomial approximation of
the effective action, correctly show critical and tricritical
fixed points, but they do not offer direct indications for
the critical endpoint. This pattern is reminiscent of
perturbative studies at large-N, which failed to identify
the endpoint. We conclude that in order to uncover the
onset of strong coupling behavior signalled by the critical
end point, nonperturbative methods beyond polynomial
expansions or conventional perturbation theory must be
adopted.

IV. SPONTANEOUS BREAKING
OF SCALE INVARIANCE

In this section, we turn to the critical end point and the
spontaneous breaking of scale invariance, and establish
how it arises universally using the method of functional
renormalization.

A. Fixed point and the origin of mass

By their very definition, fixed points of the renorm-
alization group imply that dimensionless couplings
remain unchanged under a change of RG momentum
scale, which entails scale invariance. Interestingly, in [11]
it was noticed that scale invariance may nevertheless be
broken spontaneously at a fixed point. From a renorm-
alization group perspective, this can be understood as
follows. Consider a fixed point solution u�ðρÞ for the
effective potential. The physical mass m of the scalar

field in the symmetric phase at the fixed point is then
given by

m2 ¼ u�0ð0Þk2: ð4:1Þ

Notice that m2 is nonzero for u�0ð0Þ ≠ 0 and k ≠ 0. This
is in accord with scale invariance because the mass
parameter scales proportionally to the RG scale, m ∼ k.
Moreover, as long as u�0ðρ ¼ 0Þ at vanishing field
remains finite, the physical mass vanishes in the physical
limit (2.4) where all fluctuations are integrated out,

m2 → 0; ð4:2Þ

as one would expect for a scale-invariant theory. This is
genuinely true for any quantum field theory irrespective
of the sign of u0�ð0Þ. In our case, this applies for all
weakly coupled fixed points studied in Sec. III, where
c > cP. We stress, however, that this conclusion centrally
relies on u0�ð0Þ being finite. It may be upset provided that
u0�ð0Þ diverges,

u0�ð0Þ → ∞; ð4:3Þ

in which case the physical mass (4.1) may take any finite
value,

m2 → finite; ð4:4Þ

and remains undetermined otherwise in the limit k → 0.
We observe that the mass has become a free parameter
which is not determined by the fundamental parameters
of the theory [11,20]. We conclude that theories with a
diverging u0�ð0Þ at a fixed point may lead to the sponta-
neous breaking of scale invariance due to the dynamical
generation of a mass scale.

B. Dimensional transmutation and nonanalyticity

We now turn to an analysis of the breaking of scale
invariance for OðNÞ theories at infinite N. First, within the
set of all scaling solutions parametrized by c we notice that
a diverging u�0ð0Þ can be achieved exactly once, by a fine-
tuning of the free parameter

c → cP; ð4:5Þ

see (3.9), (3.20). This is equivalent to the fine-tuning of the
exactly marginal sextic coupling τ → τP, (3.33). In view
of the discussion in Sec. IVA we conclude that the role of
the free dimensionless parameter c which determines the
exactly marginal sextic coupling τ, is replaced by a free
dimensionful parameter determining the mass term m2 in
the symmetric phase. The phenomenon whereby the role
of a dimensionless parameter is taken over by a dimen-
sionful one, due to fluctuations, is known as “dimensional

6Nonclassical scaling with ν ¼ 1
3
arises at the endpoint of the

line of tricritical fixed points [11].
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transmutation” [84]. We conclude that dimensional trans-
mutation is operative exactly at the critical coupling
strength (4.5), accompanied by the appearance of a dilaton
[11,12].
A divergence of the dimensionless mass term at vanish-

ing field (4.3) cannot arise through a fixed point potential
which is an analytic function of the field. For dimensional
transmutation to become operative through (4.3), the theory
must develop some nonanalyticities at small field. For the
choice c ¼ cP (3.9), and using the explicit solution, we find
that the mass function u0�ðρÞ at the BMB fixed point
potential displays a root-type nonanalyticity u0� ∝ 1=

ffiffiffi
ρ

p
for small field, leading to

u0BMB ¼
1ffiffiffiffiffi
5ρ

p −
5

7
þ 10

147

ffiffiffiffiffi
5ρ

p
þ 800

11319
ρþOðρ3=2Þ: ð4:6Þ

For all other choices c ≠ cP of the coupling parameter
the potential remains smooth and analytical for small
positive ρ. The nonanalytic behavior (4.6) does not entail
any divergence for the potential itself. In fact, the potential
remains bounded even at vanishing field,

u� ∝
ffiffiffi
ρ

p
; ð4:7Þ

showing that the theory remains well defined even though a
nonanalyticity has arisen through quantum fluctuations at
strong coupling.
However, we stress that our result is in marked contrast

with the shape of the effective potential given in [20] where
a nonanalyticity of the form

u0� ∝
1

ρ
ð4:8Þ

has been observed. In contradistinction to (4.7), the
resulting effective potential is no longer bounded from
below [20],

u� ∝ ln ρ: ð4:9Þ

It has also been argued that the logarithmic divergence in
(4.9) is weak enough to allow for a meaningful ground state
[20]. We note that effective potentials are not observable
and their precise shapes can depend on unphysical param-
eters such as the regularization scheme. In fact, the origin
for the difference between (4.7) and (4.9) is that different
RG schemes have been adopted for the regularisation of the
theory, a smooth optimized scheme for (4.7), and the sharp
cutoff scheme for (4.9). In this light, the important question
arises whether the observed phenomenon is physical, or
rather an artifact of the underlying regularisation. To
answer this question, we must study the RG scheme
dependence of the BMB potential in more detail, to which
we turn next.

C. Universality of the BMB phenomenon

We now clarify to which extend the RG scheme is
responsible for the nonanalytical behavior at the BMB
fixed point, and how the characteristics of the BMB
critical potential depend on it. To that end, we introduce
the RG flow for a more general set of cutoffs, interpolat-
ing between the optimized cutoff used above, the sharp
cutoff as used in the original BMB study. Following [71],
and using a normalisation of the fields and the
potential such that the VEV remains at κ ¼ 1, we define
a family of RG schemes via a family of RG flows
given by

∂tu0 ¼ −2u0 þ ρu00 −
u00

ð1þ u0Þγ : ð4:10Þ

A few comments are in order. The parameter γ ¼ γðRkÞ
has become a placeholder for the RG scheme. For
specific values, the corresponding regulator function
Rk is known explicitly. The value γopt ¼ 2 corresponds
to the optimized cutoff Ropt given in (2.9) [36,37]. The
sharp cutoff Rs ¼ lima→∞a · θðk2 − q2Þ corresponds to
γs ¼ 1, and γq ¼ 3=2 to an algebraic cutoff quartic in
momenta Rq ∝ q4=k2. With a modified normalisation of
the fields, the limit γ → 0 can formally also be taken,
leading to a logarithmic term. It corresponds to a plain
mass term cutoff where Rk ∝ k2, and a flow of the
Callan-Symanzik-type. More generally, for functional
flows derived from (2.3), the parameter γ can in principle
vary between γ ∈ ½0; 2�. Low values γ ∈ ½0; 1Þ lead to less
stable flows and require additional care [85], and we will
restrict ourselves to the range γ ∈ ½1; 2�. In a background
field formulation of the Wetterich flow, the parameter γ
may take formally any real positive value [36,81,86].
This limit reduces to the so-called proper-time flow in the
approximation adopted here [87,88]. The interpretation
of the RG flow is modified due to an implicit re-
organisation of diagrams due to the presence of back-
ground fields.
The flow (4.10) can be integrated analytically, provid-

ing us with an explicit solution of the form (2.27) and the
function F, now expressed in terms of the hypergeometric
series

Fðu0Þ ¼ 1ffiffiffiffi
u0

p 2F1

�
−
1

2
; γ;

1

2
;−u0

�
: ð4:11Þ

Similar results are found for the branch (2.30) with
negative u0. For γ ¼ 2 these fall back onto the results
(2.28) and (2.31). For large u0, a convenient representation
is given by
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Fðu0Þ ¼
ffiffiffiffi
u0

p
· Γ

�
1

2

�
Γð1

2
þ γÞ

ΓðγÞ þ ðu0Þ−γ
2γ þ 1

· 2F1

�
γ;
1

2
þ γ;

3

2
þ γ;−

1

u0

�
; ð4:12Þ

showing that the large-u0 asymptotics is proportional toffiffiffiffi
u0

p
. For each of these solutions, we then determine the

specific parameter c corresponding to the BMB fixed point.
For large u0, it can be read off as the coefficient of the term
linear in

ffiffiffiffi
u0

p
from (4.12), hence

cP ¼ Γð1
2
ÞΓð1

2
þ γÞ

ΓðγÞ : ð4:13Þ

For generic RG scheme, we have thus established that there
exists exactly one critical value (4.13) for the coupling
parameter leading to the BMB behavior. We recall that
the BMB solution is characterized by the divergence of
u0 → ∞ in the limit ρ → 0. At the BMB point, and in the
vicinity of vanishing field, we find that u0 diverges with a
scheme-dependent inverse power of the field

u0ðρÞ ¼ ½ð1þ 2γÞρ�−1=γ þ subleading: ð4:14Þ

We notice that the divergence in u0 for small fields at the
critical coupling (4.13) is a stable feature of the theory,
irrespective of the choice for the RG scheme, although the
details of the nonanalyticity depend on it.

D. Boundedness of the effective potential

We are now in a position to address the boundedness of
the effective potential. The expression (4.14) can be
integrated. Omitting constant terms, the explicit expression
for the nonanalytical behavior of the BMB effective
potential for small fields reads

uðρÞ ¼ γð1þ 2γÞ−1=γ ρ
1−1=γ

γ − 1
þ subleading: ð4:15Þ

We notice that the details of the nonanalyticity u ∼ ρ1−1=γ

depend on the momentum cutoff γðRkÞ. For the optimized
cutoff (γ ¼ 2), and apart from an overall normalisation
constant for the vacuum energy, the nonanalyticity (4.15) is
of the square root-type, u ¼ 2

ffiffiffi
ρ

p
=

ffiffiffi
5

p
(4.6) modulo sub-

leading corrections in the field. In the sharp cutoff limit
ðγ → 1Þ, we reobtain a logarithmic divergence of the form
u ¼ 1

3
ln ρ, (4.9), again up to subleading terms and dropping

constant ones. The important difference is that while the
potential at vanishing field remains finite for the optimized
cutoff, it becomes unbounded from below for the sharp
cutoff. Next we introduce the depth of the potential defined

as the difference between its value at the saddle point ρ ¼ κ
and its value at vanishing field

Δ ¼ uðκÞ − uð0Þ: ð4:16Þ

Using the relations (3.16), (3.6) together with c ¼ cP for
the inner part of the potential, and expressing ρ and u00 as
functions of x≡ u0, the potential depth (4.16) can be
rewritten as an integral

Δ ¼ 1

2

Z
∞

0

dx
ffiffiffi
x

p ½cP − FðxÞ − 2xF0ðxÞ�: ð4:17Þ

Inserting the explicit expressions for F and cP as in (4.11),
(4.13), the potential difference (4.17) is obtained analyti-
cally and reads

Δ ¼ 1

3ðγ − 1Þ ð4:18Þ

as a function of the scheme parameter. For large γ → ∞, the
potential difference becomes parametrically small. In turn,
for γ → 1 the potential difference diverges.
We can now make the following observations. First,

for generic regularisation, the BMB fixed point potential
comes out bounded rather than unbounded. Second, the
potential difference is finite (in units of the RG scale) for
generic RG scheme, except for the extreme limit of a
sharp cutoff. The previously detected unboundedness
must therefore be understood as an artifact of the sharp
cutoff regularization, rather than an artifact of the
physical theory. In the physical limit (2.4) the metastable
vacuum state with κ̄ ¼ κ · k → 0 coincides with the true
vacuum at vanishing field, and the potential difference
vanishes, k3 · Δ → 0 for k → 0. In Fig. 6, the (dimension-
less) effective potential at the fixed point is shown for the
optimized cutoff, and as a function of the sextic coupling.
Evidently, all dimensionless tricritical potentials display
a metastable extremum at κ ¼ 1 and a global minimum in
the symmetric phase where κ ¼ 0. In turn, the global
minimum is located at κ ¼ 1 for the Wilson-Fisher
fixed point.

E. 1=N corrections

Finally, we comment on corrections beyond the leading
order in 1=N. It is well known that nonanalyticities such as
those in (4.6) cannot arise through Feynman diagrams at
any finite order in perturbation theory. One may then
wonder whether the BMB phenomenon is a genuine strong
coupling phenomenon or a consequence of the infinite N
limit. In fact, it has already been argued that the BMB
phenomenon is no longer operative as soon asN takes finite
values [21,28,31]. More recently, it has also been estab-
lished that scaling potentials at finite N do not converge
pointwise to those at infinite N at the Wilson-Fisher fixed
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point, for all fields [65]. On a technical level, once N is
finite, radial mode fluctuations and derivative interactions
are switched on and start to compete with the Goldstone
mode fluctuations.
Here, we investigate the fate of the BMB phenomenon

by exploring the competition between radial and Goldstone
mode fluctuations to leading order in the derivative
expansion [64] (see [28] for a similar study in super-
symmetric models). We have seen in (4.3) that the very
existence of the BMB phenomenon requires the divergence
of the mass function u0�ðρÞ at vanishing field. At infinite N,
this is dictated by the Goldstone mode fluctuations. At the
BMB fixed point, they lead to a mass function of the form
(4.6) for small fields. It is straightforward to confirm that
(4.6) solves the fixed point condition ∂tu0 ¼ 0, (2.11), for
each and every order as a power series in

ffiffiffi
ρ

p
. On the level

of the flow, the leading divergence ∝ 1=
ffiffiffi
ρ

p
arises from the

canonical scaling and is exactly balanced by fluctuations.

Let us now consider 1=N corrections whereby the rhs of
(2.11) becomes

∂tu0 ¼ −2u0 þ ρu00 −
u00

ð1þ u0Þ2 −
1

N − 1

3u00 þ 2ρu000

ð1þ u0 þ 2ρu00Þ2 :

ð4:19Þ

The last term accounts for the fluctuations of the radial
mode. We observe that the radial numerator ð3u00 þ 2ρu000Þ
vanishes identically for the leading divergence u0 ∝ ρ−1=2 of
theBMBsolution.On the other hand, the radial denominator
ð1þ u0 þ 2ρu00Þ2 ∝ ρ−3 diverges more strongly than the
Goldstone denominator ð1þ u0Þ2 ∝ ρ−1. In combination,
this implies that the leading and subleading 1=N behavior is
the same. We therefore may search for a BMB type solution
which is parametrically close to (4.6) in 1=N, and which
starts out as ∼ρ−1=2. We find

u�0 ¼þ
�

1ffiffiffiffiffi
5ρ

p −
5

7
þ 10

147

ffiffiffiffiffi
5ρ

p
þ 800

11319
ρþ���

�
−
�
5

6

1ffiffiffiffiffi
5ρ

p þ100

693
−

249077

2083158

ffiffiffiffiffi
5ρ

p
þ 317711300

2058507297
ρþ���

�
1

N

−
�
1662097

595188

1ffiffiffiffiffi
5ρ

p −
66240095

31696434
þ23209996241

37053131346

ffiffiffiffiffi
5ρ

p
þ26372394267098720

23585077690921593
ρþ���

�
1

N2
þOðρ3=2ÞþOð1=N3Þ ð4:20Þ

which solves the fixed point condition ∂tu0 ¼ 0 with (4.19)
up to corrections of orderOð1=N3Þ andOðρ3=2Þ. At infinite
N, the solution (4.20) extends over all fields. It remains to
be clarified whether the same holds true at finite N. Due to
the competition between radial and Goldstone mode
fluctuations this is not the case in the supersymmetric
version of the model [28]. We therefore should expect that
the series (4.20) terminates at a singularity for finite fields.
This is left for future work. In a similar vein, it has been
noted that the Wilson-Fisher fixed point at finite N does not
converge pointwise to the infinite N result for all fields
[65]. It would seem interesting to clarify the status of 1=N
corrections for the tricritical fixed points along the same
lines.

F. Discussion

Using functional renormalisation, we have established
the existence of a unique nonperturbative fixed point
corresponding to the Bardeen-Moshe-Bander phenomenon
irrespective of the underlying RG scheme. The fixed point
invariably arises through a nonanalyticity of the scalar
potential at small fields, thereby ensuring (4.3). The precise
form of the nonanalyticity at vanishing field is nonuni-
versal in that it depends on technical parameters such as
the Wilsonian momentum cutoff. For generic regularisa-
tion, the resulting effective potential is genuinely bounded
from below except for singular choices of the RG scheme

such as the notorious sharp momentum cutoff. We also
stress that our approximation has become exact owing
to the infinite N limit in the absence of derivatve inter-
actions. We can therefore safely conclude that the Bardeen-
Moshe-Bander phenomenon is a feature of the physical
theory at infinite N, and not an artifact of the underlying
regularisation.

V. SUMMARY

Exactly solvable models are hard to come by, but once
available, they offer important analytical insights into the
inner working of quantum field theory. We have inves-
tigated interacting fixed points of the exactly solvable
OðNÞ-symmetric scalar ðϕ2Þ3d¼3 model at infinite N, using
functional renormalisation, Figs. 1,2. A central role is
played by the sextic scalar selfcoupling, which becomes
exactly marginal for vanishing quartic interactions. For
weak sextic coupling, the theory displays a line of
interacting UV fixed points starting out of the Gaussian
fixed point, Fig. 3. With increasing sextic coupling, the
potential ceases to exist beyond a critical value.
Nonanalyticities develop in the small field region leading
to a Landau-type singularity in the quartic at strong
coupling, Fig. 4. Interestingly though, even at strong
coupling the theory displays classical scaling at the
“would-be” fixed point despite of interactions. Another
novelty is the phase diagram Fig. 5 showing how the
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asymptotically safe UV fixed points are connected with the
Wilson-Fisher fixed point and the symmetric and symmetry
broken phases at low energies.
Nonclassical scaling arises at the Wilson-Fisher fixed

point, an isolated scaling solution which cannot be reached
from the tricritical line by continuous tuning of the sextic
coupling. Also, at a critical value for the sextic, the theory
displays the spontaneous breaking of scale invariance

through the generation of mass. Its fingerprint is a non-
analyticity of the effective potential. Although the details
for the latter depend on the regularistion, the phenomenon
arises universally. We have also established that the BMB
potential remains bounded irrespective of the regularisation
scheme, Fig. 6, with the exception of the notorious sharp
cutoff where we confirm logarithmic unboundedness. First
steps have been made to extend the BMB solution beyond
infinite N, though more work is required to relate with the
results of [21,28,31].
On a technical level, we have observed that classical and

nonclassical scaling exponents arise correctly from both the
local and the global RG flows. The critical endpoint and the
onset of strong coupling is also well captured by the global
RG flows. Local RG flows, on the other hand, did not offer
good indications for the endpoint, reminiscent of large-N
perturbation theory. We conclude that in order to uncover
the onset of strong coupling, nonperturbative methods
beyond polynomial expansions or conventional perturba-
tion theory should be adopted.
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